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Abstract. Through-wall synthetic aperture radar (SAR) imaging is of significant

interest for security purposes, in particular when using multi-static SAR systems

consisting of multiple distributed radar transmitters and receivers to improve resolution

and the ability to recognise objects. Yet there is a significant challenge in forming

focused, useful images due to multiple scattering effects through walls, whereas

standard SAR imaging has an inherent single scattering assumption. This may

be exacerbated with multi-static collections, since different scattering events will be

observed from each angle and the data may not coherently combine well in a naive

manner. To overcome this, we propose an image formation method which resolves

full-wave effects through an approximately known wall or other arbitrary obstacle,

which itself has some unknown “nuisance” parameters that are determined as part of

the reconstruction to provide well focused images. The method is more flexible and

realistic than existing methods which treat a single wall as a flat layered medium,

whilst being significantly computationally cheaper than full-wave methods, strongly

motivated by practical considerations for through-wall SAR.

Keywords : Synthetic aperture radar, multi-static radar, through-wall imaging, total

variation, boundary element method, reduced order models, multiple scattering,

nuisance parameters

1. Introduction

Synthetic Aperture Radar (SAR) is a radar collection and image formation technique

in which data from many pulses collected along a flightpath are used to synthesize

a large aperture and form fine-resolution images from large (stand-off ) distances[12,

13, 29]. It has widespread use as an important remote sensing technology, partly due

to its all-weather, day and night operability (unlike, for example, optical imaging),

including for defence and security purposes, measuring biomass, monitoring sea ice,

and in monitoring facilities such as ports for commercial reasons. At lower frequencies

of around 1 GHz (through UHF and L-band in the IEEE standard), the radar waves
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readily penetrate many building structures – else technologies such as mobile phones

and WiFi would not work. This presents the possibility of using SAR for through-

wall imaging, sometimes referred to under umbrella of Remote Intelligence of Building

Interiors (RIBI)[23], but not without some significant challenge. The standard data

model used as the basis for SAR image formation uses a single scattering assumption

– namely the Born approximation – but any waves which have interacted with objects

of interest inside a building will have scattered at least three times. This will generally

result in artefacts and a hard to interpret image.

A second challenge is one of data coverage and bandwidth, in order to form a fine

enough resolution – particularly if 3D effects and structures need to be resolved. At

lower frequencies one must fly a longer aperture for the same cross-range resolution

(that is, resolution in the same direction as a straight flight path), and frequency

bandwidth will inevitably be restricted at lower centre frequencies due to engineering

limitations, similarly resulting in a coarser range resolution. We must also collect data

from multiple heights (or elevation angles) in order to gain the 3D data required[15],

but it may not always be possible to carry out such a complete collection in practice.

One technological solution is to use a multi-static radar configuration – multiple

distributed radar transmitters and receivers operating coherently together[2, 42]. A

naive approach to combining this multi-static data to form a single image however may

simply exacerbate the problem of artefacts and image interpretability: data collected

from different source-receiver (or bi-static) pairs will have undergone different delays

and multiple-scattering through the walls, and so may not coherently combine together

naively with a single-scattering model.

Thus, the need to resolve through-wall full-wave effects and multiple scattering is

reinforced. If we wish to resolve multiple scattering in the inverse problem, then it is

reasonable to assume our forward model must include these effects. Several methods

have been developed to form focused images through walls by modelling the through-

wall transmission as being through a single- or multi-layered medium[35, 44, 50]. In

particular, Solimene et al [44] apply the Kirchhoff approximation in conjunction with

an analytic expression for the Green’s function through the dielectric layer (wall), and

estimate the parameters (permittivity) of the wall as part of a linear reconstruction. Li

et al [35] similarly estimate wall parameters of a 3-layered medium in order to form a

focused back-projection image. Alternative methods of estimating the properties of the

wall may also be employed to improve the results, for example by extracting the off-

wall time-delay measurements in mono-[41] or a bi-static configurations[19]. The main

limitation of a layered medium model is it presupposes some geometrical restrictions

on the data collection – that the radar is observing one outer wall somewhat obliquely.

If data is collected from stand-off ranges with airborne radars then we are most likely

to find the full structure width within the antenna footprint, and with this reflections

from two walls at different angles. If we are to employ multi-static collections then

applicability of the layered medium models may be further reduced.

If we do not linearise the inverse problem, for example using some (approximate)
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Green’s function for the medium about which we have linearised, then we must

repeatedly solve the forward (wave) model during a non-linear reconstruction process.

A method to do so by solving a series of 1-D inverse scattering problems, which are

then combined to form a 2D image, was developed by Klibanov et al [31]. As with the

layered medium models, this may not apply well to more generalised data collection

geometries, since multiple scattering is only resolved along the range direction. Full-

wave inversion techniques, in which the full scattering model (e.g. acoustic or elastic

wave equation, Maxwell’s equations, etc.) is used in a reconstruction method such

as regularised least-squares or Bayesian inversion, have now been widely employed for

many inverse scattering problems, in particular for geophysical imaging[47, 49] and

the related ground-penetrating radar (GPR) problem[25, 32, 33, 48]. For through-wall

radar, full-wave inversion approaches have been applied in conjunction with level-set

techniques both for 2D[26, 28] and 3D image formation[27, ch. 3]. In both of these

cases the wall was assumed known (which is reasonable), and somewhat complete data

coverage of transmitter/receiver antennas surrounding the building in the near-field was

simulated. The latter may make this challenging to translate to the stand-off SAR

imaging problem. Full-wave inversion also has a significant computational cost due

to the need to repeatedly solve wave equations, which may limit its applicability to

intelligence gathering applications of SAR in the near-term.

One answer to the computational cost has been the use of reduced order models

(ROMs), in which a low-order surrogate model is developed which still encapsulates the

degrees of freedom of the full physics (wave) model[20, 37, 43]. ROMs have been applied

extensively to inverse scattering problems as a means to deal with the nonlinearity due

to multiple scattering in various settings by Borcea et al [8, 9, 10, 11], as well as more

recently to the case of mono-static (i.e. co-located source and receiver) SAR by Druskin

et al [18]. The results provided in this latter work are more akin to a mono-static GPR

setup (demonstrating a clear ability to reduce artefacts due to multiple reflections in

this context), with the flight path in the imaging plane itself (while the radar will

usually be some way above the ground and imaging plane in airborne SAR), close to

objects of interest, and with a Gaussian pulse as source. It is possible there will be some

increased computational cost associated with having a fine enough timestep to simulate

the wideband frequency-modulated pulses more commonly employed in airborne SAR

(or, equivalently, a short enough impulse which can then be deconvolved), as well as in

extending the simulation domain to representative ranges. It may also be necessary to

employ a full 3D implementation of the scheme for it to be applicable to representative

SAR data. Notwithstanding the application of interest here being distinctly 3D, in

applications of SAR one is most often flying above the image plane, at some elevation

angle σ from the scene centre. Two scatterers in the ground plane at a distance apart

x in the range-direction will appear in the time-domain data x cos(σ)
c

s apart, but the

multiple reflections will still appear at additional delays of x
c
s. This makes it clear that

the problem of dealing with multiple scattering in SAR is a distinctly three-dimensional

one – regardless of whether 2D or volumetric images are being formed.
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In this paper, we propose a through-wall imaging method which is able to resolve

the full-wave effects through an arbitrary wall (or other obscurant) by modelling the

transmission with a boundary element method. This, combined with a simple reduced

order model, is used to form numerical approximations to the Green’s functions for an

otherwise empty scene, which can be used in a linear reconstruction scheme to image

the building interior. Thus, we can resolve multiple scattering between the wall and

objects in the scene, but not between objects in the scene themselves. By defining the

image implicitly as a function of the parameters describing the wall, we obtain a non-

linear inverse problem in just a small number of parameters. This provides us with a

scheme which both captures many of the data features observed in real-world relevant

data collection scenarios without the above-mentioned limitations of a layered-model

approximation. It also has a lower computational cost than fully non-linear (full-wave

inversion) methods, more readily allowing application in the short timescales which

might be required in building intelligence gathering operations.

The rest of the paper is organised as follows. First, in Section 2 we discuss the

standard data model used in SAR in some detail, to make clear assumptions and

how they may cause difficulties, as well as how this model is most commonly used

to form SAR images. In Section 3 we develop our through-wall scattering model, before

discussing its ROM approximation in Section 4. Then, in Section 5 we present our

reconstruction scheme, which we demonstrate in numerical experiments in Section 6.

Further details on the boundary element method used for the forward model are included

in Appendix A, with further details on the reconstruction scheme also being included

in Appendix B.

2. Single Scattering and Synthetic Aperture Radar

2.1. A standard scattering model for SAR

While electromagnetic wave propagation is described by Maxwell’s equations, the

majority of SAR image formation assumes the radar wave propagation is governed by

a scalar wave equation[12, 13],(
∇2 − 1

c2(x)

∂2

∂t2

)
u(x, t) = j(x, t), (1)

for source j. This is valid for each component of the electromagnetic waves when

travelling through free space, but will not take into account polarization changes upon

scattering. If multi-polar measurements are taken, separate images are generally formed

for each polarization channel, which are often colourised and overlaid (or an alternative

polarimetric decomposition shown)[36], which can be used to interpret the type of

scattering occurring in the scene. This is in contrast to a joint reconstruction which

determines some anisotropic scattering properties directly, for example as has been

carried out for capacitance imaging of liquid crystals[40].
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Let us decompose the total wavefield u into the sum of an incident field uin, the

field which would be observed in some background medium with speed c0 but otherwise

no objects (possibly a constant), and a scattered field usc, u = uin + usc. Then the

incident field satisfies (
∇2 − 1

c20

∂2

∂t2

)
uin(x, t) = j(x, t), , (2)

and subtracting (2) from (1) we find that the scattered field satisfies(
∇2 − 1

c20

∂2

∂t2

)
usc(x, t) = −V (x)

∂2u(x, t)

∂t2
, (3)

with reflectivity function V (x) = 1
c20

− 1
c2(x)

. The solution to (3) can be expressed in

terms of the Green’s function for the background medium with wavespeed c0 as

usc(x, t) =

¨
g0(x− z, t− τ)V (z)u(z, τ) dτdz, (4)

or in the frequency domain for the equivalent Helmholtz problem as

U sc(x, ω) = −
ˆ
G0(x− z, ω)V (z)ω2U(ω, z) dz, (5)

where U sc, U in, and U are the Fourier transforms of usc, uin, and u, respectively. If c0
is a constant wavespeed, then the Green’s function is given by

(∇2 + k2)G = −δ(x), G0(x, ω) =
eik|x|

4π|x| , (6)

with wavenumber k = ω/c0.

Noting that scattered wavefield appears both in and outside of the integral in (4-

5), these do not provide a straightforward formula for the scattered fields which instead

vary nonlinearly with V . As such, SAR (and much radar theory and practice in general)

instead makes use of the Born approximation,

U sc ≊ U sc
B := −

ˆ
G0(x− z, ω)V (z)ω2U in(ω, z) dz. (7)

This is a single scattering approximation, and can be justified by expanding (5) in a

Neumann series and truncating to first order for sufficiently weak scattering.

2.2. The SAR data model and image formation

SAR involves flying a radar along some flight path γT (s) during which multiple wide

bandwidth pulses are emitted and the echoes received at a receiver radar antenna

located at (often co-located) γR(s). The parameter of distance along the flight path

s is referred to as slow-time, distinguishing it from the time-of-flight of a pulse t: due to

the pulse travelling much faster at the speed of light, one generally assumes everything is

stationary during the time of a pulse – the start-stop approximation[12, 13]. This forms
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a synthetic aperture, providing the two dimensions of information required to form an

image: slow time s, or position of antennas; and time of flight at which reflections

are received, or frequency ω. To form a 3D image, one may either combine the data

from multiple data collections at appropriately different apertures (for example different

heights), assuming the scene remains stationary, or use a collection multiple transmitters

and/or receivers in different locations (a multi-static collection).

A simplified model of the incident wavefield in the frequency domain, for a small,

point-like antenna, is a multiple of the freespace Green’s function,

U in(z, ω; s) = P (ω)
eiω|z−γT (s)|/c0

4π|z− γT (s)|
(8)

for some P ∈ C describing the transmitted power and phase at frequency ω. Thus, the

Born approximated scattered field measured at the receiver is given by

U sc
B (s, ω) = a(ω)

ˆ
eiω(RT (s,z)+RR(s,z))/c0

(4π)2RTRR

V (z) dz, (9)

where the ω2 term has been absorbed into a = ω2P , RT (s, z) = |z − γT (s)|, and

RR(s, z) = |z− γR(s)|.
The received signal will need to be sampled at least at Nyquist frequency. Since

the the pulses will be generally have a bandwidth which is small compared to the

centre frequency, i.e. a low fractional bandwidth (as an example, the current generation

of ICEYE SAR satellites have a centre frequency of 9.65 GHz and bandwidth of 600

MHz[24]), the signals are first I/Q demodulated (or base-banded) by mixing with a

reference signal,

dphd(s, ω) = U sc(s, ω)e−iω(RT (s,xref)+RR(s,xref))/c, (10)

where the subscript “phd” refers to Phase History Data, and xref is some reference

location in the scene.

In order to make use of (7) in an image formation method and data model, with

discrete pixels, it must be discretised in some way. In the standard approach to SAR,

this amounts to taking V which is a distribution of point scatterers arranged on some

grid on a 2D surface representing the ground – flat or otherwise – or in 3D space, which

replaces the integral in (7) with a summation. This effectively assumes that the scene

is made of (stationary) isotropic point scatterers.

While there are many different SAR image formation algorithms, most involve

applying the adjoint of (7) to the data, or some approximation to it, for example, by

making a far-field approximation or by interpolating data-points onto a regular grid in

Fourier space to make use of the computationally efficient Fast Fourier Transform (FFT)

algorithm[17]. In a mathematical sense these can all be considered a back-projection,

but note that “back-projection” usually refers to a specific time-domain algorithm in

SAR literature[16].
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3. A forward model for through-wall radar

3.1. Through-wall transmission

We noted several assumptions in the standard SAR forward model: governed by a scalar

wave equations, only single (weak) scattering occurs, with a scene made of isotropic point

scatterers. Where these assumptions do not hold, artefacts will be observed in the back-

projection images based on this forward model. In some cases artefacts might provide

valuable information to an analyst, helping them understand the scattering phenomena

which might have occurred and therefore what objects must be present, and so could

be considered “features”.

In the through-wall imaging application of interest here, the radar waves interacting

with objects we would like to image inside a building must have scattered at least 3

times: once in the transmission through the wall; at least once interacting with objects

of interest inside the building; then once more in transmission back through the wall.

When this data is used to form images, we might see distinct multiple scattering artefacts

in the image. We will almost certainly find that the image does not focus up well –

in particular for multi-static data – with the different effective path lengths to each

locations inside the building preventing coherent combination of the back-projected

data.

Consider for now a scene containing a solid object D with wavespeed cD obscuring

the radar view, the walls of a building for example, but which is otherwise empty. The

scattered wavefield in this case satisfies

(∇2 + k20)U
sc(x, ω) = 0, x ∈ Ω\D, (11a)

(∇2 + k2D)U(x, ω) = 0 x ∈ D, (11b)

where kD = ω/cD and k0 = ω/c0 are the wavenumbers in free-space and inside the

object (respectively), with boundary conditions

γ+0 (U
sc(x, ω) + U in(x, ω)) = γ−0 U(x, ω), x ∈ ∂D (12a)

1

c0
γ+1 (U

sc(x, ω) + U in(x, ω)) =
1

cD
γ−1 U(x, ω), x ∈ ∂D, (12b)

(12c)

as well as the Sommerfeld radiation condition. Here, γ+0 and γ−0 are the Dirichlet trace

operators – i.e. the limit of values towards the interface ∂D from the exterior and

interior of the object (respectively), and γ+1 and γ−1 the Neumann trace operators – i.e.

the limits of the normal derivatives of the wavefield at the interface. The solution to

this equation can be written using Green’s representation theorem as a combination of

single and double layer potentials[5]

U(x, ω) =

ˆ
∂D

G0(x,y, ω)ψ(y)dy −
ˆ
∂D

∂G0(x,y, ω)

∂n
ϕ(y)dy, (13)
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where G0(x,y, ω) ≡ G0(x− y, ω), and with jumps of the solution across the interface

ψ = γ−1 u− γ+1 u, (14)

ϕ = γ−0 u− γ+0 u. (15)

The scattering problem (13), being a surface integral, is suitable for solving with

the Boundary Element Method (BEM), for which we use the BEMPP-CL library[7]. In

scattering problems consisting of one or a small number of discrete solid objects (rather

than a continuum of varying wavespeed), depending on their size and number, boundary

element methods may provide a computational benefit over e.g. a finite element method,

due to the need to only discretise and solve equations only on the surface(s) rather than

a whole volume.

The derivation of the specific boundary element formulation of (28) which we use

is included in Appendix A.

3.2. The data model

Now, returning to our otherwise empty scene containing the single obstacle – a wall,

say. If we take for the incident wavefield U in in (A.11) the freespace Green’s function

G0(x,y, ω) (6), i.e. with source term J(x) = δ(x − y) with y ∈ R3\D, then the total

field

G′(x,y, ω) := U(x) = G0(x,y, ω) + U sc
D (x, ω) (16)

will be the Green’s function G′ for the domain with the obscurant, where we have

denoted U sc
D the wavefield scattered by D.

Let us parameterise the obscuring object D by some vector m describing its

unknown properties, which may be a list (for example) of electromagnetic properties

(permittivity, conductivity) and/or some physical dimensions. We may thus write

U sc
D (x,y, ω) := U sc

D (x,y, ω;m), and G′(x,y, ω) := G′(x,y, ω;m). With this

parameterisation in mind, our model for through-wall radar data is obtained by

substituting G′ for the free-space Green’s function in (7) and (8) (where in the latter it is

written explicitly), plus the wavefield scattered directly by D measured at the antenna.

This results in a Born approximation with corrected Green’s function

dphd = F(V ;m) := F0(m) + F1(V ;m), (17)

which has components

[F0(m)]i :=a(ωi)e
−iωR0,i/cU sc

D (xR,i;xT,i, ωi,m), (18a)

[F1(V ;m)]i :=a(ωi)e
−iωR0,i/c·ˆ

G′(x,yT,i, ω;m)G′(yR,ix, ω;m)V (x)dx, (18b)

where [F·]i is the contribution to the ith sample of the measured data (ordered into a

vector), with ωi the ith measured angular frequency, xR,i and xT,i the ith receiver and
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transmitter locations, and R0,i := RT (si,xref) + RR(si,xref) for some chosen reference

point in the scene xref . As previously, V (x) is the reflectivity describing objects in

the scene excluding the obscurant (wall). Note that F0 only contains the scattered

field, since the incident field will not be recorded due to antenna beam patterns and

time-domain gating of measured signal.

Before discussing numerical evaluation of (17), we first re-emphasise what features

of the data are modelled – and therefore we expect to be able to resolve well – compared

to the standard Born approximated forward model. (17) includes (multiple) scattering

of the incoming waves through and off of a (known) wall to the target scene, single

scattering off of other targets in the scene, before being (multiply) scattered back

through the wall to the receiver. It also includes multiple scattering off of the known

wall itself without other interactions in the scene. It does not include multiple scattering

between other objects in the scene, which are modelled using the Born approximation.

Other standard assumptions also remain – such as scalar waves and a point scatterer

approximation for objects in the scene (not the wall).

We should therefore expect use of (17 - 18) in a reconstruction algorithm to help

resolve through-wall defocusing and multiple scattering effects (including off of side

walls and corners). This might, for example, resolve “ghost” reflections of objects inside

buildings where these are caused by multiple reflections off of an external wall (e.g. side

wall), but would not resolve multiple reflections between other objects in the scene.

Note that including the F0 term in a reconstruction scheme would result in the

wall not being seen in the reconstructed image (if we were able to perfectly match the

reflected waves), so it could be desirable to neglect this term.

4. Reduced order modelling

The model (18) is to be used within an iterative reconstruction for discretised reflectivity

V :=
∑

i viδ(x̃i), v = [v1, . . . , vn]
T , vi = V (x̃i). Clearly re-solving the boundary integral

equations at each iteration would present such a computational cost that we may as

well have carried out a full-wave reconstruction, but we can pre-calculate the Green’s

functions G′ for a given m.

If m is known, then we could pre-compute numerical Green’s functions G′ to be

stored and reused. If instead m is unknown – as will generally be the case – we can use a

Reduced Order Model (ROM). This involves pre-computing and storing only a number

of Green’s functions for a predetermined set of parameters (the offline or training stage),

which can later be used to accurately approximate in real-time the wavefield solutions

(the online stage). As well as allowing for a real-time evaluation of the numerical Green’s

functions, the total number of numerical simulations may also be greatly reduced.

For the ROM, following Seoane et at [43], we use a Proper Orthogonal

Decomposition with Interpolation (PODI) of the simulated U sc
D (x̃;mi) for a

predetermined set of observation parameters {mi}.
Denote by usc(m) := [U sc

D (x̃0;m), . . . , U sc
D (x̃n;m)] the simulated scattered
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wavefield at locations in the scene to be imaged x̃j, j = 1, . . . , N , for the set of

observation parameters m. We wish to approximate these scattered fields with some

set of basis vectors Φk

usc(m) ≈
M∑
k=1

akΦk, (19)

with M ≪ N . Having carried out prior observations usc
D,i := usc

D(mi), we assemble an

observation matrix

D = [usc
D,1, . . . ,u

sc
D,Nobs

] ∈ CN×Nobs , (20)

and take its truncated singular value decomposition

D ≈ D̃ := HKΣK(GK)∗ =
K∑
k=1

hkσkg
∗
k, (21)

for K corresponding to a truncation in singular values σk ≥ σ1α, for some threshold

0 < α ≪ 1, H ∈ CN×K , Σ = diag0([σ1, . . . , σK ]
T ) ∈ RK×K , and GK ∈ CNobs×K . Noting

that the observations can be approximately recovered as

usc
i ≈ HKσKg∗

i , (22)

the PODI scheme is to approximate usc(m̃) for a given m̃ by

usc(m̃) ≈ usc
P (m̃) := HMΣMgP (m̃)∗, (23)

where gP (m̃) is obtained via cubic interpolation of the Nobs truncated right singular

vectors gk ∈ CK , which correspond to the observation interpolation points mk.

Writing the discretised forward model (17) in terms of the POD, we then have

[F0(m)]i = a(ωi)e
−iωiR0,i/c

[
usc

P0
(m)

]
i

= a(ωi)e
−iωi(RT,i+RR,i)/c

[
HM

P0
ΣM

P0
gP0(m, ωi, si)

]
R,i
, (24)

with subscript P0 referring to a POD formed of observations associated with F0 of U sc
D

at the receiver locations, subscript R, i denoting the ith receiver index (for a multi-static

configuration). Similarly, F1 is given by

[F1(m,v)]i =a(ωi)e
−iωiR0,i/c

∑
j

{ (
G0(xj,yT,i) + U sc

P1
(xj,yT,i)

)
·

(
G0(xj,yT,i) + U sc

P1
(xj,yT,i)

)
vj

}
(25)

=a(ωi)e
−iωiR0,i/c

∑
j

{ (
G0(xj,yT,i) +

[
HM

P1
ΣM

P1
gP1(m, ωi, si)

]
T,ij

)
·(

G0(xj,yT,i) +
[
HM

P1
ΣM

P1
gP1(m, ωi, si)

]
R,ij

)
vj

}
.

(26)
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As with (24), subscript T, i denotes the ith transmitter index (in a multi-static

configuration), and subscript P1 refers to a POD formed with observations associated

with F1 being U
sc
D at points in the scene xj. This model can be written more succinctly

as

F [m,v] := F0(m) + A(m)v, (27)

where the elements of the matrix A ∈ C(nωns)×n are defined by (26).

Recall that the PODI scheme is carried out in two steps. First, the offline stage

involves prior simulation of usc
D,k and calculation of HK , ΣK , and GK for the set of

interpolation points {mi}Nobs
i=1 . The offline stage is carried out prior to reconstruction,

and the terms stored. Then, the online stage involves evaluating (23) during the iterative

reconstruction process, instead of evaluating (A.12) with (17) directly.

We note that more advanced projection-based POD methods (or PODP) are also

available, which are applied directly to the finite element system, reducing the size of this

system to be solved[43]. These have several advantages compared to PODI, including

forcing the solutions to obey the equation of the problem, often yielding greater accuracy

and robustness or allow fewer (adaptively chosen) observation points. Our choice is made

primarily for implementational simplicity.

The choice of a PODI scheme being applied directly to the wavefield in the

imaging domain also reduces the computational cost of the online stage, since evaluation

of the representation formula (13) has already been carried out. ROM schemes

applied to the BEM solution vector (including PODP) would require evaluation of this

representation formula during the online stage, increasing the computational cost during

a reconstruction. This does come at a cost of memory: for a scene with many pixels

the observations are much larger than the BEM solution (which scales with size of

wall/object, not the scene size), and we must apply an SVD to the whole observation

matrix D.

5. Through-wall reconstruction scheme

5.1. Variable projection

The reconstruction problem in both the model parameters m and scene v :=

[v1, . . . , vn]
T , vi = V (x̃i), can be formed as the variational problem

m̃, ṽ =argmin
m,v

J (m,v),

J (m,v) :=
1

2
∥F(m,v)− d∥22 + λmM(m) + λvR(v),

(28)

with M and R some regularisation terms enforcing prior knowledge and preventing

over-solving noise (which may also include hard constraints), and λm, λv > 0. For our

purpose, the wall parameters m may be considered nuisance parameters [3], since the

presence of a wall is self evident. (28) is well-suited to reduced modelling or variable
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projection,

m̃ = argmin
m

J̄ (m) (29a)

J̄ (m) := J (m; v̄(m)) (29b)

v̄(m) := argmin
v

J (m,v). (29c)

The solutions to (28) and (29) clearly coincide, simply by back-substitution of (29b) and

(29c) into (29a). However, variable projection here has the benefit of having separated

a simpler linear reconstruction problem (29c) from the full non-linear one (28). This

approach enables a wide range of black-box optimisation schemes to be applied to the

optimisation sub-problems, including cases where the regularisation term M is non-

smooth[34, 46]. Details of the derivatives of the objective function (29) used in the

reconstruction are provided in Appendix B.1.

Note that, unlike in the afore referenced work [3], in (29) it is the nuisance

parameters m which the data misfit function varies non-linearly with, rather than the

parameters of interest v.

5.2. Numerical scheme

In reconstructing the complex-valued reflectivities v ∈ Cn, we apply regularisation only

to their magnitudes which is the quantity of interest, since the phase of the image

is driven by positional error of the voxel versus true scatterer locations (or them not

being well represented by point scatterers) and shall vary freely in [0, 2π). A suitable and

convenient choice is Total Variation (TV), since the interior of a building will presumably

consist of some distinct solid objects and be otherwise empty – which results in the inner

optimisation problem for v

v̄(m) := argmin
v

∥A(m)v − (d−F0(v)) ∥22 + TV (|v|), (30)

where | · | is understood to mean the element-wise absolute value |v| = [|v1|, . . . , |vn|]T ,
and TV (·) is the (isotropic) Total Variation semi-norm. Details of TV and numerical

solution to (30) are provided in Appendix B.2

Given implicitly defined v̄(m), the nonlinear problem in nuisance parameters

(29b) can be solved with a suitable non-linear optimisation scheme, for which we have

chosen the BFGS scheme. Again, further implementational details are provided in

Appendix B.3.

6. Numerical results

Here we test the method with simulated data in three numerical experiments: a

reconstruction with a perfectly known wall; a reconstruction with a wall of unknown

permittivity, but otherwise known geometry; and a reconstruction for a wall of unknown
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permittivity, and approximately known position and thickness. For the latter, the data

is also simulated fully with a full-wave model. Thus, we progressively reduce the inverse

crime committed to demonstrate the potential of this method.

In each of these numerical experiments, the obstacle comprises two joining outer

walls at right angles to one-another as a surrogate for the facing corner of a building

(referred to as a “corner wall” for brevity), which is designed to mimic our previous

experimental setups[1, 2].

The geometry of the multi-static collection relative to the scene and corner wall are

shown in Figure 1, in which we ensure there is no line-of-sight from objects in the scene

to the antenna positions. The radar collection parameters are also provided in table 1.

The angle between the lines bisecting the centre of transmit and receiver apertures to the

scene centre are referred to in this table as the “bi-static angles”, with the multi-static

datasets consisting of all 3 transmitter-receiver pairs, including the co-located pair.

Each reconstruction uses data simulated using a 3D forward model, but a 2D dataset

is collected (i.e. there is no vertical aperture), and 2D images of the scene are formed

using the 3D forward model derived in Section 3. This model includes out-of-plane

through-wall transmission and reflection effects. The same method may be directly

applied to 3D reconstructions to also resolve objects in height, simply at increased

computational cost, and at the requirement of a vertical aperture of data also being

collected.

The centre frequency listed in table 1 may be considered slightly low for a practical

through-wall SAR system, but it is of the right order to be representative, and allows

us to keep the number of boundary elements low for more rapid testing. Similarly, the

simulated range of 20m can easily be increased or decreased as required without any

change to computational cost and (given the same extent of aperture angle) little to no

affect on the reconstruction.

Parameter Simulation value

Centre frequency (MHz) 349.9

Bandwidth (MHz) 299.8

Azimuth aperture (rad) 0.86

Transmitter azimuth from x̂ (rad) −7π/12

Bi-static angles (rad) 0, −π/6, −π/3

Range to scene (m) 20

Horizontal pixel spacing (m) 0.05
Effective mono-static

cross-range resolution (m)
0.5

Effective mono-static

range resolution (m)

0.5

Table 1: Radar data collection and image formation parameters used in simulations.
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Figure 1: Experimental multi-static collection geometry used for simulations relative to

the wall location and image extent. The flight paths of the transmit and first receiver

are shown in red (solid), of the second receiver in green, and of the third receiver in

blue. The angles between the lines bisecting the flightpath to the scene centre (dotted

lines) are given in table 1, referred to as the “bi-static angles”. Also highlighted by

black-dotted lines are the lines of sight from the widest extent of antenna positions to

the scene centre.

6.1. Reconstruction with a known obstacle

To ensure the method is capable of focusing through-wall effects, we first compare the

reconstruction results using the through-wall data model with the exact permittivity

and geometry used in the data simulation to that of the standard SAR model.

Using the model (26), data is simulated for three point scatterers of reflectivity

1.0 beyond the corner wall of height 3m, wall lengths 3m and 4m, width 0.3m and

relative permittivity 3. These point scatterers do not lie exactly on pixel locations of

the reconstruction domain, which themselves are upsampled by a factor of 10 versus the

0.5m range- and cross-range resolution of a single (mono-static) channel of the multi-

static data collection. For a more transparent comparison between the two operators,

the energy directly reflected from the wall given by F0 is not included in the data, i.e.

dphd = A(m)v. (31)

For both reconstructions, we allow FISTA to run for 500 iterations, and set the

regularisation parameter λv to zero (i.e. R ≡ 0) to test only the ability to fit the

noiseless data. The reconstruction results are shown in Figure 2, with the exact location



Resolving Full-Wave Through-Wall Transmission Effects in Multi-Static SAR 15

of the point scatterers overlaid in red. By comparing these images, the effect of through-

wall delay using the standard SAR model is clear, with the targets shifted down-range.

They also appear less well focused and separated, with significantly more background

clutter. In contrast, using the (exact) through-wall SAR model, the location of objects

is corrected, it is clearer that there are three distinct objects, and there is a clearer

background (i.e. reduced “clutter”).

Figure 3 shows the convergence of FISTA, from which we can see the standard

SAR reconstruction quickly reaches a minima in which the data fit is not good, whereas

the through-wall SAR model continues to converge. The slower rate of convergence for

the through-wall model is due to the standard choice of step size in FISTA being the

reciprocal of the Lipschitz constant of the data misfit, but the operator norm of A(ϵr)

was observed to increase with ϵr.

(a) Standard SAR model (b) Through-wall SAR

Figure 2: Reconstruction results of through-wall data for three point scatterers, using

(a) the standard SAR model and (b) the exact through-wall model. The true location

of scatterers are overlaid as grey dots, and the corner of the wall is at (−2,−2)T .

Note that in both cases, we would not expect either of these reconstructions to

reproduce the correct reflectivity value 1.0. Since the images are up-sampled versus the

resolution we could expect from the data, this distributes a single scatterer (and its

scattering power) across multiple pixels.

To understand where the difference performance arises, it is useful to consider the

case of a single point scatterer. For this case, individual back-projection images are

formed for each transmit/receiver pair of data in the multi-static collection. These 3

images are then colourised and overlaid such that pixels taking the same value in each

image which appear grey-scale, and will otherwise be tinted towards red, green or blue if

the value is greater in the first, second or third channel’s image. The results are shown

in Figure 4a for images formed using the standard SAR model, and in Figure4b using

the through-wall model with the correct permittivity.

The increased tinting from red to blue observed in Figure 4a is because the peaks
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Figure 3: Convergence of the reconstructions using FISTA, for the standard SAR model

ϵr = 1 shown in blue, and the exact through-wall model ϵr = 3 in orange.

of each channel’s image are not co-located, resulting also in phase errors between the

images due to different effective path lengths through the wall to each pixel. This

means that when all the back-projected data is summed it will not properly coherently

combine. In contrast, we see less colourisation in Figure 4b due only to different sidelobe

patterns, as the peaks of each image are properly aligned since the effective path lengths

corrected. This suggests the multi-static data contains information which may be used

to help resolve an unknown wall in order to align each data channel.

(a) Standard SAR model (b) Through-wall SAR (c) Colour wheel

Figure 4: Overlaid magnitude of back-projection images for a single point target at the

origin behind a corner wall. A separate image is formed from data of each bi-static pair

in the multi-static collection. These are colourised and overlaid such that pixels taking

the same value in each image which appear grey-scale, or otherwise tinted towards red,

green or blue if the image is brighter in the corresponding image. Red, green and blue

image colour channels also correspond to the antenna flight paths shown in Figure 1.

In Figure 5, we also plot cross-sections through the back-projection images for

the whole dataset to show the sidelobe patterns of a single point scatterer. Figure 5a

shows nominally equal resolution for both the standard SAR and through-wall models

in the range direction for this geometry. However, some sidelobe performance is
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gained using the through-wall model, with approximately 1.5 dB improvement in peak

sidelobe performance. Figure 5b demonstrates some improved resolution in the cross-

range direction achieved by using through-wall model. Whilst there is still a gain of

approximately 1.0 dB peak sidelobe performance, there is less gained overall. In either

case, no apodization has been performed to control sidelobe levels.

Note a single point scatterer is an unrealistic “best case” when using the standard

SAR model, as it may only appear slightly displaced and defocused, without interference

of responses from other objects overlaying due to multiple angles of observation.

6.2. Reconstruction with an unknown permittivity

Now we consider the case where the permittivity of the wall is unknown. The data

simulation and experimental setup is the same as for Section 6.1, except for the true

wall permittivity and thickness being reduced to 2.07 and 0.2m respectively. 20%

Gaussian white noise is added to the data relative to its norm.

We set the regularisation parameter for TV to λ = 10−3∥A∥2, for A corresponding

to ϵr = 3.0, with this norm being calculated using the power method. This choice of λ

being comparatively small to ∥A∥2 is so as not to drive the reconstruction. As before,

we use only the operator F1 in simulation and reconstruction (as if the first reflections

from the wall had been filtered out of the received data), so we can observe how well m

is resolved using only information from objects beyond the wall.

The reconstruction results are shown in Figure 6. It is clear that the targets behind

the wall are rapidly focused in a small number of BFGS iterations when compared

to both the standard SAR back-projection image and a TV reconstruction using the

standard Born forward model (and otherwise the same parameters), again being much

clearer that there are three distinct objects against a much cleaner background free of

clutter. We can see from Figure 7 that the outer level of optimisation quickly stagnates

after a small number of iterations. The final calculated permittivity value is ϵr = 2.09,

which is reasonably accurate however, since this is a nuisance parameter, its accuracy

matters less than achieving a well-focused image (i.e., the desire is not to know the

specific material properties of a building, but what is inside it).

A lower peak value of the targets is observed in the reconstruction using

the through-wall model versus the standard SAR model, though signal-to-

background/clutter and target isolation is observed to be improved. This is likely in

part due to the choice of regularisation, with TV promoting step-like images allowing the

target response to “step up” above the clutter in Figure 6b. There may also be some

interference of out-of-phase neighbouring pixels (within the same effective resolution

cell) in Figure 6b in trying to fit the data, due to the complex sidelobe and clutter

pattern of the multi-static data, resulting in a greater overall (though misplaced and

misformed) peak response.
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(a) Sidelobe pattern of backprojection images in the range direction.

(b) Sidelobe pattern of backprojection images in the cross-range direction.

Figure 5: Sidelobe pattern of backprojection images scaled to peak amplitude of the

main lobe, shown in log scale. Blue shows the standard SAR model, and orange the

through-wall SAR model.

6.3. Reconstruction with an approximately known obstacle

Finally, we simulate data for three spheres of radius 0.125m, relative permittivity

ϵr = 5.0, and conductivity 1.0 µSm−1, behind a 0.27m thick non-conductive corner
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Figure 6: Magnitude of reflectivity for (a) normalised back-projection image, (b)

TV-regularised reconstruction with the standard Born approximation model, and the

through-wall reconstruction |v̄(m[k])| for (c) the 1st and (d) the 5th and final iterate m[k]

during the BFGS optimisation of unknown permittivity m = ϵr. The final computed

permittivity value is ϵr = 2.09.
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wall of permittivity ϵr = 2.85, using BEMPP-CL[7] (i.e., we use a full wave model).

The simulation domain is shown in Figure 8. As previously, 20% Gaussian noise is

added to the data.

Figure 8: Data simulation domain.

For the reconstruction we assume imperfect knowledge of the wall, assuming it is

0.3m thick, and with origin offset by −2 cm in both the x- and y-coordinates compared

with the true obstacle. We also use the full through-wall model for these reconstructions,

i.e.

dphd = A(m)v + F0(m). (32)

We allow 10 iterations of BFGS to optimise for the permittivity of the assumed corner

wall, which results in a value of ϵr = 2.78. It makes sense that this is below the true

permittivity, since the true wall is thinner than assumed, so the true value would result

in too great an effective time delay.

The reconstruction results are shown in Figure 9. The left column shows the back-

projection, TV-regularised reconstruction, and L1-regularised reconstruction results

using the standard SAR model, and the right column the same using the through-wall

model. Figure 9d is the implicitly defined reflectivity resulting from the optimisation of

permittivity, with Figure 9b and 9f being produced directly using the already resolved

permittivity value ϵr = 2.78 without further BFGS optimisation.

Immediate observations are the effects of interactions with the wall itself when using

the standard SAR model in both back-projection and reconstructions: both overlay of
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two strong reflections of the wall aligned to the x-direction, and the effect of multiple

reflections off of the wall itself projecting into the top-left of these images. The latter

are particularly poorly dealt with in the regularised least-squares reconstructions, most

likely since these multiple reflections are not in the range of the forward operator. The

results may well be improved by first filtering data (likely challenging with imperfect

knowledge of the structure and scene), but we find these artefacts are well resolved by

the output of our reconstruction method shown in Figure 9d. This demonstrates some

viability in our method without the very strong prior of a perfectly known obstacle

geometry.

Total Variation appears to be a poor choice in reducing artefacts for the

standard SAR model reconstruction shown in Figure 9c (it rather appears only to

join these artefacts together), so we also compare L1-regularised reconstructions in

Figures 9e and 9f, i.e. with penalty R(z) = ∥z∥1. This again does relatively little

to suppress artefacts using the standard SAR forward model, but does result in a

very low level of artefacts when using the through-wall model and arguably the most

visually appealing reconstruction of the four. This highlights the need to tailor the

particular regularisation used to the particular real-world scenario and radar system

used for through-wall imaging. TV alone may prove to be less useful in more realistic

scenarios containing complex objects, but some combination of L1 plus TV may be

beneficial.

Finally, we also show the back-projection images for the standard SAR model

in Figure 9a, and for the through-wall model (again with ϵr = 2.78) in Figure 9b.

Both are normalised to the maximum value of the standard SAR back-projection. The

brighter scatterers in Figure 9b demonstrates the increased signal-to-clutter observed.

The quality of backprojection image Figure 9b highlights that the through-wall model

proposed may also be used in producing standard SAR imagery, potentially forgoing

costly reconstruction schemes, provided one has a good enough estimate of the obstacle’s

properties. For more complex scenes some level of optimisation or manual testing of

parameters may be required, though this is to be determined using real data.
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(b) Through-wall Back-projection
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(c) Standard SAR TV-regularised
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(d) Through-wall TV-regularised
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(e) Standard SAR L1-regularised
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(f) Through-wall SAR L1-regularised

Figure 9: Magnitude of reflectivity images for (a) back-projection with the standard

SAR model, (b) back-projection with the through-wall model, (c) TV-regularised

reconstruction with the standard SAR model, (d) TV-regularised reconstruction with

the through-wall model, (e) L1-regularised reconstruction with the standard SAR model,

and (e) L1-regularised reconstruction with the through-wall model. (a) and (b) are both

normalised to the maximum value of the standard SAR back-projection. (b), (d) and

(e) are all obtained using the optimised permittivity value ϵr = 2.78.
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7. Discussion and Conclusions

We have presented a partially linearised reconstruction method for through-wall SAR

image formation, able to resolve through-wall multiple scattering effects. This uses a

more representative model of the full physical scattering process than has previously

been applied to SAR, whilst being significantly less computationally expensive than

the full-wave type reconstruction formulations which have been applied to related

through-wall and sub-surface radar imaging problems with different geometries and

considerations. Thus, it provides a method which may be practical for real-world

applications of stand-off imaging now. That is, through-wall transmission effects

(including multiple scattering through walls) are included for an arbitrary building,

walls, or other obstacle. The method is also applicable to quite general data collections

geometries.

The computational efficiency is gained by simulating only the through-wall effects

with a full-wave model using a boundary element method, which provides numerical

approximations to Green’s functions for the scene. A strong prior – that we are

imaging through a wall with (approximately) known geometry – allows us to reduces

this simulation problem to one of primarily freespace transmission. Coupling the BEM

simulation with a ROM provides near real-time formation of the linear SAR simulation

model (Born approximation) for given wall properties. These features are desirable in

security applications, where an image may need to be formed quickly, and there may be

limitations in the collection geometries which can be achieved from longer ranges, but

it may still be practical to commit the computational resources required in the offline

stage during any mission planning, saving time later.

The method has been tested in the case of an approximately known obstacle

with unknown permittivity. More unknowns about the structure (such as geometrical

properties) may easily be incorporated in the same framework to be resoled as part of

the imaging process, at increased computational and memory cost of the offline stage,

though we have not demonstrated this capability here. Further research is required to

understand the number and type of unknowns which can be resolved, and what form of

“rich” multi-dimensional data (here using multi-statics) is required to do so. Moreover,

we have demonstrated the method only for 2D image formation. However, since the

model itself is 3D, this means any out-of-plane through-wall transmission effects are

resolved even in 2D images, and it may be directly applied to 3D datasets to also

resolve objects in height.

While the model does capture more of the physics, there are still several features

which it currently does not. First and foremost, we have still made the common

assumption of scalar waves – clearly this is incorrect, especially where there is multiple

scattering, but it is a standard approximation to make in SAR. This is easily updated

by replacing the BEMPP Helmholtz solver with the equivalent for Maxwell’s equations

– which is essentially a black-box component for the reconstruction method – albeit

with increased computational cost. One would also have to consider more carefully how



Resolving Full-Wave Through-Wall Transmission Effects in Multi-Static SAR 24

polarization data should be handled. Would it be more useful to form multiple images

in different polarizations to allow analysts to interpret (as is often the case) – and should

these images be separated by the (multi-static) antenna polarization data channels, or

by the polarization of the incident through the wall.

Alternatively, do we include polarization changing effects in the Born scattering

model, resulting in a tensor-valued (“rich”) reconstruction problem in which we would

have to make some assumptions about the effective shapes we could represent each

voxel having (i.e., different polarization changes would be due to the extent to which

the scatterers are not point-like). The latter may be more appropriate, and would be

captured by default in a full-wave reconstruction method, but the result could have

the unwanted effect of making the information harder to interpret by the user. An

appropriate model is therefore to be determined.

Relatedly, we have also not included a floor in the simulations provided here.

Double bounces off of the floor and a wall may be prominent features in the data,

forming an edge reflector which will direct significant energy back to a mono-static

radar when near oblique to the wall, or the equivalent bi-static geometries. This feature

is perhaps most readily introduced by using an analytic Green’s function for a half-

space (or 2-layered space) in the boundary integral formulation, which would avoid

needing to mesh additional features at the expense of a more involved evaluation of

the equivalent boundary element integrals to (A.13). Otherwise, additional structural

elements (more walls, roofs, windows) are straightforward to include in our formulation,

potentially adding additional nuisance parameters if their structure is not known exactly

and increasing the computational cost of the offline stage.

Finally, we remark that further attention should be given to the optimisation

schemes used in refining a practical fieldable method. For the outer level of optimisation,

understanding the degree to which convexity here might rely on particular multi-static

geometries. Given the small number of parameters, a derivative free or Bayesian

approach to sampling these parameters may be more appropriate. For the inner problem,

the choice of regularisation would need to be further tailored to specific applications and

radar systems, and more efficient optimisation algorithms such as PDHG or ADMMmay

be applied. Alternatively, it may often prove to be most beneficial to simply use the

through-wall forward model in producing back-projection images with an estimate of the

scene properties, since this has very little computational overhead in the online stage.
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A. Boundary element formulation of the through-wall model

Here we provide the derivation of the boundary element formulation of the representation

formula of the scattering problem (11), namely

U(x, ω) =

ˆ
∂D

G0(x,y, ω)ψ(y)dy −
ˆ
∂D

∂G0(x,y, ω)

∂n
ϕ(y)dy, (A.1)

with jumps of the solution across the interface

ψ = γ−1 u− γ+1 u, (A.2)

ϕ = γ−0 u− γ+0 u, (A.3)

following Haqshenas et al [22].

A.1. Surface integral equations

By taking the Cauchy trace for the exterior γ+/interior γ−, γ± :=
[
γ±0 , γ

±
1

]T
, of the

representation formula (A.1) it can be shown[5, 6, 14, 22] that in the exterior of D the

wavefield satisfies (
1

2
Id−A

)
γ+u = γ+usc, (A.4)

and in the interior of D (
1

2
Id+A

)
γ−u = γ−u, (A.5)

Here, Id is the identity operator and A is the Calderón operator

A =

[
−K V
W K′

]
, (A.6)

with single-, double-, hypersingular- and adjoint double-layer boundary integral

operators K, V , W and K′ given by

(Vψ)(x) :=
ˆ
∂D

G0(x,y, ω)ψ(y)dy, (A.7)

(Kϕ)(x) :=
ˆ
∂D

∂G0(x,y, ω)

∂n(y)
ϕ(y)dy, (A.8)

(Wϕ)(x) := − ∂

∂n(x)

ˆ
∂D

∂G0(x,y, ω)

∂n(y)
ψ(y)dy, (A.9)

(K′ψ)(x) :=
∂

∂n(x)

ˆ
∂D

G0(x,y, ω)ϕ(y)dy, (A.10)
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for x ∈ ∂D in each case. Combining (A.5) with (A.4) we have that[14, 22](
A(k0) +A(kD)

)
γ+u = γ+uin, (A.11)

which completes the reformulation of the exterior model (11) in an infinite domain with

a boundary integral equation over the surface of the inclusion ∂D. The solution to

(A.11) provides the Dirichlet and Neumann traces of the scattered wavefield on the

surface ∂D, with which we can evaluate u at any point via the representation formula

(13).

A.2. Finite element formulation

The boundary integral formulation (A.11) may be discretised with the Galerkin method.

This first involves forming a triangular mesh ∂Dh of the boundary ∂D with n nodes xj,

j = 1, 2, . . . n, in this case piecewise linear elements φj, which at the nodes take values

φj(xi) =

{
1, i = j

0, i ̸= j.

Using the elements φj to approximate the solutions γ, discretising the weak formulation

of (A.11) provides us with the Boundary Element (BEM) linear system

Au = b, (A.12)

where [A]ij =
〈
(A(k0) +A(kD))φj, φi

〉
, bi = ⟨γ+uin, φi⟩. Computing these matrix entries

involves evaluating

[V ]ij :=

ˆ
∂D

φi(x)

ˆ
∂D

G0(x,y, ω)φj(y)dydx (A.13a)

[K]ij :=

ˆ
∂D

φi(x)

ˆ
∂D

∂G0(x,y, ω)

∂n(y)
φj(y)dydx, (A.13b)

[W ]ij := −
ˆ
∂D

φi(x)
∂

∂n(x)

ˆ
∂D

∂G0(x,y, ω)

∂n(y)
φj(y)dy. (A.13c)

Note that the discretisation of the adjoint double-layer operator K′ is given simply

by the adjoint of K, and that integration by parts of (A.13c) yields a weakly singular

integral. Evaluation of these integrals and assembly of the linear system and source

terms in (A.12) are handled fully by the BEMPP-CL library [7], which includes suitable

quadrature rules for the singular integrals as well as sharp-edged meshes. The resulting

systems are often solved via a pre-conditioned iterative method such as GMRES.

However, since we need to solve many such systems at each given frequency for different

source locations (along synthetic apertures) we instead use a direct solver, calculating

and storing an LU factorisation of the dense system matrices for reuse with each

subsequent source term, which has been feasible for the size of problems considered

so far.
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B. Reconstruction details

B.1. Objective function and derivatives

In this work, we use a variable projection formulation of the objective function in

reflectivity v and wall parameters m,

m̃ = argmin
m

J̄ (m) (B.1a)

J̄ (m) := J (m; v̄(m)) (B.1b)

v̄(m) := argmin
v

J (m,v). (B.1c)

Derivatives of (B.1b) with respect to m are given by [3]

∇J̄ (m) = ∇mJ (m,v)|v=v̄(m) , (B.2)

and

∇2J̄ =
(
∇2

mmJ (m,v)−∇2
mvJ (m,v)(∇vvJ (m,v))−1∇2

mvJ (m,v)
∣∣∣
v=v̄(m)

, (B.3)

with terms involving ∇vJ (m,v)
∣∣
v=v̄(m)

having dropped out since v̄ is (possibly

approximately) a minimum. It has been noted in the related problem of differential

semblance that where the implicit problem (29) is not solved exactly that these terms

may in fact be far from zero[45], and a correction term may be warranted. Since such

correction terms can be expensive to calculate, for this work, we will assume that (30)

has been solved sufficiently accurately.

Evaluating the gradient terms, we have

∂J
∂mj

=

(
∂F0

∂mj

+
∂F1

∂mj

,F0 + F1 − d

)
(B.4)[

∂F0

∂mj

]
i

= a(ωi)e
−iωiR0,i/c

[
HM

P0Σ
M
P0

∂gP0

∂mj

]
i

, (B.5)

and for field scattered by objects in the scene

Ji :=
∂F1

∂mj

=
∂A

∂mj

v, J := [J1, . . . , JNm ] (B.6)[
∂F1

∂mj

]
i

=a(ωi)e
−iωiR0,i/c·

∑
j

{((
G0(xj,yT,i) +

[
HM

P1Σ
M
P1gP1(ωi, si)

]
Ri,j

)
[
HM

P1Σ
M
P1

∂gP1

∂mi

(si, ωi)

]
T i,j

+
(
G0(xj,yR,i) +

[
HM

P1Σ
M
P1gP1(ωi, si)

]
T i,j

)
[
HM

P1Σ
M
P1

∂gP1

∂mi

(si, ωi)

]
Ri,j

)
vj

}
. (B.7)
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The gradients ∇mgP are available directly as the gradients of the interpolation splines

in an appropriate interpolation library.

From (B.3) and (B.6), we can see the Hessian of J̄ will involve matrix products

of both first and second derivatives of A with respect to m, as well as a term (A∗A)−1.

Since we have only a small number of nuisance parameters m, but the reflectivity scene

v is potentially quite large, this will be expensive to calculate directly relative to the

scale of the problem. As such we have used a Hessian-free method to recover these

parameters.

B.2. Algorithmic details for the inner problem in reflectivity

The inner optimisation problem in reflectivity v̄(m) has been regularised by Total

Variation applied to the reflectivity function, and solved via the FISTA algorithm.

Isotropic TV is defined by

TV (v) := ∥Dv∥2,1 =
∑
ij

√
(Dxv)2ij + (Dyv)2ij (B.8)

in two dimensions, with D the discrete Laplacian operator ∇ and Dp the discrete

derivative operator in the pth coordinate. The proximal map for TV (| · |)) can be

shown to be given by[21]

proxTV (|·|)(y) = proxTV (r) ◦ expi∠(y), (B.9)

where r = |y| and ◦ is the element-wise vector product, and the right-hand-side of (B.9)

can be computed efficiently via Fast Gradient Projection[4] (or FISTA). For the results

in Section 6.3 we also apply L1 regularisation, i.e. R(z) = ∥z∥1. This has proximal

map with ith component given by

proxλ∥·∥(y)i = max(|yi| − λ, 0) expi∠yi . (B.10)

Equipped with these proximal maps, several proximal splitting methods exist for

the efficient solution of (30). We implement (30) in the CCPi Core Imaging Library[30,

39], and for simplicity use the implementation of FISTA therein.

In solving the inner problem v̄(m), FISTA is warm started with the previously

found solution v̄′(m′), reducing the number of iterations required for small changes

m − m′. To realise this reduction, the algorithm is halted when either the relative

changes in objective value J [k] or iterate v[k] are less than some tolerances,

J (m,v[k−1])− J (m,v[k])

J (m,v[k−1])
< rtol, (B.11a)

∥v[k−1] − v[k]∥22
∥v[k−1]∥22

< vtol. (B.11b)

Otherwise, FISTA is allowed to continue for a predetermined maximum number of

iterations.
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B.3. Algorithm details for the outer problem in nuisance parameters

The outer optimisation problem in m may be solved via any suitable non-linear

black-box optimisation scheme. To avoid direct computation of Hessian matrices, we

have chosen the BFGS scheme[38]†. Since we have only a small number of nuisance

parameters m, we calculate the initial approximate Hessian inverse as H0 = (J∗
0J0)

−1,

where J0 is the Jacobian of F with respect to m evaluated at the initial estimate m0.

We have not found it necessary to implement bound constraints such as relative

permittivity ϵr ≥ 1 as our experience is that J̄ (m) will begin to increase greatly away

from the true parameters mtrue. Indeed, extrapolation of the POD outside the region

with snapshots may add such numerical error as to act as an additional penalty. This

should however be given proper consideration for future work, in particular if the method

is adapted for a more general parameterisation of the wall/obstacle.

Equally, in these initial numerical experiments we have not found any need for

additional regularisation of m. In particular, since m is a nuisance parameter, the

motivating purpose is not to determine the wall structure to a particular accuracy (as

it might be in e.g. a non-destructive testing application), but to resolve it accurately

enough to form a well focused image v. Moreover, the setup already enforces very strong

prior knowledge that the wall is indeed “wall shaped”. Again, this may need further

consideration for a more general parameterisation.

Data availability statement

The data that support the findings of this study are available upon request from the

authors.
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