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Abstract

Self-organization of individuals within large collectives occurs throughout biology, with examples in-
cluding locust swarming and cell formation of embryonic tissues. Mathematical models can help elucidate
the individual-level mechanisms behind these dynamics, but analytical tractability often comes at the cost
of biological intuition. Discrete models provide straightforward interpretations by tracking each individual
yet can be computationally expensive. Alternatively, continuous models supply a large-scale perspective by
representing the “effective” dynamics of infinite agents, but their results are often difficult to translate into
experimentally relevant insights. We address this challenge by quantitatively linking spatio-temporal dy-
namics of discrete and continuous models in settings with biologically realistic, time-varying cell numbers.
Motivated by zebrafish-skin pattern formation, we create a continuous framework describing the movement
and proliferation of a single cell population by upscaling rules from a discrete model. We introduce and
fit scaling parameters to account for discrepancies between these two frameworks in terms of cell numbers,
considering movement and birth separately. Our resulting continuous models accurately depict ensemble
average agent-based solutions when migration or proliferation act alone. Interestingly, the same parameters
are not optimal when both processes act simultaneously, highlighting a rich difference in how combining
migration and proliferation affects discrete and continuous dynamics.
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1 Introduction

Self-organization of individual agents is a key feature of life. It occurs ubiquitously throughout the natural
world, from the macroscopic example of bird flocking [1-4] to the microscopic phenomenon of cell sorting
during development [SH9]]. The degree to which members of a group coordinate their movement, proliferation,
and competition accounts for pattern diversity across biological scales. Alongside experimental approaches,
mathematical models can help identify the underlying behaviours that give rise to specific collective dynamics.
However, a trade-off often exists between tractability and detail when building models of pattern formation,
due in part to the multiscale nature of biological systems. Consequently, better quantitative characterization
of the relationship between analytically tractable models and more biologically representative approaches will
improve our understanding of self-organization throughout nature.

Here, we help address this open challenge using pigment cell dynamics in zebrafish patterns as a paradigm.
The zebrafish (Danio rerio) is a popular model organism for studying pattern formation, as dark stripes and
gold interstripes emerge in its skin during development [10-13]]. As we show in Fig. |1} these stripes result
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Figure 1: Motivating biological example. (a) Wild-type zebrafish feature stripe patterns in their skin. (b) Dark
stripes and gold interstripes consist of several different types of brightly colored pigment cells. (c) For the
purposes of this manuscript, we focus on melanophores and dense xanthophores, following the approach in
[21]. (d) Over the course of several months, these cells organise sequentially into stripes and interstripes from
the center of the fish body outward [10]. (¢) The agent-based model (ABM) [21] that serves as the basis of
our work describes how patterns arise through cell proliferation, competition, and movement. Cell movement
is governed by ordinary differential equations (ODEs). (f) These ODEs account for cell—cell repulsion through
potential functions, which describe melanophore—melanophore (Wypn) and xanthophore—xanthophore (Wxx)
interactions as a function of their pairwise distance r. (g) The ABM [21] accounts for changes in cell number
using stochastic discrete-time rules, which have the overarching form of short-range activation and long-range
inhibition [[14} (19 21H24]]. These rules specify that a new melanophore appears at a randomly selected location
(red) when there are more melanophores than dense xanthophores locally (in the blue disk) and more dense
xanthophores than melanophores at long range (in the purple annulus). Red scale bar is 2 mm in (b) and
250 micrometers (um) in (d). Images (a, b) adapted from Fadeev et al. and licensed under CC-BY
4.0 (https://creativecommons.org/licenses/by/4.0/); we added the text and red bar in (b). Image
(d) adapted from Frohnhofer et al. [10] and licensed under CC-BY 3.0 (https://creativecommons.org/
licenses/by/3.0/); published by The Company of Biologists Ltd.

from the coordination of interactions among three main types of cells: black melanophores, gold (dense) or
yellow (loose) xanthophores, and blue or silver iridophores [10}, 14-18]]. Experiments that perturb stripes—i.e.,
by laser ablation [14} [19]—demonstrate how cell—cell signaling and external cues contribute to the creation of
alternative motifs such as spots or labyrinths. A rich diversity of mutant patterns, including widened or curvy
stripes, also emerge when cell interactions are altered due to genetic mutations [17,20].

Data-driven mathematical models can help uncover the drivers of zebrafish pattern formation and other bio-
logical phenomena exhibiting self-organization by identifying important phase transitions, isolating the effects
of specific processes such as cell division, and providing hypotheses that can guide the design of in vivo exper-
iments [26-29]]. Different modelling frameworks yield insight at the population or individual level, depending
on how they represent members of a group. One modelling approach involves tracking how the position of each
individual changes in time. These so-called “discrete” systems include center-based models [31]], cellular
automata [32] 33]], cellular Potts models [34} [35]], and vertex models [36, 37]. Within the setting of zebrafish
patterning, agent-based models (ABMs) have been developed that restrict cells to occupy certain locations “on-
lattice” [38H40] or allow them to roam freely, “off-lattice”, in the domain [21, 41-43]]. Due to their ability to
work on the same length scales as empirical data, ABMs provide an intuitive connection to experiments and


https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/

allow for detailed predictions about how interactions between agents drive group behaviours. However, ABMs
can be prohibitive to simulate when the number of individuals is large, and understanding their long-time be-
haviour under alternative rules and parameters relies on extensive computation [44]].

A second modelling approach uses continuous functions to represent the “average” density of agents in a
collective, with their dynamics governed by a partial differential equation (PDE) in space and time. Continu-
ous models, including reaction-diffusion equations, Boltzmann-like kinetic equations, and integro-differential
equations (IDEs), typically cannot resolve individuals and, instead, track the ensemble average (EA) behaviour
of a population. However, these models are more amenable to mathematical analysis and more readily provide
insight into long-term behaviour than discrete frameworks do [45] |46]. For example, changes in patterning
may arise because of Turing-like instabilities [22} 147, 48] or due to alterations in physically-based interactions
such as cell—cell adhesion [7, 41} [49-52]. In the case of zebrafish patterns, researchers have applied a wide
swath of continuous models—including reaction-diffusion equations [[14} 19, [38] 153} 154] and non-local PDEs
[7, 155H57]—to better understand cell dynamics.

Despite the differences between discrete and continuous approaches, it is possible to establish a math-
ematical link between these representations in the limit of infinite individuals. This procedure, known as
“coarse-graining”, derives differential equations from a given discrete model and yields information about its
EA behaviour [58H63]]. For example, the authors in [64-66] derive logistic IDEs from stochastic processes that
describe the birth and death of individuals undergoing Darwinian evolution via natural selection in the limit
of large numbers. Coarse-grained descriptions become inaccurate when relatively few individuals are present,
however, as is the case during early stages of pattern formation in zebrafish. Many approaches also neglect
potentially important spatial correlations between cells—caused, for instance, by division or competition—that
may play a critical role in pattern dynamics [54} [67H72]]. Consequently, it can be difficult to justify coarse-
graining in biologically relevant settings. Nevertheless, we expect that it may be possible to correct for differ-
ences between continuous and discrete approaches, as both depict the same biological mechanisms and yield
nearly indistinguishable results in the limit of an infinite number of agents.

We tackle this challenge by developing a pipeline to minimise spatio-temporal discrepancies between dis-
crete and continuous models in settings with biologically relevant, dynamic cell numbers. We apply our ap-
proach to a case study motivated by stripe formation in zebrafish skin. The models that we consider in §2|ac-
count for cell movement and birth according to biologically inspired rules (Fig.[I) [21}43]]. As the continuous-
model solutions do not capture the time scale at which biologically meaningful ABM solutions evolve, we
introduce scaling parameters into the continuous framework and fit their values to EA ABM data. We demon-
strate the robustness and effectiveness of this procedure in §3|for cases in which we isolate the respective time
scales of cell movement and birth. However, we find that combining the two effects into a “full” model does not
necessarily produce an accurate framework. This highlights the importance of capturing the interplay between
different mechanisms when linking discrete and continuous models.

2 Mathematical models and methods

Following previous ABMs of pattern formation in zebrafish, we assume (1) migration is governed by repul-
sive forces between pigment cells and (2) non-local interactions inform cell birth in a two-dimensional (2D)
plane [21} 142 43]. While the models inspiring our work also include interactions between melanophores and
xanthophores [21}, 142]], we restrict to one cell type at a time. We present our results for black melanophores in
and—as a means of demonstrating the flexibility of our methodology—apply the same approach to dense
xanthophores in Supplementary Information (SI). Considering a single cell type masks biological complexity,
since multiple populations interact to produce stripe patterns in vivo; see Fig.|ll However, in this manuscript
we aim to develop a method for linking continuous and discrete models in biologically relevant scenarios with
relatively low and highly dynamic cell numbers as a precursor to future work with added biological complexity.
Basing our work on zebrafish allows us to illustrate the utility of our approach with biologically meaningful



spatial and temporal units, providing interpretations of our parameters and equations in relation to experimen-
tally measurable quantities. As we discuss in §4, we plan to extend our pipeline to multiple cell types in future
work.

In we develop our ABM for cell migration and derive its continuous counterpart. Subsequently, in
§2.2] we introduce our discrete model for cell birth and develop a corresponding continuous IDE model. We
present our full models of migration and proliferation in Lastly, we present our approach to estimating
scaling parameters in our continuous models from EA ABM data in Throughout this section, we refer to:

Q c R? = domain of the simulation with spatial units of millimeters (mm),
R? 5 M;() = coordinates of the center of the i melanophore at ¢ days in our discrete models,
N > Num(?) = total number of melanophores present at time ¢ days, and
Rso 3 M(x, 1) = density of melanophores at position x and time 7 in cells/mm?,
with the exception of Fig.[7]where we consider a one-dimensional (1D) domain; there M(x, f) is the number den-

sity of melanophores in cells/mm. Because it appears several times, we define the indicator function 1 condition}
here, as:

1, if x satisfies the rule specified by “condition”,
IL{condition}(x) = (D

0, otherwise,

where “condition” depends on the model rule and cell interaction, as we discuss next.

2.1 Models of migration

Our ABM for cell movement tracks the position, M;(¢), of each cell, indexed by i € {1,..., Ny}, at time ¢ > 0.
The movement of each melanophore depends on its interactions with surrounding melanophores, leading to a
system of overdamped Langevin equations:

dM; ) S o
— ~F=- Z VW (M; — M)). 2)
j=1,j#i

Here F i(fl)t is the net force arising from all cell—cell interactions according to the potential:
Wanm(r) = Rypve ™M, 3)

where r is the inter-particle distance, as in [21] 42]; see Fig. [I[f) and Table [I| for parameter values. We use
the notation VW, (r) = VWym(r) Ly < 0.2 mm)(r) to account for a finite interaction radius of 0.2 mm, and set
Nwm(t) = Ny when there is no cell birth.

The associated continuous model describes the melanophore density, M(X, f). Integrating M(x,t) over a
bounded region yields the total number of melanophores within that area at time ¢. Following the coarse-
graining procedure in [61} [73|[74], we obtain the PDE below:

%4 = ammV - (MYWgpy * M), )
where the force VWy,,, is the same as in Eqn. (2) and « is the convolution operator [21, 42]. The parameter
amy in Eqn. (@) is not inherent to the coarse-graining procedure; instead, we introduce it to account for possible
differences between the time scales of the discrete and continuous models. Indeed, simulating the PDE with
amm = 1 does not always capture the ABM dynamics; see Fig. 2] The individual and EA ABM results
demonstrate that cells disperse until they are about 55-115 um apart at t = 150 days. The PDE with apmm = 1,
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Figure 2: The PDE for cell migration does not accurately describe the EA ABM result when its scaling param-
eter v is set to unity. (a) To compute our EA ABM result, we solve Eqn. (2) using an initial condition of
400 melanophores placed uniformly at random in a 1 mm X 1 mm square; group cell positions in a 240 x 240
histogram; and average such data over 10* ABM realizations. (b) We compute the corresponding PDE solution
by simulating Eqn. (@) with aypy = 1 from a uniform density of 400 cells/mm? in the same square region. The
ABM and PDE solutions use the same potential (given by Eqn. (3) with parameters in Table[T). We overlay an
example ABM realization for comparison; the results demonstrate that the support of the PDE is larger than that
of the ABM by about 200 to 250 um. Because melanophore-melanophore distances have been measured to be
roughly 50 yum in vivo and stripes are only about 7-12 cells wide [[14], this is a large difference. (c) The
distribution of nearest-neighbor distances across 100 ABM realizations demonstrates that cell-cell separation
ranges from roughly 60 to 100 um. Based on visual inspection of the graphs, nearest-neighbor distances appear
inversely proportional to the EA cell density. In (a)—(c), we show results at t = 150 days.

however, predicts that cells travel about 250 um further in the same time period. Additionally, the PDE cell
density is lower than the EA ABM density near the center of the domain, implying that cells are more separated
there. The continuous solution at earlier times more closely resembles the EA ABM result at ¢ = 150 days,
however, which suggests that the time scale of the PDE is faster than that of the discrete model. Thus, a non-
unitary value of appy is likely to produce a better match between the discrete and continuous solutions. To our
knowledge, the value of ap cannot be derived a priori. Instead, we develop an approach for estimating its
value based on ABM data in §2.4]

2.2 Models of cell birth

Our ABM for cell birth consists of stochastic, discrete-time rules which we adapt from [21]]. Specifically, at
each time step (i.e., day) in a simulation we select Np;; € N locations uniformly at random from 2 and evaluate
them synchronously for possible cell birth. Each selected location, z, represents the position of a precursor cell
that may differentiate into a melanophore based on the signals that it receives. The conditions for melanophore
birth in the ABM [21] depend on both neighboring melanophores and dense xanthophores, as we show in
Fig. [[(g). Since we restrict to one population in this manuscript, we simplify the rules from [21]]; see SI for
details. In particular, a new melanophore emerges at position z according to the rule:

Nm Nm
Z Tom, e Qiloc}(Ml‘) >1 and Z Tom; e Qi‘oc}(Mi) <capm — melanophore appears at z, &)

i=1 i=1

short-range activation overcrowding prevention

+
where ¢ “BM € N, and

QZ

loc

= disk centered at z with radius 75 ym. (6)



According to Eqn. (5)), new cells appear near existing melanophores until the maximum number of cells—
namely, cXBM—in leoc isreached. As in [21] and based on estimations of data in [[14}[75]], we set cXBM = 6 cells.
While Eqn. (3)) is deterministic, stochasticity enters our ABM through our Ny;; randomly selected positions {z}.

We do not know of existing methods for rigorously deriving continuous models of cell birth from off-
lattice ABMs with our noise structure. Instead, taking a phenomenological modelling approach, we reason
that the rate at which the melanophore density increases is uniform and proportional to Np;; within regions
where the overcrowding and short-range activation conditions are satisfied, and zero otherwise. This leads to
the continuous model below:

oM
—-(x.1) = YNl 1), @
, {

I<[ox M(y.) dy < c+}
loc

where ¢* is the continuous equivalent of the density-limiting parameter ¢} ,, in Eqn. (5); Npi, has the same
value as in our corresponding ABM; and y € R™ is a scaling parameter that we introduce which results in
an upper bound on the number of cells born per unit time of yNyi|Q|. Equation (7) is a heuristic continuous
description of the ABM dynamics of non-local proliferation with overcrowding avoidance, and we overview
our approach to estimating the values of ¢™ and y in

2.3 Full models of cell movement and birth

We combine our descriptions of cell movement and proliferation to form our full discrete and continuous
models. For our full ABM, we move cells according to Eqn. (Z) and then introduce new agents based on
Eqn. (3) at each simulated day; see SI for details. For our continuous model, we combine the terms related to
movement and birth, such that the cell density evolves according to:

(x,1), ®)

oM .
— (%0 =amV- (MVWypy * M) + yNoicl {

1< [ix My dy < c+}
loc

where the parameters an, ¥, Npir, and ¢ have the same interpretations as in and Importantly, by
assuming that these parameters have the same interpretations, we are assuming that migration and proliferation
are additive, so that combining them has no extra influence. Our modular fitting approach, which we discuss
below and summarize in Fig. |3} allows us to evaluate this assumption and better understand the interplay of
these two mechanisms.

2.4 Parameter estimation procedure

As we show in Fig. 3] we adopt a modular approach for parameter estimation by fitting values related to cell
migration and birth separately. This allows us to probe each mechanism in detail and determine its effects on
group behaviour. Additionally, by using their parameter estimates in a combined setting, we can investigate
the interplay between these processes, as we discuss in §3] Here, we identify the scaling parameters—an in
Eqn. @) and {y, c*} in Eqn. (7)—that minimise the sum of squared differences (hereafter referred to as the “L?
error”’) between the continuous and EA discrete solutions over time and space; see Fig. [3] This nonlinear least-
squares problem is equivalent to maximum likelihood parameter estimation when the densities produced from
the ABM simulations are independent, identically distributed normal random variables with constant variance
and mean equal to the continuous solution. We overview our methods here; for details and parameter values,
see SI and Table[ll

We consider biologically meaningful time scales (i.e., days), length scales (i.e., mm), and cell densities and
stress empirical units throughout our results. This choice supports future studies that may treat pattern formation
with multiple cell types. Throughout our simulations, we consider a domain of size 3 mm X 3 mm (with one
1D exception in Fig. [7). We implement four initial conditions to extract common features of cell interactions



Step 1: Simplify ABM to one cell type Simplify ABM to one cell type
b (ODEs for cell-cell repulsion only) (cells differentiate at randomly selected
positions due to local activation)

Step 2: Generate many ABM realizations with cell \  Generate many ABM realizations with cell
L movement only ) v birth only
Step 3: Average ABM realizations and bin in ) Average ABM realizations and bin in
L PDE-like mesh ) IDE-like mesh
Step 4: Find apv by minimizing the difference | Find {c*,~} by minimizing the difference
‘| between the movement-only ABM ensemble | between the proliferation-only ABM ensemble
L average and PDE in time and space ) average and IDE in time and space
v k—> continuum model for movement V l% continuum model for birth
Step 5: Combine continuum models for movement and proliferation to form our full
PDE model and compare its dynamics to the full ABM ensemble average

Figure 3: Our pipeline for matching the solutions of continuous and discrete models and identifying how cell
movement and birth interact in both settings. We first isolate the discrete-model terms from [21]] corresponding
to movement (left column) and birth (right column) and simplify them to consider only one cell type. We then
produce multiple realizations of our ABMs, sorting the cell locations into a grid of Npjsx X Npise Voxels to yield
the EA discrete model results. We simulate our continuous model for cell movement (respectively cell birth)
and compare it on the same spatial mesh, with values of ayy (respectively ¢t and y) obtained from a least
squares optimization approach; see SI for details. Finally, we combine the fitted movement and birth models to
produce our full continuous model. While extension of this pipeline to fit all three parameters simultaneously
is straightforward, fitting separately allows us to better understand the effects of cell movement and birth in
discrete and continuous frameworks.

from different geometric scenarios: a square region of melanophores in the center of the domain (“Box”), a
single stripe of melanophores (“Stripe”), two rectangular regions of melanophores (“Offset rectangles”), and
two melanophore stripes (“Two stripes”). We initialise individual ABM simulations by sampling cell positions
uniformly in these regions for each respective initial condition, and initialise our continuous models by setting
the cell density uniformly equal to the estimated biological density of 400 cells/mm? within the same regions
[21]. To compare ABM results directly with the cell density from our continuous models, we obtain an EA
distribution by simulating many ABM realizations, sorting all the cell locations into a grid of Npjst X Npist
voxels (or Mpise X 1 voxels in 1D), and normalizing by the number of simulations and the voxel area each day.
We solve our continuous models with explicit approaches: we use a first-order finite volume scheme for
the migration model (Eqn. (@))), a forward Euler method for the proliferation model (Eqn. (7)), and a combined
scheme for the full framework (Eqn. (8). We simulate the continuous models on a Npin X Npin mesh and, to
match with EA ABM solutions, record the average cell density at each day on a (possibly coarser) grid of
Nhist X Npist voxels. We compute continuous model parameters by minimizing either the L? error between
the continuous and EA ABM results across time or (for the cell birth case) by matching the total cell count
of the two data sets. When we consider cell birth, we simulate our models with different values of Ny; and
estimate parameters by minimizing the sum of the errors across these Ny values. We fit parameters related to
cell proliferation sequentially—that is, we determine the optimal value for ¢* before y. We verify in 1D that
sequential and simultaneous estimation does not lead to significant difference in parameter values; see SI.



3 Results

We now present our results linking discrete and continuous models of cell migration (§2.1), birth (§2.2)), and
migration and birth (§2.3). We first isolate each interaction process, separately identifying the values of anm
in Eqn. @) and {y,c*} in Eqn. (7). As we note in this choice allows us to extract the distinct effects of
each mechanism. We then determine how this simplification affects the ability of the full continuous frame-
work, given by Eqn. (§)), to approximate EA ABM solutions. By considering different initial conditions, we
demonstrate the robustness of our fitting procedure. Our results show how the time scales of proliferation and
movement in our continuous model may depend on numerical implementation and the frequency of stochastic
cell birth controlled by Npi;. Moreover, our modular fitting approach highlights important considerations to
account for in more general systems where agents are moving and changing in number.

3.1 Cell migration

We estimate amm, the scaling parameter that controls the dynamics of melanophore movement. Figure [{(a)
presents the values of ay that minimise the squared L? error between the continuous solution of Eqn. (@)
and EA ABM results for our four initial conditions (see §2.4]and SI). In each case, the optimal value of aymm
is positively correlated with our PDE mesh resolution, i.e., greater values of appv are associated with larger
Nbin = Nhist values. This unitless parameter appears to converge to around 0.60 to 0.66 as the mesh resolution
increases. There is at most a 2.5% relative difference between the values of appy that we find when Ny, = 240
versus when Ny, = 480 for our Box initial condition. These results suggest that ay is independent of the
mesh resolution when the latter contains at least 240 x 240 voxels, corresponding to a mesh spacing of 12.5 um.
As we show in Fig. 2[c), melanophores tend to separate by between 60-100 xm in our ABM results, so this
mesh spacing is less than one quarter of the typical distance between agents.

At each mesh resolution in Fig.[4(a), the estimated optimal value of ayv does not appear to depend greatly
on the initial condition. For example, in the case of a mesh with Ny, = Npise = 240, the maximum relative
difference between the four parameter values is at most 6.5%. This similarity suggests that there is an inherent
time scale at which migratory melanophore—melanophore interactions occur. Figure f{(b), which presents the
log L? error for Ny, = 240 as a function of apyp, further supports this conclusion. Although the errors associ-
ated with different initial conditions can vary by an order of magnitude, the minimum value of each (roughly
convex) curve appears nearly identical and is located near the values shown in Fig. {a).

Figure[5|presents snapshots of the EA ABM results across 10, 000 realizations of Eqn. (2)) and the optimised
PDE solution associated with the Box initial condition. The first row shows the expansion in time of the EA
ABM support, i.e., the area occupied by the cells, due to melanophore-melanophore repulsion. For more
intuition, we superimpose the cell positions from one ABM realization on our number-density results in this
figure and throughout the manuscript. In all cases, we crop out approximately the upper half of cell positions.
Visual inspection of cell positions in Fig. [5| suggests that melanophore—melanophore distances increase near
the edge of the collective. Similarly, the speed at which the support expands appears to slow down for the EA
ABM result, consistent with melanophores experiencing weaker forces from comparatively distant cells in this
region.

We also observe in Fig. [5a)—(d) that a band of high cell density emerges around the edge of the support
which surrounds a ring-like region of low density. These bands may result from the combined effects of cell-
cell repulsion and the fine mesh resolution that we use to sort agent positions in the EA solution. Repulsion
causes cells at the edge of the collective to travel towards empty regions, while more centrally located agents
move slower due to the balance of forces from their neighbors. When repulsion separates cells by distances
greater than the mesh resolution, we expect regions of low density within the solution support to appear. These
oscillatory bands should become less evident when the repulsive potentials in Fig. [I(f) exhibit shallower gra-
dients, as this permits cells to cluster more closely. As we discuss in SI, the forces acting on xanthophores
are about an order of magnitude smaller than those for melanophores, and we indeed observe less pronounced
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Figure 4: The optimal PDE scaling parameter for movement depends on the mesh resolution but appears to
converge. (a) A scatter plot of the numerically optimised value of ey from Eqn. (@) as a function of the mesh
resolution, Ny, demonstrates that this scaling parameter is correlated with the mesh resolution, but appears to
converge at sufficiently high (i.e., Ny, > 240) detail. (We omit 95% confidence intervals because these are so
narrow that they are difficult to see.) (b) Plotting the log L? error, given by Eqn. (S8) of the SI, as a function
of apm with Ny, = 240 for each initial condition suggests that the values in (a) are optimal. As we show in
Fig.[2(c), melanophores are typically separated by more than 60 um in our movement-only ABM simulations—
over four times the voxel width in a grid with Ny, = 240. See and SI for numerical details.

bands there.

We present snapshots of the continuous model, Eqn. (@), under our estimated value of ayn in Fig. Eke)—(h).
This PDE solution captures the dynamics of our example ABM realization significantly better than the case
in Fig. b), when apy = 1. However, unlike the EA ABM result, the PDE does not exhibit bands of high
and low cell density. This discrepancy can be further appreciated in Fig. [5(i)-(k), which presents snapshots
of the pointwise difference between the PDE and EA ABM solutions. Here positive values indicate that the
discrete solution is larger than the continuous one. The lack of bands in the PDE setting is likely because the
mean-field assumption used to derive the continuous system is invalid where density is low. We do not expect
this discrepancy to be as pronounced in models that include cell birth, as this mechanism increases density;
see §3.3] Moreover, the PDE support expands faster than that of the ABM. This result is likely due to our
choice of error function to fit anv. Specifically, this parameter is biased towards values that produce accurate
approximations in the bulk as these regions have a larger contribution to the L?> norm. Since we have already
determined the assumptions underlying the continuous model break down in low density regions, however, we
choose to fit to the bulk of the cell density and focus on the L? difference.

To demonstrate that our observations for the Box case are consistent across initial conditions, we compare
the EA ABM and PDE dynamics for the Stripe and Two stripes initial conditions in Fig.[6] (See Supplementary
Fig. 2 for the Offset rectangles initial condition.) In Fig. [6[a)—(d), the column-averaged PDE solution, i.e.,
the solution average over the x variable, has a larger support than that of the EA ABM and does not exhibit
oscillatory bands. (Comparing column averages is justified because both results are nearly uniform along the x-
axis.) Nevertheless, the continuous solution closely approximates the EA ABM density, particularly in regions
where the latter is high. After about t = 25 days, for example, the maximum pointwise difference between
the column-averaged solutions is no more than 80 cells/mm?. Both solutions invade empty space in time, and
the speed of this travelling wavefront appears to slow as cells become more diffuse. For the Two stripes initial
condition in Fig. [f(e)—(h), the ABM and PDE predict that cells move into the initially empty space between
stripes to approach a characteristic profile also observed in the one-stripe case. The EA ABM model does not
appear to form oscillatory bands in the interstripe region, corroborating our hypothesis that these bands are
more likely to arise near the edge of the solution support.
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Figure 5: Melanophore movement models with our Box initial condition. We present (a)—(d) snapshots of the
EA cell density (cells/mm?) across 10* ABM realizations, (e)—(h) the corresponding PDE results using the
optimal value of appy for a mesh resolution of Ny, = 240, and (i)—(k) the error between the PDE and EA ABM
densities. We overlay cell positions for one example ABM simulation (black points) as a visual guide; we show
roughly half of the region occupied by these cells. A difference in cell density of 150 cells/mm? in a given
voxel corresponds to about 0.0234 cells for this choice of mesh resolution.

3.2 Cell birth

We identify the density-limiting parameter ¢ and growth rate y in our IDE model, Eqn. (7)), by comparing with
agent-based data from Eqn. (5). Importantly, the dynamics of discrete-model proliferation, unlike cell migra-
tion, involve stochasticity beyond the initial condition. To gain intuition, we thus start with 1D simulations:
for each value of Ny € {1,2,...,10}, we compute the EA of 10° ABM realizations from an initial condition
in which a single melanophore is placed at the origin in a 1D domain. In Fig.[7(a) we show the EA result
for Nuir = 1 and the corresponding IDE model solution with the optimal values of y and ¢* in Fig. [/(b). The
continuous solution appears to have a smaller radius of support than the EA ABM result at every time point; see
Fig.[7(c). This result holds across all Ny;, values in Fig.[7(d). While the IDE predicts a piecewise linear growth
of the total number of cells, the corresponding EA ABM result increases linearly before slowly saturating as
the domain fills, as we depict in Fig.[7(e). This behaviour likely arises from our overcrowding condition that
prevents cell densities from exceeding c¢*. As the domain fills with cells, it becomes less likely to select a lo-
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Figure 6: Melanophore movement models with our Stripe and Two stripes initial conditions. (a)—(d) We present
snapshots of the column-averaged cell density (cells/mm?, black solid line), generated from 5 x 10° ABM
realizations for the Stripe case, alongside the corresponding PDE solution (dashed red line) under a mesh
resolution of Ny, = 240 and our optimised value of ayy. (€)—(f) Similarly, we show snapshots of the column-
averaged density, generated from 10> ABM realizations for the Two stripes case, and the corresponding PDE
solution. The 2D solutions are nearly uniform in the x-direction (data not shown).

cation z that satisfies the overcrowding condition in the ABM. This reduces the population growth rate at later
times. In contrast, the IDE model specifies that the support increases by the same amount at each time step until
it reaches the domain boundaries. As we discuss in capturing discrete model behaviour more accurately at
higher cell numbers may require replacing y in our IDE with a density-dependent function.

Our 1D simulations provide a baseline case to test our estimation process. As we note in we employ
a sequential procedure, first fitting ¢* with y = |Q|~! and then estimating y with c* fixed. In the 1D case, this
leads to optimal values ¢* = 7.592 cells and y = 0.2822. If we instead estimate both parameters simultaneously,
we find ¢t = 7.430 cells and y = 0.2902. This is a difference of about 2.1% in ¢* and 2.8% in vy, suggesting
that sequential estimation reduces computational complexity without strongly affecting parameter values. To
understand if a coarser discrepancy measure based only on cell numbers at each time is sufficient, we also fit
¢ and y by minimizing the squared difference in the total cell numbers over time (See Supplementary Table 3
for the resulting parameter values). The corresponding parameter estimates differ from the density-based case
by approximately 1.2% for and ¢* and 7y, suggesting both error measures are reasonable. Both approaches also
appear to exhibit similar sensitivity as parameters are varied (compare Figs[7(f) and Supplementary Fig. 1).

Figure[8Jand Supplementary Fig. 3, respectively, show that proliferation in 2D broadens the solution support
from the Box and Offset rectangles initial conditions over time, and the IDE model accurately captures the total
cell mass of the ABM system for all Ny;; values considered. Our estimated optimal values of ¢* and y for these
two initial conditions differ by about 2.5% and 0.31%, respectively, suggesting that our estimation procedure
is robust to the initial condition. We also highlight that a region of higher density forms at the edge of the
initial condition’s support for both the ABM and IDE in Fig.[8(a)—(h). Indeed, if z is near the support boundary,
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Figure 7: Melanophore birth models with a baseline initial condition of one cell at y = O in a 1D domain. Results
in (a)—(c) are for Ny = 1 position/day. (a) We compute the EA ABM result by simulating 10° realizations of
our ABM birth model, Eqn. (5)), and binning cell positions in a histogram with 0.1 mm-wide voxels (i.e.,
Nhist = 30). (b) We use a finer mesh resolution to solve our corresponding IDE model (Eqn. (7)) before
transferring results to the same histogram in (a) to perform parameter estimation. Here we show our IDE
solution produced with optimal parameter values ¢c* = 7.592 cells and y = 0.2822. (c) The difference between
our discrete and continuous results highlights that the ABM support is wider than the PDE support. (d) This
is also visible by comparing their mean radii of support in time. To compute the mean radius of support for
the ABM at a given time, we find the most distant melanophore from y = 0 for each simulation and average
across these values. (e) Cell mass grows linearly in both models at first, but stochastic effects coupled with our
overcrowding condition drive down the growth rate of the ABM as the domain fills with cells. (f) Plotting the
squared L? space-time difference between the discrete and continuous densities, summed over all Ny values
considered (namely Npir = 1, ..., 10), as a function of the density-limiting parameter ¢* and birth-rate scaling
parameter y highlights its convex shape in ¢* and lesser sensitivity to y. We compute this L? difference using a
time step of 10 days here, and our results are based on 10° simulations for each Ny;; value. See SI for parameter
values under alternative choices in our estimation process.

Qf  covers only a fraction of the occupied domain, thereby meeting both conditions for birth. Conversely, the
cell density at the center of the domain is comparatively low throughout time because the total number of cells
contained within disks of size |Qjoc| is already close to the threshold ¢*. Interestingly, as in the 1D case with
only proliferation, the ABM EA support is larger than that of the IDE solution, the reverse of the behaviour that

we observed for cell migration in Fig.[5]

3.3 Cell movement and proliferation

To obtain a full continuous model, we may substitute our estimated values of the migration scaling parameter
amM, density-limiting parameter ¢*, and birth-rate scaling parameter y into Eqn. (). However, comparing
this model to the dynamics of our full ABM shows that migration and proliferation have interwoven effects.
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Figure 8: Melanophore proliferation models with our Box initial condition. Results in (a)—(h) and (j)—(1) are
for Ny = 150 positions/day. We compute (a)—(d) the EA ABM result across 10° simulations, and (e)—(h) the
solution of our IDE model with optimal parameters ¢t = 8.564 and y = 0.1274. (i) Our continuous model
captures the mean number of cells in our ABM simulations for different Ny;; values well across time. (j)—(1)
As in the 1D case in Fig.[7} the difference between the IDE and EA ABM results demonstrates that the ABM
support extends beyond the IDE support. To provide more intuition, we overlay roughly half of the cell positions
from an example ABM simulation in (a)—(h) and (j)—(I). See Supplementary Fig. 3 and Supplementary Table 4
for corresponding simulations using our Offset rectangles initial condition.

To illustrate this phenomenon, we present a PDE solution with our optimal values of ayu, ¢*, and y from
and[3.2)at r = 70 days in Fig. [Ofa). We observe that this PDE model produces a significantly higher cell
density than its discrete counterpart in Fig.[9(b). This discrepancy occurs regardless of the value of Ny, which
influences the speed of cell birth. Related to this, we notice that the long-time cell density in our ABM results is
much lower when both mechanisms operate simultaneously than it is when only birth occurs; compare Fig.[8(d)
and Fig. [9(b). On the other hand, the inclusion of movement does not influence the long-time density of the
continuous model solution; see the colorbar in Fig. [§(h) in comparison to the one in Fig.[9] Although we do
not furnish these observations with an analytical explanation here, they demonstrate an interesting difference in
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Figure 9: A modular approach to fitting parameters for cell movement and birth does not account for the inter-
play between these two mechanisms. We show results in (a)—(c) at = 100 days for Npi; = 150 positions/day.
(a) The solution of our full PDE model (Eqn. (8))) with the values of ayy and {c*, y} that we fit based on ABM
simulations of cell movement and birth, respectively, captures the support of the ABM EA result, but not its
density. (b) In comparison, the density for the full discrete model is roughly 400 cells/mm?. (c) By integrating
this density, which is based on empirical estimates of melanophore-melanophore distances [211 [75], over an
Qoc-region, we find that ¢* ~ 7.0686 cells. With this value of ¢*, alongside the values of aym and y that we
estimated for migration and birth individually, our PDE produces cell densities that more accurately represent
the ABM dynamics.

how “adding” mechanisms or terms impact PDE and ABM dynamics.

While we could produce a more accurate continuous model of migration and proliferation by minimizing
the L? error between the full PDE and ABM results to identify all three parameters, we instead employ a simpler
theoretical argument. We notice that the parameter ¢* is largely responsible for controlling the maximum cell
density over long time periods. (We determine this by integrating Eqn. [§]over space and identifying the steady-
state dynamics; this analysis reveals that equilibrium is reached when the density within any neighborhood Qf |
is below ¢*.) In order to limit the maximum density to our estimated empirical value of 400 cells/mm? [73],
we let ¢t = 400|Qjoc| > 7.0686 cells. As we show in Fig. Ekc), using this value of ¢*, alongside our previously
fit values of anv and y, produces PDE densities that are much closer to the corresponding ABM results. We
thus fix ¢™ = 7.0686 cells for the remainder of this manuscript, which allows us to highlight the time dynamics
of our full PDE model in comparison to the EA ABM result with Box and Offset rectangles initial conditions in
Fig.[10]and[T1] respectively.

As we discussed in §3.T)and [3.2] the continuous solution support extends more slowly than that of our dis-
crete model in a proliferation-only setting, but overestimates it in the case with migration alone. We thus expect
that combining these mechanisms in our full model may balance these two errors, resulting in a more accurate
continuous description. Figure[I0|i), which depicts the time evolution of the estimated radius of support for the
PDE and EA ABM results, supports this conclusion. When MNy,;; is small, the solution support of the PDE sur-
passes that of the ABM solution, reflecting an increase in the time scale of proliferation. Conversely, the PDE
solution extends beyond the ABM result for large values of Np. At intermediate values (i.e., Npiy = 50 posi-
tions/day), the EA ABM and PDE dynamics agree for longer time periods. Figures[I0and [TT]demonstrate that
combining movement with proliferation also dissipates the oscillatory bands that we observed for movement
alone in Fig.[5] Furthermore, the EA ABM and PDE solutions exhibit similar characteristic profiles without
regions of high cell density around the edge of the initial condition support, in contrast to the birth-only model

(Fig. [8).
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Figure 10: Melanophore movement and birth models with our Box initial condition. Results in (a)—(h) and (j)—
(1) are for Npir = 150 positions/day. We (a)—(d) compute the EA ABM result using 10? simulations, and (e)—(h)
generate the PDE solution of Eqn. () with ¢* = 7.0686 cells and the values of aym and 7y that we estimated
in and §3.2] respectively. (i) The time evolution of the PDE cell mass agrees well with the mean number
of cells for the ABM under different Ny;; values. (j) Depending on the time scales of migration and birth, the
approximate PDE radius of support overtakes or trails the corresponding EA ABM result. We compute the
radius of support for each ABM realization by finding the most distant cell from the origin at each time step;
we then average these values across our simulations. In the PDE case, we find the furthest voxel with non-zero
density from the origin based on the L™ distance, after setting the density to zero if it is below single-digit
precision of 1077, (k)—(1) We show the difference between the PDE and EA ABM solutions from (a)—(h) at two
sample times. We overlay cell positions form one ABM simulation to illustrate how the continuous and discrete
solutions are related. In (i) and (j), shaded regions denote plus or minus one standard deviation of the EA ABM
solution.
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Figure 11: Melanophore movement and birth models with our Offset rectangles initial condition. Results in
(a)—(h) and (j)—(1) are for Ny = 150 positions/day. As in Fig.[I0] we show (a)—(d) the EA ABM result across
103 simulations; (e)—(h) the corresponding PDE solution with ¢* = 7.0686 cells and the values of aypy and y
that we estimated in and respectively; (i) the PDE cell mass in time compared to the mean number
of cells across 10° ABM simulations for different Ny values; and (j)—(1) the difference between the PDE and
EA ABM solutions from (a)-(h). To provide more intuition, we overlay some cell positions from one ABM
simulation.

4 Discussion

We presented a procedure for constructing experimentally interpretable continuous models of cell migration
and birth when coarse-graining may not be possible or justified. Because mean-field approaches become more
accurate in the limit of an infinite number of agents, we introduced and estimated scaling parameters in our
continuous models to account for realistic—i.e., relatively small and changing—cell numbers. Stochastic non-
local rules for cell birth and migration, based on the ABM [21]], informed our continuous descriptions and
allowed us to transfer biological length scales and units to the macroscopic setting. Throughout our work, we
stressed matching the spatio-temporal behaviour of our continuous and discrete models. We adopted a modular
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approach by estimating parameters in cases with either movement or birth before considering both mechanisms
simultaneously. This allowed us to examine the specific contributions of each mechanism to self-organization
and provided insight into their interplay in discrete and continuous settings.

We observed that the solutions of our continuous models expand at a different rate than EA ABM results
and feature smoother profiles. We produced more accurate descriptions of agent-based movement or birth by
introducing and estimating parameters that adjust the time scale at which PDE solutions evolve. However,
when we used the same parameter values in a continuous model of both cell migration and birth in
the PDE did not produce close estimates of the full ABM. Specifically, our full continuous model yielded
larger long-time densities than the EA ABM results, motivating us to re-estimate the threshold value ¢* with a
theoretical approach. This generated a more faithful continuous description and highlighted that the effects of
movement and proliferation are not simply additive. We thus stress that parameters must be fit to data in which
all mechanisms of interest act simultaneously, in order to capture their interplay. This is particularly crucial for
contexts such as cancer biology, where continuous models sometimes struggle to predict tumour elimination
because of the difficulty of accounting for the combined effects of cell migration, proliferation, and death [76].

Our results highlight how choices in numerical implementation affect parameter estimates and suggest
several directions for future work that may improve our approach. For example, the optimal value of our
parameter controlling the timescale of cell migration (ann) appears to be independent of the initial condition
and the mesh resolution that we used to construct PDE solutions, provided the latter is sufficiently refined.
However, our continuous models more accurately represent ABM results within the bulk of the solution support
because the L? norm more strongly penalises discrepancies there. In the future, other norms, such as the L*®
error, could be used to match the solution supports given by our discrete and continuous models. Replacing
our birth-rate scaling parameter y with a density-dependent function—either through rigorous derivation or an
equation-learning approach [[77]—is another exciting future direction. In particular, because cell proliferation in
the ABM involves selecting positions uniformly at random from the domain each day, the chance that we select
a location z that permits birth appears to depend in a nonlinear way on the solution support. More generally, our
computational study does not provide theoretical explanations for our parameter values, and we plan to build
on the intuition that we established here to develop these arguments in the future.

To simplify our initial study, we considered the dynamics of one cell population (i.e., melanophores in
the main text and xanthophores in SI), but pattern formation in zebrafish skin involves multiple cell types
and longer-range interactions. Future work may extend our pipeline to construct more realistic continuous
models with multiple cell types and interaction neighborhoods. Related to this, the initial conditions that we
designed allowed us to make one-to-one comparisons between discrete- and continuous-model densities, but
this may not always be possible. More realistic zebrafish models (i.e., [21} 140} 142} |43]]) produce patterns that
are more complicated than our box and stripe motifs. This means that ensemble-averaging stochastic ABM
realizations may not retain information about the length scales inherent in patterns. For such cases, fitting
parameters based on summary statistics (e.g., pair-correlation functions [[78]], pattern-simplicity scores [[79], or
persistent-homology approaches [80]) may be more useful, and we plan to address this in future work. These
and other directions move us toward constructing interpretable, analytically tractable continuous models of
self-organization, increasing our understanding of biological pattern formation more broadly.

Code availability

Our model and parameter-fitting code is publicly available on GitHub [81]]. Supplementary figures and videos
are available on Figshare at https://figshare.com/account/home#/projects/171234. Data used to
generate figures are given in Dryad https://doi.org/10.5061/dryad. s4mw6m9ch.

17


https://figshare.com/account/home#/projects/171234
https://doi.org/10.5061/dryad.s4mw6m9cb

Parameter Value Description and motivation
Rvim 0.00124 mm?/day ~ Strength of melanophore potential in Eqn. (3)); based on [21} 42]
WMM 0.02 mm Melanophore interaction range in Eqn. (3)); based on [21}, 42]
dioc 0.075 mm Interaction range for proliferation in Eqn. (6)); based on [21]]
Nbir Varies Number of positions selected uniformly at random per day for possible
cell proliferation in Eqns. (3) and (7))
c” 1 cell Lower bound for the number of cells in a short-range neighborhood for
cell proliferation in Eqns. (3) and (7))
tfinal 150 or 2,000 days Simulation end time (150 days in 2D and 2, 000 days in 1D)
Almove 0.01 or 0.1 days  Time step for numerical implementation of Eqns. (2)) and (S3)
Atpir 1 day Time step for numerical implementation of cell birth in Eqns. (3) and (7))
Atppg 0.05 days Time step for numerical implementation of Eqns. @), (§), and (S6)
Atrecord 1 day Time step for recording data from model simulations
Ngim Varies Number of ABM realizations for computing EA cell densities
Nhist Nuin or 30 voxels  Spatial discretization step for binning simulations results for comparison
Npin Varies Spatial discretization step for solving our continuous models

Table 1: Model and simulation parameters. We note that Ny, € {10,25,50, 100, 150, 200, 250} realizations
for 2D simulations and Ny, € {1,2,3,4,5,6,7,8,9, 10} realizations for 1D simulations. As we discuss in SI,
Ngm = 5 x 103 realizations for most of our ABM results with only cell movement and Ngj, = 103 for all of
our ABM results that include cell birth. We set Npise = 30 voxels for any simulation including cell birth, and
Nhist = Npin otherwise. (See figure captions for our N, values.) The value of Ry (and Rxx, see SI) were
reported as repulsion strengths (i.e., Ry /wmm) in [42]].
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