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1. Introduction

Let ⟨·, ·⟩ be the standard dot product on Rn and | · |, the corresponding norm.
For Schwartz class functions, the ray transform (also called the X-ray transform) is

defined by

(1.1) If(x, ξ) =

ˆ ∞

−∞
f(x+ tξ) dt

for all (x, ξ) ∈ Rn ×Rn satisfying |ξ| = 1 and ⟨x, ξ⟩ = 0. For a Schwartz class symmetric
m-tensor field f = (fi1...im), the ray transform is defined by

Imf(x, ξ) =

ˆ ∞

−∞
fi1...im(x+ tξ)ξi1 . . . ξim dt

=

ˆ ∞

−∞
⟨f(x+ tξ), ξm⟩ dt.

(1.2)

We use the Einstein summation rule to sum from 1 to n over every repeated index in
lower and upper positions in a monomial. In particular, when m = 0, the definition (1.21.2)
coincides with (1.11.1) and when m = 1, (1.21.2) represents the ray transform of vector fields
which is also called the Doppler transform.

In the case of m = 0, the ray transform If uniquely determines a function f and there
is an explicit inversion formula. However, if m ≥ 1, the ray transform Im has a nontrivial
kernel. In particular, I(σ∇h) = 0 whenever h is a smooth symmetric (m − 1)-tensor
field on Rn decaying at infinity, ∇ is the total covariant derivative, and σ denotes the
symmetrization of a tensor. A symmetric m-tensor field f sufficiently fast decaying at
infinity can be uniquely decomposed

f = f s + σ∇h, h(x) → 0 as |x| → ∞
to the solenoidal (= divergence-free) part f s and potential part σ∇h; see [Sha94Sha94, Theorem
2.6.2] and [PSU23PSU23, Theorem 6.4.7] for the detailed explanation in the Euclidean case as
well as in the case of Riemannian manifolds. The solenoidal part of a symmetric m-tensor
field f can be uniquely determined from Imf and there is an explicit inversion formula
[Sha94Sha94, Theorem 2.12.2].
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It is natural to ask: what additional information required along with Imf so that one
could recover the entire tensor field f . This leads to the notion of the momentum ray
transform Ikm introduced in [Sha94Sha94, Section 2.17] by

Ikmf(x, ξ) =

ˆ ∞

−∞
tkfi1...im(x+ tξ)ξi1 . . . ξim dt

=

ˆ ∞

−∞
tk⟨f(x+ tξ), ξm⟩ dt (k = 0, 1, 2. . . . )

for all (x, ξ) ∈ Rn × Rn satisfying |ξ| = 1 and ⟨x, ξ⟩ = 0. In particular I0m = Im.
We restrict ourselves by considering the data (I0mf, . . . , I

m
mf) since, for k > m, the

function Ikmf can be easily expressed through I0mf, . . . , I
m
mf .

A rank m symmetric tensor field f is uniquely determined by the data (I0mf, . . . , I
m
mf).

This was proved in [Sha94Sha94, Theorem 2.17.2]. Later this result was extended to a Helga-
son type support theorem for tensor fields on a simple real analytic Riemannian manifold
[AM19AM19]. An algorithm for recovering f from the data (I0mf, . . . , I

m
mf) is presented in

[KMSS19KMSS19] as well as a stability estimate in (generalized) Sobolev norms. A range char-
acterization for the operator f 7→ (I0mf, . . . , I

m
mf) on the Schwartz space was established

in [KMSS20KMSS20].
Let us introduce the normal operator Nk

m =
(
Ikm

)∗
Ikm, where

(
Ikm

)∗
is the L2-adjoint

of the momentum ray transform Ikm. Since Nk
m is an averaging operator, the data Nk

mf
could represent a better measurement model rather than Ikmf . We present an algorithm
of recovering a rank m tensor field f from the data (N0

mf, . . . , N
m
m f). In terms of Fourier

transforms f̂ and (N̂0
mf, . . . , N̂

m
m f), we derive the inversion formula

f̂(y) = |y|
m∑
k=0

P k
m(N̂

k
mf)

with some linear operators P k
m on the space of rank m symmetric tensor fields. Given m,

the operators P k
m (k = 0, . . . ,m) are calculated by explicit recurrent formulas; but the

volume of calculations grows fast with m. We perform the calculations for m = 1, 2, 3.
The ray transform has several important applications that include X-ray computer

tomography (CT) in medical imaging when m = 0. In the case of m = 1, the ray
transform is used in Doppler tomography to analyze vector fields. In cases where m = 2
or m = 4, the ray transform and its variants are applied to tomography problems in
anisotropic media regarding the elasticity and Maxwell systems, see [Sha94Sha94] and [LS09LS09,
SW12SW12]. Recently, the momentum ray transform has been adopted as a solution tool for
the classical Calderón problem for the bi-Laplace model and other higher-order operators
[BKS23BKS23, SS23SS23, BK23BK23]. The unique continuation principle for Im and Ikm is proved in
[AKS22AKS22]. See also [IKS23IKS23] for a related work involving a fractional momentum operator.
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2. Basic definitions

First of all, mostly following [Sha94Sha94, Chapter 2], we introduce some notation and
definitions concerning tensor algebra and analysis which will be used throughout the
article.

2.1. Tensor algebra over Rn. Let TmRn be the nm-dimensional complex vector space
of m-tensors on Rn. In particular, T 0Rn = C and T 1Rn = Cn. We need complex tensors
since we are going to use the Fourier transform. Assuming n to be fixed, the notation
TmRn will be mostly abbreviated to Tm. For a fixed orthonormal basis (e1, . . . , en) of
Rn, by ui1...im = ui1...im = u(ei1 , . . . , eim) we denote coordinates (= components) of a
tensor u ∈ Tm with respect to the basis. There is no difference between covariant and
contravariant tensors since we use orthonormal bases only. Given u ∈ Tm and v ∈ T k,
the tensor product u ⊗ v ∈ Tm+k is defined by (u ⊗ v)i1...im+k

= ui1...imvim+1...im+k
. The

standard dot product on Rn extends to Tm by ⟨u, v⟩ = ui1...imvi1...im . Throughout the
article, the Einstein summation convention is used.

Let Sm = SmRn be the
(
n+m−1

m

)
-dimensional subspace of Tm consisting of symmetric

tensors. The partial symmetrization σ(i1 . . . im) : T
m+k → Tm+k in the indices (i1, . . . , im)

is defined by

σ(i1 . . . im)ui1...imj1...jk =
1

m!

∑
π∈Πm

uiπ(1),...,iπ(m)j1...jk ,

where the summation is performed over the group Πm of all substitutions of the set
{1, . . . ,m}. In particular, σ : Tm → Sm is the symmetrization in all indices. Given
u ∈ Sm and v ∈ Sk, the symmetric product uv ∈ Sm+k is defined by uv = σ(u ⊗ v).

Being furnished with the symmetric product, S∗Rn =
∞⊕

m=0

SmRn becomes a commutative

graded algebra that is called the algebra of symmetric tensors over Rn. The algebra
S∗Rn is canonically isomorphic to the algebra of polynomials on Rn. Every statement on
symmetric tensors can be translated to the langauge of polynomials, and vice versa.

Given u ∈ Sm, let iu : Sk → Sm+k be the operator of symmetric multiplication by u
and let ju : Sm+k → Sk be the adjoint of iu. These operators are written in coordinates
as

(iuv)i1...im+k
= σ (i1 . . . im+k)ui1...imvim+1...im+k

(juv)i1...ik = vi1...im+k
uik+1...im+k .

The tensor juv will be also denoted by v/u. For the Kronecker tensor δ, the notations iδ
and jδ will be abbreviated to i and j respectively.

2.2. Tensor fields. Recall that the Schwartz space S (Rn) is the topological vector space
consisting of C∞-smooth complex-valued functions on Rn fast decaying at infinity to-
gether with all derivatives, furnished with the standard topology. Let S (Rn;Sm) =
S (Rn)⊗Sm be the topological vector space of smooth fast decaying symmetric m-tensor
fields, defined on Rn, whose components belong to the Schwartz space. In Cartesian
coordinates, such a tensor field is written as f = (fi1...im) with coordinates (= compo-
nents) fi1...im = f i1...im ∈ S (Rn) symmetric in all indices. We again emphasize that there
is no difference between covariant and contravariant coordinates since we use Cartesian
coordinates only.
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We use the Fourier transform F : S(Rn) → S(Rn), f 7→ f̂ in the form (hereafter i is
the imaginary unit)

Ff(y) = 1

(2π)n/2

ˆ
Rn

e−i⟨y,x⟩f(x) dx.

The Fourier transform F : S (Rn;Sm) → S (Rn;Sm), f 7→ f̂ of symmetric tensor fields is

defined component-wise: f̂i1...im = f̂i1...im .
Besides S (Rn;Sm), we use some other spaces of tensor fields. In particular, C∞ (U ;Tm)

is the space of smoothm-tensor fields on an open set U ⊂ Rn.See details in [Sha94Sha94, Section
2.1].

The L2-product on C∞
0 (Rn;Tm) is defined by

(2.1) (f, g)L2(Rn;Tm) =

ˆ
Rn

⟨f(x), g(x)⟩ dx.

2.3. Inner derivative and divergence. The first order differential operator

d : C∞(Rn;Sm) → C∞(Rn;Sm+1)

defined by

(df)i1...im+1 = σ(i1 . . . im+1)
∂fi1...im
∂xim+1

=
1

m+ 1

(∂fi2...im+1

∂xi1
+ · · ·+ ∂fi1...im

∂xim+1

)
is called the inner derivative.

The divergence
div : C∞(Rn;Sm+1) → C∞(Rn;Sm)

is defined by

(div f)i1...im = δjk
∂fi1...imj

∂xk
.

The operators d and −div are formally adjoint to each other with respect to the L2-
product (2.12.1). The divergence is denoted by δ in [Sha94Sha94]. But we will always use the
notation div since some our formulas involve the divergence and Kronecker tensor simul-
taneously.

2.4. The space S(TSn−1). The Schwartz space S(E) is well defined for a smooth vector
bundle E → M over a compact manifold with the help of a finite atlas and partition of
unity subordinate to the atlas.

In particular, the Schwartz space S(TSn−1) is well defined for the tangent bundle

TSn−1 = {(x, ξ) ∈ Rn × Sn−1 : ⟨x, ξ⟩ = 0} → Sn−1, (x, ξ) 7→ ξ

of the unit sphere Sn−1 = {x ∈ Rn : |x| = 1}.
The Fourier transform F : S (TSn−1) → S (TSn−1) , φ 7→ φ̂ is defined by

Fφ(y, ξ) = 1

(2π)(n−1)/2

ˆ
ξ⊥
e−i⟨y,x⟩φ(x, ξ) dx,

where dx is the (n− 1)-dimensional Lebesgue measure on the hyperplane ξ⊥ = {x ∈ Rn;
⟨ξ, x⟩ = 0}. Notice that it is the standard Fourier transform in the (n − 1)-dimensional
variable x while ξ ∈ Sn−1 is considered as a parameter.

The L2-product on S(TSn−1) is defined by

(2.2) (φ, ψ)L2(TSn−1) =

ˆ

Sn−1

ˆ

ξ⊥

φ(x, ξ)ψ(x, ξ) dx dξ,

where dξ is the (n− 1)-dimensional Euclidean volume form on the unit sphere Sn−1.
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2.5. Ray transforms. It is convenient to parameterize the family of oriented lines in
Rn by points of the manifold TSn−1. Namely, a point (x, ξ) ∈ TSn−1 determines the line
{x+ tξ : t ∈ R} through x in the direction ξ.

The ray transform

Im : S(Rn;Sm) → S
(
TSn−1

)
is the linear continuous operator defined by

Imf(x, ξ) =

ˆ
R
fi1...im(x+ tξ)ξi1 . . . ξim dt =

ˆ
R
⟨f(x+ tξ), ξm⟩ dt.

The ray transform is related to the Fourier transform by the important formula [Sha94Sha94,
formula 2.1.15].

(2.3) Îmf(y, ξ) = (2π)1/2⟨f̂(y), ξm⟩
(
(y, ξ) ∈ TSn−1

)
.

For 0 ≤ k ≤ m, the momentum ray transform

Ikm : S(Rn;Sm) → S
(
TSn−1

)
is the linear continuous operator defined by

(2.4) Ikmf(x, ξ) =

ˆ
R
tkfi1...im(x+ tξ)ξi1 . . . ξim dt =

ˆ
R
tk ⟨f(x+ tξ), ξm⟩ dt.

The formula (2.32.3) is generalized as follows [KMSS19KMSS19, formula (2.9)]:

Îkmf(y, ξ) = (2π)1/2ik
〈
dkf̂(y), ξm+k

〉 (
(y, ξ) ∈ TSn−1

)
.

As we will see later, Ikm should be considered together with lower degree operators
I0m, . . . , I

k−1
m , i.e., the collection (I0mf, . . . , I

k
mf) represents more convenient information

about f than Ikmf alone.

2.6. Normal operators. The formal adjoint of the ray transform Im with respect to
L2-products (2.12.1) and (2.22.2)

I∗m : S
(
TSn−1

)
→ C∞ (Rn;Sm)

is expressed by

(I∗mφ)i1...im (x) =

ˆ
Sn−1

ξi1 . . . ξimφ
(
x− ⟨x, ξ⟩ξ, ξ

)
dξ.

We emphasize that, for φ ∈ S(TSn−1), the tensor field I∗mφ does not need fast decay at
infinity.

Similarly, the formal L2-adjoint of the momentum ray transform Ikm(
Ikm

)∗
: S

(
TSn−1

)
→ C∞ (Rn;Sm)

is expressed by

(2.5)
(
(Ikm)

∗φ
)
i1...im

(x) =

ˆ
Sn−1

⟨x, ξ⟩kξi1 . . . ξimφ
(
x− ⟨x, ξ⟩ξ, ξ

)
dξ.

Let

Nm = I∗mIm : S (Rn;Sm) → C∞ (Rn;Sm)

be the normal operator for the ray transform Im. Similarly, let

Nk
m = (Ikm)

∗Ikm : S (Rn;Sm) → C∞ (Rn;Sm)

be the normal operator for the momentum ray transform Ikm.
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Given f ∈ S (Rn;Sm), the tensor field Nk
mf does not grow too fast at infinity, i.e., the

estimate

|Nk
mf(x)| ≤ C(1 + |x|)N

holds with some constants C and N . In particular, Nk
mf can be considered as a tempered

tensor field-distribution, i.e., Nk
mf ∈ S ′ (Rn;Sm). Hence the Fourier transform N̂k

mf ∈
S ′ (Rn;Sm) is well defined at least in the distribution sense. We will show that, for

f ∈ S (Rn;Sm), the restriction of N̂k
mf to Rn \ {0} belongs to C∞ (Rn \ {0};Sm).

The operator Nm was computed in [Sha94Sha94, formula 2.11.3] where the notation µm was
used instead of I∗m. In Section 4, we will derive a similar formula for Nk

m. In [AKS22AKS22], a
similar expression for the normal operator is considered to study the unique continuation
principle for momentum ray transforms.

3. Main results

We start with inversion formulas for vector fields and for second rank symmetric tensor
fields.

Theorem 3.1. A vector field f ∈ S (Rn;Cn) (n ≥ 2) is recovered from the data (N0
1 f,N

1
1 f)

by the inversion formula

(3.1) f(x) =
2n/2−1Γ

(
n+1
2

)
√
π

(−∆)1/2
[
N0

1 f − 1

n−1
d jxN

0
1 f − 1

n−1
d divN1

1 f
]
.

where Γ is Euler’s Gamma function and the operator (−∆)1/2 is defined with the help of
the Fourier transform by |y|F = F(−∆)1/2. The vector field in brackets belongs to the
domain of (−∆)1/2.

Theorem 3.2. A tensor field f ∈ S (Rn;S2) is recovered from the data (N0
2 f,N

1
2 f,N

2
2 f)

by the inversion formula
(3.2)

f(x) =
2n/2−1Γ

(
n+3
2

)
√
π

(−∆)1/2
[
N0

2 f − 1

n+ 1
ij N0

2 f

− 2

n+ 1
d
(
jxN

0
2 f + divN1

2 f
)

+
1

(n−1)(n+1)
d2
(
j2xN

0
2 f − 2 jx divN

1
2 f +

1

2
div2N2

2 f
)]
.

The tensor field in brackets belongs to the domain of (−∆)1/2.

We use the definition

(2l + 1)!! = 1 · 3 · · · (2l + 1), (−1)!! = 1.

For tensor fields of arbitrary rank, our result is as follows.

Theorem 3.3. Given integers m ≥ 0 and n ≥ 2, the Fourier transform of a tensor field

f ∈ S (Rn;Sm) is recovered from the data (N̂0
mf, jyN̂

0
mf, . . . , j

m
y N̂

m
m f) by the algorithm

consisting of three steps.
1. Compute tensor fields F (m,k) ∈ C∞(Rn \ {0};Sm−k) (0 ≤ k ≤ m) by

(3.3) F (m,k)(y) =
cm,n

k!
jky N̂

k
mf(y), cm,n = π−1/2 (2m− 1)!! 2m+n/2−2 Γ

(2m+n−1

2

)
.
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2. Compute tensor fields H(m,k) ∈ C∞(Rn \ {0};Sm−k) (0 ≤ k ≤ m) by

(3.4) H(m,k) =
(2m− 2k − 1)!!(n+ 2m− 2k − 3)!!

(2m− 1)!!(n+ 2m− 3)!!

k∑
p=0

(−1)p
(
k

p

)
divk−p F (m,p).

3. Recover f̂ by the formula

(3.5)

f̂(y) =
|y|
m!

[
1

(2m−1)!!
H(m,0)(y)

+
m∑
k=1

(−1)k

(2m−2k−1)!!

(
m

k

)min(k,m−k)∑
p=0

(−1)p

2p

(
m− k

p

)
ipik−p

y jpyH
(m,k)(y)

]
.

Of course, (3.33.3)–(3.53.5) can be combined to give a formula that expresses the rank m

symmetric tensor field f̂ through (N̂0
mf, jyN̂

0
mf, . . . , j

m
y N̂

m
m f) that does not involve F

(m,k)

and H(m,k). We will present the latter formula for m = 1, 2, 3 in the last section. The
proof of Theorems 3.13.1 and 3.23.2 is also presented in the last section. Formulas (3.13.1) and
(3.23.2) are obtained from (3.53.5) just by applying the inverse Fourier transform; nevertheless,
some commutator formulas for the Fourier transform and operators participating in (3.53.5)
should be used.

The rest of the article is mostly devoted to the proof of Theorem 3.33.3. Now, we discuss
the scheme of the proof.

We introduce the tensor fields

(3.6) A(m,k) ∈ C∞(Rn \ {0};S2m−k) (0 ≤ k ≤ m)

by

(3.7) A(m,k)(y) = d2m−k|y|2m−2k−1.

These tensor fields play an important role in all our arguments.
In the next section, we compute the normal operators Nk

m (0 ≤ k ≤ m) and prove that

a tensor field f ∈ S(Rn;Sm) satisfies A(m,0)/(dkf̂) = F (m,k), where F (m,k) is defined by

(3.33.3). To avoid proliferation of the ·̂ symbol, we denote g(y) = f̂(y) and write the latter
equation in the form

(3.8) A(m,0)/(dkg) = F (m,k) (0 ≤ k ≤ m).

Given the data (F (m,0), . . . , F (m,m)), we consider (3.83.8) as a system of linear equations for
the unknown tensor field g.
The first equation of the system (3.83.8)

A(m,0)(y)/g(y) = F (m,0)(y) (y ∈ Rn \ {0})

is a pure algebraic equation. More precisely, being written in coordinates, it constitutes
a system of linear algebraic equations in the components of the tensor field g(y) with
coefficients depending on y. The system was considered in [Sha94Sha94, Theorem 2.12.1]

where the tensor field εm(y) = |y|
((2m−1)!!)2

d2m|y|2m−1 was used instead of A(m,0). It allows

to determine the tangential part of the tensor field g which corresponds to the solenoidal
part of f = F−1g (see [Sha94Sha94, Section 2.6] for the definition of the tangential part).
The second equation of the system (3.83.8), A(m,1)/(dg) = F (m,1), constitutes a system of

linear first order PDEs in components of the tensor field g, the third equation constitutes
a system of linear second order PDEs, and so on.
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At first sight, the following statement may seem incredible. The system (3.83.8) can be
reduced to the purely algebraic system

(3.9) A(m,k)/g = H(m,k) (0 ≤ k ≤ m)

with right-hand side defined by (3.43.4). The reduction is presented in Section 5. The precise
sense of the reduction is expressed by Proposition 5.35.3 below; see also the paragraph after
Proposition 5.35.3.

Some consistency conditions should be imposed on right-hand sideH(m,k) for solvability
of the system (3.93.9). In the case of a generalm, it is not easy to write down the consistency
conditions explicitly. Fortunately, we do not need to know the consistency conditions; in
our setting, the system (3.93.9) has a solution by Propositions 4.34.3 and 5.35.3 presented below.
If the system (3.93.9) has a solution, then the solution is unique and is expressed by (3.53.5)

with f̂ = g. This fact is proved in Section 66.

4. Normal operator

We start with the proof of (2.52.5). For f ∈ S(Rn;Sm) and φ ∈ S(TSn−1),

(4.1)

(Ikmf, φ)L2(TSn−1) =

ˆ

Sn−1

ˆ

ξ⊥

(Ikmf)(x, ξ)φ(x, ξ) dx dξ

=

ˆ

Sn−1

ˆ

ξ⊥

∞̂

−∞

tk⟨f(x′ + tξ), ξm⟩φ(x′, ξ) dt dx′ dξ.

We transform the inner integral by the change x = x′ + tξ of integration variables

ˆ

ξ⊥

∞̂

−∞

tk⟨f(x′ + tξ), ξm⟩φ(x′, ξ) dt dx′ =
ˆ

Rn

⟨x, ξ⟩k⟨f(x), ξm⟩φ(x− ⟨x, ξ⟩ξ, ξ) dx

=

ˆ

Rn

f i1...im(x) ξi1 . . . ξim φ(x− ⟨x, ξ⟩ξ, ξ) dx.

Substituting this expression into (4.14.1), we obtain

(Ikmf, φ)L2(TSn−1) =

ˆ

Rn

f i1...im(x)

ˆ

Sn−1

ξi1 . . . ξim φ(x− ⟨x, ξ⟩ξ, ξ) dξ dx

= (f, (Ikm)
∗φ)L2(Rn;Sm).

This proves (2.52.5).
Recall that Nk

m = (Ikm)
∗Ikm is the normal operator for the momentum ray transform.

Proposition 4.1. Let 0 ≤ k ≤ m and n ≥ 2. For a tensor field f ∈ S (Rn;Sm),

(4.2) (Nk
mf)i1...im(x) = 2

k∑
l=0

(
k

l

)
(xk+lf)j1...jmp1...pk+l ∗

(x2m+k+l)i1...imj1...jmp1...pk+l

|x|2m+2l+n−1
,

where ∗ denotes the convolution.

The right-hand side of (4.24.2) needs the following comment. For x ∈ Rn, according to
our definition of the symmetric product, xk+l ∈ Sk+l with coordinates (xk+l)p1...pk+l =
xp1 . . . xpk+l . Therefore, for f ∈ Sm,

(xk+lf)j1...jmp1...pk+l = σ(j1 . . . jmp1 . . . pk+l)(x
p1 . . . xpk+lf j1...jm).
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Before proving Proposition 4.14.1, we observe that it implies some regularity of the tensor
field Nk

mf . Indeed, the first factor (xk+lf)j1...jmp1...pk+l on the right-hand side of (4.24.2)
belongs to S(Rn). The second factor is a function locally summable over Rn and bounded
for |x| ≥ 1. Hence the second factor can be considered as an element of the space S ′(Rn)
of tempered distributions. As is well known [Vla79Vla79], for u ∈ S(Rn) and v ∈ S ′(Rn), the
convolution u ∗ v is defined and belongs to the space of smooth functions whose every
derivative increases at most as a polynomial at infinity. In this case, the standard formula
is valid: û ∗ v = ûv̂. Thus, we can state that

Nk
m : S (Rn;Sm) → C∞ (Rn;Sm)

is a continuous operator.
To prove Proposition 4.14.1 we need the following

Lemma 4.2. Let k ≥ 0 be an integer, 0 ̸= a ∈ R, and b ∈ R. Then
k∑

l=0

(−1)l
(
k

l

)
(a2 + b)2k−l

a2k−2l
=

k∑
l=0

(
k

l

)
bk+l

a2l
.

Proof. By the binomial formula,

k∑
l=0

(−1)l
(
k

l

)
(a2 + b)2k−l

a2k−2l
=

1

a2k

k∑
l=0

(
k

l

)
(−a2)l(a2 + b)2k−l

=
1

a2k

k∑
l=0

(
k

l

)
(−a2 + b− b)l(a2 + b)2k−l

=
(a2 + b)k

a2k

k∑
l=0

(
k

l

)
(−a2 + b− b)l(a2 + b)k−l

=
bk (a2 + b)

k

a2k
=

k∑
l=0

(
k

l

)
bk+l

a2l
.

□

Proof of Proposition 4.14.1. Using (2.42.4) and (2.52.5), we first compute(
Nk

mf
)
i1...im

(x) =
(
Ikm

)∗
i1...im

Ikmf(x)

=

ˆ
Sn−1

⟨x, ξ⟩kξi1 . . . ξim(Ikmf)(x− ⟨x, ξ⟩ξ, ξ) dξ

=

ˆ
Sn−1

ˆ
R
tk⟨x, ξ⟩kf j1...jm(x− ⟨x, ξ⟩ξ + tξ)ξj1 . . . ξjmξi1 . . . ξim dtdξ

= 2

ˆ
Sn−1

ˆ ∞

0

tk⟨x, ξ⟩kf j1...jm(x− ⟨x, ξ⟩ξ + tξ)(ξ2m)i1...imj1...jm dtdξ.

Replacing t− ⟨x, ξ⟩ by t in the last integral, we have(
Nk

mf
)
i1...im

(x) = 2

ˆ
Sn−1

ˆ ∞

0

(
t+ ⟨x, ξ⟩

)k⟨x, ξ⟩kf j1...jm(x+ tξ)(ξ2m)i1...imj1...jm dtdξ

= 2
k∑

l=0

(
k

l

) ˆ
Sn−1

ˆ ∞

0

tl⟨x, ξ⟩2k−lf j1...jm(x+ tξ)(ξ2m)i1...imj1...jm dtdξ.
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Changing integration variables by

x+ tξ = z, t = |z − x|, ξ =
z − x

|z − x|
, dtdξ = |z − x|1−ndz,

we obtain(
Nk

mf
)
i1...im

(x) = 2
k∑

l=0

(
k

l

) ˆ
Rn

⟨x, z−x⟩2k−l
(
(z−x)2m

)
i1...imj1...jm

f j1...jm(z)

|z − x|2m+2k−2l+n−1
dz.

Let us write this in the form(
Nk

mf
)
i1...im

(x)

= 2

ˆ
Rn

[ k∑
l=0

(−1)l
(
k

l

)
⟨x, x− z⟩2k−l

|x− z|2k−2l

](
(z−x)2m

)
i1...imj1...jm

f j1...jm(z)

|z − x|2m+n−1
dz.

By Lemma 4.24.2 with a = |x− z| and b = ⟨z, x− z⟩,
k∑

l=0

(−1)l
(
k

l

)
⟨x, x− z⟩2k−l

|x− z|2k−2l
=

k∑
l=0

(−1)l
(
k

l

)(
|x− z|2 + ⟨z, x− z⟩

)2k−l

|x− z|2k−2l

=
k∑

l=0

(
k

l

)
⟨z, x− z⟩k+l

|x− z|2l
=

k∑
l=0

(
k

l

)
⟨z, x− z⟩k+l

|z − x|2l
.

Substitute this expression into the previous formula(
Nk

mf
)
i1...im

(x) = 2
k∑

l=0

(
k

l

) ˆ
Rn

⟨z, x− z⟩k+l
(
(x−z)2m

)
i1...imj1...jm

f j1...jm(z)

|x− z|2m+2l+n−1
dz.

Then we represent the first factor of the integrand as follows

⟨z, x− z⟩k+l = (zk+l)p1...pk+l
(
(x− z)k+l

)
p1...pk+l

.

Substituting this expression into the previous formula, we write the result in the form(
Nk

mf
)
i1...im

(x)

= 2
k∑

l=0

(
k

l

) ˆ
Rn

(
zk+l ⊗ f(z)

)p1...pk+lj1...jm

(
(x−z)2m+k+l

)
i1...imj1...jmp1...pk+l

|x− z|2m+2l+n−1
dz.

We can replace
(
zk+l ⊗ f(z)

)p1...pk+lj1...jm with
(
zk+lf(z)

)j1...jmp1...pk+l since the second
factor in the integrand is symmetric in all indices. Hence(

Nk
mf

)
i1...im

(x)

= 2
k∑

l=0

(
k

l

) ˆ
Rn

(
zk+lf(z)

)j1...jmp1...pk+l

(
(x−z)2m+k+l

)
i1...imj1...jmp1...pk+l

|x− z|2m+2l+n−1
dz.

Every integral on the right-hand side is the convolution of
(
xk+lf

)j1...jmp1...pk+l with
(x2m+k+l)i1...imj1...jmp1...pk+l

|x|2m+2l+n−1 . We thus arrive at (4.24.2). □

We use the abbreviated notation ∂i1...ik = ∂k

∂yi1 ...∂yik
for partial derivatives. Recall

that indices can be written either in lower position or in upper position. In particular,
∂i1...ik = ∂i1...ik . Recall that jy : Sm → Sm−1 is the operator of contraction with y,
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see Subsection 2.1 where the operator ju is defined. For 0 ≤ k ≤ m, tensor fields
A(m,k) ∈ C∞(Rn \ {0};S2m−k) are defined by (3.73.7) or in coordinates

A
(m,k)
i1...i2m−k

= ∂i1...i2m−k
|y|2m−2k−1.

Proposition 4.14.1 can be equivalently written in terms of Fourier transforms f̂ and N̂k
mf .

Proposition 4.3. Let 0 ≤ k ≤ m and n ≥ 2. For f ∈ S (Rn;Sm), the equation (3.83.8)

holds with g = f̂ and F (m,k) defined by (3.33.3).

Proof. Applying the Fourier transform to the equality (4.24.2), we obtain

N̂k
mf i1...im

= 2
k∑

l=0

(
k

l

)(
x̂k+lf

)j1...jmp1...pk+lF
[(x2m+k+l)i1...imj1...jmp1...pk+l

|x|2m+2l+n−1

]
.

Using the standard properties of the Fourier transform [Hör83Hör83, Lemma 7.1.2]

x̂jf = i ∂j f̂ , ∂̂jf = i yj f̂ ,

we transform our formula to the form

N̂k
mf i1...im

= 2(−1)m+k

k∑
l=0

(−1)l
(
k

l

)
σ(j1 . . . jmp1 . . . pk+l)

(
∂p1...pk+l f̂ j1...jm

)
× ∂i1...imj1...jmp1...pk+l

F
[
|x|−2m−2l−n+1

]
.

Here we can omit the symmetrization σ(j1 . . . jmp1 . . . pk+l) since the second factor

∂i1...imj1...jmp1...pk+l
F
[
|x|−2m−2l−n+1

]
is symmetric in all indices. Thus,

(4.3)

N̂k
mf i1...im

= 2(−1)m+k

k∑
l=0

(−1)l
(
k

l

)(
∂p1...pk+l f̂ j1...jm

)
∂i1...imj1...jmp1...pk+l

F
[
|x|−2m−2l−n+1

]
.

Let S ′(Rn) be the space of tempered distributions. Recall that λ 7→ |x|λ is the meromor-
phic S ′(Rn)-valued function of λ ∈ C with simple poles at points −n,−n−2,−n−4, . . . .
The Fourier transform of |x|λ is expressed by

F [|x|λ] =
2λ+n/2Γ

(
λ+n
2

)
Γ(−λ/2)

|y|−λ−n (λ,−λ− n /∈ 2Z+),

F [|x|2k] = (2π)n/2(−∆)kδ (k ∈ Z+),

where δ is the Dirac function. In particular,

F
[
|x|−2m−2l−n+1

]
=

Γ
(

1−2m−2l
2

)
22m+2l+n/2−1Γ

(
2m+2l+n−1

2

) |y|2m+2l−1.

Substitute this value into (4.34.3)

(4.4)
N̂k

mf i1...im
(y) =

(−1)m+k

22m+n/2−2

k∑
l=0

(
k

l

)(−1)lΓ
(

1−2m−2l
2

)
22lΓ

(
2m+2l+n−1

2

) (
∂i1...imj1...jmp1...pk+l

|y|2m+2l−1
)

× ∂p1...pk+l f̂ j1...jm(y).
11



Let us contract the equation (4.44.4) with yi1 . . . yik , i.e., multiply the equation by yi1 . . . yik

and perform the summation over indices i1 . . . ik

(4.5)

(
jky N̂

k
mf

)
ik+1...im

(y) =
(−1)m+k

22m+n/2−2

k∑
l=0

(
k

l

)(−1)lΓ
(

1−2m−2l
2

)
22lΓ

(
2m+2l+n−1

2

)
×

[
yi1 . . . yik∂i1···ik

(
∂ik+1...imj1...jmp1...pk+l

|y|2m+2l−1
)]
∂p1...pk+l f̂ j1...jm(y).

On the right-hand side, all summands corresponding to l > 0 are equal to zero. Indeed,
∂ik+1...imj1...jmp1...pk+l

|y|2m+2l−1 is the positively homogeneous function of degree l − 1. By
the Euler equation for homogeneous functions,

yi1 . . . yik∂i1···ik

(
∂ik+1...imj1...jmp1...pk+l

|y|2m+2l−1
)
=

{
(−1)kk!|y|2m−1 if l = 0,
0 if l > 0.

The formula (4.54.5) becomes
(4.6)(

jky N̂
k
mf

)
ik+1...im

(y) =
(−1)mk!Γ

(
1−2m
2

)
22m+n/2−2Γ

(
2m+n−1

2

)(∂ik+1...imj1...jmp1...pk |y|2m−1
)
∂p1...pk f̂ j1...jm(y).

This is equivalent to (3.83.8). □

Lemma 4.4. Let 0 ≤ k ≤ m and n ≥ 2. Then jk+1
y N̂k

mf(y) = 0 for any tensor field
f ∈ S (Rn;Sm) and for any y ∈ Rn.

Proof. The statement trivially holds in the case of k = m. In the case of k < m we apply
the operator jy to the equality (4.64.6)(

jk+1
y N̂k

mf
)
ik+2...im

(y) =
1

Ck
m

[(
yik+1∂ik+1

)(
∂ik+2...imj1...jmp1...pk |y|2m−1

)]
∂p1...pk f̂ j1...jm(y),

where Ck
m = (−1)mk!Γ

(
1−2m
2

)
/
(
22m+n/2−2Γ

(
2m+n−1

2

))
. The expression in brackets is equal

to zero since ∂ik+2...imj1...jmp1...pk |y|2m−1 is a positively homogeneous function of zero degree.
□

From now on we can forget the momentum ray transform. The rest of the article is
devoted to investigation of the system (3.83.8).

Lemma 4.44.4 implies that right-hand sides of equations (3.83.8) satisfy

(4.7) jy F
(m,k)(y) = 0 (0 ≤ k ≤ m).

Thus, equalities (4.74.7) constitute necessary conditions for existence of a solution g ∈
S(Rn;Sm) to the system (3.83.8). Most probably, equalities (4.74.7) are necessary and sufficient
consistency conditions for the system (3.83.8), but this fact is not proved.

5. Reduction of the system (3.83.8) to an algebraic system

Tensor fields A(m,k) ∈ C∞(Rn \ {0};S2m−k) (0 ≤ k ≤ m) are defined by (3.73.7). There
exist two important relations between these tensor fields.

Lemma 5.1. The following equalities are valid:

(5.1) jyA
(m,k) = −kA(m−1,k−1) (0 ≤ k ≤ m),

(5.2) divA(m,k) = (2m− 2k − 1)(n+ 2m− 2k − 3)A(m,k+1) (0 ≤ k ≤ m).
12



Proof. Applying the operator jy to the equality (3.73.7), we have

jyA
(m,k) = jyd

2m−k|y|2m−2k−1.

With the help of the operator ⟨y, ∂⟩ = yj ∂
∂yj

, the latter formula can be written as

(5.3) jyA
(m,k) = ⟨y, ∂⟩ d2m−k−1|y|2m−2k−1.

The tensor field d2m−k−1|y|2m−2k−1 is positively homogeneous of degree −k. By the Euler
equation for homogeneous functions,

⟨y, ∂⟩ d2m−k−1|y|2m−2k−1 = −k d2m−k−1|y|2m−2k−1.

Substituting this expression into (5.35.3), we obtain

jyA
(m,k) = −k d2m−k−1|y|2m−2k−1.

By (3.63.6), the right-hand side of this formula is equal to −kA(m−1,k−1). This proves (5.15.1).
Let us write (3.73.7) in the coordinate form

A
(m,k)
ik+1...i2m

= ∂ik+1...i2m|y|2m−2k−1.

Differentiate this equality

∂A
(m,k)
ik+1...i2m

∂yj
= ∂jik+1...i2m|y|2m−2k−1.

From this

(divA(m,k))ik+2...i2m = δjl
∂A

(m,k)
lik+2...i2m

∂yj
= δjl ∂jlik+2...i2m|y|2m−2k−1

= ∂ik+2...i2m(∆|y|2m−2k−1).

This can be written in the coordinate-free form

(5.4) divA(m,k) = d2m−k−1(∆|y|2m−2k−1).

Using the obvious formula

∆|y|α = α(α + n− 2)|y|α−2,

we obtain
∆|y|2m−2k−1 = (2m− 2k − 1)(n+ 2m− 2k − 3)|y|2m−2k−3.

Substituting this expression into (5.45.4), we have

divA(m,k) = (2m− 2k − 1)(n+ 2m− 2k − 3) d2m−k−1|y|2m−2k−3.

By (3.73.7),

d2m−k−1|y|2m−2k−3 = A(m,k+1).

Two last formulas imply (5.25.2). □

From (5.25.2), one easily proves by induction on k

(5.5) divk A(m,0) =
(2m− 1)!!(n+ 2m− 3)!!

(2m− 2k − 1)!!(n+ 2m− 2k − 3)!!
A(m,k) (0 ≤ k ≤ m).

We reproduce the system (3.83.8)

(5.6) A(m,0)/(dlg) = F (m,l) (l = 0, 1, . . . ,m).

Here F (m,l) ∈ C∞(Rn \ {0};Sm−l) (0 ≤ l ≤ m) are arbitrary tensor fields belonging to
the kernel of jy.
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Proposition 5.2. If a tensor field g ∈ C∞(Rn \ {0};Sm) satisfies (5.65.6), then
(5.7)

(divkA(m,0))/(dlg) = (−1)k
k∑

p=0

(−1)p
(
k

p

)
divp F (m,k+l−p) (0 ≤ k ≤ m, 0 ≤ l ≤ m− k).

Proof. We prove (5.75.7) by induction on k. For k = 0, (5.75.7) coincides with (5.65.6). Assume
(5.75.7) to be valid for some k. Apply the operator div to the equation (5.75.7)

(5.8) div
(
(divkA(m,0))/(dlg)

)
= (−1)k

∑
p

(−1)p
(
k

p

)
divp+1 F (m,k+l−p).

We assume binomial coefficients to be defined for all integers k and p under the agreement:

(5.9)

(
k

p

)
= 0 if either k < 0 or p < 0 or k < p.

Due to the agreement, we can assume the summation to be performed over all integers p
in (5.85.8) and formulas below.
The equality

div(u/v) = (divu)/v + u/(dv)

is valid for any two tensor fields. It is easily proved on the base of definitions of the
operators d and div. With the help of this equality, we write (5.85.8) in the form

(divk+1A(m,0))/(dlg) + (divkA(m,0))/(dl+1g) = (−1)k
∑
p

(−1)p
(
k

p

)
divp+1 F (m,k+l−p).

By the induction hypothesis,

(divkA(m,0))/(dl+1g) = (−1)k
∑
p

(−1)p
(
k

p

)
divp F (m,k+l−p+1).

Substituting this expression into the previous formula, we write the result in the form

(divk+1A(m,0))/(dlg) = (−1)k
∑
p

(−1)p
(
k

p

)
divp+1 F (m,k+l−p)

+ (−1)k+1
∑
p

(−1)p
(
k

p

)
divp F (m,k+l−p+1).

Changing the summation variable of the first sum as p := p− 1, we obtain

(divk+1A(m,0))/(dlg) = (−1)k+1
∑
p

(−1)p
[(

k

p− 1

)
+

(
k

p

)]
divp F (m,k+l−p+1).

By the Pascal triangle equality,
(

k
p−1

)
+
(
k
p

)
=

(
k+1
p

)
. Substituting this expression into the

last formula, we arrive at (5.75.7) for k := k + 1. □

Setting l = 0 in (5.75.7), we obtain

(divkA(m,0))/g = (−1)k
k∑

p=0

(−1)p
(
k

p

)
divp F (m,k−p) (0 ≤ k ≤ m).

Substituting the value (5.55.5) of divkA(m,0), we arrive at the equation

A(m,k)/g = (−1)k
(2m− 2k − 1)!!(n+ 2m− 2k − 3)!!

(2m− 1)!!(n+ 2m− 3)!!

k∑
p=0

(−1)p
(
k

p

)
divp F (m,k−p).
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We have thus proved

Proposition 5.3. If a tensor field g ∈ C∞(Rn \ {0};Sm) satisfies (3.83.8), then it also
solves the system (3.93.9) with right-hand sides defined by (3.43.4).

We emphasize that (3.93.9) is a system of linear algebraic equations in coordinates of the
unknown tensor field g. Of course the system (3.93.9) is not equivalent to (3.83.8). Proposition
5.35.3 states that (3.83.8) implies (3.93.9) but not vice versa. Nevertheless, we will see that g
can be uniquely recovered from (3.93.9). In this sense the system (3.83.8) is reduced to the
algebraic system (3.93.9).

6. Solution of the system (3.93.9)

The following statement completes the proof of Theorem 3.33.3.

Proposition 6.1. If the system (3.93.9) is solvable, then the solution g = f̂ is unique and
is expressed by the formula (3.53.5).

The proof of Proposition 6.16.1 is not easy. The main part of the proof is contained in
the following two lemmas.

Lemma 6.2. Given a tensor field g ∈ C∞(Rn \ {0};Sm+1), let us fix a Cartesian
coordinate system on Rn, fix a value of the index im+1 and introduce the tensor field
g̃ ∈ C∞(Rn \ {0};Sm) by

(6.1) g̃i1...im = gi1...imim+1 .

Let us also introduce the vector field δ̃ by

δ̃i = δiim+1 .

Then, for every 0 ≤ k ≤ m,

(6.2)
(A(m,k)/g̃)ik+1...im =

1

m+1

[ 1

2m−2k+1
(A(m+1,k)/g)ik+1...im+1

− yim+1 (A
(m+1,k+1)/g)ik+1...im − (m−k)

(
δ̃ (A(m,k)/g)

)
ik+1...im

]
.

Proof. The identity

∂i1...ip(|y|αyk) = yk ∂i1...ip |y|α + p σ(i1 . . . ip)(δi1k ∂i2...ip |y|α)
holds for any integer p ≥ 0, any real α and any 1 ≤ k ≤ n. It is easily proved by induction
on p. With the help of this identity, we obtain

∂ik+1...im+1j1...jm+1|y|2m−2k+1 = (2m−2k+1)∂ik+1...imj1...jm+1(|y|2m−2k−1yim+1)

= (2m−2k+1)

[
yim+1 ∂ik+1...imj1...jm+1 |y|2m−2k−1

+ (2m−k+1)σ(ik+1 . . . imj1 . . . jm+1)
(
δim+1jm+1 ∂ik+1...imj1...jm|y|2m−2k−1

)]
.

Expanding the symmetrization σ(ik+1 . . . imj1 . . . jm+1) with respect to the index jm+1

(see [Sha94Sha94, Lemma 2.4.1]), we write this in the form

1

2m−2k+1
∂ik+1...im+1j1...jm+1|y|2m−2k+1 = yim+1 ∂ik+1...imj1...jm+1 |y|2m−2k−1

+ σ(ik+1 . . . imj1 . . . jm)
(
δim+1jm+1 ∂ik+1...imj1...jm|y|2m−2k−1

+ (2m−k)δim+1j1 ∂ik+1...imj2...jm+1|y|2m−2k−1
)
.
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Since the tensor δim+1jm+1 ∂ik+1...imj1...jm|y|2m−2k−1 is symmetric in ik+1, . . . , im, j1, . . . , jm,
the formula can be written as follows:

(6.3)

1

2m−2k+1
∂ik+1...im+1j1...jm+1|y|2m−2k+1 = yim+1 ∂ik+1...imj1...jm+1|y|2m−2k−1

+ δim+1jm+1 ∂ik+1...imj1...jm|y|2m−2k−1

+ (2m−k)σ(ik+1 . . . imj1 . . . jm)
(
δim+1j1 ∂ik+1...imj2...jm+1|y|2m−2k−1

)
.

By (3.73.7),

∂ik+1...imj1...jm+1|y|2m−2k−1 = A
(m+1,k+1)
ik+1...imj1...jm+1

,

∂ik+1...imj1...jm|y|2m−2k−1 = A
(m,k)
ik+1...imj1...jm

,

∂ik+1...imj2...jm+1|y|2m−2k−1 = A
(m,k)
ik+1...imj2...jm+1

.

Substitute these expressions into (6.36.3)

(6.4)

1

2m−2k+1
∂ik+1...im+1j1...jm+1|y|2m−2k+1 = yim+1 A

(m+1,k+1)
ik+1...imj1...jm+1

+ δim+1jm+1 A
(m,k)
ik+1...imj1...jm

+ (2m−k)σ(ik+1 . . . imj1 . . . jm)
(
δim+1j1 A

(m,k)
ik+1...imj2...jm+1

)
.

The equality

(6.5)

σ(ik+1 . . . imj1 . . . jm)
(
δim+1j1 A

(m,k)
ik+1...imj2...jm+1

)
=

1

2m−k
σ(ik+1 . . . im)σ(j1 . . . jm)

[
(m−k)δim+1im A

(m,k)
ik+1...im−1j1...jm+1

+mδim+1j1 A
(m,k)
ik+1...imj2...jm+1

]
is easily proved on the base of the only fact: the tensor A(m,k) is symmetric. Formally

speaking, the first term (m−k)δim+1im A
(m,k)
ik+1...im−1j1...jm+1

in brackets makes sense for k ≤
m − 2 only. Nevertheless, the formula (6.56.5) holds for k = m − 1 if we assume that

A
(m,k)
im...im−1j1...jm+1

= A
(m,k)
j1...jm+1

. In the case of k = m, the first term in brackets is equal to

zero because of the factor (m− k). Thus, the formula (6.56.5) holds for all 0 ≤ k ≤ m.
With the help of (6.56.5), the formula (6.46.4) becomes

1

2m−2k+1
∂ik+1...im+1j1...jm+1|y|2m−2k+1 = yim+1 A

(m+1,k+1)
ik+1...imj1...jm+1

+ δim+1jm+1 A
(m,k)
ik+1...imj1...jm

+ (m−k)σ(ik+1 . . . im)σ(j1 . . . jm)
(
δim+1im A

(m,k)
ik+1...im−1j1...jm+1

)
+mσ(ik+1 . . . im)σ(j1 . . . jm)

(
δim+1j1 A

(m,k)
ik+1...imj2...jm+1

)
.
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On the last line, the symmetrization σ(ik+1 . . . im) can be deleted since the tensorA
(m,k)
ik+1...imj2...jm+1

is symmetric in these indices. The formula simplifies to the following one:

(6.6)

1

2m−2k+1
∂ik+1...im+1j1...jm+1|y|2m−2k+1 = yim+1 A

(m+1,k+1)
ik+1...imj1...jm+1

+ δim+1jm+1 A
(m,k)
ik+1...imj1...jm

+ (m−k)σ(ik+1 . . . im)σ(j1 . . . jm)
(
δim+1im A

(m,k)
ik+1...im−1j1...jm+1

)
+mσ(j1 . . . jm)

(
δim+1j1 A

(m,k)
ik+1...imj2...jm+1

)
.

Formulas (6.36.3) and (6.66.6) imply

1

2m−2k+1
(A(m+1,k)/g)ik+1...im+1 =

[
yim+1 A

(m+1,k+1)
ik+1...imj1...jm+1

+ δim+1jm+1 A
(m,k)
ik+1...imj1...jm

+ (m−k)σ(ik+1 . . . im)σ(j1 . . . jm)
(
δim+1im A

(m,k)
ik+1...im−1j1...jm+1

)
+mσ(j1 . . . jm)

(
δim+1j1 A

(m,k)
ik+1...imj2...jm+1

)]
gj1...jm+1 .

The symmetrization σ(j1 . . . jm) can be deleted after opening brackets since the tensor
gj1...jm+1 is symmetric in these indices. We thus obtain

1

2m−2k+1
(A(m+1,k)/g)ik+1...im+1 = yim+1 A

(m+1,k+1)
ik+1...imj1...jm+1

gj1...jm+1

+ δim+1jm+1 A
(m,k)
ik+1...imj1...jm

gj1...jm+1

+ (m−k)σ(ik+1 . . . im)
(
δim+1im A

(m,k)
ik+1...im−1j1...jm+1

gj1...jm+1

)
+mδim+1j1 A

(m,k)
ik+1...imj2...jm+1

gj1...jm+1 .

Implementing the contraction with the Kronecker tensor in second and last lines, we
obtain

1

2m−2k+1
(A(m+1,k)/g)ik+1...im+1 = yim+1 A

(m+1,k+1)
ik+1...imj1...jm+1

gj1...jm+1

+ A
(m,k)
ik+1...imj1...jm

gj1...jmim+1

+ (m−k)σ(ik+1 . . . im)
(
δim+1im A

(m,k)
ik+1...im−1j1...jm+1

gj1...jm+1

)
+mA

(m,k)
ik+1...imj1...jm

gj1...jmim+1
.

In the last line, we have replaced the summation indices j2, . . . , jm+1 with j1, . . . , jm. We
see now that second and last lines contain similar terms. Grouping this terms, we write
the formula as follows:

(6.7)

1

2m−2k+1
(A(m+1,k)/g)ik+1...im+1 = yim+1 A

(m+1,k+1)
ik+1...imj1...jm+1

gj1...jm+1

+ (m−k)σ(ik+1 . . . im)
(
δim+1im A

(m,k)
ik+1...im−1j1...jm+1

gj1...jm+1

)
+ (m+ 1)A

(m,k)
ik+1...imj1...jm

gj1...jmim+1
.
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Recall that the value of the index im+1 is fixed and g̃j1...jm = gj1...jmim+1
. The formula (6.76.7)

can be written as
1

2m−2k+1
(A(m+1,k)/g)ik+1...im+1 = yim+1 (A

(m+1,k+1)/g)ik+1...im

+ (m−k)
(
δ̃ (A(m,k)/g)

)
ik+1...im

+ (m+ 1) (A(m,k)/g̃)ik+1...im .

This is equivalent to (6.26.2). □

Lemma 6.3. For a tensor field g ∈ C∞(Rn \ {0};Sm), the following identity holds:

(6.8) A(m,0)/g = m!(2m− 1)!! |y|−1g +
m∑
k=1

min(k,m−k)∑
p=0

β(m, k, p) ik−p
y ipjpy(A

(m,k)/g),

where the coefficients β(m, k, p) are uniquely determined by the recurrent formulas

(6.9)
β̃(m+1, k, p) =

1

2m−2k+1
β(m, k, p)− k−p

k
β(m, k−1, p)

+
m−k−p+2

k
β(m, k−1, p−1)

and

(6.10) β(m+ 1, k, p) =


(2m+1)

(
β̃(m+ 1, k, p) + 1

)
if (k, p) = (1, 0),

(2m+1)
(
β̃(m+ 1, k, p)−m

)
if (k, p) = (1, 1),

(2m+1)β̃(m+ 1, k, p) otherwise

under the agreement

(6.11) β(m, k, p) = 0 if either k = 0 or k > m or p < 0 or p > min(k,m− k).

Proof. The proof is going by induction on m. For m = 0, the sum on the right-hand side
of (6.86.8) is absent and the formula holds since A(m,0) = |y|−1. Assume (6.86.8) to be valid
for some m ≥ 0 and let g ∈ C∞(Rn \ {0};Sm+1). We fix a value of the index im+1 and
introduce the tensor field g̃ ∈ C∞(Rn \ {0};Sm) by (6.16.1). By the induction hypothesis,
the formula (6.86.8) holds for g̃. Let us write the formula in coordinates

(6.12)

A
(m,0)
i1...imj1...jm

gj1...jmim+1
= m!(2m− 1)!! |y|−1gi1...im+1

+ σ(i1 . . . im)
m∑
k=1

min(k,m−k)∑
p=0

β(m, k, p) yl1 . . . ylp×

× δi1i2 . . . δi2p−1i2pyi2p+1 . . . yik+p
A

(m,k)
ik+p+1...iml1...lpj1...jm

gj1...jmim+1
.

By Lemma 6.26.2,
(6.13)

A
(m,k)
ik+p+1...iml1...lpj1...jm

gj1...jmim+1
= (A(m,k)/g̃)ik+p+1...iml1...lp

=
1

m+1

[ 1

2m−2k+1
(A(m+1,k)/g)ik+p+1...im+1l1...lp − yim+1 (A

(m+1,k+1)/g)ik+p+1...iml1...lp

− (m−k)
(
δ̃ (A(m,k)/g)

)
ik+p+1...iml1...lp

]
.

In the case of k = m, the last term on the right-hand side of (6.136.13) is equal to zero.
In the case of k < m, we transform the last term on the right-hand side of (6.136.13) with
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the help of (5.15.1) as follows:

(6.14)

(
δ̃ (A(m,k)/g)

)
ik+p+1...iml1...lp

= − 1

k + 1

(
δ̃(jyA

(m+1,k+1)/g)
)
ik+p+1...iml1...lp

= − 1

k + 1
σ(ik+p+1 . . . iml1 . . . lp)

(
δim+1ik+p+1

(jyA
(m+1,k+1)/g)ik+p+2...iml1...lp

)
.

The equality

σ(ik+p+1 . . . iml1 . . . lp)
(
δim+1ik+p+1

(jyA
(m+1,k+1)/g)ik+p+2...iml1...lp

)
=
m−k−p
m−k

σ(ik+p+1 . . . im)
(
δim+1ik+p+1

(jyA
(m+1,k+1)/g)ik+p+2...iml1...lp

)
+

p

m−k
σ(l1 . . . lp)

(
δim+1l1(jyA

(m+1,k+1)/g)ik+p+1...iml2...lp

)

holds since jyA
(m+1,k+1)/g is a symmetric tensor. With the help of this, the formula (6.146.14)

takes the form

(6.15)

(
δ̃ (A(m,k)/g)

)
ik+p+1...iml1...lp

= − m−k−p
(m−k)(k+1)

σ(ik+p+1 . . . im)
(
δim+1ik+p+1

(jyA
(m+1,k+1)/g)ik+p+2...iml1...lp

)
− p

(m−k)(k+1)
σ(l1 . . . lp)

(
δim+1l1(jyA

(m+1,k+1)/g)ik+p+1...iml2...lp

)
.

Replacing the last term on the right-hand side of (6.136.13) with its value (6.156.15), we obtain
(6.16)

A
(m,k)
ik+p+1...iml1...lpj1...jm

gj1...jmim+1
= (A(m,k)/g̃)ik+p+1...iml1...lp

=
1

m+1

[
1

2m−2k+1
(A(m+1,k)/g)ik+p+1...im+1l1...lp − yim+1 (A

(m+1,k+1)/g)ik+p+1...iml1...lp

+
m−k−p
k+1

σ(ik+p+1 . . . im)
(
δim+1ik+p+1

(jyA
(m+1,k+1)/g)ik+p+2...iml1...lp

)
+

p

k+1
σ(l1 . . . lp)

(
δim+1l1(jyA

(m+1,k+1)/g)ik+p+1...iml2...lp

)]
.

It is not quite obvious now that two last lines on the right-hand side of (6.166.16) are equal
to zero in the case of k = m. Nevertheless, in the case of k = m we are interested in
(6.166.16) for p = 0 only, as is seen from (6.126.12). For k = m and p = 0, the last two lines on
the right-hand side of (6.166.16) are equal to zero.

We substitute the expression (6.166.16) into (6.126.12). After the substitution, the symmetriza-
tion σ(ik+p+1 . . . im) can be omitted because of the presence of the “larger” symmetrization
σ(i1 . . . im). The symmetrization σ(l1 . . . lp) can be also omitted because of the presence
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of the factor yl1 . . . ylp . We thus obtain

A
(m,0)
i1...imj1...jm

gj1...jmim+1
= m!(2m− 1)!! |y|−1gi1...im+1

+
1

m+1
σ(i1 . . . im)

m∑
k=1

min(k,m−k)∑
p=0

β(m, k, p) δi1i2 . . . δi2p−1i2p yi2p+1 . . . yik+p
yl1 . . . ylp×

×
[

1

2m−2k+1
(A(m+1,k)/g)ik+p+1...im+1l1...lp − yim+1 (A

(m+1,k+1)/g)ik+p+1...iml1...lp

+
m−k−p
k+1

δim+1ik+p+1
(jyA

(m+1,k+1)/g)ik+p+2...iml1...lp

+
p

k+1
δim+1l1(jyA

(m+1,k+1)/g)ik+p+1...iml2...lp

]
.

After pulling the factor yl1 . . . ylp inside brackets, this becomes

A
(m,0)
i1...imj1...jm

gj1...jmim+1
= m!(2m− 1)!! |y|−1gi1...im+1

+
1

m+1
σ(i1 . . . im)

m∑
k=1

min(k,m−k)∑
p=0

β(m, k, p) δi1i2 . . . δi2p−1i2p yi2p+1 . . . yik+p
×

×
[

1

2m−2k+1
(jpy A

(m+1,k)/g)ik+p+1...im+1 − yim+1 (j
p
y A

(m+1,k+1)/g)ik+p+1...im

+
m−k−p
k+1

δim+1ik+p+1
(jp+1

y A(m+1,k+1)/g)ik+p+2...im

+
p

k+1
yim+1(j

p
y A

(m+1,k+1)/g)ik+p+1...im

]
.

Observe that second and last terms in brackets differ by coefficients only. After grouping
these terms, the formula becomes

A
(m,0)
i1...imj1...jm

gj1...jmim+1
= m!(2m− 1)!! |y|−1gi1...im+1

+
1

m+1
σ(i1 . . . im)

m∑
k=1

min(k,m−k)∑
p=0

β(m, k, p) δi1i2 . . . δi2p−1i2p yi2p+1 . . . yik+p
×

×
[

1

2m−2k+1
(jpy A

(m+1,k)/g)ik+p+1...im+1 −
k−p+1

k+1
yim+1 (j

p
y A

(m+1,k+1)/g)ik+p+1...im

+
m−k−p
k+1

δim+1ik+p+1
(jp+1

y A(m+1,k+1)/g)ik+p+2...im

]
.

Next, we pull the factor δi2p−1i2p yi2p+1 . . . yik+p
inside brackets

(6.17)

A
(m,0)
i1...imj1...jm

gj1...jmim+1
= m!(2m− 1)!! |y|−1gi1...im+1

+
1

m+1

m∑
k=1

min(k,m−k)∑
p=0

β(m, k, p)

[
1

2m−2k+1

(
ik−p
y ipjpy(A

(m+1,k)/g)
)
i1...im+1

− k−p+1

k+1
yim+1

(
ik−p
y ipjpy(A

(m+1,k+1)/g)
)
i1...im

+
m−k−p
k+1

(
iδ̃ i

k−p
y ipjp+1

y (A(m+1,k+1)/g)
)
i1...im

]
.
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Next, we apply Lemma 6.26.2 with k = 0. More precisely, we reproduce the formula (6.76.7)
from the proof of the lemma for k = 0

(A(m+1,0)/g)i1...im+1 = (m+1)(2m+1)A
(m,0)
i1...imj1...jm

gj1...jmim+1

+ (2m+1)yim+1 A
(m+1,1)
i1...imj1...jm+1

gj1...jm+1

+m(2m+1) σ(i1 . . . im)
(
δim+1im A

(m,0)
i1...im−1j1...jm+1

gj1...jm+1

)
.

This can be written in the form

(A(m+1,0)/g)i1...im+1 = (m+1)(2m+1)A
(m,0)
i1...imj1...jm

gj1...jmim+1

+ (2m+1)yim+1 (A
(m+1,1)/g)i1...im +m(2m+1)

(
iδ̃(A

(m,0)/g)
)
i1...im

.

By (5.15.1), A(m,0) = −jyA(m+1,1). Substituting this expression into the last line of the
previous formula, we obtain

(6.18)
(A(m+1,0)/g)i1...im+1 = (m+1)(2m+1)A

(m,0)
i1...imj1...jm

gj1...jmim+1

+ (2m+1)yim+1 (A
(m+1,1)/g)i1...im −m(2m+1)

(
iδ̃ jy(A

(m+1,1)/g)
)
i1...im

.

Now, we replace the first term A
(m,0)
i1...imj1...jm

gj1...jmim+1
on the right-hand side of (6.186.18) with

its expression (6.176.17)

(6.19)

1

2m+1
(A(m+1,0)/g)i1...im+1 = (m+1)!(2m− 1)!! |y|−1gi1...im+1

+
m∑
k=1

min(k,m−k)∑
p=0

β(m, k, p)

[
1

2m−2k+1

(
ik−p
y ipjpy(A

(m+1,k)/g)
)
i1...im+1

− k−p+1

k+1
yim+1

(
ik−p
y ipjpy(A

(m+1,k+1)/g)
)
i1...im

+
m−k−p
k+1

(
iδ̃ i

k−p
y ipjp+1

y (A(m+1,k+1)/g)
)
i1...im

]
+ yim+1 (A(m+1,1)/g)i1...im −m

(
iδ̃ jy(A

(m+1,1)/g)
)
i1...im

.

From now on, we again let im+1 be an arbitrary index. We apply the symmetrization
σ(i1 . . . im+1) to the equation (6.196.19). The operator iδ̃ becomes i after the symmetrization
and the result can be written in the coordinate-free form (recall that operators iy and i
commute)
(6.20)

1

2m+1
A(m+1,0)/g = (m+1)!(2m− 1)!! |y|−1 g

+
m∑
k=1

min(k,m−k)∑
p=0

β(m, k, p)

[
1

2m−2k+1
ik−p
y ipjpy(A

(m+1,k)/g)

− k−p+1

k+1
ik−p+1
y ipjpy(A

(m+1,k+1)/g) +
m−k−p
k+1

ik−p
y ip+1jp+1

y (A(m+1,k+1)/g)

]
+ iy (A

(m+1,1)/g)−mijy (A
(m+1,1)/g).
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Let us write (6.206.20) in the form

1

2m+1
A(m+1,0)/g = (m+1)!(2m− 1)!! |y|−1 g

+
m∑
k=1

min(k,m−k)∑
p=0

1

2m−2k+1
β(m, k, p) ik−p

y ipjpy(A
(m+1,k)/g)

−
m∑

k′=1

min(k′,m−k′)∑
p=0

k′−p+1

k′+1
β(m, k′, p) ik

′−p+1
y ipjpy(A

(m+1,k′+1)/g)

+
m∑

k′=1

min(k′,m−k′)∑
p′=0

m−k′−p′

k′+1
β(m, k′, p′) ik

′−p′

y ip
′+1jp

′+1
y (A(m+1,k′+1)/g)

+ iy (A
(m+1,1)/g)−mijy (A

(m+1,1)/g).

We change summation variables by k′ = k − 1 in the second sum and by k′ = k − 1, p′ =
p− 1 in the third sum. The formula becomes

(6.21)

1

2m+1
A(m+1,0)/g = (m+1)!(2m− 1)!! |y|−1 g

+
m∑
k=1

min(k,m−k)∑
p=0

1

2m−2k+1
β(m, k, p) ik−p

y ipjpy(A
(m+1,k)/g)

−
m+1∑
k=2

min(k−1,m−k+1)∑
p=0

k−p
k

β(m, k − 1, p) ik−p
y ipjpy(A

(m+1,k)/g)

+
m+1∑
k=2

min(k−1,m−k+1)+1∑
p=1

m−k−p+2

k
β(m, k − 1, p− 1) ik−p

y ipjpy(A
(m+1,k)/g)

+ iy (A
(m+1,1)/g)−mijy (A

(m+1,1)/g).

We are going to equate summation limits in three sums on the right-hand side of (6.216.21)
in order to unite the sums. Then we are going to involve two terms on the last line of
(6.216.21) into the same sum. This needs some logical and arithmetic analysis.
In the first sum on the right-hand side of (6.216.21), the summation over k can be extended

to 1 ≤ k ≤ m+ 1 since β(m,m+ 1, p) = 0 by the agreement (6.116.11). Let us demonstrate
that the summation over p can be extended to 0 ≤ p ≤ min(k,m − k + 1). Indeed,
min(k,m− k) = min(k,m− k + 1) if k ≤ m− k. If k > m− k, then there appears one
extra term corresponding to p = m− k + 1 in the first sum. But β(m, k,m− k + 1) = 0
by the agreement (6.116.11). Thus, summation limits of the first sum can be replaced with

(6.22) 1 ≤ k ≤ m+ 1, 0 ≤ p ≤ min(k,m− k + 1).

In the second sum on the right-hand side of (6.216.21), the summation over k can be
extended to 1 ≤ k ≤ m + 1 since β(m, 0, p) = 0 by the agreement (6.116.11). Let us
demonstrate that the summation over p can be extended to 0 ≤ p ≤ min(k,m− k + 1).
Indeed, min(k−1,m−k) = min(k,m−k+1) if k > m−k+1. If k ≤ m−k+1, then there
appears one extra term corresponding to p = k in the second sum. But β(m, k−1, k) = 0
by the agreement (6.116.11). Thus, summation limits of the second sum can be replaced with
(6.226.22).
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In the third sum on the right-hand side of (6.216.21), the summation over k can be extended
to 1 ≤ k ≤ m+1 since β(m, 0, p− 1) = 0 by the agreement (6.116.11). The lower summation
limit over p can be replaced with zero since β(m, k − 1,−1) = 0 by the agreement
(6.116.11). Let us demonstrate that the upper summation limit over p can be replaced with
min(k,m−k+1). Indeed, min(k−1,m−k+1)+1 = min(k,m−k+1) if either 2k < m+2
or 2k > m+2. The only critical case is 2k = m+2 when min(k−1,m−k+1)+1 = m−k+2
and min(k,m − k + 1) = m − k + 1. We are going to loose the term corresponding to
p = m− k + 2 after the replacement. But this term is equal to zero due to the presence
of the factor m−k−p+2

k
.

Thus, summation limits can be replaced with (6.226.22) in all sums on the right-hand side
of (6.216.21). After the replacement, we unite three sums and write (6.216.21) in the form

(6.23)

A(m+1,0)/g = (m+1)!(2m+1)!! |y|−1 g

+ (2m+1)
m+1∑
k=1

min(k,m−k+1)∑
p=0

β̃(m+ 1, k, p) ik−p
y ipjpy(A

(m+1,k)/g)

+ (2m+1) iy (A
(m+1,1)/g)−m(2m+1) ijy (A

(m+1,1)/g),

where β̃(m+ 1, k, p) is defined by (6.96.9).
Finally, we have to include two terms on the last line of (6.236.23) into the sum. The term

iy (A
(m+1,1)/g) corresponds to (k, p) = (1, 0) and the term ijy (A

(m+1,1)/g) corresponds to
(k, p) = (1, 1). Therefore we define β(m+ 1, k, p) by (6.106.10). The formula (6.236.23) becomes
now

A(m+1,0)/g = (m+1)!(2m+1)!! |y|−1 g

+
m+1∑
k=1

min(k,m−k+1)∑
p=0

β(m+ 1, k, p) ik−p
y ipjpy(A

(m+1,k)/g).

This coincides with (6.86.8) for m := m+ 1. □

Proof of Proposition 6.16.1. Coefficients β(m, k, p) are determined by pretty complicated
recurrent formulas (6.96.9)–(6.116.11). Nevertheless, the coefficients can be expressed by the
explicit formula

(6.24) β(m, k, p) =

 (−1)k+p+1 (2m− 1)!!
(2m− 2k − 1)!!

2−p
(m
k
)(m− k

p
)

for k > 0,

0 for k ≤ 0.

Indeed, being defined by (6.96.9), β(m, k, p) satisfy (6.116.11) under the agreement (5.95.9). For-
mulas (6.96.9)–(6.106.10) can be equivalently written in the form

(6.25) β(m+ 1, 1, 0) = (2m+ 1)
( 1

2m− 1
β(m, 1, 0) + 1

)
,

(6.26) β(m+ 1, 1, 1) = (2m+ 1)
( 1

2m− 1
β(m, 1, 1)−m

)
,

(6.27)

β(m+ 1, k, p) = (2m+ 1)

[
1

2m− 2k + 1
β(m, k, p)− k − p

k
β(m, k − 1, p)

+
m− k − p+ 2

k
β(m, k − 1, p− 1)

] (
(k, p) ̸= (1, 0), (k, p) ̸= (1, 1)

)
.

Unlike (6.96.9)–(6.106.10), formulas (6.256.25)–(6.276.27) do not involve β̃(m+1, k, p). One easily proves
that equations (6.256.25)–(6.276.27) are satisfied by values (6.246.24). We express g from (6.86.8).
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Substituting the value (6.246.24) of β(m, k, p) into the expression, we arrive at the formula

(3.53.5) with f̂ = g. Substituting the value (6.246.24) into (6.86.8) we arrive at the formula (3.53.5)

with f̂ = g. This completes the proof of Proposition 6.16.1 as well as of Theorem 3.33.3. □

7. Proof of Theorems 3.13.1 and 3.23.2

7.1. Vector fields. In the case of m = 1, the formula (3.53.5) looks as follows:

(7.1) f̂ = |y|
(
H(1,0) − iyH

(1,1)
)
.

By (3.43.4),

H(1,0) = F (1,0), H(1,1) =
1

n− 1

(
divF (1,0) − F (1,1)

)
and by (3.33.3),

F (1,0) = c1,n N̂0
1 f, F (1,1) = c1,n jyN̂1

1 f,

where

c1,n = −
2n/2Γ

(
n+1
2

)
Γ
(
− 1

2

) =
2n/2−1Γ

(
n+1
2

)
√
π

.

From this

H(1,0) = c1,n N̂0
1 f, H(1,1) =

c1,n
n− 1

(
div N̂0

1 f − jyN̂1
1 f

)
.

Substitute these expressions into (7.17.1)

(7.2) f̂ = c1,n |y|
(
N̂0

1 f − 1

n− 1
iy div N̂0

1 f +
1

n− 1
iyjy N̂1

1 f
)
.

We apply the inverse Fourier transform to the formula (7.27.2) and use the commutator
formulas

(7.3) F−1|y| = (−∆)1/2F−1, F−1iyjy = −d divF−1, F−1iy div = d jx F−1.

In this way we obtain

f = c1,n(−∆)1/2
(
N0

1 f − 1

n−1
d jxN

0
1 f − 1

n−1
d divN1

1 f
)
.

This completes the proof of Theorem 3.13.1.

7.2. Second rank tensor fields. In the case of m = 2, the formula (3.53.5) looks as
follows:

(7.4) f̂ =
1

6
|y|

(
H(2,0) − 6 iyH

(2,1) + 3 ijyH
(2,1) + 3 i2yH

(2,2)
)
.

By (3.43.4),

H(2,0) = F (2,0), H(2,1) =
1

3(n+ 1)

(
divF (2,0) − F (2,1)

)
,

H(2,2) =
1

3(n− 1)(n+ 1)

(
div2 F (2,0) − 2 divF (2,1) + F (2,2)

)
and by (3.33.3),

F (2,0) = c2,n N̂0
2 f, F (2,1) = c2,n jyN̂1

2 f, F (2,2) =
1

2
c2,n j

2
yN̂

2
2 f,

where

(7.5) c2,n = 3
2n/2Γ

(
n+3
2

)
√
π

.
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From this

H(2,0) = c2,n N̂0
2 f, H(2,1) =

c2,n
3(n+ 1)

(
div N̂0

2 f − jyN̂1
2 f

)
,

H(2,2) =
c2,n

3(n− 1)(n+ 1)

(
div2 N̂0

2 f − 2 div jy N̂1
2 f +

1

2
j2yN̂

2
2 f

)
.

Substitute these expressions into (7.47.4)

f̂ =
c2,n
6

|y|
[
N̂0

2 f − 2

n+ 1
iy

(
div N̂0

2 f − jyN̂1
2 f

)
+

1

n+ 1
i
(
jy div N̂0

2 f − j2yN̂
1
2 f

)
+

1

(n− 1)(n+ 1)
i2y

(
div2 N̂0

2 f − 2 div jy N̂1
2 f +

1

2
j2yN̂

2
2 f

)]
.

By Lemma 4.44.4, j2yN̂
1
2 f = 0, and the latter formula is simplified to the following one:

(7.6)

f̂ =
c2,n
6

|y|
[
N̂0

2 f +
1

n+ 1
ijy div N̂0

2 f

− 2

n+ 1
iy

(
div N̂0

2 f − jyN̂1
2 f

)
+

1

(n− 1)(n+ 1)
i2y

(
div2 N̂0

2 f − 2 div jy N̂1
2 f +

1

2
j2yN̂

2
2 f

)]
.

The second term on the right-hand side of (7.67.6) can be simplified. Indeed, the com-
mutator formula

(7.7) jy div = div jy − j

is proved by an easy calculation in coordinates. By this formula,

jy div N̂0
2 f = div jyN̂0

2 f − jN̂0
2 f.

By Lemma 4.44.4, jyN̂0
2 f = 0, and the latter formula gives jy div N̂0

2 f = −jN̂0
2 f . Substitute

this value into (7.67.6)

(7.8)

f̂ =
c2,n
6

|y|
[
N̂0

2 f − 1

n+ 1
ij N̂0

2 f

− 2

n+ 1

(
iy div N̂0

2 f − iy jyN̂1
2 f

)
+

1

(n− 1)(n+ 1)

(
i2y div

2 N̂0
2 f − 2 i2y div jy N̂

1
2 f +

1

2
i2y j

2
yN̂

2
2 f

)]
.

We apply the inverse Fourier transform to the formula (7.87.8) and use the commutator
formulas (7.37.3) as well as

F−1i2y = −d2F−1, F−1 div2 = −j2xF−1, F−1jyd = div ixF−1, F−1 div jy = jx divF−1.
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In this way we obtain

f(x) =
c2,n
6

(−∆)1/2
[
N0

2 f − 1

n+ 1
ij N0

2 f

− 2

n+ 1
d
(
jxN

0
2 f + divN1

2 f
)

+
1

(n−1)(n+1)
d2
(
j2xN

0
2 f − 2 jx divN

1
2 f +

1

2
div2N2

2 f
)]
.

Substituting the value (7.57.5) of c2,n, we arrive at (3.23.2). This completes the proof of
Theorem 3.23.2.

7.3. Third rank tensor fields. In the case of m = 3, the formula (3.53.5) looks as follows:

(7.9) f̂ =
|y|
90

(
H(3,0)−15 iyH

(3,1)+15 ijyH
(3,1)+45 i2yH

(3,2)− 45

2
iiyjyH

(3,2)−15 i3yH
(3,3)

)
.

By (3.43.4),

H(3,0) = F (3,0), H(3,1) =
1

5(n+ 3)

(
divF (3,0) − F (3,1)

)
,

H(3,2) =
1

15(n+1)(n+3)

(
div2 F (3,0) − 2 divF (3,1) + F (3,2)

)
,

H(3,3) =
1

15(n−1)(n+1)(n+3)

(
div3 F (3,0) − 3 div2 F (3,1) + 3divF (3,2) − F (3,3)

)
,

and by (3.33.3),

F (3,0) = c3,n N̂0
3 f, F (3,1) = c3,n jyN̂1

3 f, F (3,2) =
1

2
c3,n j

2
yN̂

2
3 f, F (3,3) =

1

6
c3,n j

3
yN̂

2
3 f,

where

(7.10) c3,n = 15π−1/2 2n/2+1 Γ
(n+ 5

2

)
.

From this

H(3,0) = c3,n N̂0
3 f, H(3,1) =

c3,n
5(n+ 3)

(
div N̂0

3 f − jyN̂1
3 f

)
,

H(3,2) =
c3,n

15(n+1)(n+3)

(
div2 N̂0

3 f − 2 div jy N̂1
3 f +

1

2
j2yN̂

2
3 f

)
,

H(3,3) =
c3,n

15(n−1)(n+1)(n+3)

(
div3 N̂0

3 f − 3 div2 jy N̂1
3 f +

3

2
div j2yN̂

2
3 f − 1

6
j3yN̂

3
3 f

)
.

Substitute these expressions into (7.97.9)

f̂ =
c3,n
90

|y|
[
N̂0

3 f − 3

n+ 3
iy

(
div N̂0

3 f − jyN̂1
3 f

)
+

3

n+ 3
i
(
jy div N̂0

3 f − j2yN̂
1
3 f

)
+

3

(n+1)(n+3)
i2y

(
div2 N̂0

3 f − 2 div jy N̂1
3 f +

1

2
j2yN̂

2
3 f

)
− 3

2(n+1)(n+3)
iiy

(
jy div

2 N̂0
3 f − 2 jy div jy N̂1

3 f +
1

2
j3yN̂

2
3 f

)
− 1

(n−1)(n+1)(n+3)
i3y

(
div3 N̂0

3 f − 3 div2 jyN̂1
3 f +

3

2
div j2yN̂

2
3 f − 1

6
j3yN̂

3
3 f

)]
.
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By Lemma 4.44.4, j2yN̂
1
3 f = 0 and j3yN̂

2
3 f = 0. The previous formula is simplified to the

following one:
(7.11)

f̂ =
c3,n
90

|y|
[
N̂0

3 f +
3

n+ 3
ijy div N̂0

3 f − 3

n+ 3
iy

(
div N̂0

3 f − jyN̂1
3 f

)
+

3

(n+1)(n+3)
i2y

(
div2 N̂0

3 f − 2 div jy N̂1
3 f +

1

2
j2yN̂

2
3 f

)
− 3

2(n+1)(n+3)
iiy

(
jy div

2 N̂0
3 f − 2 jy div jy N̂1

3 f
)

− 1

(n−1)(n+1)(n+3)
i3y

(
div3 N̂0

3 f − 3 div2 jyN̂1
3 f +

3

2
div j2yN̂

2
3 f − 1

6
j3yN̂

3
3 f

)]
.

At least three terms on the right-hand side of (7.117.11) can be simplified. Indeed, using
Lemma 4.44.4 and the commutator formula (7.77.7), we transform

(7.12) jy div N̂0
3 f = div jy N̂0

3 f − j N̂0
3 f = −j N̂0

3 f.

Quite similarly,
(7.13)

jy div jy N̂1
3 f = (div jy − j)jy N̂1

3 f = div j2y N̂
1
3 f − jjy N̂1

3 f = −jjy N̂1
3 f = −jyj N̂1

3 f.

We have used that operators j and jy commute. Let us also transform the term containing
jy div

2

jy div
2 N̂0

3 f = (jy div)div N̂0
3 f = (div jy − j)div N̂0

3 f

= div(jy div)N̂0
3 f − j div N̂0

3 f = div(div jy − j)N̂0
3 f − j div N̂0

3 f

= div2 jy N̂0
3 f − div j N̂0

3 f − j div N̂0
3 f = −div j N̂0

3 f − j div N̂0
3 f.

Using that j and div commute [DS10DS10], we get

(7.14) jy div
2 N̂0

3 f = −2 j div N̂0
3 f.

Substituting expressions (7.127.12)–(7.147.14) and the value (7.107.10) of the constant c3,n into
(7.117.11), we obtain the inversion formula recovering the Fourier transform of a tensor field

f ∈ S(Rn;S3) (n ≥ 2) through the data (N̂0
3 f, jyN̂

1
3 f, j

2
yN̂

2
3 f, j

3
yN̂

3
3 f)

f̂ =
2n/2 Γ

(
n+5
2

)
3
√
π

|y|
[
N̂0

3 f − 3

n+ 3
ij N̂0

3 f

− 3

(n+1)(n+3)
iy

(
(n+1) div N̂0

3 f − ij div N̂0
3 f − (n+1) jyN̂1

3 f + ij jyN̂1
3 f

)
+

3

(n+1)(n+3)
i2y

(
div2 N̂0

3 f − 2 div jyN̂1
3 f +

1

2
j2yN̂

2
3 f

)
− 1

(n−1)(n+1)(n+3)
i3y

(
div3 N̂0

3 f − 3 div2 jyN̂1
3 f +

3

2
div j2yN̂

2
3 f − 1

6
j3yN̂

3
3 f

)]
.

The same approach can be used for deriving the inversion formula for m = 4, 5, . . . The
length of the formula grows with m as well as the volume of calculations.
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