
SURFACE OF REVOLUTION RADON TRANSFORMS WITH
CENTERS ON GENERALIZED SURFACES IN Rn

27/12/2023 03:16

JAMES W. WEBBER†, SEAN HOLMAN‡, AND ERIC TODD QUINTO*

Abstract. We present a novel analysis of a Radon transform, R, which maps an L2

function of compact support to its integrals over smooth surfaces of revolution with
centers on an embedded hypersurface in Rn. Using microlocal analysis, we derive nec-
essary and sufficient conditions relating to R for the Bolker condition to hold, which
has implications regarding the existence and location of image artifacts. We present a
general inversion framework based on Volterra equation theory and known results on
the spherical Radon transform, and we prove injectivity results for R. Several example
applications of our theory are discussed in the context of, e.g., Compton Scatter To-
mography (CST) and Ultrasound Reflection Tomography (URT). In addition, using the
proposed inversion framework, we validate our microlocal theory via simulation, and
present simulated image reconstructions of image phantoms with added noise.

Keywords - surfaces of revolution, generalized Radon transforms, inversion methods,
microlocal analysis

1. Introduction

In this paper, we analyze a novel generalized Radon transform, R, which gives the
integrals of a compactly supported L2 function over surfaces of revolution with centers
on a smooth hypersurface in Rn. We investigate the inversion stability of R using mi-
crolocal analysis, and show that R is injective using known theory on the spherical Radon
transform.

There is now a wealth of literature covering the inversion and stability properties of
surface of revolution Radon transforms [2, 14, 23, 9, 33, 26, 3, 24, 16, 29, 6, 31, 20, 22,
21, 4, 34, 32, 7], which have applications in, e.g., CST [22], Emission CST (ECST) [29],
seismic imaging [7], Synthetic Aperture Radar (SAR) [26], and URT [31].

In [34], the authors consider the microlocal properties of a Radon transform, denoted R
(using the notation of [34]), which defines the integrals of an L2 function over the surfaces
of revolution of continuous curves defined by a function, q. The surfaces of revolution
considered have centers on a flat plane, and the axes of revolution are perpendicular to
the plane of centers. In this case, R is shown to be an elliptic Fourier Integral Oper-
ator (FIO) under certain conditions on q. Further, the authors provide necessary and
sufficient conditions on q for R to satisfy the Bolker condition, which has important im-
plications regarding image artifacts. Simulated image reconstructions are shown to verify
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the microlocal theory in specific examples where the Bolker condition does, and does not
hold.

In [22], the authors present contour reconstruction methods for FIO which define the
integrals of a function over lemons, i.e., the surfaces of revolution of circular arcs. A lemon
surface has two points of self-intersection. In the geometry of [22], one of the points of
self-intersection of the lemon is fixed on the surface of a sphere, and the other moves
around on the same sphere. Using microlocal analysis and filtered backprojection ideas,
the authors show that the image contours can be recovered from lemon integral data.
Simulated image reconstructions of image phantoms are presented with varying levels of
added noise, and Total Variation (TV) denoising is applied to help combat noise.

In [27], the author derives inversion formulae for a cone Radon transform, Ck, in n
dimensions, and investigates the microlocal properties of Ck. The cones considered have
fixed central axis direction. All cones opening angles and vertex positions are used. The
authors prove that Ck and its dual are FIOs, and show that the normal operator of Ck

is pseudodifferential operator, which has important implication regarding the stability of
inversion of Ck. The range of Ck is also explored, and the authors present a differential
equation which Ck satisfies, which takes steps towards characterizing the range of Ck.
The same author also provides explicit reconstruction formulae for cone transforms with
cone points in fairly general positions in [28].

In [14], the authors present explicit inversion formulae for a Radon transform which
is defined by the integrals of an n-dimensional function over (n− 1)-dimensional spheres
with centers on the boundary of a closed ball, B, which has radius R, center zero. The
target function, f , is assumed to be supported on B. The derivation uses certain proper-
ties of the Helmholtz equation in Rn, and an integral representation for f which involves a
convolution of f with a solution to the Helmholtz equation. This leads to an inversion for-
mula of filtered backprojection type. Using the proposed inversion formulae, the authors
present simulated reconstructions of characteristic functions in two and three-dimensions
with added noise.

In this paper, we present a novel inversion framework and microlocal analyses for a
new Radon transform, R, which is defined by the integrals of a compactly supported L2

function, f , over surfaces of revolution with centers on a hypersurface in Rn. This work
has important application in, e.g., CST, ECST, and URT. The surfaces of integration we
consider are the surfaces of revolution of smooth curves, which are defined by a function,
h. The surface of centers we consider is of the form S = Q×R ⊂ Rn, whereQ ⊂ Rn−1 is an
(n−2)-dimensional embedded hypersurface. S can be thought of as a generalized cylinder
in the sense that in the special case when Q = Sn−2 (i.e., when Q is a sphere, dimension
n−2), S defines a cylinder in Rn. Such center surfaces have been considered previously in
[9], where the authors provide explicit inversion formulae for a spherical Radon transform.
Using microlocal analysis, we provide necessary and sufficient conditions on S and h for
R to be a nondegenerate FIO which satisfies the Bolker condition. This has important
implications regarding the existence of image artifacts. Using a combination of Volterra
integral equation theory [30] and known results on the spherical Radon transform [20],
we prove injectivity results for R, and provide a novel inversion framework to recover
f from Rf data. Specific cases of this theory have been considered previously in, e.g.,
[32, 31]. The results of [32, sections 3 and 4] are a special case of our theory when S is a
cylinder in R3 and h defines a circular arc, and thus the work presented here is a direct
generalization of the theory of [32]. In [31], the authors present microlocal analyses of
ellipsoid and hyperboloid Radon transforms, and they provide conditions for the Bolker
condition to be satisfied. The surfaces of revolution we consider are more general than
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ellipsoids and hyperboloids of revolution, and thus the microlocal theory we present here
is not covered by [31].

In [34], surface of revolution transforms are also considered, and the authors derive
conditions which are equivalent to the Bolker condition. In [34], the integral surface
centers are constrained to a flat plane, and the surfaces of revolution have central axes
which are perpendicular to the plane of centers. In this work, we consider more general
center surfaces than a flat plane (i.e., the S as described above), and the surfaces of
revolution we consider have axes of revolution which are embedded in S. Thus, the
theory of [34] does not apply to this work.

The surface of centers we consider (S) bears similarities with that of [9]. In [9], only
spherical integral surfaces are considered. We consider much more general integrals sur-
faces, which are the surfaces of revolution of smooth curves defined by a function, h.
Spherical integral surfaces are a special case of our theory, when h is set to define a
semicircular curve.

In addition to the microlocal and injectivity theory presented, we also discuss multi-
ple applications of our theory, e.g., in CST, ECST, and URT, and, using the proposed
inversion method, we present simulated image reconstructions in the context of CST and
URT.

The remainder of this paper is organized as follows. In section 2, we state some pre-
liminary definitions and theory from microlocal analysis that we apply later to prove our
theorems. In section 3, we introduce a new Radon transform, R, and prove our first main
theorem which gives conditions for R to be an FIO which satisfies the Bolker condition.
In section 4 we prove injectivity results for R and present an inversion framework. In sec-
tion 5, we discuss some example applications of our theory to CST, ECST, and URT. To
finish, we present simulated image reconstructions in section 6 to validate our microlocal
theory, and we present reconstructions of image phantoms with added noise.

2. Definitions

In this section, we review some theory from microlocal analysis which will be used in our
theorems. We first provide some notation and definitions. Let X and Y be open subsets
of RnX and RnY , respectively. Let D(X) be the space of smooth functions compactly
supported on X with the standard topology and let D′(X) denote its dual space, the
vector space of distributions on X. Let E(X) be the space of all smooth functions on
X with the standard topology and let E ′(X) denote its dual space, the vector space of
distributions with compact support contained in X. Finally, let S(Rn) be the space of
Schwartz functions, that are rapidly decreasing at ∞ along with all derivatives. See [25]
for more information.

If A ⊂ Rn, then int(A) and bd(A) are, respectively, the interior of A and the boundary
of A.

We now list some notation conventions that will be used throughout this paper:

(1) For a function f in the Schwartz space S(RnX ) or in L2(RnX ), we use Ff and F−1f
to denote the Fourier transform and inverse Fourier transform of f , respectively
(see [11, Definition 7.1.1]).

(2) We use the standard multi-index notation: if α = (α1, α2, . . . , αn) ∈ {0, 1, 2, . . . }nX

is a multi-index and f is a function on RnX , then

∂αf =

(
∂

∂x1

)α1
(

∂

∂x2

)α2

· · ·
(

∂

∂xnX

)αnX

f.

If f is a function of (y,x,σ) then ∂αyf and ∂ασf are defined similarly.
3



(3) We identify the cotangent spaces of Euclidean spaces with the underlying Eu-
clidean spaces. For example, the cotangent space, T ∗(X), of X is identified
with X × RnX . If Φ is a function of (y,x,σ) ∈ Y × X × RN , then we define

dyΦ =
(

∂Φ
∂y1
, ∂Φ
∂y2
, · · · , ∂Φ

∂ynX

)
, and dxΦ and dσΦ are defined similarly. Identify-

ing the cotangent space with the Euclidean space as mentioned above, we let
dΦ = (dyΦ, dxΦ, dσΦ).

(4) For Ω ⊂ Rm, we define Ω̇ = Ω \ 0.
The singularities of a function and the directions in which they occur are described by
the wavefront set [5, page 16], which we now define.

Definition 2.1. LetX be an open subset of RnX and let f be a distribution in D′(X). Let

(x0, ξ0) ∈ X × Ṙn. Then f is smooth at x0 in direction ξ0 if there exists a neighborhood
U of x0 and V of ξ0 such that for every Φ ∈ D(U) and N ∈ R there exists a constant
CN such that for all ξ ∈ V ,

(2.1) |F(Φf)(λξ)| ≤ CN(1 + |λ|)−N .

The pair (x0, ξ0) is in the wavefront set, WF(f), if f is not smooth at x0 in direction ξ0.

Intuitively, the elements (x0, ξ0) ∈ WF(f) are the point-normal vector pairs at which f
has singularities; x0 is the location of the singularity, and ξ0 is the direction in which the
singularity occurs. A geometric example of the wavefront set is given by the characteristic
function f of a domain Ω ⊂ RnX with smooth boundary, which is 1 on Ω and 0 off of Ω.
Then the wavefront set is

WF(f) = {(x, tv) : t ̸= 0, x ∈ ∂Ω, v is orthogonal ot ∂Ω at x}.

In other words, the wavefront set is the set of points in the boundary of Ω together
with the nonzero normal vectors to the boundary. The wavefront set is an important
consideration in imaging since elements of the wavefront set will correspond to sharp
features of an image.

The wavefront set of a distribution on X is normally defined as a subset the cotangent
bundle T ∗(X) so it is invariant under diffeomorphisms, but we do not need this invariance,
so we will continue to identify T ∗(X) = X × RnX and consider WF(f) as a subset of

X × ˙RnX .

Definition 2.2 ([11, Definition 7.8.1]). We define Sm(Y × X,RN) to be the set of a ∈
E(Y ×X ×RN) such that for every compact set K ⊂ Y ×X and all multi–indices α, β, γ
the bound∣∣∂γy∂βx∂ασa(y,x,σ)∣∣ ≤ CK,α,β,γ(1 + ∥σ∥)m−|α|, (y,x) ∈ K, σ ∈ RN ,

holds for some constant CK,α,β,γ > 0.
The elements of Sm are called symbols of order m. Note that this symbol class is

sometimes denoted Sm
1,0. The symbol a ∈ Sm(Y ×X,RN) is elliptic if for each compact

set K ⊂ Y ×X, there is a CK > 0 and M > 0 such that

(2.2) |a(y,x,σ)| ≥ CK(1 + ∥σ∥)m, (y,x) ∈ K, ∥σ∥ ≥M.

Definition 2.3 ([12, Definition 21.2.15]). A function Φ = Φ(y,x,σ) ∈ E(Y ×X × ṘN)
is a phase function if Φ(y,x, λσ) = λΦ(y,x,σ), ∀λ > 0 and dΦ is nowhere zero. The
critical set of Φ is

ΣΦ = {(y,x,σ) ∈ Y ×X × ṘN : dσΦ = 0}.
4



A phase function is clean if the critical set ΣΦ = {(y,x,σ) : dσΦ(y,x,σ) = 0} is a
smooth manifold with tangent space defined by the kernel of d (dσΦ) on ΣΦ. Here, the
derivative d is applied component-wise to the vector-valued function dσΦ. So, d (dσΦ) is
treated as a Jacobian matrix of dimensions N × (2n+N).

By the Constant Rank Theorem the requirement for a phase function to be clean is
satisfied if d (dσΦ) has constant rank.

Definition 2.4 ([12, Definition 21.2.15] and [13, section 25.2]). Let X and Y be open
subsets of Rn. Let Φ ∈ E

(
Y ×X × RN

)
be a clean phase function. In addition, we

assume that Φ is nondegenerate in the following sense:

dyΦ and dxΦ are never zero on ΣΦ.

The canonical relation parametrized by Φ is defined as

(2.3) C = {((y, dyΦ(y,x,σ)) ; (x,−dxΦ(y,x,σ))) : (y,x,σ) ∈ ΣΦ} ,

Definition 2.5. Let X and Y be open subsets of RnX and RnY , respectively. Let an
operator A : D(X) → D′(Y ) be defined by the distribution kernel KA ∈ D′(Y ×X), in
the sense that Af(y) =

∫
X
KA(y,x)f(x)dx. Then we call KA the Schwartz kernel of

A. A Fourier integral operator (FIO) of order m + N/2 − (nX + nY )/4 is an operator
A : D(X) → D′(Y ) with Schwartz kernel given by an oscillatory integral of the form

(2.4) KA(y,x) =

∫
RN

eiΦ(y,x,σ)a(y,x,σ)dσ,

where Φ is a clean nondegenerate phase function and a is a symbol in Sm(Y ×X,RN).
The canonical relation of A is the canonical relation of Φ defined in (2.3). A is called an
elliptic FIO if its symbol is elliptic. An FIO is called a pseudodifferential operator if its
canonical relation C is contained in the diagonal, i.e., C ⊂ ∆ := {(x, ξ;x, ξ)}.

Formula (2.4) given in Definition 2.5 can be extended to operators which are only
locally represented by kernels in the form (2.4) as in [13], although we will not require
this in the present manuscript. We also note that pseudodifferential operators can always
be defined by (2.4) with phase function Φ(y,x,σ) = (y − x) · σ.
Let X and Y be sets and let Ω1 ⊂ X and Ω2 ⊂ Y ×X. The composition Ω2 ◦ Ω1 and

transpose Ωt
2 of Ω2 are defined

Ω2 ◦ Ω1 = {y ∈ Y : ∃x ∈ Ω1, (y,x) ∈ Ω2}
Ωt

2 = {(x,y) : (y,x) ∈ Ω2} .

We now state the Hörmander-Sato Lemma [11, Theorem 8.2.13], which provides the
relationship between the wavefront set of distributions and their images under FIO.

Theorem 2.6 (Hörmander-Sato Lemma). Let f ∈ E ′(X) and let A : E ′(X) → D′(Y ) be
an FIO with canonical relation C. Then, WF(Af) ⊂ C ◦WF(f).

Let A be an FIO, then its formal adjoint A∗ is also an FIO, and if C is the canonical
relation of A, then the canonical relation of A∗ is Ct [10]. Many imaging techniques are
based on application of the adjoint operator A∗ and so to understand artifacts we consider
A∗A (or, if A does not map to E ′(Y ), then A∗ψA for an appropriate cutoff ψ). Because
of Theorem 2.6,

(2.5) WF(A∗ψAf) ⊂ Ct ◦ C ◦WF(f).

The next two definitions provide tools to analyze the composition in equation (2.5).
5



Definition 2.7. Let C ⊂ T ∗(Y × X) be the canonical relation associated to the FIO
A : E ′(X) → D′(Y ). We let ΠL and ΠR denote the natural left- and right-projections of
C, projecting onto the appropriate coordinates: ΠL : C → T ∗(Y ) and ΠR : C → T ∗(X).

Because Φ is nondegenerate, the projections do not map to the zero section. If A
satisfies our next definition, then A∗A (or A∗ψA) is a pseudodifferential operator [8, 18].

Definition 2.8 (Bolker condition). Let A : E ′(X) → D′(Y ) be a FIO with canonical
relation C then A (or C) satisfies the Bolker Condition if the natural projection ΠL : C →
T ∗(Y ) is an embedding (injective immersion).

Thus, using (2.5), we see that under the Bolker condition the wavefront set of A∗φAf
will be contained in the wavefront set of f . Intuitively, the reconstructed image (A∗φAf)
will only include singularities at the same positions and in the same directions as the
original image (f).

3. Surface of revolution transforms

We will consider generalized Radon transforms in Euclidean space of three or more
dimensions that integrate over fairly arbitrary collections of surfaces of revolution with
axes on a smooth cylindrical surface. For w = (w1, . . . , wn) ∈ Rn, we define w′ =
(w1, . . . , wn−1) ∈ Rn−1 throughout this paper. The generalized cylindrical surface in Rn

is defined by a smooth embedded hypersurface Q ⊂ Rn−1 and with axis parallel the xn
axis:

(3.1) S = Q× R.
Each y ∈ S is on a unique line ℓy contained in S and parallel the xn axis. Our surfaces
of revolution will be determined by specifying the distance from ℓy to each point on the
surface. Let h = h(s, x) be a nonnegative smooth function from Ωh to R, where Ωh ⊂ R2

is open, let C = {s ∈ R : ∃x ∈ R s.t. (s, x) ∈ Ωh}, and let

Y = C × S.

Our surfaces are defined as follows. Let (s,y) ∈ Y and define

(3.2)
Ψ(s,y;x) = (x′ − y′) · (x′ − y′)− h(s, xn − yn)

R(s,y) = {x ∈ Rn : Ψ(s,y;x) = 0} .
When (s,y) ∈ Y , R(s,y) is the surface of revolution about ℓy of the smooth curve defined

by xn 7→
√
h(s, xn − yn). Varying s changes the curve defining the surface of revolution.

If one fixes s ∈ C and y′ ∈ Q, then the surfaces R(s, (y′, yn)) are translates of each other

along ℓy as yn varies. An example S, R(s,y), and
√
h curve are illustrated in figure 1,

in n = 3 dimensions. Now we define our Radon transform.

Definition 3.1. Let D be an open set disjoint from S. Let f ∈ D(D) and (s,y) ∈ Y .
Our Radon transform Rf(s,y) is defined to be the integral of f over R(s,y) in surface
area measure:

(3.3) Rf(s,y) =

∫
Rn

|∇xΨ(s,y;x)|δ(Ψ(s,y;x))f(x) dx.

It is also possible to extend R to E ′(D) by continuity.
In our results, we will put conditions on h so that R(s,y) is a smooth embedded

manifold. We can now state the main theorem of this section.

Theorem 3.2. Let Q be an embedded smooth hypersurface in Rn−1 and let S = Q× R.
Let D be an open set in Rn, which is disjoint from S.

6



(a) 3-D view

x2

x3

R(s,y)

√
h(s, x3)

(b) (x2, x3) plane

−x1

x2

√
h(s, x3)

Q

(c) (x1, x2) plane

Figure 1. Example S and R(s,y) when n = 3. (A) - 3-D view. (B) -
(x2, x3) plane cross-section. (C) - (x1, x2) plane cross-section. The plane
slices in (B) and (C) are labeled in (A). The pink smooth surface in (A)
is S, and the black and white meshed surface in (A) is R(s,y). The pink
line in (B) is a line, ℓy (y = 0 in this example), as described in the main
text. The pink curve in (C), is Q. The blue curves in (B) and (C) (e.g., the
circle in (C)) are the intersections of R(s,y) with the (x2, x3) and (x1, x2)

planes, respectively. The blue wavy curve in (B) is {(±
√
h(s, x3), x3)}.
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(1) For each s ∈ C, let

Ωh,s = {x ∈ R : (s, x) ∈ Ωh} ,

and assume, for each s ∈ C, that h(s, ·) → 0 on the boundary of Ωh,s.
(2) Let (s,y) ∈ Y and x be any point in D ∩ R(s,y). Assume that the reflection of

x in the tangent plane, T , to S at y is not in D.
(3) Assume for every (s, x) ∈ Ωh, hs(s, x) ̸= 0.
(4) Assume for each fixed s ∈ C, the function (hx/hs)(s, ·) is injective on {x ∈ R :

(s, x) ∈ Ωh}.
(5) Assume d

dx
(hx/hs) ̸= 0 on Ωh.

Then R : E ′(D) → D′(Y ) is a nondegenerate FIO that satisfies the Bolker condition.
Conversely, assume R satisfies the Bolker assumption above D, and h satisfies (3).

Then (2), (4), and (5) all hold.

Note that assumption (1) holds if h→ 0 on bd(Ωh), but this more general version will
be useful for the example in section 5.2. Regarding assumption (2), if x ∈ D ∩ R(s,y)
and its reflection xm in a tangent plane T to S at y is also in D, then ΠL will not be
injective and reconstructions using the normal operator can create artifacts at xm from
singularities at x. Condition (2) would be valid if D is connected, open and disjoint from
every tangent plane to S. A common special case occurs when S is a smooth surface that
is the boundary of a convex cylinder; then (2) holds if D is inside the convex cylinder.
If x ∈ T , then x is its own mirror point. Therefore, we will interpret (2) to mean that
D ∩R(s,y) is disjoint from T .

Example 3.3. Here are two interesting transforms in R3 that fit in our theory. More
general algebraic surfaces were considered in [31]. Let Q be a smooth hypersurface in R2

and let S = Q× R and let Y = (0,∞)× S.
The spherical transform: Let h(s, x) = s− x2. Then R(s,y) is the sphere (x1 − y1)

2 +
(x2 − y2)

2 + (x3 − y3)
2 = s for (s,y) ∈ Y .

The transform on hyperboloids of two sheets: Let h(s, x) = x2+ s. Then R(s,y) is the
hyperboloid of two sheets with axis of rotation {y′} ×R and equation (x1 − y1)

2 + (x2 −
y2)

2 − (x3 − y3)
2 = s for (s,y) ∈ Y .

Proof. Because the Bolker condition is local above Y , we will define Q locally as a graph
using coordinates. For convenience, we now define y′′ = (y2, . . . , yn−1) ∈ Rn−2. Let Ω
be an open set in Rn−2, the domain of the coordinates, and suppose Q is the graph of a
function q ∈ C∞(Ω,R). That is,

Q = {(q(y′′),y′′) : y′′ ∈ Ω} , S = Q× R

and

(y′′, yn) 7→ (q(y′′),y′′, yn)

give coordinates on S. Using these coordinates, our Radon transform can be written

Rf(s, (y′′, yn)) =

∫
Rn

|∇xΨ|δ (Ψ(s, (y′′, yn);x)) f(x)dx

=

∫ ∞

−∞

∫
Rn

|∇xΨ|f(x)eiσΨ(s,(y′′,yn);x)dxdσ,

(3.4)

where

Ψ(s, (y′′, yn);x) = (x1 − q(y′′))
2
+ (x′′ − y′′) · (x′′ − y′′)− h(s, xn − yn).

8



Note, the integral in (3.4) is well-defined given that, by assumption, D is bounded away
from S, and h goes to zero at the boundary of Ωh. Then, the phase function of R is
Φ = σΨ. The weight, |∇xΨ|, is included following the theory of [17], so that the integrals
are defined with respect to the surface measure on the surfaces of revolution.

We now explain why Φ is a nondegenerate phase function. From (3.5) just below and
assumption (3) in our theorem, one sees dsΦ is never zero so the left projection is never
zero. A calculation shows that

dxΦ = σ (2[(x1,x
′′)− (q,y′′)],−hx(s, xn − yn)) ,

and this is never zero since D is disjoint from the cylinder S. In addition, this shows
R(s, (y′′, yn)) ∩D is a smooth manifold, so R is a standard Radon transform.

The left projection of R is

(3.5) ΠL(s, (y
′′, yn);x, σ) =

s, (y′′, yn),

dsΦ︷ ︸︸ ︷
−σhs,

dy′′Φ︷ ︸︸ ︷
−2σ [(x1 − q)∇q + (x′′ − y′′)],

dynΦ︷︸︸︷
σhx

 ,

where ∇q = (q2, . . . , qn−2)
T , and we use the convention qi = qyi .

Let

(3.6) ΠL(s, (y
′′, yn), (x

(1)′, x(1)n ), σ1) = ΠL(s, (y
′′, yn), (x

(2)′, x(2)n ), σ2).

Using (3) and that the dsΦ and the dynΦ components in (3.5)are equal, we see

(3.7)
hx
hs

(
s, x(1)n − yn

)
=
hx
hs

(
s, x(2)n − yn

)
=⇒ xn = x(1)n = x(2)n ,

by condition (4). Further σ1 = σ2 since hs ̸= 0 by condition (3).
Setting the dy′′ components of ΠL equal, we see

(3.8) [∇q, I]
(
x(1)′ − x(2)′

)
= 0.

The rows of A = [∇q, I] span a plane parallel to the plane tangent to Q at (q,y′′)), and

null(A) = {ν(1,−∇q)T : ν ∈ R}.

Thus, x(1)′ and x(2)′ must lie on a line parallel to (1,−∇q)T . As x(1)′ and x(2)′ are also on

the same sphere centered at (q,y′′) of radius h(s, xn − yn), either x
(1)′ and x(2)′ are equal

or they are the reflections of one another in the tangent plane to Q at (q,y′′). Thus,
x1 and x2 are either equal or the reflections of one another in the plane tangent to S at
(y′′, yn). By our assumption (2), x(1)′ = x(2)′ and ΠL is injective above D.

For x ∈ R(s, (y′′, yn)), (x1,x
′′) lies on an n−2 dimensional sphere of radius

√
h(s, xn−

yn). Let us parameterize this sphere using standard spherical coordinates α = (α1, . . . , αn−2).
Then,

(3.9) (x1,x
′′) = (q(y′′),y′′) +

√
h(s, xn − yn)Θ(α) = (q,y′′) +

√
hΘ,

where Θ = Θ(α) ∈ Sn−2 is not a pole of the sphere. Now, equation (3.5) becomes

(3.10) ΠL(s, (y
′′, yn), α, xn, σ) =

s, (y′′, yn),

dsΦ︷ ︸︸ ︷
−σhs,

dy′′︷ ︸︸ ︷
−2σ

√
h [∇q, I] ΘT ,

dynΦ︷︸︸︷
σhx

 ,

where I = I(n−2)×(n−2). Since h > 0 on R(s, (y′′, yn)), these coordinates are smooth.
9



The differential of ΠL is

(3.11) DΠL =


ds,∇(y′′,yn) dσ dxn ∇α

s,(y′′,yn) In×n 0n×1 0n×1 0n×(n−2)

dsΦ · −hs −σhsxn 01×(n−2)

dynΦ · hx σhxx 01×(n−2)

∇y′′Φ · · · −2σ
√
h [∇q, I] Υ,


where Υ = [ΘT

α1
, . . . ,ΘT

αn−2
], and [ΘT ,Υ] is a matrix with nonzero orthogonal columns.

We have

(3.12) det

(
−hs −σhsxn

hx σhxx

)
= −σ (hshxx − hxhsxn) = −σh2s ·

d

dxn

(
hx
hs

)
̸= 0,

by conditions (3) and (5).
If det ([∇q, I] Υ) = 0, then some linear combination of the columns of Υ is in null(A),

so ν(1,−∇q)T is in the span of the columns of Υ. Since ΘT is normal to span(Υ), ΘT

must be normal to (1,−∇q)T , which means x is on the plane tangent to S at (y′′, yn).
This is not possible because of (2). Therefore, ΠL is an immersion.
Now, assume R satisfies the Bolker condition above D, and h satisfies (3). Then, R is,

by definition, a FIO. Because ΠL is an immersion, ΠR is also an immersion [10], so the
phase function Φ is nondegenerate.

Regarding (4), if hx/hs is not injective then there are σ1, σ2, x
1
n, x

2
n not all equal to each

other such that the third and last components in (3.5) are equal. Since hs is never zero,
this means that equality holds in the left-hand side of (3.7). So, if Bolker holds then (4)
is true.

Let x ∈ R(s, (y′′, yn)) and let xm be its reflection in the tangent plane, T ,to S at
(q,y′′, yn). If x ̸= xm and xm ∈ D, then the argument around (3.8) shows that ΠL is not
injective. This proves (2) for points not on T .
If Bolker holds, the matrix in(3.11), [∇q, I]Υ, has maximum rank, so span(Υ) contains

no nonzero vector in null(A). Therefore, ΘT in (3.9) is not perpendicular to (−1,∇q)T
and x is not in the tangent plane to S at (s, (y′′, yn)). This shows (2) for points on T .
For the same reason, (3.12) must be valid since hs ̸= 0. This shows that (5) holds. □

4. An Inversion Framework

We will present two different cases in which inversion of the surface of rotation Radon
transform is possible by first taking a Fourier transform in the vertical coordinate.

4.1. Analytic inversion formula for the cone transform. In this section, we con-
sider the case when h(s, x) = sx, and R(s,y) is a cone. In this case, we have the alternate
expression for R

(4.1) Rf(s,y) =
√
1 + s2

∫ ∞

0

∫
Θ∈Sn−2

tn−2f (tΘ+ y′, yn − st) dSn−2dt,

where s ∈ R. Rf defines the integral of f over a cone with gradient s, vertex y ∈ S, and
axis of revolution parallel to xn which is contained in S.
Next, we will present the theorem which proves injectivity of the cone transform. For

the proof we will require the spherical Radon transform

M : L2
c(Rn−1) → L2

(
R+ × Rn−1

)
For f ∈ L2

c(Rn−1), Mf(t,y′) defines the integral of f̂ξ ∈ L2
c(Rn−1) over the (n − 2)-

dimensional sphere with radius t and center y′.
10



Theorem 4.1. Suppose that S = Q×R is a real-analytic manifold and Q is the boundary
of an open convex set Σ ⊂ Rn−1. Let f ∈ L2

c(Σ × R) and h(s, x) = sx. Under these
conditions, Rf = 0 =⇒ f = 0.

Proof. After taking the Fourier transform in yn on both sides of (4.1), we have,

(4.2) R̂f(s,y′, ξ) =
√
1 + s2

∫ ∞

0

e−istξMf̂ξ(t,y
′)dt

where f̂ξ is the Fourier transform in the xn component evaluated at ξ. Let s′ = sξ. Then,
for ξ ̸= 0, we have

(4.3) Mf̂ξ(t,y
′) =

1

2π

∫ ∞

−∞

R̂f
(

s′

ξ
,y′, ξ

)
√

1 +
(

s′

ξ

)2 eis′tds′
for all t ≥ 0 and y′ ∈ Q. We have now established a link between cone transform (4.1)
and the spherical Radon transform.

Let Rf = 0. Then, by (4.3), Mf̂ξ(t,y
′) = 0 for any t ≥ 0, y′ ∈ Q, and ξ ̸= 0.

Furthermore, f̂ξ is supported in Σ and its boundary, Q is convex and real-analytic. This,
plus results of [15] on analytic regularity under the Bolker assumption, and the arguments

in the proof of [20, Corollary 3.2] for the spherical transform show that, since Mf̂ξ = 0

for all centers on Q, f̂ξ = 0, for any ξ ̸= 0. As f is of compact support, the ξ component

of f̂ξ, is an entire analytic function, and thus f̂ξ = 0 for all ξ ∈ R. Therefore, f = 0, and
this completes the proof. □

Discussion 4.2. The function, R̂f(s′/ξ,y′, ξ)/
√

1 + (s′/ξ)2, is the Fourier transform of

Mf̂ξ in the t variable at value s′. If f is compactly supported, then Mf̂ξ(t,y
′) is a

compactly supported function of t for any fixed y′. Thus, the Fourier transform in t is an
entire analytic function and, by analytic continuation, we need only the s ∈ Ω, for some

open Ω ⊂ R, to determine R̂f(s′/ξ,y′, ξ)/
√

1 + (s′/ξ)2 everywhere. Therefore, we need
only that Rf(s,y) = 0 for s ∈ Ω, and y′ ∈ Q, to show f = 0.
In cases when M has an explicit left inverse, M−1, e.g., when Q is a sphere and S is

cylinder, and we know Rf for all s ∈ R, and y ∈ S, then, using (4.3), we have the explicit
expression for f in terms of Rf

(4.4) f =
1

2π
F−1

ξ M−1

∫ ∞

−∞

R̂f
(

s′

ξ
,y′, ξ

)
√
1 +

(
s′

ξ

)2 eis′tds′
 ,

where F−1
ξ is the inverse Fourier transform in the ξ variable.

In this section, we presented injectivity results for Rµ, and for R in the case when
h(s, x) = sx. The above discussion provides an explicit inverse for the cone transform
in the special case when M has an explicit left inverse. In the next section, we consider
when h is an even function with a single maximum, as well as a generalisation of this
case.

4.2. Analytic inversion in the case of symmetric curves. In this section, we pro-
vide a general inversion framework for surface of revolution Radon transforms where the
surfaces have some symmetry. Throughout this section, we let

Bn
r (y) = {x ∈ Rn : |x− y| < r}

11



denote the open unit ball in Rn of radius r. We will consider the same geometry as in
section 3 but will reformulate the operator and add some hypotheses on the function h.
Indeed, we suppose that C = {s > 0} and for every s, Ωh,s = {x : (x, s) ∈ Ωh} is a
symmetric interval around the origin, that h(s, ·) is an even function on this interval, that
h → 0 at the boundaries of this interval, that h(s, ·) takes a single maximum at x = 0
where the second derivative hxx does not vanish, that otherwise the hx does not vanish,
and that h(s, 0) is an increasing function with h(s, 0) → 0 as s → 0. There are several
examples of practical interest where h satisfies these hypotheses and we discuss them in
section 5. In this case, equation 3.4 is equivalent to

(4.5) Rf(s,y) =

∫
Ωh,s

∫
Θ∈Sn−2

h(s, x)
n−2
2 f(

√
h(s, x)Θ + y′, yn + x)

√
1 +

h2x
4h

dSn−2dx

where dSn−2 is the surface measure on Sn−2. By the hypotheses on h, Ωh,s can be split into
two intervals (−b(s), 0) and (0, b(s)), and h(s, ·) is invertible on each of these intervals.
In fact, because h(s, ·) is even there will be a function µ(s, ·) : (0, h(s, 0)) → (0, b(s)) such
that

h(s, µ(s, t)) = h(s,−µ(s, t)) = t2.

Then, changing coordinates x = ±µ(s, t) in the inner integral of (4.5), we have

Rf(s,y) =
1∑

k=0

∫ √
h(s,0)

0

∫
Θ∈Sn−2

tn−2f
(
tΘ+ y′, (−1)kµ(s, t) + yn

)√
1 + µ2

t dSn−2dt.

By making a change of variables s̃ =
√
h(s, 0), which is possible by the hypotheses, this

becomes

(4.6) Rf(s̃,y) =
1∑

k=0

∫ s̃

0

∫
Θ∈Sn−2

tn−2f
(
tΘ+ y′, (−1)kµ(s, t) + yn

)√
1 + µ2

t dSn−2dt.

We will show how to invert a transform slightly more general than (4.6) by first taking
the Fourier transform in the yn variable. Our generalisation is the following.

Let µj = µj(s, t) ∈ C(T ), for 1 ≤ j ≤ m, be a set of functions which define m one-
parameter families of curves, where T = {(s, t) : a ≤ t ≤ s ≤ b}, for some b > a ≥ 0.
Then, we define the Radon transform

Rµf(s,y) =
1∑

k=0

m∑
j=1

∫ s

a

gj

∫
Θ∈Sn−2

tn−2f
(
tΘ+ y′, (−1)kµj(s, t) + yn

)
dSn−2dt,(4.7)

where gj = gj(s, t) =
√

1 + µ2
jt, µjt =

d
dt
µj. The transform, Rµ, maps f to its integrals

over the surfaces of revolution of symmetric continuous curves defined by the µj and is
equal to R defined in section 3, as can be seen in (4.6), for the case when m = 1, f = 0
on ∪s∈SB

n
a (s) (i.e., f is zero up to distance a from S), and h is even in x. For example,

when f = 0 on ∪s∈SB
n
a (s), m = 1 and µ1(s, t) =

√
s2 − t2, and h(s, x) = s2 − x2, then

Rµf = Rf defines the integrals of f over spheres, radii s with center y ∈ S. The reason
we introduce the µj in this section to define the surfaces of rotation, is for elegance and
ease of calculation in the proofs of our main injectivity theorem (Theorem 4.3), presented
later in this section. We take a sum of m integrals in (4.7) to keep the discussion more
general. The m = 1 case is of the most practical interest, and later, in section 5, we
discuss further examples of µj and h, and how they apply to CST, ECST, and URT.
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Taking the Fourier transform in yn on both sides of (4.7), yields

R̂µf(s,y
′, ξ) =

∫ s

a

m∑
j=1

gj cos(ξµj)

[∫
Θ∈Sn−2

tn−2f̂ξ (tΘ+ y′) dSn−2

]
dt

=

∫ s

a

K̃ξ(s, t)Mf̂ξ(t,y
′)dt,

(4.8)

where

(4.9) K̃ξ(s, t) =
m∑
j=1

gj(s, t) cos (ξµj(s, t)) ,

ξ is dual to xn, f̂ξ(x
′) = f̂(x′, ξ), and M is the spherical Radon transform introduced in

section 4.1. Equation (4.8) is a Volterra equation of the first kind, which we aim to solve

forMf̂ξ. Then we use known results onM [20, 15] to derive injectivity conditions on Rµ.
We now have our theorem, which provides injectivity conditions on Rµ.

Theorem 4.3. Let b > a ≥ 0, and let T = {(s, t) : a ≤ t ≤ s ≤ b}. Suppose that Q is
the boundary of an open convex set Σ ⊂ Rn−1. Let f ∈ L2

c(Σ× R).
Consider the conditions

(1) f = 0 at all points of distance less than a from S.
(2) µj is of the form µj(s, t) =

√
s− t · τj(s, t), where τj ∈ C∞(T ), and τj(s, s) ̸= 0

for s ∈ [a, b];
(3) S is a real-analytic manifold.

Under (2), (4.8) is uniquely solvable. Under (1), (2) and (3), Rµf = 0 on [a, b] × S
implies f = 0 at all points of distance less than b from S.

Remark 4.4. Assumption (2) gives conditions on µj so that Mf̂ξ is uniquely recoverable
from Rµf . For R in (4.6), this first assumption is satisfied because the second derivative
hxx does not vanish at x = 0. Assumption (3) provides injectivity conditions on M , as
in [20, Theorem 2.4]. (2) and (3) combined give injectivity conditions for Rµ.

Remark 4.5. It is possible to prove an extension of Theorem 4.3 for operators without
the symmetry condition (i.e. (4.7) without a sum in k) provided the µj satisfy certain
asymptotic compatibility conditions at the boundary of their definition. However, this is
not necessary for any of the practical examples given in section 5.

Proof of Theorem 4.3. Let us assume (2) holds. Given the specific form of the µj specified
in (2), we have

gj(s, t) =
√
1 + µ2

jt

=

√
(s− t) +

(
(s− t)τjt − 1

2
τj
)2

√
s− t

=
κj(s, t)√
s− t

.

(4.10)

We have, κj(s, s) = 1
2
|τj(s, s)| > 0 for s ∈ [a, b], and κj(s, t) > 0, when s ̸= t and

(s, t) ∈ T . Therefore, since κj is continuous and T is compact, κj is bounded away from
zero on T and κj ∈ C∞(T ).
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Now, by (4.8), we have

R̂µf(s,y
′, ξ) =

∫ s

a

∑m
j=1 κj cos(ξµj)√

s− t

[∫
Θ∈Sn−2

tn−2f̂ξ (tΘ+ y′) dSn−2

]
dt

=

∫ s

a

Kξ(s, t)√
s− t

Mf̂ξ(t,y
′)dt,

(4.11)

where

(4.12) Kξ(s, t) =
m∑
j=1

κj(s, t) cos (ξµj(s, t)) .

We have

(4.13) Kξ(s, s) =
1

2

m∑
j=1

|τj(s, s)| > 0

for s ∈ [a, b], by (2), and

d

ds
cos(ξµj) = −ξ · (s− t)τjs − τj√

s− t
sin(ξµj)

= ϕj sinc(ξµj) ∈ C(T ),

(4.14)

where ϕj = ξ2τj ((s− t)τjs − τj) ∈ C∞(T ). Thus, d
ds
Kξ ∈ C(T ), given also the smooth-

ness of the κj. Further, since Mf̂ξ ∈ L2 (R+ × Rn−1), R̂f(s,y′, ξ) is an absolutely con-
tinuous function of s, by [19, Lemma 3.3]. Therefore, by [19, Theorems A and B], we

can now solve the Volterra equation of the first kind (4.11) uniquely for Mf̂ξ(t,y
′), for

all t ∈ [a, b], y′ ∈ Rn−1, and ξ ∈ R.
To finish the proof, let us assume Rf = 0, and that (2) and (3) hold. Using the above

calculations, Rf = 0 implies Mf̂ξ(t,y
′) = 0 for any t ∈ [a, b], y′ ∈ Q, and ξ ∈ R. As

supp(f) is at least distance a from S, Mf̂ξ(t,y) = 0 for all (t,y) ∈ [0, b) × Q and f̂ξ is
supported in Σ. Since, in addition, Q is a convex real-analytic manifold by assumption
(3), we can use the analytic regularity theorem in [15] under the Bolker assumption and

the arguments in the proof of [20, Corollary 3.2] to show that f̂ξ = 0 on ∪y′∈QB
n−1
b (y′),

for any ξ ∈ R. Therefore, f = 0 on ∪s∈SB
n
b (s). This completes the proof. □

Remark 4.6. Theorem 4.3 establishes a key link between Rµ and the spherical Radon
transform, on which there exists a wealth of literature on the inversion properties. After
taking the Fourier transform in yn and inverting a 1-D Volterra operator in the first stages
of the proof of Theorem 4.3, Rµ reduces to a spherical Radon transform, M , which is

applied to slices in Fourier space, f̂ξ. In special cases, this connection to the spherical
transform can be used to derive methods for inverting Rµ. For example, if Q = Sn−2 is a

sphere and f is compactly supported on the interior of S = Q×R, then f̂ξ is compactly

supported on the interior of Q, for any ξ ∈ R, and f̂ξ can be recovered explicitly from

Mf̂ξ using the formulae of [14].

5. Example applications

In this section, we give some example h and µj which have applications in CST, URT,
and ECST. We only consider here the conditions on h and µ given in Theorem 3.2,
and Theorem 4.3, respectively, which are needed in order for the Bolker condition and
injectivity to hold. For the Bolker condition to hold in any of the examples given below,
supp(f) must be bounded away from S, and S must also satisfy condition 2 of Theorem
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Figure 2. Example
√
h mappings which define circular and elliptic arcs,

and straight line curves.

3.2. For injectivity to hold, we need supp(f) to be bounded away from S, S to be
real-analytic, and Q to be the boundary of a convex set, as specified in Theorem 4.3.

5.1. Elliptic arcs with fixed linear eccentricity. In this example, we consider the
case when h defines an elliptic arc, and R(s,y) is an ellipsoid of revolution (or spheroid).
Spheroid integral surfaces have applications in URT [31], and seismic imaging [7]. For
example, in URT, the foci of the spheroids represent sound wave emitters and receivers,
and the sound wave travel time determines the spheroid radii. We consider the special
case when the foci of the spheroid are constrained to lie on S, and the linear eccentricity
of the spheroid, c, is fixed. This case is of interest in the URT literature [1] as well.
Let

(5.1) h(s, x) =
s2

s2 + c2
(s2 + c2 − x2) ∈ C∞ (Ωh) ,

where s is the minor ellipse radius, c is the fixed linear eccentricity, and Ωh = {(s, x) : s >
0,−

√
s2 + c2 < x <

√
s2 + c2}. Then, for fixed s > 0, x →

√
h(s, x) defines an elliptic

arc. See figure 2b, where we plot some example elliptic arc curves when c = 2.
We now aim to show that h satisfies the conditions of Theorem 3.2. First, it is clear

that h→ 0 at the boundary of Ωh. Also,

(5.2) hs(s, x) =
s (c4 − c2(x2 − 2s2) + s4)

(s2 + c2)2
,

which is non-zero on Ωh. Now, we have

(5.3)
hx
hs

= − sx(s2 + c2)

c4 − c2(x2 − 2s2) + s4
,

and it follows that

(5.4)
d

dx

(
hx
hs

)
= −s(s2 + c2)

c4 + c2(x2 + 2s2) + s4

(c4 − c2(x2 − 2s2) + s4)2
,

which is non-zero on Ωh. Thus, the conditions of Theorem 3.2 are satisfied.
Let

µ(s, t) =

√
1 +

(c
s

)2√
s2 − t2.

Then, if h is defined as in (5.1), f = 0 on ∪s∈SB
n
a (s), and m = 1, with µ1 = µ, Rf =

Rµf . We now aim to show the conditions on µ specified in Theorem 4.3 hold. We have
µ(s, t) =

√
s− t · τ(s, t), where

τ(s, t) =

√
1 +

(c
s

)2√
s+ t.
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Let b > a > 0. Then, τ is smooth on T = {(s, t) : a ≤ s ≤ b, a ≤ t ≤ s}. Further,

τ(s, s) =
√
2
√
s

√
1 +

(c
s

)2
̸= 0

for s ∈ [a, b]. Thus, the conditions of Theorem 4.3 are satisfied when m = 1, and µ1 = µ.

5.2. Circular arcs. In this example, we consider the case when h defines a circular arc
curve, and R(s,y) is the surface of revolution of a circular arc, which we call a lemon.
A lemon is also the interior part of a spindle torus (see [22, figure 5]), which is a special
kind of torus that self-intersects. Lemon integral surfaces have applications in CST [22].
A lemon self-intersects at two points, which we will call the “tips” of the lemon. In CST,
the tips of the lemon represent source and detector positions, and the scattered photon
energy determines the radius of the lemon. We consider the special case here where the
distance between the tips of the lemon, α, is fixed.

Let

(5.5) h(p, x) =
(√

α2 + p2 − x2 − p
)2

∈ C∞ (Ωh) ,

where Ωh = [0,∞)× (−α, α). Then, x→
√
h(p, x), for fixed p ∈ [0,∞), defines a circular

arc. See figure 2a for an illustration of circular arc curves when α = 2. In figure 2a, s
relates to p via s =

√
α2 + p2 − p.

We now aim to show the conditions of Theorem 3.2 are satisfied. By (5.5), it is clear
h → 0 on the boundary of Ωh,p = {(p′, x) ∈ R2 : p = p′} ∩ Ωh, for any p ∈ [0,∞). We
have,

(5.6) hp(p, x) = 2

(
p√

α2 + p2 − x2
− 1

)(√
α2 + p2 − x2 − p

)
,

which is strictly less than zero on Ωh. Now,

(5.7)
hx
hp

=
x√

α2 + p2 − x2 − p
,

and

(5.8)
d

dx

(
hx
hp

)
=

(p2 + α2)− p
√
p2 + α2 − x2√

p2 + α2 − x2
(√

p2 + α2 − x2 − p
)2 ,

which is nonzero on Ωh. To see this, note

(p2 + α2)− p
√
p2 + α2 − x2 ≥ (p2 + α2)− p

√
p2 + α2

=
√
p2 + α2

(√
p2 + α2 − p

)
> 0.

(5.9)

Thus, the conditions of Theorem 3.2 are satisfied.
Let

µ(s, t) =
√
s− t

√
st+ α2

s
.

Then, if h is defined as in (5.5) andm = 1, with µ1 = µ, Rf(p,y) = Rµf
(√

α2 + p2 − p,y
)
,

when p ≥ 0. We will now show that µ satisfies the conditions of Theorem 4.3. We have,
µ(s, t) =

√
s− t · τ(s, t), where

τ(s, t) =

√
st+ α2

s
.
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Let b > a > 0. Then, τ is smooth on T = {(s, t) : a ≤ s ≤ b, a ≤ t ≤ s}. Further,

τ(s, s) = s+
α2

s
> 0,

for s ∈ [a, b]. Thus, the conditions of Theorem 4.3 are satisfied when m = 1, and µ1 = µ.

5.3. Straight lines. In this example, we consider the case when h(s, x) = sx defines a
straight line, gradient s, andR(s,y) is a cone. See figure 2c for some example straight line
curves. Cone integral surfaces have applications in ECST and Compton camera imaging
[29]. In CST, the vertex of the cone corresponds to a scattering location, and the scattered
photon energy determines the gradient of the cone, s. In this case, the injectivity of R is
covered in section 4.1. We aim to prove here that h satisfies the conditions of Theorem
3.2.

Let h(s, x) = sx ∈ C∞(Ωh), where Ωh = R × (0,∞).Then, the set Ωh,s in Theorem
3.2 assumption (1) is Ωh,s = (0,∞) and h(s, ·) → 0 on the boundary of Ωh,s, which
in this case is {0}. We have, hs(s, x) = x > 0 on Ωh. Further, hx/hs = s/x, and
d
dx

(hx/hs) = −s/x2 ̸= 0 on Ωh. Thus, the conditions of Theorem 3.2 are satisfied.

6. Simulated image reconstructions

In this section, we present simulated three-dimensional image reconstructions from
integrals over spheres, spheroids, and lemons, which were shown to satisfy the conditions
of Theorem 3.2 and Theorem 4.3 in section 5. The surface of centers, S, we consider
here is a cylinder. Throughout this section, n = 3, Q = S1, and S = Q × R = {x ∈
R3 :

√
x21 + x22 = 1}. The target functions, f , we consider in this section have compact

support which is contained within the interior of S, and which is bounded away from
S, which is needed for the microlocal theory of Theorem 3.2, and the injectivity results
of Theorem 4.3 to hold. S is also convex and real-analytic, which is in line with the
conditions of Theorem 3.2 and Theorem 4.3. In all simulations conducted in the section,
the conditions of Theorem 3.2 and Theorem 4.3 are satisfied.

6.1. Data simulation. The data is simulated using the exact model (4.7), with m = 1.
The definition of µ1 changes based on the integral surface, e.g., for spherical integrals we
set µ1(s, t) =

√
s2 − t2. Let Vξ be the Volterra operator of (4.8), and let F3 denote the

partial Fourier transform in the x3 variable. Then we simulate data as

(6.1) Rµf = F−1
3 VξMF3f,

where M is applied to each Fourier slice, f̂ξ, of f , as in (4.8). We simulate Rµf(s,y)
for s ∈ [0.2, 2.2], and y = (cos θ, sin θ, y3) ∈ S, where θ ∈ [0, 2π], and y3 ∈ [−5, 5]. For
spheres, s is the sphere radius. For spheroids, s is the minor radius, and we set the linear
eccentricity, c = 2, as in figure 2b. For lemons, s is the height of the lemon, and we set
the distance between the lemon tips, α = 2, as in figure 2a. After the data is generated
as in (6.1), we add Gaussian noise to Rµf to simulate noise.

6.2. Inversion methods. We recover f from Rµf by inverting the sequence of operators
on the right-hand side of (6.1). Each operator is discretized and f is recovered on an
N ×N ×N pixel grid. Throughout this section, we set N = 101.
To apply and invert F3, we use the Fast Fourier Transform (FFT). To invert Vξ, we

use Tikhonov regularization, and the “backslash” function in Matlab. This is possible as
each Volterra operator, Vξ, is one-dimensional, and hence the discretized form is a small
(in this case N ×N) matrix, which is stored in Matlab. We use the Landweber method,
and Total Variation (TV) regularization methods to invertM . Specifically, to implement
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Figure 3. Predicted and observed artifacts due to Bolker for a variety of
integral surfaces of revolution with centers on a cylinder. Top row - 3-D
view. Bottom row - (x1, x2) plane cross-sections. 1% Gaussian noise was
added in this example.

TV, we use the Conjugate Gradient Least Squares (CGLS) method in combination with
TV denoising. The Landweber method enforces relatively weak regularization, and is
included mainly to highlight some of the artifacts we would expect to see as predicted by
Theorem 3.2. The CGLS-TV method is included to show the effects of a more powerful
regularizer.

6.3. Delta function reconstructions. In this section, we present reconstructions of a
delta function, δ, which is located on the interior of S. By theorem 3.2, when we recover δ
from its integrals over spheres, lemons, or spheroids, with centers on S, we would expect
to see artifacts which are the reflections of δ in planes tangent to S. Given the convexity
of S in this case, and as δ is supported on the interior of S, the artifacts due to Bolker
should also be constrained to the exterior of S. In figure 3, we show reconstructions of an
example δ when using the Landweber method to invert M , as described in section 6.2.
On the left-hand of figure 3, we show the artifacts due to Bolker as predicted by Theorem
3.2. In the reconstructions, the delta function is reflected in every plane tangent to S,
which forms a cardioid type curve which is embedded in the (x1, x2) plane. This is as
predicted by our theory, and the predicted and observed artifact curves match exactly.

6.4. Phantom reconstructions. In this sub-section, we present simulated reconstruc-
tions of an image phantom. The phantom we consider is a hollow cuboid as pictured in
the left-hand column of figure 6. In figure 4, we show the size of the hollow cube phantom,
and how it fits inside of S. We also show example curves which define the surfaces of
revolution, in the case of spheres, spheroids, and lemons.

In figure 5, we show example Rµf sinograms for sphere, spheroid, and lemon integral
surfaces, where Rµf is generated as specified in sub-section 6.1. The edges of the hollow
cuboid phantom can be seen in the {θ = 0} plane cross-sections, although they are
smoothed out due to the application of Rµ. In the {y3 = 0} plane and {s = 1.2} plane
cross-sections, the sinograms are π/2 periodic as a function of θ. This is due to the
four-fold rotational symmetry of the hollow cuboid about the x3 axis.
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Figure 4. Hollow cube phantom and example curves which form the sur-
faces of revolution in the case of spheres, spheroids, and lemons. The µj

and h functions which define the curves shown are provided in section 5.
The sphere case in (A) is a special case of a spheroid, when c = 0, where c
is the linear eccentricity, as defined in sub-section 5.1.
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Figure 5. Example Rµf sinograms when f is a hollow cuboid. Sino-
grams are generated for three integral surfaces, namely spheres (top row),
spheroids (middle row), and lemons (bottom row). We show three cross-
sections for each integrals surface, which are specified in the sub-figure
caption.

See figure 6, where we have presented reconstructions of the hollow cube phantom from
the sinogram data in figure 5, with 5% added Gaussian noise, and see figure 7a where we
plot the relative least-squares reconstruction errors for varying levels of added Gaussian
noise. The Tikhonov and TV smoothing parameters used for each noise level are given
on the x axis of figure 7a. To reconstruct the hollow cube phantom, we implemented the
GCLS-TV algorithm as described in sub-section 6.2. The spheroid data reconstructions
appear sharpest overall, when compared to the sphere and lemon reconstructions, and
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Figure 6. Reconstructions of hollow cuboid with 5% added Gaussian
noise. Top row - (x1, x2) plane. Middle row - (x2, x3) plane. Bottom
row - (x1, x3) plane.

this is particularly noticeable in the (x2, x3) and (x1, x3) cross-sections. The sphere re-
constructions are the most blurred, and offer the lowest image quality. This is verified
by the reconstruction error plots in figure 7a, as the sphere integral reconstructions are
shown to have the greatest error, when compared to lemon and spheroid integrals, and
the spheroid reconstructions have the least error, particularly at higher noise levels (i.e.,
when the added noise is greater than or equal to 5%).
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Figure 7. (A) - least-squares error curves for varying noise levels (γ),
corresponding to each integral surface considered. The Tikhonov and TV
smoothing parameters, α and β, respectively, corresponding to each γ, are
given on the x axis in (A). (B) - condition number plots of the Vξ operators,
for varying ξ values, and for different integral surfaces of revolution.

The sphere, spheroid, and lemon surfaces are defined using different µ1, which changes
the Vξ operators in (6.1). The remaining operations in (6.1), e.g., M , remain constant,
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and do not vary with the integral surface. Thus, the differences in stability of inversion
of Rµ, for different integral surfaces, can be quantified through analysis of the Vξ. To
investigate this, we plot the condition numbers of the Vξ for varying ξ, and for sphere,
spheroid, and lemon integral surfaces. See figure 7b. The largest peak in condition
number occurs in the sphere curve, and the area under the sphere condition number
curve is the largest. The spheroid condition numbers have the smallest peak, and area
under the curve. Thus, the Vξ operators exhibit the greatest inversion instability in
the sphere case, when compared to spheroids or lemons, which corresponds to greater
noise amplification in the image reconstructions, and this is verified by figure 7a. More
generally, we notice that the area under the condition number curve correlates positively
with the area under the error curves in figure 7a, which is to be expected as the condition
number bounds the least squares error. This suggests that, in certain geometries (such
as considered here), reconstructing f from spheroid data is preferred when compared
to sphere data, in terms of inversion stability. This could have important implications
in an application such as URT. In URT, the foci of the spheroid correspond to sound
wave emitters and receivers. When the linear eccentricity, c = 0, the spheroids reduce
to spheres, and the sound waves are emitted and received at the same point. In this
example, setting c = 2 has advantages over the c = 0 case in terms of inversion stability.
This has implications regarding scanner design in URT, e.g., we could compare the area
under the condition number curves for a range of c to determine the optimal c, which,
in the context of URT, is the distance between the emitter and receiver. This is an idea
which warrants further investigation, which we aim to address in future work.

7. Conclusion

In this paper, we presented microlocal and injectivity analyses of a novel Radon trans-
form, R, which defines the integrals of a function, f , over surfaces of revolution with
centers on generalized surfaces S = Q×R in Rn, where Q ⊂ Rn−2 is a smooth embedded
hypersurface. In Theorem 3.2, we analyzed R as an FIO, and provided conditions on h
and S which are necessary and sufficient for the Bolker condition to hold. The conditions
on h involve the first and second order derivatives of h, which can be calculated and
verified simply for many examples of interest, e.g., in URT, when h defines a semicircle
or elliptic arc. The conditions on S are geometric and require checking if planes tangent
to S intersect the support of f . In section 4, the surface of revolution transforms were
shown to be closely related to the spherical Radon transform, and, using this idea, we
proved injectivity results in Theorem 4.3.

In section 6, we presented condition number plots of the Volterra operators, Vξ, which
were used in the proof of Theorem 4.3. The area under the condition number curve was
shown to correlate positively with the least-squares reconstruction error. Interestingly,
the condition number plots had an approximate bell shape, and peaked at intermediate
frequency values, ξ. In further work, we aim to investigate in more detail how the location
and size of the condition number peak relates to the Volterra operators in (4.8), and if
we can predict the peak location and magnitude analytically.
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