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NORMAL OPERATORS FOR MOMENTUM RAY TRANSFORMS,

II: SAINT VENANT OPERATOR

SHUBHAM R. JATHAR, MANAS KAR, VENKATESWARAN P. KRISHNAN,
AND VLADIMIR A. SHARAFUTDINOV

Abstract. The momentum ray transform Ikm integrates a rank m symmetric tensor
field f on Rn over lines with the weight tk, Ikmf(x, ξ) =

´

∞

−∞
tk〈f(x + tξ), ξm〉dt. Let

Nk
m

= (Ik
m
)∗Ik

m
be the normal operator of Ik

m
. To what extent is a symmetric m-tensor

field f determined by the data (N0

mf, . . . , N r
mf) given for some 0 ≤ r ≤ m? The

Saint Venant operator W r
m

is a linear differential operator of order m− r with constant
coefficients on the space of symmetric m-tensor fields. We derive an explicit formula
expressing W r

mf in terms of (N0

mf, . . . , N r
mf). The tensor field W r

mf represents the full
local information on f that can be extracted from the data (N0

m
f, . . . , N r

m
f).
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1. Introduction

This article is a follow-up to our prior work [JKKS24]. To ensure a self-contained
presentation, we have chosen to provide only a condensed version in the introduction and
Section 2. We refer the reader to [JKKS24] for more details.

Let f be a Schwartz class symmetric m-tensor field on Rn. The kth momentum ray
transform Ikmf of f is defined by

(1.1) Ikmf(x, ξ) =

ˆ

R

tkfi1···im(x+ tξ)ξi1 · · · ξim dt
(
x ∈ Rn, ξ ∈ Rn, |ξ| = 1, 〈x, ξ〉 = 0

)
.

As in (1.1), with repeating indices, the Einstein summation convention is used throughout
the article.

Let (Ikm)
∗ be the L2 adjoint of Ikm. Instead of working directly with the momentum

ray transforms, we work with the associated normal operators Nk
m = (Ikm)

∗Ikm. Being an
averaging operator, Nk

m represents a better measurement model than the momentum ray
transforms themselves. An inversion formula was obtained in [JKKS24] which recovers
a symmetric m-tensor f from the data (N0

mf, . . . , N
m
m f). The formula is reproduced in

Theorem 2.1 below.
In this work we investigate the problem of recovering a tensor field from partial data.

To what extent is a symmetric m-tensor field f determined by the data (N0
mf, . . . , N

r
mf)

given for some 0 ≤ r ≤ m?
In the next section, we will recall the definition of the Saint Venant operator

(1.2) W r
m : C∞(Rn;Sm) → C∞(Rn;Sm−r ⊗ Sm) (0 ≤ r ≤ m).

It is a linear differential operator of order m− r with constant coefficients. This operator
was briefly mentioned in [Sha94, Theorem 2.17.2], but the operator W =W 0

m was widely
used throughout Chapter 2 of [Sha94]. It is closely related to the equation

(1.3) dv = f.
1
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where d = σ∇ is the inner derivative defined in Section 2.3 below. Namely, the equation
(1.3) is solvable in a simply connected domain U ⊂ Rn if and only if the right-hand
side satisfies W 0

mf = 0, see [Sha94, Theorem 2.2.2]. In the case of m = 2, the condition
W 0

2 f = 0 is popular in linear elasticity and is called the deformation consistency condition,
it was obtained by Saint Venant.

For f ∈ S(Rn;Sm), the tensor field W r
mf represents the full local information, on

the field f , that can be extracted from the data (I0mf, . . . , I
r
mf), see [Sha94, Theorem

2.17.2]. In particular, W r
mf is uniquely determined by (N0

mf, . . . , N
r
mf). The paper

[MS21] establishes that, for f ∈ S (Sm) and for 0 ≤ r ≤ m, the tensor field W r
mf can

be explicitly recovered from (I0mf, . . . , I
r
mf). In [MS23, Theorem 3.1], the kernel of the

momentum ray transform is described using the Saint Venant operator. It is shown that
for f ∈ S (Sm), (I0mf, . . . , I

r
mf) = 0 if and only if W r

mf = 0. We will derive an explicit
formula expressing W r

mf through (N0
mf, . . . , N

r
mf); see Theorem 2.2 below. The latter

theorem is the main result of the current work.
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2. Basic definitions and main result

2.1. Tensor algebra. Let TRn = ⊕∞
m=0T

mRn be the complex tensor algebra over Rn.
Assuming n to be fixed, the notation TmRn will be often abbreviated to Tm. For a
fixed orthonormal basis (e1, . . . , en) of R

n, by ui1...im = ui1...im = u(ei1, . . . , eim) we denote
coordinates (= components) of a tensor u ∈ Tm with respect to the basis. There is no
distinction between covariant and contravariant tensors since we use orthonormal bases
only. The standard dot product on Rn extends to Tm by

〈u, v〉 = ui1...imvi1...im .

Let Sm = SmRn be the subspace of Tm consisting of symmetric tensors. The partial

symmetrization σ(i1 . . . im) : T
m+k → Tm+k in the indices (i1, . . . , im) is defined by

σ(i1 . . . im)ui1...imj1...jk =
1

m!

∑

π∈Πm

uiπ(1),...,iπ(m)j1...jk ,

where the summation is performed over the group Πm of all permutations of the set
{1, . . . , m}. In particular, σ : Tm → Sm is the symmetrization in all indices. Given
u ∈ Sm and v ∈ Sk, the symmetric product uv ∈ Sm+k is defined by uv = σ(u⊗v). Being
equipped with the symmetric product, S∗Rn =

⊕∞
m=0 S

mRn becomes a commutative
graded algebra that is called the algebra of symmetric tensors over Rn.
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Given u ∈ Sm, let iu : Sk → Sm+k be the operator of symmetric multiplication by u
and let ju : Sm+k → Sk be the adjoint of iu. These operators are written in coordinates
as

(iuv)i1...im+k
= σ (i1 . . . im+k)ui1...imvim+1...im+k

(juv)i1...ik = vi1...im+k
uik+1...im+k .

For the Kronecker tensor δ, the notations iδ and jδ will be abbreviated to i and j respec-
tively.

2.2. Tensor fields. Recall that the Schwartz space S (Rn) is the topological vector space
consisting of C∞-smooth complex-valued functions on Rn that decay rapidly at infinity
together with all derivatives, equipped with the standard topology. Let S (Rn;Sm) =
S (Rn)⊗Sm be the topological vector space of smooth fast decaying symmetric m-tensor
fields, defined on Rn. In Cartesian coordinates, such a tensor field is written as f =
(fi1...im) with coordinates (= components) fi1...im = f i1...im ∈ S (Rn) symmetric in all
indices.

We use the Fourier transform F : S(Rn) → S(Rn), f 7→ f̂ in the form (hereafter i is
the imaginary unit)

Ff(y) =
1

(2π)n/2

ˆ

Rn

e−i〈y,x〉f(x) dx.

The Fourier transform F : S (Rn;Sm) → S (Rn;Sm), f 7→ f̂ of symmetric tensor fields is
defined component-wise:

f̂i1...im = f̂i1...im .

The L2-product on C∞
0 (Rn;Tm) is defined by

(2.1) (f, g)L2(Rn;Tm) =

ˆ

Rn

〈f(x), g(x)〉 dx.

2.3. Inner derivative and divergence. The first-order differential operator

d : C∞(Rn;Sm) → C∞(Rn;Sm+1)

defined by

(df)i1...im+1 = σ(i1 . . . im+1)
∂fi1...im
∂xim+1

=
1

m+ 1

(∂fi2...im+1

∂xi1
+ · · ·+

∂fi1...im
∂xim+1

)

is called the inner derivative.
The divergence

div : C∞(Rn;Sm+1) → C∞(Rn;Sm)

is defined by

(div f)i1...im = δjk
∂fi1...imj

∂xk
.

The operators d and −div are formally adjoint to each other with respect to the L2-
product (2.1).
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2.4. The space S(TSn−1). The Schwartz space S(E) is well-defined for a smooth vector
bundle E → M over a compact manifold with the help of a finite atlas and partition of
unity subordinate to the atlas.

In particular, the Schwartz space S(TSn−1) is well defined for the tangent bundle

TSn−1 = {(x, ξ) ∈ Rn × Sn−1 : 〈x, ξ〉 = 0} → Sn−1, (x, ξ) 7→ ξ

of the unit sphere Sn−1 = {x ∈ Rn : |x| = 1}.
The Fourier transform F : S (TSn−1) → S (TSn−1) , ϕ 7→ ϕ̂ is defined by

Fϕ(y, ξ) =
1

(2π)(n−1)/2

ˆ

ξ⊥
e−i〈y,x〉ϕ(x, ξ) dx,

where dx is the (n−1)-dimensional Lebesgue measure on the hyperplane ξ⊥ = {x ∈ Rn :
〈ξ, x〉 = 0}.

The L2-product on S(TSn−1) is defined by

(2.2) (ϕ, ψ)L2(TSn−1) =

ˆ

Sn−1

ˆ

ξ⊥

ϕ(x, ξ)ψ(x, ξ) dx dξ,

where dξ is the (n− 1)-dimensional Euclidean volume form on the unit sphere Sn−1.

2.5. Momentum ray transform. It is convenient to parameterize the family of oriented
lines in Rn by points of the manifold TSn−1. Namely, a point (x, ξ) ∈ TSn−1 determines
the line {x+ tξ : t ∈ R} through x in the direction ξ.

For an integer k ≥ 0, the momentum ray transform

Ikm : S(Rn;Sm) → S
(
TSn−1

)

is the linear continuous operator defined by (1.1).

2.6. Normal operators. The formal adjoint of the momentum ray transform Ikm with
respect to L2-products (2.1) and (2.2)

(
Ikm

)∗
: S

(
TSn−1

)
→ C∞ (Rn;Sm)

is expressed by

(
(Ikm)

∗ϕ
)
i1...im

(x) =

ˆ

Sn−1

〈x, ξ〉kξi1 . . . ξimϕ
(
x− 〈x, ξ〉ξ, ξ

)
dξ.

We emphasize that, for ϕ ∈ S(TSn−1), the tensor field (Ikm)
∗ϕ does not need to fast decay

at infinity.
Let

Nk
m = (Ikm)

∗Ikm : S (Rn;Sm) → C∞ (Rn;Sm)

be the normal operator for the momentum ray transform Ikm. For f ∈ S (Rn;Sm), the

Fourier transform N̂k
mf ∈ S ′ (Rn;Sm) is well defined at least in the distribution sense and

the restriction of N̂k
mf to Rn \ {0} belongs to C∞ (Rn \ {0};Sm).

2.7. The inversion formula. Let Γ be Euler’s Gamma function and let the operator
(−∆)1/2 be defined with the help of the Fourier transform by |y|F = F(−∆)1/2. We use
the definition

(2l + 1)!! = 1 · 3 · · · (2l + 1), (−1)!! = 1.

Let us reproduce [JKKS24, Theorem 3.1].
4



Theorem 2.1. Given integers m ≥ 0 and n ≥ 2, a tensor field f ∈ S (Rn;Sm) is

recovered from the data (N0
mf,N

1
mf, . . . , N

m
m f) by the inversion formula

(2.3) f(x) = (−∆)1/2
m∑

k=0

Dk
m,n(N

k
mf)(x),

where the linear differential operator of order m+ k

Dk
m,n : C∞(Rn;Sm) → C∞(Rn;Sm)

is defined by

Dk
m,n = ckm,n

m∑

p=k

(n+2m−2p−3)!!

×

min(p,m−p,p−k)∑

q=0

(−1)q

2qq!(m−p−q)!(p−k−q)!
dp−q iq jq jp−k−q

x divk

(2.4)

with the coefficient

(2.5) ckm,n =
(−1)k

(k!)2
2m−2 Γ

(
2m+n−1

2

)

π(n+1)/2 (n+ 2m− 3)!!

and the operators i, j, and jx are defined in Section 2.1.

2.8. The Saint Venant operator. For integers m and r satisfying 0 ≤ r ≤ m, let
Sm−r ⊗ Sm be the space of (2m − r)-tensors on Rn which are symmetric in first m − r

and last m indices. The Saint Venant operator (1.2) is defined by

(2.6)

(W r
mf)i1...im−rj1...jm

= σ(i1 . . . im−r)σ(j1 · · · jm)
m−r∑

l=0

(−1)l
(
m− r

l

)

×
∂m−rfi1...im−r−lj1...jr+l

∂xim−r−l+1
. . . ∂xim−r

∂xjr+l+1
. . . ∂xjm

.

In particular Wm
m is the identity operator.

2.9. The main result.

Theorem 2.2. Let 0 ≤ r ≤ m and n ≥ 2 be integers. For f ∈ S(Rn;Sm), the tensor

field W r
mf is recovered from the data (N0

mf, . . . , N
r
mf) by the inversion formula

W r
mf = (−∆)1/2W r

m

r∑

k=0

Dk
m,n(N

k
mf),

where the linear differential operator Dk
m,n is defined by (2.4).

Theorem 2.2 is a generalization of Theorem 2.1 since Wm
m is the identity operator. In

the case of r = 0 Theorem 2.2 actually coincides with [Sha94, Theorem 2.12.3].
The first step in the proof of Theorem 2.2 is as follows. Since W r

m is a differential
operator with constant coefficients, it commutes with (−∆)1/2. Applying the operator
W r

m to the equality (2.3), we write the result in the form

W r
mf = (−∆)1/2W r

m

r∑

k=0

Dk
m,n(N

k
mf) + (−∆)1/2W r

m

m∑

k=r+1

Dk
m,n(N

k
mf).

Thus, to prove Theorem 2.2, it suffices to demonstrate that

(2.7) W r
mD

k
m,n = 0 for 0 ≤ r < k ≤ m.

5



The proof of (2.7) is presented in the next section.

3. Proof of Theorem 2.2

Applying the Fourier transform to (2.6), we obtain

Ŵ r
mf = i

m−r Ŵ r
mf̂ ,

where i is the imaginary unit and the purely algebraic operator

Ŵ r
m = Ŵ r

m(y) : S
m → Sm−r ⊗ Sm (y ∈ Rn)

is defined by

(Ŵ r
mh)i1...im−rj1...jm = σ(i1 . . . im−r)σ(j1 · · · jm)

m−r∑

l=0

(−1)l
(
m−r

l

)
×

× hi1...im−r−lj1...jr+l
yim−r−l+1

. . . yim−r
yjr+l+1

. . . yjm.

This can be written in the coordinate-free form

(3.1) 〈Ŵ r
mh, u⊗ v〉 =

m−r∑

l=0

(−1)l
(
m−r

l

)
〈h, (jlyu)(j

m−r−l
y v)〉 for u ∈ Sm−r and v ∈ Sm.

On the other hand, applying the Fourier transform to (2.7), we see that (2.7) is equiv-
alent to the statement

(3.2) Ŵ r
mD̂

k
m,n = 0 for 0 ≤ r < k ≤ m,

where the operator D̂k
m,n is defined by

D̂k
m,n = ckm,n

m∑

p=k

(−1)p(n+2m−2p−3)!!

×

min(p,m−p,p−k)∑

q=0

1

2q q!(m−p−q)!(p−k−q)!
ip−q
y iqjq divp−k−q jky ,

(3.3)

see [JKKS24, formula (8.7)].

We will use only one property of the operator D̂k
m,n: as is seen from (3.3),

(3.4) D̂k
m,n = ir+1

y Bk
m,n, for 0 ≤ r < k,

with some linear operator Bk
m,n. Therefore, to prove (3.2), it suffices to demonstrate that

(3.5) Ŵ r
mi

r+1
y = 0 for 0 ≤ r ≤ m− 1.

By (3.1),

〈Ŵ r
mi

r+1
y h, u⊗ v〉 =

m−r∑

l=0

(−1)l
(
m−r

l

)
〈ir+1

y h, (jlyu)(j
m−r−l
y v)〉

=
〈
h,

m−r∑

l=0

(−1)l
(
m−r

l

)
jr+1
y

(
(jlyu)(j

m−r−l
y v)

)〉
.

This means that (3.5) holds for any h ∈ Sm−1 if and only if
(3.6)
m−r∑

l=0

(−1)l
(
m−r

l

)
jr+1
y

(
(jlyu)(j

m−r−l
y v)

)
= 0 for any u ∈ Sm−r and v ∈ Sm (0 ≤ r < m).

6



The left-hand side of (3.6) is homogeneous of degree m+1 in y. It suffices to prove (3.6)
for a unit vector y. In what follows, y ∈ Rn is a fixed vector satisfying |y| = 1.

The complex vector space Sm = SmRn is generated by powers xm (x ∈ Rn). Therefore
(3.6) is equivalent to the statement

m−r∑

l=0

(−1)l
(
m−r

l

)
jr+1
y

(
(jlyx

m−r)(jm−r−l
y zm)

)
= 0 for any x, z ∈ Rn (0 ≤ r < m).

Since jlyx
m−r = 〈x, y〉lxm−r−l and jm−r−l

y zm = 〈z, y〉m−r−lzr+l, the latter statement can
be written as

(3.7)

m−r∑

l=0

(−1)l
(
m−r

l

)
〈x, y〉l〈z, y〉m−r−ljr+1

y (xm−r−lzr+l) = 0

for any x, z ∈ Rn and 0 ≤ r < m. The equality (3.7) holds in the case 〈x, y〉 = 〈z, y〉 = 0
since all summands on the left-hand side are equal to zero.

Next, we prove (3.7) in the case 〈x, y〉 = 0 but 〈z, y〉 6= 0. In this case (3.7) looks as
follows:

(3.8) jr+1
y (xm−rzr) = 0.

Let us write (3.8) in coordinates

yi1 . . . yir+1
∑

π∈Πm

xiπ(1)
. . . xiπ(m−r)

ziπ(m−r+1)
. . . ziπ(m)

= 0.

After pulling the factor yi1 . . . yir+1 inside the sum, every summand contain at least one
factor of the form ykxk = 0. This proves (3.8).

Quite similarly (3.7) is proved in the case 〈x, y〉 6= 0 but 〈z, y〉 = 0.
Now, we prove (3.7) in the general case when α = 〈x, y〉 6= 0 and β = 〈z, y〉 6= 0. We

represent vectors x, z ∈ Rn in the form

x = αy + x′, 〈x′, y〉 = 0; z = βy + z′, 〈z′, y〉 = 0.

From this

xm−r−lzr+l = (αy + x′)m−r−l(βy + z′)r+l

=
m−r−l∑

p=0

r+l∑

q=0

(
m−r − l

p

)(
r + l

q

)
αm−r−l−pβr+l−q ym−p−qx′pz′q.

Substituting this expression into (3.7), we obtain (up to a factor αm−rβm)

m−r∑

l=0

m−r−l∑

p=0

r+l∑

q=0

(−1)l
(
m−r

l

)(
m−r−l

p

)(
r+l

q

)
α−pβ−q jr+1

y (ym−p−qx′pz′q) = 0.

Denoting x̃ = α−1x′ and z̃ = β−1z′, this can be written in the form

m−r∑

l=0

m−r−l∑

p=0

r+l∑

q=0

(−1)l
(
m−r

l

)(
m−r−l

p

)(
r+l

q

)
jr+1
y (ym−p−qx̃pz̃q) = 0.

To simplify notations, we denote x̃ and z̃ again by x and z respectively. Thus, we have
to prove the statement

(3.9)

m−r∑

l=0

m−r−l∑

p=0

r+l∑

q=0

(−1)l
(
m−r

l

)(
m−r−l

p

)(
r+l

q

)
jr+1
y (ym−p−qxpzq) = 0

7



for x, z ∈ y⊥ and 0 ≤ r < m.
Since the last factor jr+1

y (ym−p−qxpzq) on the left-hand side of (3.9) is independent
of l, it makes sense to change the order of summations. We first change the order of
summations over l and p

m−r∑

p=0

m−r−p∑

l=0

r+l∑

q=0

(−1)l
(
m−r

l

)(
m−r−l

p

)(
r+l

q

)
jr+1
y (ym−p−qxpzq) = 0

and then change the order of summations over l and q

m−r∑

p=0

m−p∑

q=0

m−r−p∑

l=max(0,q−r)

(−1)l
(
m−r

l

)(
m−r−l

p

)(
r+l

q

)
jr+1
y (ym−p−qxpzq) = 0

This can be written in the form

(3.10)
m−r∑

p=0

m−p∑

q=0

C(m, r, p, q) jr+1
y (ym−p−qxpzq) = 0 (x, z ∈ y⊥, 0 ≤ r < m),

where

C(m, r, p, q)

=

m−r−p∑

l=max(0,q−r)

(−1)l
(
m−r

l

)(
m−r−l

p

)(
r+l

q

)
(0 ≤ p ≤ m− r, 0 ≤ q ≤ m− p).

(3.11)

From (3.10) and (3.11), for x, z ∈ y⊥, we have

(3.12) jr+1
y (ym−p−qxpzq) = 0 if p ≥ 0, q ≥ 0, p+ q ≤ m, r + 1 > m− p− q.

Indeed, writing in coordinates

(ym−p−qxpzq)i1...im

=
1

m!

∑

π∈Πm

yiπ(1)
. . . yiπ(m−p−q)

xiπ(m−p−q+1)
. . . xiπ(m−q)

ziπ(m−q+1)
. . . ziπ(m)

,

we have
(
jr+1
y (ym−p−qxpzq)

)
im−r ...im

=
1

m!

∑

π∈Πm

yi1 . . . yir+1 yiπ(1)
. . . yiπ(m−p−q)

xiπ(m−p−q+1)
. . . xiπ(m−q)

ziπ(m−q+1)
. . . ziπ(m)

.

In the case of r + 1 > m− p− q, every summand of the sum contains either a factor of
the form yjxj = 0 or a factor of the form yjzj = 0.

In virtue of (3.12), the summation in (3.10) can be restricted to (p, q) satisfying

(3.13) p ≥ 0, q ≥ 0, p+ q ≤ m− r − 1.

In particular, r < m and p ≤ m − r − 1. In other words, (3.10) is equivalent to the
statement

(3.14)

m−r−1∑

p=0

m−r−p−1∑

q=0

C(m, r, p, q) jr+1
y (ym−p−qxpzq) = 0 (x, z ∈ y⊥, 0 ≤ r < m).

8



Lemma 3.1. For integers m, r, p, q satisfying (3.13) and 0 ≤ r < m, the following

equality holds:

(3.15)

m−r−p∑

l=max(0,q−r)

(−1)l
(
m−r

l

)(
m−r−l

p

)(
r+l

q

)
= 0.

With the help of Lemma 3.1, we immediately complete the proof of Theorem 2.2.
Indeed, by comparing (3.11) and (3.15), we observe that all coefficients C(m, r, p, q)
participating in (3.14) are equal to zero. This proves (3.10). As shown earlier, (3.10)
implies the statement of Theorem 2.2.

Proof of Lemma 3.1. We assume binomial coefficients
(
k
p

)
to be defined for all integers k

and p under the agreement
(
k

p

)
= 0 if either k < 0 or p < 0 or k < p.

Then

(3.16)

C(m, r, p, q) =

m−r−p∑

l=max(0,q−r)

(−1)l
(
m−r

l

)(
m−r−l

p

)(
r+l

q

)

=

∞∑

l=−∞

(−1)l
(
m−r

l

)(
r+l

q

)(
m−r−l

p

)
.

From [Ego84, p. 10], we have for 0 < ε≪ 1,

(
n

k

)
=

1

2πi

ˆ

|z|=ε

(1 + z)n

zk+1
dz.

In particular,

(
r + l

q

)
=

1

2πi

ˆ

|z|=ǫ

(1 + z)r+l

zq+1
dz,

(
m− r − l

p

)
=

1

2πi

ˆ

|w|=ǫ

(1 + w)m−r−l

wp+1
dw.

With the help of these formulas, we transform (3.16) as follows:

C(m, r, p, q) = −
1

(2π)2

ˆ

|z|=ǫ

ˆ

|w|=ǫ

(1 + z)r(1 + w)m−r

zq+1wp+1

∞∑

l=−∞

(−1)l
(
m−r

l

)( 1 + z

1 + w

)l

dw dz

= −
1

(2π)2

ˆ

|z|=ǫ

ˆ

|w|=ǫ

(1 + z)r(1 + w)m−r

zq+1wp+1

(
1−

1 + z

1 + w

)m−r

dw dz

= −
1

(2π)2

ˆ

|z|=ǫ

ˆ

|w|=ǫ

(1 + z)r(w − z)m−r

zq+1wp+1
dw dz

= −
1

(2π)2

ˆ

|z|=ǫ

ˆ

|w|=ǫ

(1 + z)r

zq+1wp+1

∞∑

l=−∞

(−1)l
(
m−r

l

)
zlwm−r−l dw dz.
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We perform the integration with respect to w. By the Cauchy integral formula, the only
summand that survives corresponds to l = m− r − p. Thus,

C(m, r, p, q) =
(−1)m−r−p

2πi

(
m−r

p

)
ˆ

|z|=ǫ

(1 + z)rzm−r−p−q−1 dz.

The integrand is a holomorphic function if p+ q ≤ m− r−1. Therefore, C(m, r, p, q) = 0
if p + q ≤ m− r − 1. �
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