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ABSTRACT2

The ability to quantify when and where animals interact is key to the understanding of a plethora3
of ecological processes, from the structure of social communities and predator-prey relations to4
the spreading of pathogens and information. Despite the ubiquity of interaction processes among5
animals and the revolution in tracking technologies that now allows for the monitoring of multiple6
individuals simultaneously, a common theoretical framework with which to analyse movement7
data and extract interaction events is still lacking. Given the wide spectrum of mechanisms8
that governs how a biological organism detects the proximity of other organisms, most of the9
proposed theoretical approaches have been tailored to specific species or empirical situations10
and so far have been lacking a common currency with which to evaluate and compare findings11
across taxa. Here we propose such general framework by borrowing techniques from statistical12
physics, specifically from the theory of reaction diffusion processes. Some of these techniques13
have already been employed to predict analytically pathogen transmission events between pairs14
of animals living within home ranges, but have not yet pervaded the movement ecology literature.15
Using both continuous and discrete variables we present the mathematical framework and16
demonstrate its suitability to study interaction processes. By defining interactions whenever a17
token of information is transferred from one individual to another, we show that the probability of18
transferring information for the first time is equivalent to the first-passage probability of reacting in19
a multi-target environment. As interaction events reduce to encounter events when information20
transfer is perfectly efficient, we compare our formalism to a recently proposed approach to study21
encounters. Such approach takes the joint occupation probability of two animals over a region of22
interaction as a measure of the probability of encounter, rather than the first-encounter probability.23
We show the discrepancy of the two approaches by comparing analytically their predictions with24
continuous variables, while with discrete space-time variables we quantify their difference over25
time. We conclude by pointing to some of the open problems that the reaction diffusion formalism,26
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alternatively, the reaction motion formalism, as it should be more appropriately called, might be27
able to tackle.28

Keywords: animal interactions, encounter problem, movement ecology, random walks and Brownian motion, reaction diffusion29
processes30

1 INTRODUCTION

A vast number of studies in animal ecology aims at linking behaviour at the level of the individuals to the31
processes governing the dynamics of a group or an entire population [1]. Underlying this fundamental32
tenet is the search for general laws that link the interactions between animals to the patterns that emerge at33
much larger scales. A renewed interest in such perspective has surfaced in the last decades following the34
introduction of the movement ecology framework [2] and the advances in sensor technologies that allow to35
track animals in space and time at unprecedented resolution [3, 4]. It is the ability to follow simultaneously36
multiple individuals and infer when and how they interact that will be instrumental to the understanding37
of this micro-to-macro connection. Notably, despite the pervasiveness of interaction processes between38
moving organisms, models in the animal ecology literature of how individuals interact or more simply39
when and where they encounter or are in proximity of one another have been limited.40

While theoretical approaches that aim at quantifying interaction processes have appeared [5, 6, 7, 8, 9],41
efforts to develop a general framework have been stymied by two main factors: semantic issues, due in part42
to the different ways in which animals may interact, and the apparent absence of analytical ‘null’ models43
in the movement ecology literature. As animals interact by relying on their sensory biases, by using their44
cognitive mechanisms and by exploiting their motor abilities, finding a general definition of interaction45
has been challenging and the rationale has often resulted in specific choices based upon the biological46
questions and the species under observation.47

In collective movement studies a classical example is the use of delays in motor response to determine48
leadership roles. This approach has been employed to construct social ranks in a flock of pigeons based49
on their global delayed response in following each other’s trajectories [10], and to extract time-dependent50
delays during coordinated manoeuvres of foraging bat pairs to identify leaders [11] or to classify the51
influential neighbours during collective turns of a shoal of laboratory fish [12]. Examples in animal52
social studies also abound [13]. In that context a social interaction network for a group of individuals is53
constructed based on the occurrence per sampling period of well defined events [14], e.g. grooming, or54
parent and offspring associations, and has been used to predict how processes such an infection or some55
form of information is spread over the network. While these and other approaches provide practical tools to56
estimate specific forms of relatedness, they often lack a common currency with which to make comparison57
across species.58

Even in the simplest scenario in which an interaction is defined as an encounter, i.e. a co-location or a59
proximity event, model estimations differ greatly depending on how the movement is represented. The60
assumption that animals move deterministically, i.e. perform ballistic motion, has led to the so-called ideal61
gas model prediction of an exponential time dependence in the encounter probability with mean π/(8dbv)62
[5], whereby in a population of density d a focal individual moves with constant speed v and encounters63
other individuals when within a distance b. The cornerstone of the ideal gas model is the law of mass64
action. It posits that encounters are directly proportional to the concentration of individuals and neglects65
any dependence on the statistical properties of the trajectories of the moving entities. In essence it is a mean66
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field approximation and deviates further from the actual predictions the more winding are the movement67
paths and the lower the density of individuals.68

In the extreme limit of very diluted systems, e.g. one randomly moving organism searching for static69
targets, a large literature on random biological encounters have emerged in the last twenty years. The focus70
of that literature has been the study of target encounter efficiency when an animal’s straight movement71
paths follow a power law distance function as compared to a sharply decaying one [15, 16], the latter72
characteristics of Brownian motion. Various scenarios have been considered including the distinction73
between destructive searches, for which a target is consumed upon encounter, and non-destructive searches,74
for which the target is uninfluenced by the searcher [17, 18], as well as the difference between hard75
encounters, which occur whenever a searcher is within a threshold distance from a target, and soft76
encounters whose occurrence depends on some smooth functional dependence of the searcher-target77
distance. Given the vast number of animal interactions an important study that has brought clarity to the78
literature is the one by Gurarie and Ovaskainen [8], which has provided a classification of the different79
types of animal encounter interactions and has reviewed and compared many of the theoretical results, in80
particular of interest to us here, the findings on what is generally referred to as random search statistics81
(see e.g. [19, 20]).82

In comparison to the vast literature on search of static targets, past ecological investigations on moving83
targets, that is on actual animal encounters, have been limited, with the exceptions of a couple of analytic84
studies in one dimension [21, 22], and two-dimensional simulation studies on animal encounters when85
moving as Lévy walkers both in terms of encounter efficiency [6] and in terms of survival advantage when86
the energy content of the prey is accounted for [23, 24]. Lately, following the improved resolution in87
tracking technology [3], there has been an upsurge of interest on encounter processes [9, 25, 26, 27, 28].88
Yet, the animal ecology literature seems to have missed out a body of work in statistical physics on the89
theoretical investigations of encounter and transmission events, normally referred to as the theory of reaction90
diffusion processes. That theory was laid out in the ’80s by Kenkre in the context of exciton annihilation in91
molecular crystals as well as in the general field of exciton capture in sensitized luminescence [29, 30, 31].92
Originally the theoretical formalism was developed for movement in unbounded discrete lattices with93
focus on coherence in exciton motion [32, 31], but specific problems were also solved in bounded systems94
[33]. A focused aim of those investigations was the resolution of annoying paradoxes that had been95
encountered in the field of molecular crystals regarding both magnitude and temperature dependence of96
exciton diffusion constants extracted from experimental data in aromatic hydrocarbon crystals [34, 35]. A97
decisive demonstration of the errors made in previous analyses in molecular crystals was given by Kenkre98
and Schmid in the papers referenced. This was done in the context of the extraction of motion parameters99
from mutual annihilation observations on the one hand and sensitized luminescence observations on the100
other. A study of that demonstration would be highly useful in any encounter context whether molecular or101
ecological.102

The techniques used to interpret empirical observations on exciton annihilation have actually been103
extended to spatially continuous domains to study hard encounters in an ecological context, more precisely104
to predict the probability of interaction for animals living within separate home ranges in one [36] and105
two dimensions [37]. By representing the tendency of an animal to remain close to its burrow or nest106
via an Ornstein-Uhlenbeck process [38, 39], i.e. by tethering its motion using a spring force, an exact107
analytic representation of the encounter and transmission probability when interaction occurs within a108
cut-off distance has been derived [36, 37]. The formalism that Kenkre developed with Sugaya in this109
context towards the implementation of the reaction diffusion theory has been given in detail in the recent110
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publication of a book by two of the coauthors (see chapter 6 in ref. [40]). Even though these analytical111
techniques clearly represent the most appropriate and powerful starting point from which to study a broad112
range of encounter and interaction processes, surprisingly they have not been exploited in the animal113
ecology literature.114

Following Kenkre’s reaction diffusion approach, a novel analytic formalism to study movement on discrete115
lattices and in discrete time [41] has allowed to derive analytically the so-called splitting probabilities, that116
is the probability for interaction events to occur in a set of locations and not others [42]. Knowledge of117
these splitting probabilities allows to predict interactions in a multi-target environment, and has lead to118
analytic predictions of the spatio-temporal dynamics of random transmission events in arbitrary dimensions119
and arbitrary (lattice) topology [42], including hexagonal and honeycomb lattices [43], as well as when120
individuals undergo a resetting dynamics [44] or when the environment is spatially heterogeneous [45]. All121
these developments, both with continuous and discrete variables, should form the backbone of a general122
theory of animal interaction and encounter processes, and given their analytic formulation, should become123
part of the arsenal of ‘null’ models in movement ecology.124

Here we present evidence of the need of a reaction diffusion formalism to study encounter and125
transmission events between animals, interchangeably referred to as walkers in this study. We define126
a transmission event as the first occurrence when information is successfully transferred between two127
individuals. With continuous variables we consider the spatio-temporal dynamics of two diffusing animals128
(Brownian walkers) living in two separate home ranges undergoing Onrstein-Uhlenbeck motion and129
show the analytic formalism that has been developed in that case [37] to represent the probability of130
first-transmission. With perfect efficiency of information transfer the first-transmission event reduces to a131
first-encounter event, hence aligning our definition of an encounter event to that of a first-hitting event that132
has been used in the ecological literature [46]. In this limit we compare the formalism to the one presented133
in a recent theoretical investigation by Martinez-Garcia and collaborators [9] where a pair-wise distance134
threshold probability has been proposed as a tool to study animal encounters. For the Ornstein-Uhlenbeck135
case considered, we derive analytically the mathematical equation that relates the two probabilities.136

For the discrete space-time formulation we also consider two diffusing animals (lattice random walkers)137
living in separate home ranges. We choose two scenarios to represent the characteristic reduction in138
movement range. In the first one, we impose a hard constraint on the movement range of the animals139
(reflected lattice walkers). In the second one, we account for the animal tendency to return to a den or a140
burrow by resetting its location at random times to its own focal point in space (resetting random walkers).141
For these two cases for simplicity we restrict the interactions to when animals are co-located on the142
same site and we quantify the time-dependence of the first-encounter probability (maximal information143
transfer efficiency). We compare this dependence to the one obtained by spatially integrating the animal144
joint occupation probability of all possible interaction co-locations, a quantity analogous to the pair-wise145
distance threshold probability examined with continuous space-time variables. For the discrete case we146
also show the exact formalism to extract mean first-transmission times.147

In the present study we make various assumptions about the animals’ behaviour, their environment148
and how we characterise their movement. In choosing very simple representations of how animals move149
within a home range in one and two dimensions, we have purposely sacrificed ecological complexity150
to gain in conceptual and mathematical transparency. We have disregarded that animals may engage in151
activities other than foraging (see e.g. examples in refs. [47, 48, 49] and for relevant techniques developed152
to infer behavioural shifts from tracking data). We have also assumed that animals move in a homogeneous153
environment and have represented in a simple manner how the presence of a home range in one and two154
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dimensions affect their motion. A third assumption is that we have neglected correlations in the movement155
steps, which means that when animals move with some degree of persistence, our estimation of encounter156
and transmission rates are valid for time scales longer than the correlation or persistence time [49].157

2 MATERIALS AND METHODS

2.1 The continuous space-time formalism158

To bypass any potential semantic issues, we restrict our study and define an interaction when a measurable159
unit of information is being passed from one individual to the other. Examples include an infectious disease,160
which is transmitted through the transfer of a pathogen, or the passing of knowledge, e.g. food source161
location. In these cases, when the movement statistics is Markov and the information being transferred is a162
binary variable (presence/absence), transmission events can be modelled as a first-absorption process [50].163
In other words by defining interactions based on the transfer of a token of information from one animal to164
another, it is possible to model mathematically interaction events as a function of the movement statistics165
and the ability of the uninformed individual to receive information from the informed one, as exemplified166
pictorially in Fig. 1. Modelling and quantifying such events and identifying the underlying principles under167
which randomly moving particles or more generally biological agents react with each other is an important168
area of investigations in statistical physics and is referred to as the theory of reaction diffusion processes.169

A well-known assumption to estimate interaction times consists of summing the average time for two170
individuals to be in proximity, T , and the average reaction time or information transfer time upon proximity,171
I . Such assumption goes under different names in different disciplines, e.g. the inverse addition law in172
chemical reactions [51], or Matthiessen’s rule in solid state physics [52]. Kenkre and his collaborators173
showed the limitations of such an assumption [35], whose validity is restricted to the so-called reaction174
limited case (T/I → 0) and the motion limited case (I/T → 0), and developed an analytic formalism to175
predict the time-dependent first-transmission probability between randomly moving entities in unbounded176
lattices [29, 30, 31]. With a similar theoretical construct it is possible to analyse the transmission problem of177
two animals, one informed and the other one uninformed, living in separate home ranges. By representing178
them as two Brownian walkers biased towards their respective focal points in space, i.e. their home range179
centres, through a spring force (Ornstein-Uhlenbeck process), Kenkre and Sugaya [36, 37] have derived180
analytically the transmission probability, that is the probability that the uninformed (susceptible) individual181
has become informed (infected) at time t.182

To understand what are the key ingredients necessary to quantify reaction diffusion processes, in particular
the time-dependent transmission probability of a token of information from one individual to another, we
report here some of the necessary mathematical details with continuous variables. We start by considering
the partial differential equation (PDE) governing the dynamics of the joint occupation probability of the
two tethered Brownian walkers, one susceptible and one infected, subject to an interaction rate C upon
proximity [36, 37]. The PDE of the time-dependent joint occupation probability of walker 1 and 2 to be at
r1 and r2, respectively, contains a Smoluchowski term to describe the movement to which a transmission
interaction term in the form of a loss is added [36, 37]. A variable transformation from the coordinates
r1,2 of the two animals r+ = r1 + r2 (a centre of mass coordinate would be r+/2) and a relative position
r− = r1 − r2 (in ref. [37] r± are defined with a multiplicative factor 2−1/2) allows one to write the joint
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PDE governing equation as [37]

∂P (r+, r−, t)

∂t
= ∇+ · [γ(r+ −R+)P (r+, r−, t)] + ∇− · [γ(r− −R−)P (r+, r−, t)]

+ 2D
(
∇2

+ +∇2
−
)
P (r+, r−, t)− C

∫ ′
dr′+ dr′− δ(r+ − r′+)δ(r− − r′−)P (r+, r−, t) ,

(1)

where D is the diffusion constant of both animals, ∇± represents the partial differential operator in radial183
coordinates for r±, δ(z) is the Dirac delta function, R± = R1 ±R2 are the transformed coordinates of184
the two animals’ home range centres, γ is the strength of the attraction (spring force constant) towards185
their respective home range centres, and the prime symbol of the integral means that integration is over a186
given range of values to be specified.187

Note that P (r+, r−, t) in Eq. (1), which describes the dynamics in a 4-dimensiuonal space, is the spatio-188
temporal dependence of the joint occupation probability (distribution) of the informed and uninformed189
individual. When a transmission event occurs, the uninformed individual disappears, and thus the probability190
P (r+, r−, t) is identically zero. This aspect is captured by the last term of Eq. (1), which indicates that191
there is a probability loss over time at rate C when the two animals are within the interaction distance,192
indicated by the prime integration with respect to the separation distance variable. When the rate C = 0,193
there is no interaction, while an encounter event is represented with C → ∞. Note also that the presence of194
the integration allows to specify the spatial locations where interactions may occur (integration over r+)195
and at what distance it may occur (integration over the relative coordinate, r−).196

With P (r+, r−, t) non-zero when both the informed and the uninformed individuals are present, the197
first-transmission probability, Tr0±(t), that is the probability (density) that a first-transmission event has198

occurred anywhere in the interaction region is simply given by199

Tr0±(t) = C
∫
dr+

∫ ′
dr−P (r+, r

0
+, r−, r

0
−, t), (2)

where the symbols r0
± indicate the dependence on the initial conditions (r+, r−) via P (r+, r

0
+, r−, r

0
−, t),200

which represents the solution of Eq. (1) the two animals are localised at r0
± at time t = 0. In Eq. (2)201

we have dropped the prime superscript on the integration over r+, since we consider it over the entire202
two-dimensional space, while we have kept it for the relative coordinates since that is only over the203
interaction region.204

To proceed further one needs to find the solution P (r+, r
0
+, r−, r

0
−, t) of Eq. (1) and then insert it into205

Eq. (2) to obtain the first-transmission probability. In some situations, like the one we are analysing here,206
the solution can be found analytically in terms of quantities that can be derived from the dynamics in207
the absence of interactions (C = 0). This is accomplished by employing the so-called Montroll’s defect208
technique [53, 54], which allows to find analytically the Laplace transformed P̃ (r+, r

0
+, r−, r

0
−, ε)—f̃(ε)209

represents the Laplace transform of a function f(t), i.e. f̃(ε) =
∫∞

0 dtf(t)e−εt, ε being the Laplace variable.210
More precisely one may express the first-transmission probability analytically as a ratio of quantities in211
Laplace domain defined independently of the transmission phenomenon, namely [37]212

T̃r0±(ε) =
µ̃(ε)

1
C + ν̃(ε)

, (3)
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whose time dependence can be found numerically by performing an inverse Laplace transform. In Eq. (3),213
the quantity µ(t) represents the probability, in the absence of any interaction, that the two animals are214
within the interaction region at time t starting from the initial coordinates

(
r0

+, r
0
−
)
,215

µ(t) =

∫
dr+

∫ ′
dr−Π

(
r+, r

0
+, r−, r

0
−, t
)
, (4)

where Π
(
r+, r

0
+, r−, r

0
−, t
)

is the joint occupation probability solution of Eq. (1), when C = 0, given the216
initial conditions r0

+ and r0
−, referred to as the propagator (solution). It is simply given by the product of217

two-dimensional Ornstein-Uhlenbeck propagators for each animal centred around their respective focal218
point or home range centre [37]. While µ(t) depends on the animal initial conditions (to lighten the219
formalism we have omitted this aspect from the notation), the function ν(t) does not have any spatial220
dependence and is the probability, in the absence of any interaction, that the locations of the two animals221
are within the interaction region at a time t after starting within it,222

ν(t) =

∫
dr+

∫ ′
dr′−

∫ ′
dr−Π

(
r+, r

′
+, r−, r

′
−, t
)∫ ′

dr′−
. (5)

Note that while Tr0±(t) is normalised in time and has units of inverse of time, ν(t) and µ(t) are223

dimensionless quantities, but are not normalised in time, thus are not time probability density per se.224
One may notice in fact that, since Π

(
r+, r

0
+, r−, r

0
−, t
)

is normalised in space, by integrating Eq. (4) over225
all relative distance values, r−, µ(t) would equal exactly 1. This mathematical remark is equivalent to226
stating that, in the absence of interactions, there is certainty that the two animals are somewhere in space.227

2.2 The discrete space-time formalism228

The recent development of the discrete space-time approach follows in the footsteps of the original229
studies on exciton annihilation in unbounded and periodic lattices [55] and has extended that formalism to230
bounded domains with reflecting boundaries [42], to scenarios when the movement is altered by random231
resetting to a given location [44], to dynamics in presence of spatial heterogeneities such as global biases232
[56], variable diffusivities in space [45], permeable barriers [57, 45] and different media and interfaces233
[58].234

The equation governing the transmission problem between two lattice random walkers is similar to the
continuous version, but with the notable difference that the dynamics for the informed and uninformed
individuals are governed by a difference equation rather than an integro-differential equation as in (1). By
calling P(n1,n2, t) the joint occupation probability at discrete time t for one walker to be at site n1 and
the other at site n2, one has

P(n1,n2, t+ 1) =
∑
`1,`2

[
A(n1, `1,n2, `2)P(`1, `2, t)− ρ

∑′

s

δn1,s δn2,sA(s, `1, s, `2)P(`1, `2, t)

]
.

(6)

In Eq. (6) the elements of the tensor A(w1,ω1,w2,ω2) represent the transition probabilities at each time235
step for the first walker to move from site ω1 to site w1 and for the second walker to move from site ω2 to236
site w2. As we consider that the two individuals move independently of one another, A = B1 ⊗ B2 where237
B1(w1,x1) and B2(w2,x2) control, respectively, the movement steps of walker 1 and walker 2. Compared238
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to the continuous case, the interaction term in (6) is now a summation rather than an integral, with δa,b239
a Kronecker delta and the prime symbol indicating all lattice sites where interaction may occur, while ρ240
represents the transfer probability once the two walkers are within the interaction range, and it is in place241
of the rate of the transfer C of the continuous case.242

Note that while we use discrete time variables, it is straightforward to convert Eq. (6) to continuous243
time and changing accordingly jump probabilities to rates. There is however a computational convenience244
in using discrete versus continuous time in our context, and that is in the ease to invert to discrete time245
a generating function (i.e. a discrete Laplace transform) as compared to inverting to continuous time a246
function defined in the Laplace domain [41].247

One of the advantage of the spatially discrete formalism over the spatially continuous one is that it
allows to quantify analytically the so-called splitting probability of interaction, that is the (time-dependent)
joint probability that a transmission event occurs in a set of lattice sites or nodes and not in others. This
prescription is naturally constructed in discrete space given the ease with which to associate the joint
presence or absence of individuals at a set ofM locations with coordinates Sm = (sm, sm) (m = 1, ...,M ),
where the first and second coordinates refer, respectively, to the first and second animal. Given the
(unordered) set Sm where the two individuals may transfer information, the probability that a transmission
event (in any of the possible locations) occurs at time t for the first time (first-transmission probability) is
given by [42]

Tn0(t) =
M∑
m=1

T (m)
n0 (ρ, t) (7)

where n0 = (n10 ,n20) represents the initial location of the two animals, and T (m)
n0 (ρ, t) is the time-248

dependent probability that the transmission event occurs when the animals are at the lattice coordinates Sm249
and not at any of the other M − 1 sites of interaction, the so-called splitting probabilities.250

If Ψn10
,n20

(n1,n2, t) is the propagator of Eq. (6) in the absence of any interaction (ρ = 0), one can write

the generating function—f̃(z) =
∑∞

t=0 z
tf(t) for a generic function f(t)—of the splitting probabilities,

i.e. T̃ (m)
n0 (ρ, z) =

∑∞
t=0 z

tT (m)
n0 (ρ, t) as the following ratio [42]

T̃ (m)
n0 (ρ, z) =

det
[
S(m)(ρ, z)

]
det[S(ρ, z)]

, (8)

with Sii(ρ, z) = (1− ρ)/ρ+ Ψ̃si,si(si, si, z) and Sij(ρ, z) = Ψ̃sj ,sj (si, si, z), and S(m)(ρ, z) the same as251

S(ρ, z) but with the vector (Ψ̃n10
,n20

(s1, s1, z), Ψ̃n10
,n20

(s2, s2, z), ..., Ψ̃n10
,n20

(sM , sM , z))
T replacing252

the m-th column (the symbol T indicates transpose). Note that Ψn10
,n20

(n1,n2, t) is the discrete analog253
of the joint occupation probability used in the continuous variable section, which was expressed in terms of254
the transformed variable (r+, r−).255

To represent animals roaming within their own home ranges we consider two cases. In the first, the home256
ranges have partial overlap and the range where animals move is bounded by impenetrable boundaries257
(reflected random walkers). In the second, the domain is periodic, but large enough to be effectively258
unbounded, and each animal resets at random times to its own focal point (resetting random walkers). In259
both cases we consider the individuals to move independently, leading to a product form of the propagator260
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for the process without transmission (ρ = 0), namely Ψn10
,n20

(n1,n2, t) = Qn10
(n1, t)Qn20

(n2, t)261
where Qn0(n, t) are the occupation probabilities for each independent walker.262

For computational convenience we consider that an interaction event may occur only when the animals
are co-located and we study both the one and two-dimensional scenarios. For the one-dimensional case
we focus on the first-encounter probability, that is we set ρ = 1, and we compute, through a numerical
inversion of the generating function, the time-dependence of the first-encounter probability, offering a
quantitative comparison with the corresponding discrete equivalent of µ(t) in Eq. (18), which is given by

µ(t) =
M∑
m=1

Ψn10
,n20

(sm, sm, t). (9)

Note that also in this discrete case µ(t) could be rewritten in terms of relative coordinates, but since we are263
considering only co-locations as encounters, it has no advantage.264

For the two-dimensional case we limit ourselves to the analysis of the mean first-transmission time with265
reflected random walkers, but no comparison can be made to a corresponding mean for µ(t) given that it is266
not a normalised probability function and the evaluation of an average, via

∑∞
t=0 tµ(t), is not finite.267

Diffusion in partially overlapping range-limited one-dimensional domains268

We consider that each animal diffuses within its own one-dimensional lattice domain, both of size N , and
that the two domains overlap only partially. In this case the tensors Bm (m = 1 and 2) reduce to matrices
and their elements are Bmii = 1 − qm, Bmij = Bmji = δi,i+1qm/2 when away from the boundary sites
and Bm11 = BmNN = 1− q/2. The actual dimension of the overlap region, that is the number of lattice
sites M where the animals may transmit information or encounter one another, is directly related to the
distance H = |c1 − c2| between the central locations of the home ranges c1 and c2 via M = N −H . The
individual walker propagator in this case is given by [41]

Qn0(n, t) =
N−1∑
k=0

h
(N)
k (n, n0)

[
1 + s

(N)
k

]t
, (10)

where

h
(N)
k (n, n0) =

αk
N

cos

[(
n− 1

2

)
πk

N

]
cos

[(
n0 −

1

2

)
πk

N

]
(11)

with α0 = 1 and αk = 2 for k ≥ 1, and

s
(N)
k = q

[
cos

(
πk

N

)
− 1

]
, (12)

for the first animal, and h(N)
k (n−H,n0 −H) with n = 1 +H, ..., N +H for the second animal.269

From Ψn10 ,n20
(n1, n2, t) = Qn10 (n1, t)Qn20 (n2, t), it is straightforward to obtain the generating function270

Ψ̃n10 ,n20
(n1, n2, z), and use it to construct T̃n0(z).271
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Diffusion with resetting in one-dimensional domains272

For the case of the resetting random walkers, one requires to modify Eq. (6) by adding on the right273
hand side the terms r1δn1,c1 and r2δn2,c2 , with r1 and r2 representing the probability for the first and274
second walker to relocate to site c1 and c2, respectively. In this case, the tridiagonal matrices are given by275
Bmij = Bmji = δi,i+1(1− rm)qm/2 and Bmii = (1− rm)(1− qm).276

By taking periodic boundary conditions, the propagator for an individual resetting random walker is
given by [44]

Qn0(n, t) = r
N−1∑
k=0

g
(N)
k (n, c)

γtk − 1

γk − 1
+
N−1∑
k=0

g
(N)
k (n, n0) γtk , (13)

where c is the resetting site, γk = (1 − r)
[
1 + s

(N)
k

]
with sk given in Eq. (12) and g

(N)
k (x, y) =277

cos[2πk(x − y)/N ]/N . Analogously to the reflecting case above, the propagator for both walkers,278
that is the solution of Eq. (6) in the absence of transmission events, is given by Ψn10 ,n20

(n1, n2, t) =279
Qn10 (n1, t)Qn20 (n2, t).280

Diffusion in two-dimensional range-limited home ranges281

For a two-dimensional setting we consider animals living in home ranges of rectangular shape of identical
size. The range limitation of the animals is ensured by reflecting boundary conditions. The two home
ranges are aligned along the vertical axis, but are shifted by an amount equal to H sites along the horizontal
axis. In the absence of interactions, for each animal the propagator is given by [41]

Qn0(n, t) =
N−1∑
k=0

N−1∑
`=0

h
(N)
k (nx, nx0)h

(N )
` (ny, ny0)

[
1 +

s
(N)
k

2
+
s

(N )
`

2

]t
, (14)

where N and N represent, respectively, the number of sites along the two directions and with h(L)
ω (n,m)282

and s(L)
ω given, respectively, in Eqs. (11) and (12).283

To determine the mean-transmission time at any of the co-locations one requires knowledge of the mean
first-passage time between the initial location and the co-location sites, the mean first-passage between
all co-location sites (all permutations), and the mean return time to the co-location sites. For that we use
Eq. (14) to build the product of the individual propagators in time by shifting by H sites the coordinates
of the horizontal axis for the second individual. For an initial condition with coordinates n0 = (nx0 , ny0)
along the horizontal and vertical axes and with n = (nx, ny), we construct the generating function of the
4-dimensional propagator,,

Ψ̃n10
,n20

(n1,n2, z) =
∞∑
t=0

ztQn10
(n1, t)Qn20

(n2, t)

N−1∑
k1=0

N−1∑
`1=0

N−1∑
k2=0

N−1∑
`2=0

h
(N)
k1

(n1x, n1x0)h
(N )
`1

(n1y, n1y0)h
(N)
k2

(n2x −H,n2x0 −H)h
(N )
`2

(n2y, n2y0)

1− z
[
1 +

s
(N)
k1
2 +

s
(N )
`1
2

][
1 +

s
(N)
k2
2 +

s
(N )
`2
2

] , (15)
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with the range in n1x and n2x being, respectively, [1, N ] and [1 +H,N +H], while the range for both n1y284
and n2y is [1,N ].285

From Eq. (15) it is straightforward to obtain the mean (first) return time [59] to a site n =
(n1x, n1y, n2x, n2y),

Rn =

[
h

(N)
0 (n1x, n1x)h

(N )
0 (n1y, n1y)h

(N)
0 (n2x −H,n2x −H)h

(N )
0 (n2y, n2y)

]−1

, (16)

and through a simple differentiation [60], i.e. T(n10
,n20

)→(n1,n2) = d
dz

[
Ψ̃n10

,n20
(n1,n2,z)

Ψ̃n1,n2(n1,n2,z)

]∣∣∣∣
z=1

, the mean

first-passage

T(n10
,n20

)→(n1,n2)

= 2

N−1∑
k1=0

N−1∑
`1=0

N−1∑
k2=0

N−1∑
`2=0

k1+k2+h1+h2>0

[
h
(N)
k1

(n1x, n1x0
)h

(N )
`1

(n1y, n1y0)h
(N)
k2

(n2x −H,n2x0
−H)h

(N )
`2

(n2y, n2y0)

− h(N)
k1

(n1x, n1x)h
(N )
`1

(n1y, n1y)h
(N)
k2

(n2x −H,n2x −H)h
(N )
`2

(n2y, n2y)

]{
h
(N)
0 (n1x, n1x)h

(N )
0 (n1y, n1y)

× h(N)
0 (n2x, n2x)h

(N )
0 (n2y, n2y)

[ (
s
(N)
k1

+ s
(N )
`1

)(
s
(N)
k2

+ s
(N )
`2

)
+ s

(N)
k1

+ s
(N )
`1

+ s
(N)
k2

+ s
(N )
`2

]}−1
, (17)

between a starting site n0 = (n1x0
, n1y0 , n2x0

, n2y0) and a target site n = (n1x, n1y, n2x, n2y).286

3 RESULTS

3.1 Difference between first-encounter probability and distance threshold probability287

We consider the case of perfect transfer efficiency, C → ∞ in Eq. (3), and focus on the so-called hard encounter
events, that is those instances when animals reach a relative distance b. By integrating over all possible angles and
separation up to radius b in Eqs. (4) and (5), following Kenkre and Sugaya [37], one obtains

µ(t) = 1−Q1

(
F(r0, φ0, t)√

4Dh(t)
,

b√
4Dh(t)

)
(18)

and

ν(t) = 1− 1

πb2

∫ b

0
dr′ r′

∫ 2π

0
dφ′Q1

(
F(r′, φ′, t)√

4Dh(t)
,

b√
4Dh(t)

)
, (19)

where F2(r, φ, t) = 2rH cos(φ− ω)−H2 − e−2γt
[
2rH cos(φ− ω)−H2 − r2

]
, with H and ω, respectively, the288

distance and relative angle between the home range centres, where h(t) = [1− exp(−2γt)] (2γ)−1, and where289
Q1(s1, s2) = 1−

∫ s2
0 dz z exp

[
−
(
z2 + s21

)
/2
]
I0 (s1z), is the Marcum Q-function of order 1. Given that µ(t) is a290

spatial integration of the (time-dependent) joint occupation probability over the relative distance b, we refer to in the291
following as the distance threshold probability.292
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Equation (18), with a rate constant multiplying it, has been called the mean encounter rate (Eq. (14) in ref. [9]
and has been proposed to explore how the interplay between the scale of perception and home-range size affect
encounter rates. Although the discrepancy with Eq. (3) when C → ∞ is self-evident, it is instructive to rewrite Eq.
(3) in that limit as Ẽ(ε)ν̃(ε) = µ̃(ε), renaming first-transmission as first-encounter, T (t)

C→∞→ E(t), and through a
Laplace inversion obtain

µ(t) =

∫ t

0
ds E(t− s)ν(s). (20)

Equation (20) shows the relation between the first-encounter probability, E(t), and the distance threshold probability,293
and its structure is quite revealing. It represents a generalisation of the well-known renewal equation for Markov294
processes [60], Px0

(x, t) =
∫ t
0 dsFx0→x(t − s)Px(x, s), that relates the occupation probability Px0

(x, t) to be at295
x at time t starting at x0 with the first-passage or first-hitting probability, Fx0→x(t) to reach x from x0. While it296
may seem always possible to write an equation such as (20), with µ(t) and ν(t) representing a spatially integrated297
version, or more precisely integration over a given range, of Px0

(x, t) and Px(x, t), respectively, it turns out to be298
true only when

∫
dr+

∫ ′
dr−Π

(
r+, r

′
+, r−, r

′
−, t
)

is independent of r′+, something that occurs only when certain299
spatial symmetries are present. While it is difficult to visualise the geometry of these special cases with animals300
moving in two and three dimensions, given that the set of locations where encounters may occur are part of a 4 or301
6-dimensional space, it may help to think about a one-dimensional encounter problem. The simplest scenario is that302
of two Brownian walkers that diffuse without any spatial constraint on a line and come into ‘contact’ once they are at303
a distance b. Their encounter dynamics can be mapped onto the search dynamics of a two-dimensional Brownian304
walker that hits for the first time a radial target of radius b centred around the origin. The associated Eq. (20) becomes305
equivalent to an effective one-dimensional renewal equation since a first hitting event is controlled only by the radial306
coordinate of the Brownian walker being equal to b. More intuitively, whenever a set of interaction locations are307
arranged spatially as a single big target, then one may potentially write equations such as (3) and (20) where µ(t) and308
ν(t) are spatially integrated representation of the animals’s occupation probability in the absence of any interaction.309

More generally, in all scenarios that lack high spatial symmetries, the interaction locations have a complicated310
geometry and parametrising the resulting shape with multiple variables becomes a complicated task. In addition,311
when a first-hitting event requires to specify the threshold value of many variables, one needs to construct splitting312
probabilities, practically separating the space into multiple areas. In these situations identifying these separate313
areas where interactions may occur is easily met by mapping the dynamics into discrete space and studying the314
first-transmission to a set of multiple targets on a lattice, which is the subject of the next subsections.315

3.2 First-encounter probability with overlapping home ranges in one dimension316

Having shown formally in the example studied in Sec. 3.1 the relation between E(t) and µ(t), we now proceed317
to quantify their difference with the discrete formalism. For simplicity and computational convenience we start by318
considering animals living in one dimensional domain bounded by reflecting boundaries, as depicted in the left panel319
of Fig. 2. Past analyses to determine the transmission dynamics in this one-dimensional problem has lead to analytic320
expressions only for the mean transmission time [22], whereas we are now able to capture the exact dynamics for the321
entire transmission probability Tn0

(t). We consider two different home range overlaps with the two animals starting,322
respectively, at c1 and c2, and use standard inversion routines (i.e. a one dimensional integration) for generating323
functions [61, 62] to plot the first-encounter probability in the right panel of Fig. 2.324

As a comparison we plot the discrete analog of the function µ(t), namely Eq. (9). While Tn0
(t) decays to zero325

at long times, µ(t) reaches a finite non-zero value, making it evident why the former is a normalised probability326
function, while the latter is not. The long time saturation value of µ(t) indicates that once the memory of the initial327
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placement vanishes the chance that two individuals are found in any of the possible co-locations is constant and328
equals the integral over the interaction region of the steady state joint occupation probability.329

3.3 First-encounter probability with one dimensional resetting dynamics330

We take the so-called resetting random walker as another representation of an animal that moves within a home331
range. As the walker resets at random times to a focal point in space, the range of movement is effectively bounded,332
with the resetting sites representing the den or burrow where animals tend to return to. At long times the spatial333
occupation probability is in fact equivalent to a steady state probability if the waker were to move with a constant334
bias towards the resetting location [63]. For computational convenience we take a periodic spatial domain for both335
walkers.336

Even though the movement of the walkers is effectively bounded, and differently from the reflected walker case337
above, we need to specify a finite number M of interacting locations given that the discrete formalism requires to338
evaluate a determinant of size M . With the appropriate choice of the movement model parameters and the placement339
and number of interacting locations around the home range centres, we ensure that the probability of transmission at340
the sites excluded from the M selected is negligible.341

We consider perfect transfer efficiency and compare the first-encounter probability, Tn0
(t) with ρ = 1, to µ(t) in342

Fig. 3. Compared to the previous case with reflecting walkers, one can see that the dynamics is relatively quicker.343
The first-encounter mode is reached after after ten and twelve steps when, respectively, H = 5 and H = 8 in Fig.344
2, while it is reached after three steps when H = 2 and after eight steps when H = 4 in Fig. 3. This faster time345
dependence can be explained by the choice of the parameters of the problem. In the resetting case at each time step346
the chance of a walker to move can be shown to be 3/10 relative to the reflecting walkers.This fast dynamics is also347
noticeable in µ(t), when compared to Fig. 2.348

3.4 Mean first-transmission times between animals diffusing in two-dimensional home ranges349

As mentioned earlier the reaction diffusion approach allows to map the first-transmission problem with transfer
efficiency ρ to a first-absorption problem with multiple static partially absorbing targets located at Si (i = 1, ...,M )
in a spatial domain of double the original dimensions. Since theoretically it is now possible to predict exactly the
mean first-absorption time to any of a set of partially absorbing targets [42], we exploit here that advance for our
transmission problem. We examine the case of two reflected lattice walkers moving in two dimensions in partially
overlapping home ranges (see top panel of Fig. 4). If we call Fn0

, the mean-transmission time to a set of M
co-location sites starting from a site n0, we have [42]

Fn0
=

det (T0)

det (T1)− det (T)
, (21)

where the elements of the matrix T are expressed exactly in terms of mean-first passage times T , mean return times350
R and the transfer efficiency ρ. More specifically we have Tij = TSj→Si

(j, i = 1, ...,M , with i 6= j), while the351
diagonal elements are given by Tii = ρ−1

ρ RSi
whereRSi

is the mean return time to site Si. The other two matrices352
are obtained from T as follows: T0ij

= Tij − Tn0→Si
and T1ij

= Tij − 1.353

We use Eqs. (16) and (17) to build the elements of the matrices in (21) and in Fig. 4 we plot Fn0
, the mean-354

transmission time as a function of ρ for different diffusion constant in the bottom left panel, and the mean-encounter355
time (ρ = 1) as a function of the the diffusion constant, expressed via the (dimensionless) diffuvisity parameters qix356
and qiy . As ρ approaches 1, the dynamics become motion limited, because the slowest process, the time to reach the357
targets in this case, governs the time scale of the interaction. From Eq. (21) one can extract a perturbation expansion358
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in 1/ρ − 1 [42], and the shape of the slowing down in the decrease of Fn0
in the left panel can be quantitatively359

explained as the first order correction to the zeroth order (motion limited) term. The plot in the right panel shows that360
the encounter rate is mainly linearly proportional to the animal diffusion constant [64]. While such dependence is361
somewhat expected, what is unexpected is the very limited deviation from an inverse q dependence of Fn0

, because362
one can show that for any element T(n1,n2)→(m1,m2) = q−1g(n1,n2,m1,m2, q). The right panel thus points to a363
negligible dependence of the function g(n1,n2,m1,m2, q) on q.364

4 SUMMARY AND DISCUSSION

The ability to track simultaneously with high resolution a large number of animals both in laboratory settings and in365
the field demands the development of modelling approaches to predict when, where and how animals interact. As366
some of the theoretical challenges to represent animal interactions have already been tackled in analysing physical367
and chemical systems, our aim here has been to make the movement ecology community profit from insights already368
gained in other fields. To do so we have open up the modelling literature from statistical physics, both past and369
present, on reaction diffusion processes and we have studied the transmission and encounter problem between two370
animals leaving within separate home ranges.371

We have presented the mathematical details that allow to predict over time first-transmission and first-encounter372
probability both in continuous and discrete variables. With continuous variables we have considered two Brownian373
walkers that may interact with an information transfer rate C when within a threshold distance b and have modelled374
their motion via a Ornstein-Uhlenbeck process. With discrete variables we have instead considered that interactions375
may occur with probability ρ upon co-location and have taken reflected and resetting lattice random walkers to376
represent animals that roam within distinct home ranges.377

With perfect transfer efficiency (C → ∞ or ρ→ 1), the interaction events reduce to encounter events. In this case,378
we have compared the continuous formulation to study first-encounter probability to the one proposed recently in379
the literature using a distance threshold probability and we have been able to derive a mathematical equation that380
connects the two quantities. To quantify the difference in the two probabilities we have used discrete variables and381
looked at the dynamics of two animals living in separate home ranges and moving and interacting on constrained382
one-dimensional lattices. That comparison allows to visualise why one is a normalised probability function with all383
finite moment, while the other is not normalised and possess infinite moments.384

We recognise that the first-encounter probability and the distance threshold probability capture different aspects385
of the animal dynamics, and we thus believe that there should be scope for employing both, or either, especially386
in light of the various mechanisms with which animals may interact in an ecological setting. If an encounter event387
affects detectable characteristics of the animals, then clearly the first instance when that happens is the relevant388
observable. Examples include the transfer of an infectious pathogen or a parasite, a predator capturing a prey, or an389
animal passing knowledge about food sources by being observed or smelled by a nearby conspecific. In all these390
circumstances the first-transmission probability is a necessary tool to predict the dynamics based on the interplay391
between the transfer efficiency and the rate of movement. If, on the other hand, information transfer upon interaction392
is not binary (presence/absence) or it is hard to detect, then knowledge of when animals are within a given distance393
becomes useful, as shown in the very recent developments [25, 26, 27, 28] following ref. [9].394

While we have focused here on destructive searches, this does not preclude the use of the reaction formalism395
in non-destructive studies, and more specifically the one with discrete space-time variables. In non-destructive396
scenarios, as the evaluation of the forager efficiency is based upon the cumulative encounter of targets, the quantity397
of interest becomes the (multiple) visitation statistics to any of the lattice sites where targets are located, coupled398
with a resetting of the walker to a neighbouring site upon a target capture. Such dynamics can be studied analytically399
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with the discrete formalism, which has general validity for any Markov movement process and irrespective of the400
choice of spatial constraint or boundary conditions or the presence of spatial heterogeneities. It could be exploited401
to provide some useful insights to some of the ongoing debate about the efficiency of stochastic searches when402
targets gets replenished and walkers move as Lévy walkers [65, 66, 67, 68, 69] and to explore the dependence on403
the density [70], boundary conditions [71, 72] and the spatial distribution of the resources [73] without using time404
consuming stochastic simulations. As the discrete formalism allows to include any type of heterogeneities, it could405
also bring insights on the timely studies about species survival following habitat fragmentation and habitat loss as406
a function of the animal foraging statistics [74, 75]. It is also worth mentioning another advantage of the discrete407
spatial formalism in comparison to the diffusion equation. With the latter it is well known that one describes an408
ensemble of spatio-temporal trajectories that include (with some exponentially small probability) those that move409
infinitely fast from a localised initial condition. This limitation, on the other hand, is not present when using random410
walks on a lattice.411

Despite the limitation of our Markov assumption, which considers the movement to be diffusive, extensions of412
encounter estimations to situations where the assumption about persistence is relaxed are possible. The effects of413
correlations in the movement steps, also called motion coherence, can be incorporated in a general reaction-motion414
formalism using the so called generalised master equation [76, 77], which possesses a non-local memory kernel with415
one extreme (never decaying memory) reducing to a wave equation, that is to ballistic motion, and the other extreme416
to an infinitely fast decaying memory, that is diffusive motion. The intermediate situation, with an exponentially417
decaying memory, represents coherent motion at short times, and incoherent motion at long times, and was shown to418
be identical to the telegraphers’ equation in one dimension [77]. In the context of exciton annihilation, an example of419
how motion coherence has been included using a generalised master equation can be found in ref. [78].420

Accounting for correlations in the discrete formalism is also possible and can be accomplished by representing a421
movement process with τ correlated steps as a vectorial Markov process with τ components (see e.g. [79]). The422
formal difference from the cases analysed here consists of the need to deal with larger matrices since the set of M423
interaction locations would become τM possible interaction sites in the higher dimensional space.424

Overall, while there is still much development to be done, an important contribution of our study is that using a425
reaction motion formalism it is possible to predict time-dependent first-transmission, and in the limit, first-encounter426
probability in terms of the animal movement statistics and the geometric constraints of the space.427
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1Figure 1. Schematics of the two-dimensional movement paths of two animals tracked over a certain period
of time that may transfer information when they are within a certain distance threshold. The circular disks
represent all the spatial locations when the two individuals are simultaneously within a threshold distance
from each other. Animal 1 (red trajectory) carries information, while animal 2 (green trajectory) initially
does not. Both the walkers start from their respective initial points shown as the cross marks, and when
information is transferred from the first to the second animal the green trajectory turns red. In the left panel
the information transfer process occurs early on (blue disk), that is on the first occasion in which they are
within interaction distance, while in the right panel, transfer occurs on the second occasion (red disk). The
inefficiency of the transfer process is evident in both panels because the green trajectory does not turn
red when on the disk boundaries (first-encounter), but only after some time the animals are within the
disk. Note that time stamps of the trajectory are not explicitly indicated and the animal paths should not
be thought of representing movement with constant speed. In other words the disks aim to display direct
interactions, i.e. when individuals are within a threshold distance at the same time, rather than indirect ones
when spatial coincidence may occur at different times.
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1Figure 2. Schematics of two animals roaming within separate one-dimensional home ranges with partial
overlap (left panel) and their first-encounter probability (right panel). On the left panel the circle displays an
animal while the arrows indicates the movement probability at each time step: the left and right horizontal
arrows represent the probability to move, respectively, left and right, while the bent arrow is the probability
of remaining at the same site. Although not shown in the schematics, the movement rules at the boundary
sites are slightly different with the probability of staying modified to 1− qm/2, while the probability to
move outside of the domain is suppressed. The size of the two home ranges is equal to N = 11. The first
walker diffuses within a domain centered at c1 = 6, is limited by reflecting boundaries at sites 1 and 11,
and it starts from n10 = 6, while for the second walker there are two cases: the allowed range is either (i)
[6,16] or (ii) [9,19], and in both cases with reflecting boundaries at the end sites. The two animals may
encounter encounter each other when they simultaneously occupy a site in the overlap region, made up of a
total of M sites. In case (i), the distance between the two home range centres is H = 5 and the second
walker starts from n20 = 11, while in case (ii), we have H = 8 and n20 = 14. The quantities Tn0(t) (in the
legend we have omitted the subscript n0 for clarity), from Eq. (7), and µ(t), from Eq. (9), are shown by
the continuous and dotted lines (in red for case (i) and in blue for case (ii)), respectively. For both walkers,
we take diffusivity q1 = q2 = 0.4.
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1Figure 3. Schematics of two resetting random walkers (top panel) and their first-encounter probability
(bottom panel). Compared to Fig. 2, the movement rules are modified by the fact that at each time step the
animal may reset its location to its own home range centre, indicated in the schematics by the long arrows
with probability r1 and r2. To mimic unbounded space the boundary conditions are periodic and the domain
size (N = 19), diffusivity (q1 = q2 = 0.4) and resetting probability (r1 = r2 = 0.4) are chosen to ensure
that the contributions to the encounters of those trajectories that exploit the lattice periodicity are negligible.
For two cases analysed the home range centres are located at (c1, c2) = (9, 11) and (c1, c2) = (8, 12),
giving, respectively, a relative distance H between their home range centre of 2 and 4. We have used Eq.
(13) to construct Tn0(t) in Eq. (7) and µ(t) in Eq. (9), and display them with the continuous and dotted
lines (in red for case (i) and in blue for case (ii)), respectively. In both cases, the walkers start from their
corresponding home range centres (c1, c2) and interact when they simultaneously occupy a site within the
domain [7,13], consisting of M = 7 sites.
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Figure 4. Schematics of two animals roaming within separate two-dimensional home ranges with partial
overlap along one direction (top panel) and their mean first-transmission time (bottom panel). On the top
panel the circle displays an animal while the arrows indicates the movement probability at each time step:
the left, right, up, and down arrows represent the probability to move, respectively, left, right, up, and
down. Although not shown by an arrow, the ith animal while not at any of the boundaries can stay at
the same site with probability 1− qix/2− qiy/2, where qix and qiy denote the diffusivities in the x- and
y-directions, respectively. The probability of staying at sites (except four corners) on boundaries along
the x- and y-directions is 1− qix/4− qiy/2 and 1− qix/2− qiy/4, respectively, while at the four corners
it is 1 − qix/4 − qiy/4. The size of the two home ranges is equal to N × N with N = 11 and N = 5.
The first walker diffuses within a domain centered at c1 = (6, 3), is limited by reflecting boundaries at
sites 1 and 11 in x-direction and at sites 1 and 5 in y-direction, and it starts from n10 = (6, 3). For the
second walker, the allowed range is [9,19] in x-direction and [1,5] in y-direction, and in both cases with
reflecting boundaries at the end sites. Hence, the domain for the second walker is centered at c2 = (14, 3),
which is also its starting point, i.e., n20 = (14, 3). The distance between the two home range centres is
H = |c2 − c1| = 8. The two animals may encounter each other when they simultaneously occupy a site in
the overlap region, made up of a total of M sites. The quantity Fn0 from Eq. (21) is shown on the panels
at bottom. The bottom left panel shows Fn0 as a function of ρ for the same diffusivities for both walkers
in both directions. The bottom right panel shows the mean encounter time Fn0 (ρ = 1) as a function of
diffusivity q such that q = q1x = q1y = q2x = q2y.
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