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compute explicit expressions for these corrections in the one-instanton approximation, but to

all orders in the string coupling expansion around the instantons. As a consistency check, we

prove that in the case of one (universal) hypermultiplet, the resulting metric fits the Przanowski

description of self-dual Einstein spaces. We also show that in the small string coupling limit the

metric acquires a certain square structure, consistently with expectations from the string am-

plitudes analysis. This result provides explicit predictions for yet mysterious string amplitudes

in the presence of NS5-branes.
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1. Introduction

Instanton effects, although exponentially suppressed in the small coupling limit, play an ex-

tremely important role in string theory. Typically, they are necessary ingredient for moduli

stabilization, singularity resolution, correct analyticity properties, but most importantly they

give us a window into the realm of non-perturbative phenomena where our understanding of

string theory is still very poor.

The usual source of instantons in string theory are D-branes, either localized ones existing in

type IIB (D(-1)-branes) and in low-dimensional models (ZZ-branes), or extended ones wrapping

non-trivial cycles of a compactification manifold. In fact, until recently the actual calculation

of D-instanton effects was possible only using various dualities such as S-duality or the dual

description of non-critical strings via matrix models, whereas their direct computation from

amplitudes of open strings with boundaries on D-instantons suffered from divergences. In a

series of remarkable works [1, 2, 3] Ashoke Sen understood how all these divergences can be

regularized and eventually removed using string field theory. This made it possible not only to

reproduce some known results in critical and non-critical string theories [4, 5, 6, 7, 8, 9, 10],

but also to get new ones where constraints from supersymmetry and dualities are not powerful

enough to fix D-instanton contributions [11].

However, there is another type of branes in string theory that gives rise to instanton effects.

These are NS5-branes of ten-dimensional string theory or M5-branes of M-theory. They have

six-dimensional world-volume and generate instantons if the target space has a six-dimensional

compact cycle which they can wrap. To our knowledge, no direct calculation of string amplitudes

responsible for such NS5-instantons has been done so far.

In such situation one may hope that one can get some insight from predictions of dualities,

as was the case for D-instantons until a few years ago. One of the simplest setups where

NS5-instantons appear is the compactification of type II string theory on a Calabi-Yau (CY)

threefold. In this case the effective action at the two-derivative level is determined by the metric

on the vector and hypermultiplet moduli spaces and the latter is affected by both D-brane and

NS5-brane instantons [12]. The D-brane instantons are fairly well understood [13, 14, 15] and,

at least in type IIA1, we have access to the D-instanton corrected hypermultiplet metric to

arbitrary order in the instanton expansion [21, 22].2 One could think that the knowledge of

D-instantons should be sufficient to get NS5-instantons by going to type IIB and applying S-

duality since it maps D5 to NS5-branes. This idea has been pursued in [25, 26, 27], but the

results are far from being conclusive. There are two reasons for this.

First, the hypermultiplet moduli space MH is a quaternion-Kähler (QK) manifold [28]. Its

quantum corrected metric is horribly complicated and the only way to apply constraints of S-

duality to it is to use a twistorial formalism for QK spaces (see [29] for a review of applications

of this formalism to CY compactifications). This formalism allows to encode the metric into

a set of holomorphic functions on a CP 1-bundle over MH known as the twistor space [30].

1Although the type IIB formulation can be obtained from type IIA by mirror symmetry, to write the metric

in terms of type IIB physical fields, one needs to know an instanton corrected mirror map, whose classical version

has been identified in [16]. At this point it is known only how to include corrections from D1-D(-1)-instantons

[17, 18] and from D3-instantons in the large volume limit [19, 20].
2See also [23, 24] for a proper mathematical treatment of some of these results.
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These functions, distant cousins of the holomorphic prepotential of special Kähler geometry,

are typically very simple. But the price to pay for this simplicity is a complicated procedure of

going from the data on the twistor space to the actual metric [31]. While it has been realized for

D-instantons in [21, 22], no attempt has been done so far to apply it for NS5-brane instantons.

Second, the naive application of S-duality to the twistorial description of D-instantons

leads to a construction [26, 27] which is mutually inconsistent at the multi-instanton level. This

indicates that there might be missing S-duality invariant sectors of multi-instantons that are

not captured by this approach.

Thus, at this point the twistorial construction of NS5-instantons is trustworthy only at one-

instanton level, but the corresponding corrections to the hypermultiplet metric, and hence to the

effective action, have not been derived yet even in this approximation. The goal of this paper is to

fill in this gap. Namely, we start from the twistorial description of NS5-instantons developed in

[25] and, following the procedure described in [31], obtain a one-instanton contribution generated

by NS5-branes to the hypermultiplet metric. The result can be found in (3.4).

If the CY is rigid, i.e. it has h2,1 = 0, there is only one hypermultiplet and MH is four-

dimensional. As was shown by Przanowski [32], the metric on such QK manifolds is described

by one real function (Przanowski potential) satisfying a non-linear partial differential equation.

This provides a consistency check on our metric which must be compatible with this description.

We show that this is indeed the case and compute an explicit expression for the Przanowski

potential in the one-instanton approximation following from (3.4).

Furthermore, evaluating the small string coupling limit of (3.4), one can get a prediction for

various string amplitudes in the presence of NS5-branes. In fact, generalizing the reasoning of [6]

for D-instantons to the case of NS5-branes, we show that at the leading order the one-instanton

contribution must have the following square structure

ds2NS5 ≃
∑

γ

Cγ e
−Sγ

(

A2
γ
+ BγdSγ

)

, (1.1)

where γ is a charge vector labelling bound states of NS5 and D-branes, Sγ is an instanton action,

Cγ is a function of the moduli scaling as a power of gs, and Aγ , Bγ are one-forms on MH such

that the coefficients of Aγ are given by certain string amplitudes in an NS5-background, while

Bγ cannot be fixed by this analysis. We show that the metric which we derived does exhibit

the structure (1.1) with specific Cγ and one-forms Aγ and Bγ . This provides a prediction for

three-point sphere correlation functions where one of the vertex operators corresponds to a

hypermultiplet scalar and two others represent fermionic zero modes of the background NS5-

brane. While for generic background fields the prediction is somewhat involved, it drastically

simplifies in the limit of small RR fields (see (5.36)). We hope that this prediction will help to

understand how these amplitudes can be computed directly using worldsheet techniques.

The organization of the paper is the following. In section 2 we review basic facts about

the hypermultiplet moduli space and its twistorial description. In particular, we formulate our

starting point given by holomorphic functions on the twistor space encoding D-brane and NS5-

brane instantons. In the next section we compute the metric following from this twistorial data

in the one-instanton approximation. In section 4 we consider the four-dimensional case of the

universal hypermultiplet and in section 5 we compute the small gs limit of our metric. Finally,

section 6 summarizes our results. Several appendices contain details of the computations.
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2. Twistor description of the hypermultiplet moduli space

2.1 The moduli space

At low energies, type IIA string theory compactified on a CY threefold Y reduces to N = 2

supergravity coupled to h1,1 vector multiplets and h2,1 + 1 hypermultiplets. These multiplets

comprise h1,1 complex and 4(h2,1+1) real scalar fields which parametrize the vector and hyper-

multiplet moduli spaces, MV and MH , respectively. Each of the moduli spaces carries a metric

and can be thought as the target space of a non-linear sigma model described by the kinetic

terms for the corresponding scalars in the effective action, which is completely fixed once the

two metrics are known. Furthermore, the local supersymmetry requires that MV is a projective

special Kähler manifold, while MH is a quaternion-Kähler manifold [28].

Physically, the scalar fields parametrizing MV represent complexified Kähler moduli of Y,

whereas MH comprises four different types of fields:

• complex structure deformations of Y, denoted by za (a = 1, . . . , h2,1);

• RR fields ζΛ, ζ̃Λ (Λ = 0, . . . , h2,1) arising as period integrals of the RR 3-form of type IIA

string theory over a symplectic basis of cycles in H3(Y,Z);

• four-dimensional dilaton3 r ≡ e−2φ(4) ∼ g−2
s ;

• and NS axion σ which is dual to the B-field in four dimensions.

Note that the subspace MC ⊂ MH parametrized by za carries a special Kähler geometry

similarly to MV . This is because it is identified with MV in the mirror type IIB formulation

where the roles of Kähler and complex structure moduli are exchanged. As a result, this subspace

is characterized by a prepotential F (X), a holomorphic homogeneous function of degree 2, where

the homogeneous coordinates XΛ are related to the moduli by za = Xa/X0. In particular, it

defines the Kähler potential as

K = − logK, K = −2 Im (z̄ΛFΛ(z)), (2.1)

where FΛ = ∂XΛF and we defined zΛ = (1, za).

In fact, the prepotential also determines the full perturbative metric on MH which has the

following explicit expression [33] (obtained on the basis of earlier works [34, 35, 36, 37])

ds2pert =
r + 2c

r2(r + c)
dr2 − 1

r

(

NΛΣ − 2(r + c)

rK
zΛz̄Σ

)

(

dζ̃Λ − FΛΛ′dζΛ
′
)(

dζ̃Σ − F̄ΣΣ′dζΣ
′
)

+
r + c

16r2(r + 2c)

(

dσ + ζ̃Λdζ
Λ − ζΛdζ̃Λ + 8cAK

)2

+
4(r + c)

r
Kab̄dz

adz̄b.

(2.2)

Here we denoted NΛΣ = −2 ImFΛΣ, the matrix NΛΣ is its inverse, and

AK =
i

2
(Kadz

a −Kādz̄
a) = Im ∂ logK (2.3)

3Throughout the paper we use the name ‘dilaton’ for its exponential given by the field r.
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is the Kähler connection on MC . Finally, the numerical parameter c is given by

c = − χY

192π
, (2.4)

where χY is the Euler characteristic of Y, and encodes the one-loop gs-correction to the classical

metric. If it is set to zero, the metric (2.2) reduces to the so-called c-map [38, 39] which gives

a canonical construction of a QK manifold as a bundle over a special Kähler base.

Although there are no perturbative gs-corrections beyond one loop [37], the metric (2.2)

receives non-perturbative corrections from D2-branes wrapping 3-dimensional cycles on Y and

NS5-branes wrapping the whole CY. They scale in the small string coupling limit roughly as

e−1/gs and e−1/g2s , respectively. As explained in the introduction, the most efficient way to

incorporate them is to use the twistorial description of MH . In the next subsection we recall

some elements of this description that will be necessary for our purposes (see [29] for a more

comprehensive review).

Before that let us say a few words about symmetries ofMH . First, the hypermultiplet metric

(2.2) carries an action of the symplectic group Sp(2h2,1 + 2,Z), It leaves r and σ invariant and

transforms (XΛ, FΛ) and (ζΛ, ζ̃Λ) as vectors. However, since generic symplectic transformation

affects the prepotential F , it is not a true isometry of MH . Only a subgroup of Sp(2h2,1+2,Z)

which is realized as monodromies around singularities of the complex structure moduli space is

a true isometry. The symplectic invariance can be seen as a characteristic feature of the type

IIA formulation and is expected to hold at the non-perturbative level.

The metric (2.2) is also invariant under Peccei-Quinn symmetries acting by shifts on the

RR fields and the NS axion

TηΛ,η̃Λ,κ : (ζΛ, ζ̃Λ, σ) 7→ (ζΛ + ηΛ, ζ̃Λ + η̃Λ, σ + 2κ− η̃Λζ
Λ + ηΛζ̃Λ). (2.5)

At the perturbative level, the parameters (ηΛ, η̃Λ, κ) can take any real value, whereas instanton

corrections break these isometries to a discrete subgroup with (ηΛ, η̃Λ, κ) ∈ Z2h2,1+3. In partic-

ular, D-instantons break continuous shifts of the RR fields, but leave the invariance along σ,

while NS5-instantons break them all. The fact that the transformations (2.5) form the non-

commutative Heisenberg algebra plays an important role for description of NS5-instantons (see,

e.g., [40, 41, 42, 43]).

Finally, mirror symmetry implies that MH in type IIA compactified on Y is identical to the

same moduli space in type IIB compactified on a mirror CY Ŷ. Furthermore, in this mirror type

IIB formulation, MH must carry an isometric action of the S-duality group SL(2,Z). A con-

sistent realization of all expected discrete isometries on type IIB fields at full non-perturbative

level has been found in [27]. By mirror symmetry, it can be mapped to type IIA so we assume

that this problem is solved and do not discuss it anymore in this paper.

2.2 The twistor space

The hypermultiplet moduli space is an example of QK manifold which is defined as 4n real

dimensional Riemannian manifold M with holonomy group Sp(n)×SU(2). It carries a quater-

nionic structure given by a triplet of almost complex structures J i, i = 1, 2, 3, satisfying the

algebra of quaternions. A generic almost complex structure is a normalized linear combina-

tion of the triplet and parametrized by a point on CP 1. This fact can be used to construct a
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canonical CP 1-bundle over M, known as its twistor space ZM [30]. It turns out that ZM is

Kähler and, most importantly, carries a holomorphic contact structure defined by the kernel of

a canonical (1,0)-form

Dt = dt + p+ − itp3 + t2p−, p± = −1

2

(

p1 ∓ ip2
)

, (2.6)

where t is a complex coordinate parametrizing the CP 1 fiber and ~p is the SU(2) part of the

Levi-Civita connection on M. It is however more convenient to work in terms of a holomorphic

one-form

X =
4

it
eΦ(t) Dt (2.7)

defined up to multiplication by a non-vanishing holomorphic function. The function Φ determin-

ing the rescaling coefficient, which makes the (1,0)-form holomorphic, is called contact potential

[31] and will play an important role in what follows.

A crucial feature of the contact one-form is that locally, by a proper choice of coordinates,

it can always be trivialized to the canonical form

X = −1

2

(

dα̃ + ξ̃Λdξ
Λ − ξΛdξ̃Λ

)

, (2.8)

where (ξΛ, ξ̃Λ, α̃) is a set of holomorphic Darboux coordinates. These coordinates play a central

role in the twistorial construction because their knowledge as functions of coordinates (ϕm, t)

on the base and on the fiber of the twistor bundle allows to get the metric on M: by combining

(2.7) and (2.8), one can find the SU(2) connection ~p which can then be used to get the almost

complex structure J3 and compute the triplet of quaternionic two-forms ~ω

~ω = −4

(

d~p +
1

2
~p× ~p

)

, (2.9)

and then the metric follows from g(X, Y ) = ω3(X, J3Y ).4 More details on this procedure are

presented in appendix B.

The Darboux coordinates encoding the perturbative metric (2.2) on MH have been found

in [44, 31] and are given by

ξΛpert = ζΛ +R
(

t−1zΛ − t z̄Λ
)

,

ξ̃pertΛ = ζ̃Λ +R
(

t−1FΛ − t F̄Λ

)

,

α̃pert = σ +R
(

t−1W − tW̄
)

− 8ic log t,

(2.10)

where

W = FΛζ
Λ − zΛζ̃Λ (2.11)

and the coordinate R is related to the Kähler potential (2.1) and the contact potential, which

in this case is t-independent and identified with the dilaton

r ≡ eΦpert =
1

4
R2K − c. (2.12)

4The overall normalization of ~ω in (2.9) is related to the value of the Ricci scalar of the metric on M. We

have chosen it to be compatible with the perturbative metric (2.2).
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We are interested in the deformations of the perturbative moduli space generated by D-brane

and NS5-brane instanton corrections and preserving the QK structure. Since we are interested

only in the one-instanton approximation, we can restrict ourselves to linear deformations and

ignore all non-linear effects. In this approximation, a generic deformation can be encoded in

the twistor formalism into a set of contours Ci on CP 1 and an associated set of holomorphic

functions Hi(ξ, ξ̃, α̃) [31]. They lead to the following modification of the Darboux coordinates

(2.10):

ξΛ = ξΛpert +
1

4πi

∑

i

Ji

[

∂̂ξ̃ΛHi

]

, ξ̃Λ = ξ̃pertΛ − 1

4πi

∑

i

Ji

[

∂̂ξΛHi

]

,

α̃ = α̃pert +R
(

t−1Winst − tW̄inst

)

+
1

4πi

∑

i

Ji

[(

2− ξΛ∂̂ξΛ − ξ̃Λ∂̂ξ̃Λ

)

Hi

]

,
(2.13)

where we introduced a linear integral transform acting on holomorphic functions on the twistor

space

Ji[H ] =

∫

Ci

dt′

t′
t′ + t

t′ − t
H
(

ξpert(t
′), ξ̃pert(t′), α̃pert(t′)

)

(2.14)

as well as

∂̂ξΛ = ∂ξΛ − ξ̃Λ∂α̃ , ∂̂ξ̃Λ = ∂ξ̃Λ + ξΛ∂α̃ , (2.15)

Winst =
1

4πi

∑

i

∫

Ci

dt′

t′

(

zΛ ∂̂ξΛ + FΛ ∂̂ξ̃Λ

)

Hpert
i . (2.16)

To get a real metric from (2.13), one should impose an additional condition that the set {Ci}
is invariant under the antipodal map ς[t] = −1/t̄, while the set {Hi} is invariant under the

combination of ς with complex conjugation, i.e. for each i there is ı̄ such that

ς[Ci] = Cı̄, ς[Hi] = Hı̄. (2.17)

It is clear that the deformation makes the Darboux coordinates to be multi-valued functions

of t with jumps across Ci determined by Hi. Therefore, Hi have the meaning of transition

functions. Alternatively, one can think that the contours Ci separate different patches on CP 1

each having its own set of holomorphic Darboux coordinates. This is consistent with the fact

that the contact one-form (2.8) and hence the Darboux coordinates trivializing it are defined

only locally.

To complete the twistorial description of linear deformations, we give also a formula for a

modification of the contact potential Φ which is given by

Φ(t) = φ+
1

2πi

∑

i

Ji [∂α̃Hi] , (2.18)

where the t-independent part reads as

eφ =
1

4
R2K − c− R

16π

∑

i

∫

Ci

dt

t

[

(

t−1zΛ − tz̄Λ
)

∂̂ξΛ +
(

t−1FΛ − tF̄Λ

)

∂̂ξ̃Λ

]

Hpert
i . (2.19)
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2.3 Twistorial construction of instantons

In this subsection we provide the twistor data that incorporate D-brane and NS5-brane instanton

corrections. As explained above, the data consist of a set of contours Ci on CP 1 and an

associated set of holomorphic transition functions Hi.

2.3.1 D-instantons

D-instantons have been incorporated into the twistorial description of MH at linear order in

[14] and to all orders in the instanton expansion in [15]. Here we present the first simplified

version which is sufficient at one-instanton level and fits the framework described above.

Let us recall that each D-instanton is characterized by a charge vector γ = (pΛ, qΛ). In

type IIA, it is integer valued and characterizes the 3-cycle wrapped by D2-brane generating the

instanton, in the same basis of H3(Y,Z) that is used to define RR fields (ζΛ, ζ̃Λ). Given the

charge, we introduce the central charge function

Zγ(z) = qΛz
Λ − pΛFΛ(z), (2.20)

and the generalized Donaldson-Thomas (DT) invariant Ωγ . Although a proper mathematical

definition of this topological invariant is quite involved [45], from the physical viewpoint it just

counts the number of BPS instantons of a given charge. In the following we will mainly use its

rational version

Ω̄γ =
∑

d|γ

1

d2
Ωγ/d, (2.21)

which takes into account multi-covering effects and allows to simplify many equations being

more suitable for implementing S-duality [46, 19]. An important property of DT invariants is

that Ω−γ = Ωγ .

Finally, we define the so-called BPS ray

ℓγ = {t : Zγ(z)/t ∈ iR−}, (2.22)

which joins the north and south poles of CP 1 along the direction determined by the phase of

the central charge, and the following transition function assigned to ℓγ

Hγ =
σγ Ω̄γ

4π2
e−2πi(qΛξ

Λ−pΛξ̃Λ), (2.23)

where σγ is the so-called quadratic refinement. This is a sign factor that must satisfy σγ+γ′ =

(−1)〈γ,γ
′〉 σγ σγ′ , where 〈γ, γ′〉 = qΛp

′Λ − q′Λp
Λ is the skew-symmetric product of charges. In the

following it is chosen to be σγ = (−1)qΛp
Λ
.5 The set of all (ℓγ, Hγ) for which DT invariants are

non-vanishing comprise the twistor data of D-instantons. They affect the Darboux coordinates

according to equations (2.13) and the resulting corrections to the metric have the form of D-

instanton corrections. Their explicit form will be obtained below.

Note that our one-instanton approximation corresponds to keeping only terms linear in Ω̄γ ,

while we allow for D-instantons of different (in particular, proportional) charges. Thus, it is

not about extracting the dominant instanton contribution, but rather the linear response of the

metric to the change of the contact structure by (ℓγ, Hγ). This approach allows us to get results

independent of particular values of DT invariants and to keep track of the charge dependence

in the resulting instanton corrections.
5How this choice is reconciled with symplectic invariance is explained in [27, $2.3].
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2.3.2 NS5-instantons

The twistor data incorporating NS5-instantons in the one-instanton approximation (as it was

defined in the previous subsection) have been found in [25] by translating the above construction

of D-instantons to the mirror type IIB formulation and applying S-duality to D-instantons with

a non-vanishing D5-brane charge. The duality was applied at the level of the twistor space

where it acts by a holomorphic transformation preserving the contact structure. In particular,

its action on the fiber coordinate t and the Darboux coordinates (ξΛ, ξ̃Λ, α̃) is well known [31, 18]

and therefore allows to get the contours and transition functions incorporating NS5-instantons

as images of (ℓγ, Hγ) under this action.

We would like to borrow these results to derive the one-instanton corrected metric in type

IIA. However, by construction, the described procedure leads to a twistor space adapted to the

type IIB formulation. In particular, it is manifestly invariant under SL(2,Z) duality group,

rather than under symplectic transformations, and the resulting transition functions are ex-

pressed in terms of topological data characterising the Kähler moduli space of the mirror CY.

So one may ask whether one can use the transition functions of the type IIB formulation in

type IIA. We claim that it is possible because geometrically MH and its twistor space are the

same in the two formulations and differ only by the choice of coordinates (physical fields) used

to express the metric.

In fact, any contact structure can also be encoded using different sets of contours and

transition functions. For example, in our context they can be adapted to symmetries of type IIA

and type IIB, respectively. However, the two sets must be related by a contact transformation.

An explicit example is provided by the case of D1-D(-1)-instantons where such transformation

has been explicitly found [17, 18]. The contact transformation can affect other sets of transition

functions [27], but only at multi-instanton level. In the one-instanton approximation, different

sets do not interfere. Therefore, in this approximation, it should not matter which formulation

of the contact structure one exploits to get the metric on the moduli space.

Thus, we take the twistor data encoding NS5-instantons obtained in [25], translate them

back into type IIA language, and apply as deformations of the perturbative twistor space. The

price to pay for using type IIB twistor data in type IIA is the absence of manifest symplectic

invariance. We also believe that the complicated structure of the resulting metric is partially

a consequence of this hybrid approach and there should exist a genuine type IIA formulation

of NS5-instantons. However, in the absence of such formulation, we have to proceed as just

described, but we hope that our results can shed light on this and other issues related to the

geometry of MH .

After these preliminary comments, let us describe the twistor data for NS5-instantons after

they have been translated (partially) to type IIA variables in appendix A. To this end, let us

introduce an integer valued charge vector γ = (k, p, γ̂) with k 6= 0 and γ̂ = (pa, qa, q0). Here

k denotes NS5-brane charge, while the other components are related to bound D-branes. In

particular, the standard D-brane charge vector is obtained as γ = (p0, γ̂) where p0 = gcd(k, p).

On the type IIB side, p0 is D5-brane charge, while γ̂ encodes D3-D1-D(-1)-charges.

Given the charge γ, we define the contour ℓγ as a half-circle6 stretching between the two

6More precisely, ℓγ is the image of the BPS ray ℓγ under (the inverse of) SL(2,Z) transformation gk,p (A.10):

ℓγ = g−1

k,p · ℓγ . In particular, the transformation preserves the ordering of the original BPS rays.
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zeros of ξ0pert(t)− p/k and the associated transition function

Hγ =
Ω̄γ

4π2
e−πik(α̃+(ξΛ−2nΛ)ξ̃Λ)Ψγ̂(ξ − n), (2.24)

where γ̂ is a reduced charge

γ̂ = γ mod
(

0, kǫ0, δ[γ, kǫa/p0]
)

, ǫΛ ∈ Z (2.25)

with δ[γ, ǫa] being the spectral flow transformation (A.9), and

Ψγ̂(ξ) = − kξ0

p0
exp

[

2πi

(

kF (ξ) +
maξ

a +Q

ξ0
+m0

)]

, k > 0, (2.26)

while for negative k the holomorphic prepotential F should be replaced by its complex conjugate

F̄ . To write these definitions, we introduced various rational charges

n0 = p/k, na = pa/k, Q = (p0)2q̂0/k
2,

m0 = ap0q′0/k − c2,ap
aε(gk,p)−

k

2
AΛΣn

ΛnΣ +
1

2
qΛp

Λ, ma = p0q̂a/k.
(2.27)

The notations q̂Λ, q
′
a, AΛΣ, c2,a, a and ε(gk,p) are explained in appendix A.

In fact, most of our results hold for arbitrary function Ψγ̂ (provided it ensures convergence

of integrals along ℓγ). Its concrete form will be important only in deriving the small string

coupling approximation in section 5. On the other hand, the form of (2.24) is dictated by

the Heisenberg symmetry (2.5) which acts on the Darboux coordinates (ξΛ, ξ̃Λ, α̃) in the same

way as on the real coordinates (ζΛ, ζ̃Λ, σ). Since it is non-commutative, only the κ and η̃-shifts

are realized in a simple way as symmetries of the transition functions. In contrast, the η-shift

maps different transition functions to each other, which is ensured by the fact that Ψγ̂ depends

only on the reduced charge (2.25) and the combination ξΛ − nΛ.7 The (hidden) symplectic

invariance ensures that it should be possible to rewrite the construction of NS5-instantons in

other “frames” where a different set of shifts of the RR fields is trivialized. However, a map

between different frames is expected to be non-trivial and to involve an integral transform (see,

e.g., [47]), similarly to a change between coordinate and momentum representations in quantum

mechanics. In fact, for k = 1 it was shown [25] that the sum over electric charges qΛ of Ψγ̂ gives

the topological string partition function in the real polarization and thus indeed behaves as a

wave function.

3. Instanton corrected metric

In this section we derive the one-instanton corrected metric on MH from the twistorial formu-

lation of D-brane and NS5-brane instantons given in section 2.3.

Before we start, let us make a comment about the choice of coordinates. As is clear al-

ready from the twistorial description of the perturbative moduli space, the natural variable

7In fact, in our approximation where we ignore wall-crossing phenomena, the DT invariant Ω̄γ does not

change under the monodromies (A.6) and therefore it can also be thought as a function of the reduced charge γ̂

and combined with Ψγ̂ .
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appearing in parametrization of the Darboux coordinates is R rather than the dilaton field

r. At the perturbative level, they are related by a relatively simple relation (2.12). However,

non-perturbative corrections can further modify it. Given that the perturbative expression for

r (2.12) coincides with the contact potential, it is natural to extend this identification also to

the non-perturbative level. This is what was done in [14, 29, 21], where D-instantons have been

incorporated, by setting

r = eφ, (3.1)

where eφ is given by (2.19) with Hi being the D-instanton transition functions Hγ (2.23). How-

ever, in the presence of NS5-brane instantons the situation is not so clear. First, the full contact

potential (2.18) becomes t-dependent due to the α̃-dependence of the transition functions (2.24)

and therefore it cannot be identified with r. This still leaves us the possibility to equate r

to the real t-independent part of the contact potential as in (3.1). But this cannot be true

because the dilaton is expected to have a simple transformation under S-duality (it must trans-

form as a modular form of weight (−1
2
,−1

2
) [14]), whereas NS5-instantons spoil the modular

transformation of eφ. In [48] a modular invariant modification of the contact potential has been

constructed which thus represents a natural candidate for the definition of the dilaton field at

the non-perturbative level. However, if we used that definition, our results would have become

even more complicated. Since we work in type IIA where S-duality is not manifest anyway, we

take the simpler option8 (3.1) and do not claim that r is exactly the physical dilaton (although

for simplicity we continue calling it ‘dilaton field’). We consider the identification (3.1) just as

a possible choice of coordinates. Although different choices lead to different expressions for the

instanton corrections to the metric, importantly, they do not affect predictions for string am-

plitudes obtained in the small string coupling limit and given by the one-form Aγ in (1.1) since

any coordinate changes leaving the perturbative metric intact contribute only to the second

term in that expression.

Thus, our goal is to compute the QK metric induced by the deformations (2.23) and (2.24)

in the coordinates described in section 2.1 where r is identified with (2.19). The starting point

is the Darboux coordinates (2.13) where the index i runs over the two sets of charges, γ and γ.

The procedure to get the metric from these data is described in detail in appendix B. Since it

is quite technical and not illuminating, we relegate all details of the calculations to appendix D

and present only the final result.

To this end, we have to introduce several notations. First, we define the one-forms

ZΛ =dζ̃Λ − FΛΣdζ
Σ, J = zΛZΛ = zΛdζ̃Λ − FΛdζ

Σ,

S =
1

4

(

dσ + ζ̃Λdζ
Λ − ζΛdζ̃Λ + 8cAK

)

,
(3.2)

which arise naturally already in the perturbative metric (2.2). Besides, we also define a one-form

8Another option is to take R as an independent coordinate and do not introduce the four-dimensional dilaton

at all. In particular, this makes sense because R is closely related to the ten-dimensional string coupling.

This option was accepted in [23] and led to a somewhat nicer expression for the D-instanton corrected metric.

However, given that the perturbative metric in type IIA is more natural in terms of r, we do not follow this

possibility.
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labelled by D-instanton charge

Cγ = NΛΣ
(

qΛ − ReFΛΞp
Ξ
)

(

dζ̃Σ − ReFΣΘdζ
Θ
)

+
1

4
NΛΣ pΛ dζΣ. (3.3)

Finally, we will use various functions labelled by charges γ and γ which are defined in appendix

C as expansion coefficients of the integral transform (2.14) of the transition functions and its

derivatives. While for D-instantons, using integration by parts, all relevant quantities can be

expressed only through three such functions, J (n)
γ with n = 0,±1, for NS5-instantons this does

not seem to be possible and we have to deal with many different functions (see $C.2). Using all

these definitions, the one-instanton corrected metric on MH is found to be

ds2 = ds2pert +
R

8π2r

∑

γ

σγΩ̄γ Dγ +
R

8π2r

∑

γ

Ω̄γ kVγ , (3.4)

where Dγ and Vγ encode the D-brane and NS5-brane instanton contributions, respectively,

They are given by

Dγ =
π

RJ (0)
γ

[

R2|Zγ|2
(

(

dr

r + c
+ d log

|Zγ|2
K

)2

+

(

S

r + 2c
+ 2 Im ∂ log

Zγ

K

)2
)

+ dΘ2
γ − 4C2

γ

]

+
(

ZγJ (1)
γ + Z̄γJ (−1)

γ

)

[

iS2

4(r + 2c)2
− i(r + c)AKS

r(r + 2c)
− idr d logK

4(r + c)
− i|J|2

2rK
− iKabdz

adz̄b

+2πCγ
(

S

r + 2c
− 2AK

)

]

+

(

r + c

r(r + 2c)
S− 4πiCγ

)

(

J (1)
γ dZγ − J (−1)

γ dZ̄γ

)

+
idr

2(r + c)
d
(

ZγJ (1)
γ + Z̄γJ (−1)

γ

)

− iR
r

Im (Z̄γ J) dJ (0)
γ . (3.5)

and

Vγ =
(

L (1)
γ

+ L̄ (−1)
γ

)

[

i

8

(

(dr)2

(r + c)2
− S2

(r + 2c)2

)

+
i

2r
AKS+

i|J|2
2rK

+
i

2

|∂K|2
K2

+ iKabdz
adz̄b

]

− i

2

(

L(1)
γ,Λdz

Λ + L̄(−1)
γ,Λ dz̄Λ

)

d logK −
(

L(1)
γ,Λdz

Λ − L̄(−1)
γ,Λ dz̄Λ

)

(

S

2r
+AK

)

− 2(r + c)

r(r + 2c)
S

[

i

R I(0)
γ

(

cdr

r + c
+ rd logK

)

+ Re (I(1)
γ

J)

]

− 2πk

{

2

R I(0)
γ

(

(r + 2c)2

(r + c)2
(dr)2 −S2 +

2r(r + 2c)

r + c
dr d logK − 4rAKS− 4(r + c)

K
|J|2

+
r2(dK)2

K2
− 4r2A2

K

)

+R Im
((

L (2)
γ

− L̄ (0)
γ

)

J
)

(

S

r + 2c
− 2AK

)

+2
(

L (1)
γ

+ L̄ (−1)
γ

)

(

dr

r + c
(S− 2cAK)− d logK

(

cS

r + 2c
+ 2rAK

))

+4

(

r + 2c

r + c
dr + rd logK

)[

Im (I(1)
γ

J)−R−1Re
(

NΛΣL̄(0)
γ,Λ ZΣ

)

+ Im
(

L(1)
γ,Λdz

Λ
)

]

+4ReJ
[

Im
(

NΛΣL̄(−1)
γ,Λ ZΣ

)

−RRe
(

L(0)
γ,Λdz

Λ
)]
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−4 Im J
[

Re
(

NΛΣL̄(−1)
γ,Λ ZΣ

)

+R Im
(

L(0)
γ,Λdz

Λ
)]

+
R
2

Kγ

[

S2

4(r + 2c)2
− (dr)2

4(r + c)2
+

dr d logK

2(r + c)
− AKS

r + 2c
− dK2

4K2
+A2

K

]

−
(

S

r + 2c
− 2AK

)[

NΛΣ Re

(

(

zΞK(1)

γ,ΞΣ̄
+ z̄ΞK(−1)

γ,Ξ̄Σ̄

)

ZΛ

)

−R Im
((

zΛK(2)
γ,ΛΣ − z̄ΛK(0)

γ,Λ̄Σ

)

dzΣ
)

]

+
(

K(0)

γ,ΛΣ̄
+K(0)

γ,Σ̄Λ

)

(

1

R NΛΞNΣΘZΘZ̄Ξ −RdzΛdz̄Σ
)

+ 2iNΛΣ
(

K(1)
γ,ΣΞ Z̄Λdz

Ξ −K(−1)

γ,Σ̄Ξ̄
ZΛdz̄

Ξ
)

}

− i

2
d logK

(

zΛL
(1)
γ,Λ + z̄ΛL̄

(−1)
γ,Λ

)

− 2i

R

(

cS

r + 2c
+ 2rAK

)

dI(0)
γ

+
i

R
(

dI(0)Λ
γ

dζ̃Λ − dI(0)
γ,Λdζ

Λ
)

− R
r

Re
[

zΛL
(0)
γ,Λ J̄

]

. (3.6)

Note that the variableR appears only in the instanton terms and therefore in our approximation

it can be expressed through r using the perturbative relation (2.12).

The result for the D-instanton corrections given by the second term in (3.4) can be compared

with the linearization (in DT invariants Ω̄γ) of the metric found in [21]. We do not provide any

details of this simple exercise which shows a perfect match between the two metrics.

The result for NS5-instanton corrections given by the last term in (3.4) is new. Note that

the specific form of the function Ψγ̂(ξ) appearing in (2.24) has not been used and it is valid

for any such function ensuring convergence of the corresponding integrals. Unfortunately, the

substitution of (2.26) does not seem to simplify the resulting metric which still looks very

complicated. But this is expected given that NS5-instantons break all continuous isometries of

the moduli space. It is also does not exhibit any fibration or other nice geometric structure.

Nevertheless, as will be shown in section 5, in the small string coupling limit, if one neglects

terms proportional to the differential of the instanton action, Vγ reduces to the square of a

one-form, and this is precisely the structure expected from the analysis of string amplitudes.

4. Universal hypermultiplet

The case of a rigid CY, i.e. without complex structure moduli (h2,1(Y) = 0), is special. Then

the spectrum contains only the universal hypermultiplet [49] comprising the dilaton r, NS axion

σ and a pair of RR fields9 ζ, ζ̃, so that the moduli space is four-dimensional. Such QK manifolds

are known to have an alternative description due to Przanowski [32] in terms of solutions of

a certain non-linear partial differential equation. This fact allows to test our one-instanton

corrected metric which must be compatible with this description. In particular, it must produce

a solution of the linearized differential equation. Furthermore, relating this solution to known

solutions in the literature, one may hope to find an alternative twistorial formulation of NS5-

instantons that is better adapted to symmetries of type IIA theory. In this section we show that

the metric (3.4) is indeed consistent with the Przanowski description, obtain the corresponding

potential solving the differential equation, but leave the problem of relating it to other solutions

for future work.

9We drop indices on quantities labelled by Λ,Σ, . . . since in this case that take a single value.
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4.1 Przanowski description

In [32] it was proven that locally, on a four-dimensional self-dual Einstein space (which is a

characterization of QK geometry in four dimensions) with a negative curvature, one can always

find complex coordinates zα (α = 1, 2) such that the metric takes the following form

ds2z[h] = − 6

Λ

(

hαβ̄dz
αdz̄β + 2eh|dz2|2

)

, (4.1)

where hα = ∂h/∂zα, etc. This metric is completely determined by a single real function h(zα, z̄α)

that must satisfy the following non-linear partial differential equation

Pz[h] ≡ h11̄h22̄ − h12̄h1̄2 + (2h11̄ − h1h1̄) e
h = 0. (4.2)

Of course, the equation is too complicated to be solved in general. However, the problem

significantly simplifies if one already knows a solution h(0) describing some QK space and one is

interested in linear deformations of this space. The point is that such deformations are governed

by the linearization of (4.2) around h(0), and a linear equation is much easier to solve. This is

precisely the case for MH whose perturbative metric has a well known Przanowski description

[50] in terms of coordinates

z1 = −
(

r + c log(r + c)
)

− i

4
(σ + ζζ̃ + τζ2), z2 =

i

2
(ζ̃ + τζ) (4.3)

and the Przanowski potential

h(0) = − log
2τ2r

2

r + c
, (4.4)

where τ ≡ τ1 + iτ2 is a fixed complex parameter with τ2 > 0, given by the ratio of periods

of the holomorphic 3-form Ω ∈ H3,0(Y) over an integral symplectic basis (A,B) of H3(Y,Z),

τ = −
∫

B
Ω/
∫

A
Ω, which defines the holomorphic prepotential in the rigid case [43]

F (X) = −τ

2
X2. (4.5)

It is easy to check that with these definitions the equation (4.2) is satisfied and the metric (4.1)

reproduces (2.2) provided one sets the cosmological constant to be Λ = −3/2. The linearization

of the Przanowski equation around this background takes the form [50, 51]

(

∆+ 1
) (

r2δh
)

= 0, (4.6)

where ∆ is the Laplace-Beltrami differential operator defined by the perturbative metric and

we expanded h = h(0)+ δh keeping only terms linear in δh. An explicit expression of ∆ in terms

of the real coordinates is recorded in (E.7). Solutions of (4.6) have been studied in [50]. We

discuss them below in section 4.3 in relation to our results. But before, we demonstrate that

our metric does fit the Przanowski description, which can be considered as a non-trivial test on

our calculations.
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4.2 The metric and Przanowski potential

In [51] it was shown that the Przanowski description follows directly from the twistorial construc-

tion for a generic four-dimensional QK space. Although this description is not unique because

there is a large ambiguity in the choice of coordinates zα (which also affects the Przanowski

potential h), it was found that a particularly convenient choice is given by

z1 =
i

2
α
[+]
0 − 2c log ξ−1, z2 =

i

2
ξ̃
[+]
0 , (4.7)

where in our case ξ−1 = R, α[+] and ξ̃[+] are defined in (B.1), and their Fourier coefficients are

evaluated in (D.1). The Przanowski potential should then be equal to

h = −2φ+ 2 log(ξ−1/2) = −2 log
2r

R . (4.8)

Thus, it is sufficient to plug in these identifications into (4.1) and to verify that the resulting met-

ric reproduces (3.4). Similarly, one can check that the Przanowski equation (4.2) is also satisfied.

Although we have performed these checks, the corresponding calculations are extremely cum-

bersome because one has to evaluate derivatives of instanton corrected functions with respect

to instanton corrected coordinates. Therefore, we prefer to present an alternative derivation

which, on one hand, avoids this complication and, on the other hand, establishes a contact with

solutions of the linearized Przanowski equation discussed in the previous subsection.

The idea is that at the linearized level the variation of the metric should be encoded in the

variation of the Przanowski potential δh(z). From (4.1) one finds that it induces the following

linear deformation of the metric

δhds
2 = 4δhαβ̄dz

αdz̄β + 8eh
(0)

δh|dz2|2. (4.9)

However, this assumes that the original non-deformed metric is written in terms of the non-

deformed complex coordinates zα. However, in practice these coordinates are also deformed as

functions of a fixed set of real coordinates ϕm which in our case coincide with (r, σ, ζ, ζ̃). And

it is these real coordinates that are used to define the non-deformed metric.

In such situation, the variation of the metric gets an additional contribution. To find it, let

(zα(ϕ), h(z)) and (zα0 (ϕ), h
(0)(z0)) denote the deformed and non-deformed complex coordinates

and Przanowski potential. In our case, they are given in (4.7), (4.8) and (4.3), (4.4), respectively.

By construction, we have Pz[h] = Pz0 [h
(0)] = 0. Using these functions, we further define

δϕh = h(z(ϕ))− h(0)(z0(ϕ)). (4.10)

Note that this variation of the Przanowski potential is different from the one defined above

which reads δh(z) = h(z) − h(0)(z) and satisfies the linearized Przanowski equation. The

relation between these two functions is obtained as follows

δh = δϕh−
(

h(0)(z(ϕ))− h(0)(z0(ϕ))
)

= δϕh− h(0)
α δzα − h

(0)
ᾱ δz̄α, (4.11)

where we introduced δzα(ϕ) = zα(ϕ)− zα0 (ϕ).
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Now we can write the full deformation of the metric which keeps the coordinates ϕm fixed

as

δds2 = ds2z(ϕ)[h]− ds2z0(ϕ)[h
(0)] = δhds

2 + δzds
2, (4.12)

where the first term is defined in (4.9) and

δzds
2 = ds2z(ϕ)[h

(0)]− ds2z0(ϕ)[h
(0)] (4.13)

is the deformation of the Przanowski metric defined by the non-deformed potential h(0) under the

variation of the complex coordinates as functions of the fields ϕm. Using (4.1) with Λ = −3/2

and taking into account that our non-perturbed potential (4.4) satisfies h
(0)
α = h

(0)
ᾱ , h

(0)

αβ̄
= h

(0)

αβ̄
,

etc., we find an explicit formula

δzds
2 =8h

(0)
αβγ Re (δz

γ)dzα0 dz̄
β
0 + 8h

(0)
αβ Re (dδz

αdz̄β0 )

+ 16eh
(0) (

h(0)
α Re (δzα)|dz20 |2 + Re (dδz2dz̄20)

)

.
(4.14)

To apply these results to the case under consideration, we obtain from (4.7) and (4.8) the

variation of the complex coordinates

δz1 = − 1

32π3

∑

γ

σγΩ̄γ

(

J (0)
γ +

2πiRr

r + c
ZγJ (1)

γ

)

− 1

32π3

∑

γ

Ω̄γ

((

1− 4πkcr

r + c

)

I(0)
γ

− 2πikRr

r + c
L (1)

γ

)

− ζδz2, (4.15)

δz2 =
i

16π2

∑

γ

σγΩ̄γZγJ (0)
γ − i

16π2

∑

γ

Ω̄γkL (0)
γ

,

and the Przanowski potential

δϕh = δϕ logR2 (4.16)

= − iR
32π2(r + c)

[

∑

γ

σγΩ̄γ

(

ZγJ (1)
γ + Z̄γJ (−1)

γ

)

−
∑

γ

Ω̄γ k
(

L (1)
γ

+ L̄ (−1)
γ

)

]

,

where we used (D.3) to get δϕR. Then due to (4.11) and (E.3), we have

δh = δϕh− 1

r
Re
(

δz1 + ζδz2
)

=
1

32π3r

[

∑

γ

σγΩ̄γ J (0)
γ +

∑

γ

Ω̄γ I(0)
γ

]

. (4.17)

This result is perfectly consistent with the general formula obtained in [51] for the solution of

the linearized Przanowski equation (4.6) corresponding to the deformation induced by a set of

transition functions Hi

δh =
1

8πr

∑

i

∫

Ci

dt

t
Hi. (4.18)

The fact that it satisfies (4.6) follows from the identity [51, Eq.(6.15)]

[

∆+ 1 +
r2

r + c
∂t

(

t

4(r + 2c)
(t∂t + 1) + 4it∂σ

)]

(r

t
H
)

= 0 (4.19)
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valid for any holomorphic function H of the perturbative Darboux coordinates (2.10), which

reduces the action of the Laplace-Beltrami operator to a total derivative.

The last step is to check that the deformation of the metric (4.12) coincides with the last

two terms in (3.4). Since all coefficients in (4.9) and (4.14) are given by derivatives of the

non-perturbed potential h(0), the computation is straightforward and confirms the agreement.

We present some details of this computation in appendix E.

4.3 Relation between different solutions

As was mentioned in section 4.1, solutions of the linearized Przanowski equation (4.6) were

investigated in [50]. As a result, it was found that physically relevant solutions, i.e. having

exponential dependence on the inverse string coupling characteristic for D-brane or NS5-brane

instantons, are generated by two sets of functions10

δhp,q =
1

r
e−2πi(qζ−pζ̃)K0

(

4π|q + τp|
√

2(r + c)/τ2

)

, (4.20)

δhk = e
−πikσ−π|k|

2τ2
|ζ̃+τζ|2

Z|k|(r), (4.21)

where K0(x) is the modified Bessel function and

Zk(r) =
e4πkr

r(r + c)4cπk

∫ ∞

1

e−8πk(r+c)t dt

t1+8πck
(4.22)

can be expressed through the incomplete Gamma function. A general solution can be obtained

as a linear combination of the Heisenberg transformations (2.5) applied to the basis solutions

(4.20) and (4.21). Since these transformations do not affect the functional form of the first

solution, we can write

δh =
∑

p,q

Cp,qδhp,q +
∑

k 6=0

∫

dηΛ
∫

dη̃Λ Ck(η, η̃) TηΛ,η̃Λ,0 [δhk] . (4.23)

It is clear that the first term represents D-instanton corrections of charge γ = (p, q), while the

second term is the effect of NS5-instantons.

Which constants Cp,q and functions Ck(η, η̃) correspond to the physical metric on MH

cannot be determined from the Przanowski framework and requires an additional input. Such

input is provided by our result (4.17) for the linear deformation of the Przanowski potential.

Comparing it with (4.23), it should be possible to find the coefficients Cp,q and the functions

Ck,ǫ(η, η̃). For example, matching the first terms in these expressions with help of (C.5), one

obtains

Cp,q =
σγΩ̄γ

16π3
. (4.24)

However, a similar match for the solutions representing NS5-instantons seems to be much

more complicated. It requires finding Ck(η, η̃) such that

e−πikσ Z|k|(r)

∫

dηΛ
∫

dη̃Λ Ck(η, η̃) e
−

π|k|
2τ2

|ζ̃+η̃+τ(ζ+η)|2+πik(ζη̃−ζ̃η)
=

1

32π3r

∑

p,γ̂

Ω̄γ I(0)
γ

. (4.25)

10In [50] the parameter τ was fixed to be τ = i/2, but it is easy to generalize the results to its arbitrary

value. Besides, the analysis of [50] also produced a third solution which however does not have an obvious

interpretation. Due to this, we omit it here.
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First, it is not clear why the dependence on r should factorize. If this does not happen on

the r.h.s., the match appears to be impossible. Second, while the integral (4.22) has some

similarities to the twistorial integrals representing instanton corrections, its integration contour

is quite different and it is not clear how it can emerge in our context. Thus, either a kind of

Poisson resummation over a subset of charges on the r.h.s. of (4.25) produces these features

or (which is probably more likely) the analysis of [50] missed more general solutions to the

linearized Przanowski equation by imposing too strong conditions selecting physically relevant

solutions. We leave a resolution of this puzzle to future work.

5. Small string coupling limit

In this section we extract the small string coupling limit of the one-instanton corrections to the

hypermultiplet metric that we calculated in section 3. This is the limit where we expect to

establish a connection with string amplitudes. For D-instantons this has already been done in

[6], therefore here we concentrate on NS5-instantons. First, we obtain a general structure of the

instanton corrected metric following from analysis of the effective action and string amplitudes.

Then we show that exactly the same structure emerges in the small string coupling limit of the

metric (3.4), thereby providing predictions for a certain class of string amplitudes in NS5-brane

background. This limit however leads to a somewhat unusual instanton action. So in the last

subsection we consider an additional limit of small RR fields which allows us to recover the

standard action and crucially simplifies our predictions for the amplitudes.

5.1 Instantons from string amplitudes

The analysis of this subsection is very similar to the one in [6, $5 and $6.1] so we will be more

brief.

Our goal is to relate the metric on the hypermultiplet module space to scattering amplitudes

of physical fields. Since the relevant fields are massless scalars, the first non-trivial amplitudes

are 4-point functions. Therefore, we need to generate a 4-point interaction vertex from a metric

dependent term in the effective action. The simplest possibility is to consider the kinetic term

for hypermultiplet scalars ϕm parametrizing MH

−1

2

∫

d4x

(

gpertmn +
∑

γ

e−Sγ

(

h(γ)
mn(ϕ) + · · ·

)

)

∂µϕ
m∂µϕn. (5.1)

Here we substituted the expected form of the metric in the small string coupling limit where it

is equal to the perturbative metric plus instanton corrections proportional to the exponential of

the instanton action. We kept only NS5-instanton contributions, denoted NS5-instanton action

by Sγ and the leading term in the expansion of the tensor multiplying the exponential by h
(γ)
mn.

In the limit gs → 0, we expect that Sγ ∼ g−2
s and assume that the fields ϕm are normalized so

that they stay constant.

Let us now expand the fields around their expectation values φm. If λm = ϕm−φm denotes

the fluctuations, then the expansion of (5.1) generates infinitely many interaction vertices for

these fluctuations. In particular, the leading instanton contribution to the λ4-term is obtained
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by bringing down two factors of λm from the expansion of the instanton action and is given by

−1

4

∑

γ

∫

d4x e−Sγ(φ) ∂pSγ(φ) ∂qSγ(φ) h
(γ)
mn(φ) λ

p λq ∂µλ
m∂µλn. (5.2)

This term induces an instanton contribution to 4-point functions of fields λmi which reads as

(2π)4δ(4)

(

∑

i

pi

)

e−Sγ

[

∂m1Sγ ∂m2Sγ h
(γ)
m3m4

p34 +
inequivalent perm.

of 1,2,3,4

]

, (5.3)

where pµi is the momentum carried by λmi and pij = ηµνp
µ
i p

ν
j .

The amplitude (5.3) induced by the term (5.2) in the effective action is to be compared

with the explicit computation of the instanton amplitude in string theory. First, we note that

NS5-instanton perturbation theory is similar to the one for D-instantons [1], but with open

string diagrams ending on D-branes replaced by closed string diagrams in the presence of an

NS5-brane. In particular, the instanton action should be given by the sphere diagram in the

NS5-background which agrees with its scaling as g−2
s . The overall normalization factor should

be given by the exponential of the torus diagram, and each insertion of a closed string vertex

operator, at leading order in gs, gives rise to a factor given by the sphere one-point function of

this operator.

This is not the end of the story, however, since the instanton breaks half of the N = 2

supersymmetry. The four broken supercharges imply the existence of four Goldstino zero modes.

To get a non-vanishing result from integration over these modes, their vertex operators should

be inserted in the sphere diagrams composing our amplitude. As a result, schematically, the

NS5-instanton contribution to the 4-point function we are interested in is given by

(2π)4δ(4)

(

∑

i

pi

)

Ω̄γNγ e
−Sγ

∫

[

∏

α,α̇=1,2

dχαdχα̇

]

Am1m2m3m4

γ,αα̇ββ̇
χαχα̇χβχβ̇, (5.4)

where Nγ is the normalization factor computed by torus with removed zero modes, χα are the

fermionic zero modes, and Am1m2m3m4

γ,αα̇ββ̇
is a sum of products of four sphere diagrams, each with

one closed string vertex operator corresponding to one of λmi , and four fermion zero modes

distributed among the four spheres. We also included the factor of Ω̄γ which for primitive γ

counts the number of BPS instantons in a given homology class, and for non-primitive charges

takes also into account multi-covering effects. The fact that these effects combine to give the

rational DT invariant (2.21) can be argued in the same way as for D-instantons [6].

This expression can be further simplified, because each sphere diagram must carry even

number of fermion zero modes. Hence only two situations are possible: either all four zero modes

are inserted on one sphere, or two spheres carry two zero modes each and two spheres are without

them. Moreover, one can argue that the former configuration does not contribute. Indeed,

the sphere one-point function of the vertex operator corresponding to λm, without additional

insertions of the fermion zero modes, is simply given by the derivative of the instanton action

−∂mSγ . In particular, it does not depend on the momentum carried by the vertex operator.

Therefore, all momentum dependence in the case where all four fermion zero modes are inserted

on a single sphere comes from this sphere diagram. However, the Lorentz invariance implies
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that it should be a function of p2 where p is the momentum carried by the vertex operator on

this sphere. But since p2 = 0, this contribution does not depend on pi’s at all and would give

rise to a potential term in the effective action. Since instanton corrections should not generate

any potential, this amplitude is expected to vanish.

Thus, the only surviving contribution is the one where we have two of the zero modes on

one sphere, two on another sphere, and two spheres without zero modes which, as we already

noted, produce the factors −∂mSγ . Let us estimate the sphere diagram with the zero mode

insertions. Note that to have a non-vanishing coupling with the momentum vector, one of the

zero modes must carry dotted index and the other one should carry undotted index. Then the

full diagram can be represented as

iA(γ)
m (φ) pµ γ

µ
αα̇, (5.5)

where A(γ)
m (φ) is a function of background fields independent of the momentum. Collecting all

contributions, we find that

Am1m2m3m4

γ,αα̇ββ̇
= −∂m1Sγ ∂m2Sγ

(

A(γ)
m3

p3,µ γ
µ
αα̇

)(

A(γ)
m4

p4,ν γ
ν
ββ̇

)

+
inequivalent perm.

of 1,2,3,4.
(5.6)

Substituting this result into (5.4), integrating over the zero modes, and using that ǫαβǫα̇β̇ γµ
αα̇ γ

ν
ββ̇

=

−Tr(γµγν) = −2 ηµν , one obtains that the NS5-instanton contribution to the 4-point function

has the following form11

(2π)4δ(4)

(

∑

i

pi

)

Ω̄γNγ e
−Sγ

[

∂m1Sγ ∂m2Sγ A(γ)
m3

A(γ)
m4

p34 +
inequivalent perm.

of 1,2,3,4

]

. (5.7)

Comparing (5.7) with (5.3), one finds that they have exactly the same structure. This allows

to extract the metric h
(γ)
mn(ϕ):

h(γ)
mn = Ω̄γNγA(γ)

m A(γ)
n . (5.8)

However, the above argument is not quite exact because it is insensitive to the terms in the

action (5.1) proportional to ∂mSγ . Indeed, such terms can be generated either by integration

by parts or by a change of variables involving non-perturbative terms [6]. In either case the

scattering amplitudes should not be affected and hence (5.8) is valid only up to addition of the

gradient of the instanton action.

To recapitulate, it is convenient to use the language of differential forms. Let us define

Aγ = A(γ)
m (ϕ)dϕm. Then the above analysis of string amplitudes shows that in the small gs

limit the NS5-instanton contribution to the hypermultiplet metric should be of the form

ds2NS5 ≃
∑

γ

Ω̄γNγ e
−Sγ

(

A2
γ
+ BγdSγ

)

(5.9)

with some one-form Bγ which this analysis cannot fix. Below we verify that the metric (3.4)

does fit this form and find all functions and one-forms appearing in (5.9) explicitly. On one

hand, this provides another non-trivial check on our results, and on the other hand, gives a

prediction for the amplitudes A(γ)
m .

11We are sloppy here about numerical factors. Moreover, as shown in [6], there is also an additional factor

that must be taken into account coming from a difference between the four-dimensional metric in the string

frame used to calculate string amplitudes and in the frame used to write the effective action (5.1) with vector

and hypermultiplets decoupled. We assume that all such factors have been absorbed into Nγ .
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5.2 The limiting metric

5.2.1 Definition of the limit

Before extracting the small string coupling limit, we should properly definite it. Namely, we

should specify how various fields behave in this limit. Naively, it is enough to send the variable

r, related to the dilaton, to infinity and to keep all other variables fixed. In particular, it is this

naive limit that has been used in [25] to extract the NS5-brane instanton action12 that, on one

hand, reproduces the result of a classical analysis of instanton solutions in N = 2 supergravity

[52] and, on the other hand, makes contact with the Gaussian NS5-partition function obtained

by holomorphic factorization [53, 54]:

S(0)
γ

= 4πkr + πik
(

σ + ζΛζ̃Λ − 2nΛζ̃Λ − N̄ΛΣ(ζ
Λ − nΛ)(ζΣ − nΣ)

)

− 2πimΛz
Λ. (5.10)

Here

NΛΣ = F̄ΛΣ − i
NΛΛ′zΛ

′
NΣΣ′zΣ

′

zΘNΘΘ′zΘ′ (5.11)

is the matrix of the gauge couplings in the mirror type IIB formulation, and the formula (5.10) is

valid for positive k, while for negative k the first term flips the sign and N̄ΛΣ should be replaced

by NΛΣ. This ensures the convergence of the sum over nΛ for both signs of the NS5-brane charge

due to the physical condition ImNΛΣ < 0.

However, this naive limit suffers from a problem. It is easy to see already for the classical

metric obtained from (2.2) by setting c = 0 that different terms have different scaling in r. This

makes it difficult even to formulate what is meant by the leading order metric in the large r

limit. On the other hand, in [6] it was noticed that one does get a homogeneous scaling in gs for

both the classical metric and the small string coupling limit of D-instanton corrections provided

we take this limit as

r, σ ∼ g−2
s , ζΛ, ζ̃Λ ∼ g−1

s , za ∼ g0s , gs → 0, (5.12)

which also implies R ∼ g−1
s . Besides, in this modified limit the D-instanton corrections have

been shown to acquire essentially the same quadratic structure as in (5.9) and matched exactly

against computations of string amplitudes. This strongly suggests that (5.12) is the correct

limit to consider for NS5-instantons as well.

In fact, the origin of the scaling (5.12) can be easily understood from the supergravity

action in ten dimensions13 where the kinetic terms in the NS sector are multiplied by the factor

e−2φ(10) ∼ g−2
s . Since such a factor is absent in the RR kinetic terms, the RR fields should

scale as g−1
s so that the whole action scales uniformly. Finally, the scaling of σ follows from

the dualization of the B-field. Moreover, this rescaling of the RR fields is necessary to match

them with their worldsheet counterparts [55]. Therefore, it is also necessary to establish a

correspondence between the small gs expansion of the effective action and the genus expansion

12The analysis of [25] ignored the effect of the logarithmic term in α̃ (2.10) incorporating the one-loop gs-

correction. In appendix F we show that its effect on the saddle point evaluation of a typical integral describing

NS5-instanton effects is quite non-trivial, but affects only the fluctuation determinant around the instanton

leaving the instanton action (5.10) intact.
13We thank Ashoke Sen for clarification of this issue.
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of string theory. Hence, if we want to derive predictions for any string amplitudes, we must

study the limit (5.12) rather than the naive one where only r scales with gs. Below we do it for

the NS5-instanton contribution to the metric (3.4).

5.2.2 Saddle point evaluation

As an important preliminary step, let us evaluate in the small gs limit, as it is defined in (5.12),

the following integral
∫

ℓγ

dt

t
f(t) e−2πikSγ(t), (5.13)

where f(t) is a polynomial in t and t−1,

Sγ(t) =
1

2

(

α̃+ (ξΛ − 2nΛ)ξ̃Λ

)

− F (ξ − n)− ma(ξ
a − na) +Q

k(ξ0 − n0)
− m0

k
, (5.14)

and all Darboux coordinates in (5.14) are set to their perturbative expressions (2.10). This

type of integrals multiplies all terms in (3.6) with positive k and thus encodes NS5-instanton

corrections to the hypermultiplet metric.

In the limit the “effective action” Sγ(t) can be expanded as Sγ(t) = −4ic log t +
∑

ℓ≥0 Sγ,ℓ

where Sγ,ℓ scales as g
ℓ−2
s and we extracted the only term having a logarithmic dependence on t.

Note that the expansion starts from the term scaling as g−2
s , as is expected for NS5-instantons.

For our purpose, it is sufficient to keep in the exponential only terms with non-positive scaling

power, i.e. with ℓ = 0, 1, 2. Then the resulting integral can be evaluated by saddle point. It is

easy to see that at the leading order the result is given by

f(t0) e
−Sγ

t1+8πkc
0

√

ikS ′′
γ,0

, Sγ = 2πik

(

Sγ,0 + Sγ,1 + Sγ,2 −
1

2

(S ′
γ,1)

2

S ′′
γ,0

)

, (5.15)

where all Sγ,ℓ and their derivatives (denoted by primes) are evaluated at t0 which is a solution

of the leading order saddle point equation S ′
γ,0 = 0.

From (5.14), we find that

S0(t) =
1

2

(

σ + ζΛζ̃Λ

)

−R2Re (z̄ΛFΛ(z)) +RζΛ
(

t−1FΛ(z)− tF̄Λ(z̄)
)

+R2
(

t−2F (z) + t2F̄ (z̄)
)

− F (ξ(t)), (5.16a)

Sγ,1(t) = −nΛ
[

ζ̃Λ +R
(

t−1FΛ(z)− tF̄Λ(z̄)
)

− FΛ(ξ(t))
]

, (5.16b)

Sγ,2(t) = −1

2
nΛnΣFΛΣ(ξ(t))−

ma

k

ξa(t)

ξ0(t)
− m0

k
. (5.16c)

Note that we dropped the index γ on S0 because this part of the effective action does not depend

on any charges. Taking the first derivative of (5.16a), one finds that the equation on t0 can be

written as

t−1
0 zΛFΛ + t0z̄

Λ
F̄Λ = −iRK, (5.17)

where we introduced

FΛ = FΛ(ξ(t0))− ξΣ(t0)FΛΣ(z),

F̄Λ = FΛ(ξ(t0))− ξΣ(t0)F̄ΛΣ(z̄).
(5.18)
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Note that for generic prepotential this equation is highly non-linear and cannot be solved ex-

plicitly, while in the rigid case (h2,1(Y) = 0) where F (X) is quadratic and given by (4.5) one

finds F0 = 0, F̄0 = −2iτ2ξ(t0) and t0 = ζ/R. The second derivative appearing in (5.15) is found

to be

t20S ′′
0 (t0) =R

[

ζΛ
(

t−1
0 FΛ(z)− t0F̄Λ(z̄)

)

+ 4R
(

t−2
0 F (z) + t20F̄ (z̄)

)

−
(

ζΛ
(

t−1
0 zΣ − t0z̄

Σ
)

+ 2R
(

t−2
0 zΛzΣ + t20z̄

Λz̄Σ
))

FΛΣ(ξ(t0))
]

.
(5.19)

Finally, the instanton action defined in (5.15) is given by

Sγ = 2πik

[

1

2

(

σ + ζΛζ̃Λ

)

−R2 Re (z̄ΛFΛ) +RζΛ(t−1
0 FΛ − t0F̄Λ) +R2

(

t−2
0 F + t20F̄

)

− F (ξ(t0))

−nΛ
(

ζ̃Λ +R
(

t−1
0 FΛ − t0F̄Λ

)

− FΛ(ξ(t0))
)

− 1

2
nΛnΣFΛΣ(ξ(t0))−

ma

k

ξa(t0)

ξ0(t0)
− m0

k

− R2

2t20 S ′′
γ,0(t0)

(

nΛ
(

t−1
0 FΛ + t0F̄Λ −

(

t−1
0 zΣ + t0z̄

Σ
)

FΛΣ(ξ(t0))
))2

]

. (5.20)

The result (5.20) appears to be much more complicated than the standard NS5-instanton

action (5.10) and its physical significance is not clear to us. However, one can note that all

complications come from keeping the RR fields large so that t0 remains finite and F (ξ(t0))

does not reduce to F (z). Probably it is not too surprising that large RR fields lead to a weird

instanton action since they couple to the self-dual 3-form living on the world-volume of the NS5-

brane, which makes the problem inherently quantum. Below, in section 5.3 we will show that

making the background RR fields small, one reduces (5.20) to the expected instanton action.

Nevertheless, even without taking this additional limit, we are able to show that NS5-corrections

to the hypermultiplet metric match the quadratic structure (5.9) predicted by the analysis of

string amplitudes.

5.2.3 The metric and its square structure

Using the results of the previous subsection, we conclude that at the leading order in the limit

(5.12) one has

I(0)
γ

≈ − k

p0
ξ0(t0)

t1+8πkc
0

e−Sγ

√

ikS ′′
0 (t0)

, (5.21)

while all other integral functions are proportional to this one:

I(±n)
γ

≈ (±t0)
∓n I(0)

γ
, (5.22a)

L(n)
γ,Λ ≈ (±t0)

∓n
FΛ I(0)

γ
, L̄(n)

γ,Λ ≈ (±t0)
∓n

F̄Λ I(0)
γ

, (5.22b)

K(±n)
γ,ΛΣ ≈ (±t0)

∓n
FΛ FΣ I(0)

γ
, K(±n)

γ,Λ̄Σ
≈ (±t0)

∓n
F̄Λ FΣ I(0)

γ
,

K(±n)

γ,ΛΣ̄
≈ (±t0)

∓n
FΛ F̄Σ I(0)

γ
, K(±n)

γ,Λ̄Σ̄
≈ (±t0)

∓n
F̄Λ F̄Σ I(0)

γ
,

(5.22c)

Kγ ≈ −
(

R2K2 + 4(zΛFΛ)(z̄
Σ
F̄Σ)

)

I(0)
γ

, (5.22d)
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L
(±n)
γ,Λ ≈ (±t0)

∓n
FΛdI(0)

γ
, L̄

(±n)
γ,Λ ≈ (±t0)

∓n
F̄ΛdI(0)

γ
, (5.22e)

where we used the functions defined in (5.18).

As indicated above, these results are valid for positive NS5-brane charge k. To get their

counterparts for negative k, it is sufficient to replace all instances of F (ξ) by F̄ (ξ) (including

those which appear in FΛ and F̄Λ (5.18)). It is easy to check that the new saddle point t∗0 is

related to the old one by the antipodal map t∗0 = ς[t0] = −1/t̄0, while the instanton action

satisfies S−γ = S̄γ .

Let us now see how the one-instanton corrected metric (3.4) simplifies in our limit. We will

consider only NS5-corrections given by Vγ (3.6) with positive k and extract its leading order

contribution. Then we can use the leading order results (5.21) and (5.22). In addition, there

are the following simplifications:

• One can drop all terms proportional to the one-loop parameter c since they are always of

subleading order.

• The terms in the first three lines of (3.6) are subleading compared to the rest of the

expression and thus can also be dropped.

• The variables r and R can be exchanged (even in the perturbative part of the metric)

using the classical relation r = R2K/4.

As a result, the NS5 one-instanton contribution reduces to

Vγ ≈ −2πkI(0)
γ

[

4

R

(

(dr)2 −S2 + r2
(dK)2

K2
− 4r2A2

K − 2r

K
|J|2
)

+
R
2r2

(zΛFΛ)(z̄
Σ
F̄Σ)

(

(dr)2 −S2 − 2rdr d logK + 4rAKS+ r2
(dK)2

K2
− 4r2A2

K

)

+
2

r
F

(

drS− 2r2AKd logK
)

− iR
2r

F
(

t−1
0 J+ t0J̄

)

(S− 2rAK)

−2i (dr + rd logK)
(

t−1
0 J+ t0J̄− iR−1NΛΣ

(

F̄ΛZΣ + FΛZ̄Σ

)

+ t−1
0 FΛdz

Λ + t0F̄Λdz̄
Λ
)

+2iNΛΣ
(

t0F̄ΛZΣJ̄+ t−1
0 FΛZ̄ΣJ

)

− 2R
(

FΛdz
ΛJ̄+ F̄Λdz̄

ΛJ
)

(5.23)

− 1

2r
F (S− 2rAK)

(

NΛΣ
(

F̄ΣZΛ + FΣZ̄Λ

)

+ iR
(

t−1
0 FΛdz

Λ + t0F̄Λdz̄
Λ
)

)

+2FΛF̄Σ

(

R−1NΛΞNΣΘZΘZ̄Ξ −RdzΛdz̄Σ
)

+ 2iNΛΣ
(

t−1
0 FΣFΞZ̄Λdz

Ξ + t0F̄ΣF̄ΞZΛdz̄
Ξ
)

)

]

−
[

i

2
F d logK +

4ir

R AK − 1

R NΛΣ
(

FΛZ̄Σ − F̄ΛZΣ

)

+
R
2r

(

zΛFΛJ̄− z̄ΛF̄ΛJ
)

]

dI(0)
γ

,

where we introduced another convenient notation

F = t−1
0 zΛFΛ − t0z̄

Λ
F̄Λ. (5.24)

It is straightforward to verify that the expression (5.23) can be rewritten as

Vγ ≈ −πk

R I(0)
γ

(

A2 + BdS0

)

, (5.25)
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where

A =2dr +
RF

2r
S− iR

(

t−1
0 J+ t0J̄

)

−NΛΣ
(

FΛZ̄Σ + F̄ΛZΣ

)

+ 2rd logK −RFAK − iR
(

t−1
0 FΛdz

Λ + t0F̄Λdz̄
Λ
)

,
(5.26)

B =
RF

2r
dr − 2S+ iNΛΣ

(

FΛZ̄Σ − F̄ΛZΣ

)

− 4i

K

(

zΛFΛ J̄− z̄ΛF̄Λ J
)

−R
(

t−1
0 J− t0J̄

)

+
1

2
RF d logK + 4rAK −R

(

t−1
0 FΛdz

Λ − t0F̄Λdz̄
Λ
)

(5.27)

and

dS0 = −
[RF

2r
dr − 2S+ iNΛΣ

(

FΛZ̄Σ − F̄ΛZΣ

)

]

−R
(

t−1
0 J− t0J̄

)

+
1

2
RF d logK + 4rAK −R

(

t−1
0 FΛdz

Λ − t0F̄Λdz̄
Λ
)

.

(5.28)

Note that the only dependence on the charge vector is in the overall coefficient, while A and

B are charge independent. One can also check that for negative k the result is obtained by

complex conjugation, namely, V−γ = −V̄γ . Therefore, combining (3.4), (5.21) and (5.25), one

finds that the full NS5-instanton correction to the hypermultiplet metric in the small string

coupling limit is given by

ds2NS5 ≃
1

4πr

∑

γ : k>0

Ω̄γ
k3

p0
Re

[

ξ0(t0)

t1+8πkc
0

e−Sγ

√

ikS ′′
0 (t0)

(

A2 + BdS0

)

]

. (5.29)

This is precisely the form (5.9) of the instanton contribution that we found from the analysis of

string amplitudes. Furthermore, comparing (5.9) and (5.29), we can identify (for positive k)

Aγ = fγ A+ gγ dS0, Bγ =
1

2πik

(

f 2
γ
B − 2fγgγA− g2

γ
dS0

)

,

Nγ =
k3

8πrp0
ξ0(t0)

t1+8πkc
0

f−2
γ

√

ikS ′′
0 (t0)

,
(5.30)

where fγ and gγ are a priori unknown functions of the moduli. It is tempting to speculate that

gγ = 0 and fγ is a constant. But even keeping these functions arbitrary, the identifications

(5.30) provide a large set of predictions for the amplitudes A(γ)
m (φ) of one closed string vertex

operator and two fermion zero modes in the NS5-brane background.

5.3 The limit of small RR fields

Unfortunately, the results (5.26)-(5.28) providing predictions for string amplitudes are not quite

explicit due to their dependence on the solution of the saddle point equation (5.17), which can be

solved explicitly only in simple cases of quadratic or cubic prepotential. This is also the reason

for the complicated form of the instanton action (5.20), and can be traced back to the fact

that in our limit the RR fields scale as g−1
s so that the perturbative Darboux coordinates ξΛpert

scale homogeneously. On the other hand, if the term Rt−1zΛ was dominating, we could expand

all instances of FΛ(ξ(t0)) around Rt−1FΛ(z) which would lead to drastic simplifications. This
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approximation does hold provided we take the RR fields to be small or at least ζΛ, ζ̃Λ ≪ g−1
s .

Since, at present, calculation of string amplitudes in a non-trivial RR-background appears to

be an outstanding problem, we find it natural to consider our results in this additional limit.

We start by analyzing the saddle point equation (5.17). It is easy to realize that its solution

is proportional to ζΛ/R, which is an exact result for a quadratic prepotential. Therefore, in the

limit of small RR fields, the first and third terms in the expression for ξΛpert (2.10) are suppressed

by two orders comparing to the second term. Expanding around it, we find

FΛ = − t0
2R FΛΣΘ(z)

(

ζΣ −Rt0z̄
Σ
) (

ζΘ −Rt0z̄
Θ
)

+O(g4sζ
5),

F̄Λ = − iR
t0

NΛΣz
Σ − iNΛΣ

(

ζΣ −Rt0z̄
Σ
)

+O(g2sζ
3).

(5.31)

Substituting these expansions into (5.17), it is easy to solve the resulting equation on t0. This

gives

t0 =
NΛΣz̄

ΛζΣ

RNXY z̄X z̄Y
+O((gsζ)

3), (5.32)

consistently with the expectation that t0 ∼ ζ/R.

We can now perform the same expansion in the instanton action (5.20). One can observe

that ignoring the next order term in (5.32) corresponds to ignoring the terms of order O(g2sζ
2+n)

with n = 0, 1, 2 in contributions that scale as g−n
s in the limit (5.12). Dropping such terms and

taking into account that

S ′′
0 (t0) ≈ iR2NΛΣz̄

Λz̄Σ, (5.33)

it is straightforward to check that Sγ reduces to the expected NS5-instanton action (5.10)

(plus a trivial constant term 4πkc as in (F.4)). This establishes a link with the known results

about these instantons and shows that they should emerge from string amplitudes only in the

approximation of small RR fields.

This double limit procedure might seem equivalent to the naive single limit where all fields

are fixed and only r scales, but this is not the case. Indeed, there are terms that survive the

naive limit, but are dropped in the limit (5.12) even before taking the RR fields to be small. Had

we scaled only r from the start, these terms would have remained relevant and would change

our results. For example, we would have to change the saddle point (5.32) by replacing ζΛ by

ζΛ−nΛ as in (F.3). The reason why it is the double limit rather than the naive one that should

be considered is our interest in predictions for string amplitudes. The point is that the first limit

(5.12) evaluated in the previous subsection ensures a relation between various expansion terms

and string amplitudes, while the second limit of small RR fields is supposed to be taken already

in each such term separately. In this way it simply gives the corresponding string amplitudes

in a particular region of the moduli space. Instead, the naive limit mixes contributions from

different string diagrams. For example, in (5.10) the terms linear in nΛ originate from Sγ,1

(5.16b) scaling as g−1
s and therefore are expected to capture disk amplitudes with boundary on

D-branes bound to the NS5-brane, while in the naive limit they have a trivial scaling and are

mixed with sphere contributions from S0.

Finally, we evaluate the limit of small RR fields for the one-forms (5.26)-(5.28), which

according to our reasoning should provide predictions for the same limit of the sphere three-

point functions. To this end, it is also useful to note that for the function defined in (5.24) one
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obtains a very simple result

F = iRK +O(g3sζ
4). (5.34)

Then keeping only terms that are at most quadratic in the RR fields and using notation

ζ̂Λ = ζΛ − NΣΘz̄
ΣζΘ

NXY z̄X z̄Y
z̄Λ, (5.35)

one gets14

A ≈ 2dr + 2iS+ iζΛZΛ − iRt0z̄
Λ(ZΛ + Z̄Λ)−

i

2
FΛΣΘζ̂

Λζ̂ΣdzΘ −Rt0NΛΣζ̂
Λdz̄Σ,

B ≈ 2idr − 2S+
2R
t0

J− ζΛZΛ +Rt0z̄
Λ(ZΛ + Z̄Λ)−

1

2
FΛΣΘζ̂

Λζ̂ΣdzΘ − iRt0NΛΣζ̂
Λdz̄Σ,

dS0 ≈ − 2idr + 2S+ ζΛZΛ −Rt0z̄
Λ(ZΛ − Z̄Λ)−

1

2
FΛΣΘζ̂

Λζ̂ΣdzΘ − iRt0NΛΣζ̂
Λdz̄Σ.

(5.36)

It is interesting that both A and B are very similar to dS0. In particular, one has a very simple

relation

A ≈ idS0 − 2Rt0

(

iJ̄+NΛΣζ̂
Λdz̄Σ

)

. (5.37)

Combining the one-forms (5.36) with the identifications (5.30), one obtains predictions for

the sphere three-point functions in the NS5-background in the limit of small RR fields. This

can be viewed as one of the main results of our work.

6. Conclusions

In this paper we have computed the hypermultiplet metric of type IIA string theory compactified

on a CY threefold in the one-instanton approximation, i.e. including D-brane and NS5-brane

instanton contributions linear in the DT invariants. The resulting metric has passed two con-

sistency checks. First, we have verified that it is compatible with the Przanowski description

of four-dimensional QK manifolds in terms of solutions of a differential equation. Second, we

have shown that in the small string coupling limit it acquires a structure that is derived from

the analysis of string amplitudes: for a fixed charge, the metric is the square of a one-form,

up to contributions proportional to the differential of the instanton action, see (1.1). The co-

efficients of this one-form are expected to be sphere three-point functions of one closed string

vertex operator and two fermionic zero modes corresponding to supersymmetries broken by the

NS5-brane. We have explicitly computed this one-form and thereby provided a prediction for

14Note that the one-forms in (5.36) are written using t0 rather than its limiting value (5.32). The difference

manifests only in one place — the third term in B. After expansion of this term around (5.32), the order ζ3

term in t0 generates a contribution which is of the same order as the forth and fifth terms in B and should be

taken into account. Since this is the only place where the correction to (5.32) plays a role and since B is not

accessible from string amplitude computation anyway, we did not include the correction in the main text. For

completeness, we provide its expression here:

− iFΛΣΘζ̂
Σζ̂Θ

6NXY z̄X z̄Y

(

ζΛ − NΣ′Θ′ z̄Σ
′

ζΘ
′

NX′Y ′ z̄X′ z̄Y ′
z̄Λ

)

.
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these three-point functions, which takes particularly simple form (5.36) in the limit of small

RR-fields.

The starting point for all these results is a set of holomorphic transition functions on the

twistor space of MH , which encode in a concise way the instanton corrections to the metric.

The transition functions for NS5-instantons that we used in this work have been obtained in the

type IIB formulation by applying S-duality to the D-instanton transition functions. The use of

type IIB results in type IIA is one of the reasons why the metric we obtained does not exhibit

manifest symplectic invariance. One may expect that there should exist a dual formulation,

obtained by some kind of Poisson resummation, that is more adapted to symmetries of type IIA

theory, simpler and allows a natural extension to multi-instanton level. One of the motivations

for our work was to find some hints for such formulation.

An interesting possibility for this is provided by the Przanowski description of the universal

hypermultiplet where we have a set of solutions (4.21) of the Przanowski differential equation

which have the form of NS5-instantons and exhibit symplectic invariance because the combina-

tion of the RR-fields in the exponential can be interpreted as the Hesse potential associated to

the prepotential (4.5) and evaluated on the real symplectic vector (ζ, ζ̃). Unfortunately, it seems

difficult to relate it to the solution following from our metric as it requires solving the equation

(4.25) which is likely not possible. One should also recall that rigid CYs do not have mirror

duals and hence the universal hypermultiplet does not have a type IIB realization. Thus, strictly

speaking, we extended our results to the case where the starting point does not really exist. On

the other hand, the metric we derived and its analysis in the four-dimensional case rely only on

the general form (2.24) of the NS5 transition functions dictated by the Peccei-Quinn symmetries

and do not depend on the concrete form of the function Ψγ̂(ξ). Therefore, if one eventually finds

an alternative formulation of NS5-instantons, the corresponding transition functions should still

have the form (2.24) and our results will still be valid provided one substitutes Ψγ̂(ξ) in the

definition of various integral functions introduced in appendix C.2 with its new counterpart.

In this respect it is worth to emphasize that although we did use the form of Ψγ̂(ξ) to

derive the small string coupling limit of the instanton corrections, our predictions for three-

point string amplitudes appear to be universal and independent on a concrete formulation of

NS5-instantons. This is because the one forms (5.26)-(5.28), or their limit at small RR fields

(5.36), are independent of any charges. Thus, a change of formulation, which necessarily involves

a resummation over a set of charges, will affect only the prefactor Nγ in (5.9) related to the

torus amplitude in the NS5-background. It is an exciting problem to reproduce them from a

direct worldsheet approach to string amplitudes.

Acknowledgements: We are grateful to Ashoke Sen for valuable correspondence. SA is

grateful to the organizers of the program “Black holes: bridges between number theory and

holographic quantum information” and to the Isaac Newton Institute for Mathematical Sciences

where this work was finished for the kind hospitality.

A. NS5 transition functions

To present the transition functions incorporating NS5-instantons obtained in [25], let us intro-

duce some notations.
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First, let us recall that the holomorphic prepotential describing the special Kähler geometry

of the Kähler moduli space of the mirror CY Ŷ is a sum of three contributions [56]

F = Fcl + Fpert + Fws, (A.1)

where the first term is the classical prepotential

Fcl(X) = −(X)3

6X0
+

1

2
AΛΣX

ΛXΣ, (A.2)

while the other two represent perturbative α′ and world-sheet instanton corrections, respectively.

In (A.2), we abbreviated (X)3 = κabcX
aXbXc where κabc are the triple intersection numbers of

Ŷ, and AΛΣ is a real matrix satisfying

A00 = 0, A0a =
c2,a
24

,

La(p) ≡
1

2
κabcp

bpc − Aabp
b ∈ Z for ∀pa ∈ Z,

(A.3)

where c2,a are the components of the second Chern class of Ŷ.

The matrix AΛΣ is used to define a shifted version of electric charges and Darboux coordi-

nates

q′Λ = qΛ −AΛΣp
Σ, ξ̃′Λ = ξ̃Λ − AΛΣξ

Σ. (A.4)

In turn, they are used to define the charges

q̂a = q′a +
1

2
κabc

pbpc

p0
, q̂0 = q′0 +

paq′a
p0

+
1

3
κabc

papbpc

(p0)2
(A.5)

that stay invariant under the so-called spectral flow transformations generated by the mon-

odromies around the large volume point in the Kähler moduli space. Acting on the unprimed

charge vector γ = (p0, pa, qa, q0), it is realized by the matrix

ρ(Mǫa) =











1 0 0 0

ǫa δab 0 0

−La(ǫ) −κabcǫ
c δa

b 0

L0(ǫ) Lb(ǫ) + 2Abcǫ
c −ǫb 1











, (A.6)

where ǫa ∈ Z and we introduced an integer valued function

L0(ǫ) ≡
1

6
κabcǫ

aǫbǫc +
1

12
c2,aǫ

a ∈ Z, (A.7)

equal to the holomorphic Euler characteristic of the divisor specified by the vector ǫa. The

properties (A.3) and (A.7) ensure that the symplectic transformation (A.6) is also integer valued.

For some purposes, it is convenient to rewrite the action of the spectral flow on γ̂ = (pa, qa, q0)

as a shift

γ̂ 7→ γ̂ + δ[γ, ǫa], (A.8)

where

δ[γ, ǫa] =





p0ǫa

−κabcp
bǫc − p0La(ǫ)

−qaǫ
a + pΛLΛ(ǫ) + 2Aabp

aǫb



 . (A.9)
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Finally, we define the charge vector γ = (k, p, pa, qa, q0) where15 p0 = gcd(k, p), rational

charges n0 = p/k, na = pa/k, S-duality transformation

gk,p =

(

a b

−k/p0 p/p0

)

∈ SL(2,Z), (A.10)

where the integers (a, b), ambiguous up to the addition of (k/p0,−p/p0), are chosen such that

ap + bk = p0, and ε(gk,p) equal to the logarithm of the multiplier system of the Dedekind eta

function. With these definitions, we can now write down the expression for the NS5 transition

function [25, Eq.(5.30)]

Hγ = −σγΩ̄γ

(2π)2
k

p0
(

ξ0 − n0
)

exp

[

2πi

(

−k

2
Sα +

p0 (kq̂a(ξ
a − na) + p0q̂0)

k2(ξ0 − n0)
+ a

p0q′0
k

− c2,ap
aε(gk,p)

)]

,

(A.11)

where

Sα = α̃ + (ξΛ − 2nΛ)ξ̃′Λ +
(ξ − n)3

3(ξ0 − n0)
. (A.12)

The prefactor − k
p0
(ξ0 − n0) was absent in [25], but it must be included to ensure correct trans-

formation properties under S-duality, as has been understood in [26, 27].

Our goal is to rewrite (A.11) in terms of type IIA variables avoiding the use of data of the

mirror CY. As a first step in this direction, we recognize the last term in (A.12) as the cubic

term in the classical part of the prepotential (A.2). However, it is the full prepotential F (X)

(A.1) that coincides by mirror symmetry with the prepotential of the complex structure moduli

space of Y. We can safely add the last two terms in (A.1) because they are mixed by S-duality

with D(-1) and D1-instantons which have been ignored in the derivation of Hγ anyway. It

remains to take into account the quadratic term in (A.2). Using also (A.4), one finds that

Sα ≃ α̃ + (ξΛ − 2nΛ)ξ̃Λ − 2F (ξ − n) + AΛΣn
ΛnΣ . (A.13)

In fact, this result is not unique. The point is that Fcl(X) is the classical part of both

F (X) and F̄ (X) because all coefficients in (A.2) are real. Hence another possibility is to replace

F (ξ−n) by F̄ (ξ−n) in (A.13). Although at this point it is impossible to decide which choice is

correct, this can be established by evaluating the instanton action in the small string coupling

limit (see section 5.3) and comparing with the expected result [52]. This shows that the choice

(A.13) is relevant for positive k and the one with F̄ for negative k. This prescription is also

consistent with the condition (2.17) which relates instantons and anti-instantons.

The representation (2.24) then follows upon using (A.13), our choice for the quadratic

refinement σγ = (−1)qΛp
Λ
, notations (2.27) and the fact proven in [27, appendix D] that under

the Peccei-Quinn transformation (2.5) the NS5 transition functions behave as

TηΛ,0,0 ·Hγ = Hγ−(0,kη0,δ[γ,kηa/p0]). (A.14)

Note that mΛ and Q still involve various data of the mirror CY related to its Kähler moduli

space which seems unnatural form the type IIA point of view. This appears to be an artifact

of our hybrid approach and we leave its detailed understanding as an open issue.

15We will take p0 to be of the same sign as k.

– 30 –



B. Procedure to derive the metric

The general procedure to derive the metric on a QK manifoldM from the knowledge of Darboux

coordinates on its twistor space ZM was described in detail in [31]. Here we present it in the

form adapted to the twistor description of MH given in section 2.2. It consists of several steps:

1. At the first step, we redefine the coordinates ξ̃Λ and α̃ into16

ξ̃
[+]
Λ = ξ̃Λ − FΛ(ξ),

α[+] = − 1

2

(

α̃ + ξΛξ̃Λ

)

+ F (ξ).
(B.1)

The advantage of the new coordinates is that their expansion around the north pole t = 0

of CP 1 does not contain singular t−1 terms. As a result, we can write the following

Laurent expansion for the set of holomorphic coordinates on the twistor space and the

contact potential (2.18)

ξΛ = ξΛ−1t
−1 + ξΛ0 + ξΛ1 t+O(t2),

ξ̃
[+]
Λ = ξ̃

[+]
Λ,0 + ξ̃

[+]
Λ,1 t +O(t2),

α[+] =4ic log t + α
[+]
0 + α

[+]
1 t+O(t2),

Φ =Φ0 + Φ1t +O(t2).

(B.2)

2. In terms of the new coordinates, the contact one-form (2.8) is given by

X = dα[+] + ξΛdξ̃
[+]
Λ . (B.3)

Substituting the expansions (B.2) into this expression and comparing it with the canonical

form Dt (2.6) using (2.7), one finds the components of the SU(2) connection

p+ =
i

4
e−Φ0 ξΛ−1dξ̃

[+]
Λ,0 ,

p3 = −1

4
e−Φ0

(

dα
[+]
0 + ξΛ0 dξ̃

[+]
Λ,0 + ξΛ−1dξ̃

[+]
Λ,1

)

− iΦ1p
+ .

(B.4)

3. Then one computes the triplet of quaternionic 2-forms (2.9). In particular, for ω3 the

formula reads

ω3 = −4
(

dp3 − 2ip+ ∧ p−
)

. (B.5)

4. Next, one specifies the almost complex structure J3 by providing a basis of (1,0) forms on

M. Such a basis was found in [31] and, after some simplifications, it takes the following

form

πa = d
(

ξa−1/ξ
0
−1

)

, π̃Λ = dξ̃
[+]
Λ,0, π̃α =

1

2i
dα

[+]
0 + 2c d log ξ0−1. (B.6)

16The transformation (B.1) can be seen as a contact transformation defining Darboux coordinates in the

patch around t = 0. Then the holomorphic prepotential F (ξ) has the meaning of a transition function. Together

with a similar transition function to the south pole t = ∞ given by F̄ (ξ), they provide a twistor definition of

perturbative MH from which the perturbative Darboux coordinates (2.10) can be derived [31].
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5. Finally, the metric is recovered as g(X, Y ) = ω3(X, J3Y ). To do this in practice, one

should rewrite ω3, computed by (B.5) in terms of differentials of coordinates on M, in

the form which makes explicit that it is of (1,1) Dolbeault type. Using for this purpose a

basis πX , which can be taken to be (πa, π̃Λ, π̃α) or some its modification, the final result

should look like

ω3 = 2igXȲ π
X ∧ π̄Y , (B.7)

from which the metric readily follows as ds2 = 2gXȲ π
X ⊗ π̄Y .

C. Integrals and their differentials

C.1 Integrals of D-instanton transition functions

The D-instanton transition functions (2.23) and all their derivatives appearing in (2.13) de-

pend on a single combination of Darboux coordinates determined by the D-instanton charge γ.

Therefore, it is convenient to define a function given by the integral transform (2.14) of this

combination

Jγ(t) = Jγ

[

e−2πi(qΛξΛ−pΛξ̃Λ)
]

. (C.1)

All D-instanton corrections can be expressed using this function. We will also define its expan-

sion coefficients around t = 0 and t = ∞ as follows

J (0)
γ ≡Jγ(0) =

∫

ℓγ

dt

t
e−2πiΞγ(t),

J (±n)
γ ≡ 1

2
(±1)n−1 ∂nJγ

∂(t±1)n

∣

∣

∣

∣

t±1=0

= (±1)n
∫

ℓγ

dt

t1±n
e−2πiΞγ(t), n ≥ 1,

(C.2)

where we introduced

Ξγ(t) ≡ qΛξ
Λ
pert − pΛξ̃pertΛ = Θγ +R

(

t−1Zγ − tZ̄γ

)

, (C.3)

Zγ is the central charge function defined in (2.20) and

Θγ = qΛζ
Λ − pΛζ̃Λ. (C.4)

The coefficients J (n)
γ can be evaluated in terms of modified Bessel functions

J (n)
γ = 2i−|n|(Zγ/|Z̄γ|)n/2 e−2πiΘγK|n|(4πR|Zγ|) (C.5)

and satisfy the following property under complex conjugation

J (n)
γ = J (−n)

−γ . (C.6)

Using integration by parts, it is easy to establish the relations

ZγJ (1)
γ = Z̄γJ (−1)

γ , (C.7a)

J (1)
γ = 2πiR

(

ZγJ (2)
γ + Z̄γJ (0)

γ

)

, (C.7b)

J (−1)
γ = 2πiR

(

ZγJ (0)
γ + Z̄γJ (−2)

γ

)

. (C.7c)
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A direct evaluation of the differentials gives

dJ (0)
γ = −2πi

(

J (0)
γ dΘγ + J (1)

γ d(RZγ) + J (−1)
γ d(RZ̄γ)

)

, (C.8a)

dJ (1)
γ = −2πi

(

J (1)
γ dΘγ + J (2)

γ d(RZγ)− J (0)
γ d(RZ̄γ)

)

(C.8b)

dJ (−1)
γ = −2πi

(

J (−1)
γ dΘγ −J (0)

γ d(RZγ) + J (−2)
γ d(RZ̄γ)

)

, (C.8c)

where J (±2)
γ can be excluded using the relations (C.7).

C.2 Integrals of NS5-instanton transition functions

In contrast to the D-instanton case, NS5-corrections to different Darboux coordinates and their

differentials cannot be expressed through a single function. Therefore, we have to introduce

several functions given by the integral transform (2.14) of the NS5 transition functions (2.24)

and its derivatives. More precisely, using the shorthand notation

αn = −1

2

(

α̃ + (ξΛ − 2nΛ)ξ̃Λ

)

, (C.9)

we define

Iγ(t) =Jγ

[

e2πikαnΨγ̂

]

,

IΛ
γ
(t) =Jγ

[(

ξΛ − nΛ
)

e2πikαnΨγ̂

]

,

Iγ,Λ(t) =
1

2πik
Jγ

[

e2πikαn∂ξΛΨγ̂

]

,

IΛΣ
γ

(t) =Jγ

[(

ξΛ − nΛ
) (

ξΣ − nΣ
)

e2πikαnΨγ̂

]

,

IΛ
γ,Σ(t) =

1

2πik
Jγ

[(

ξΛ − nΛ
)

e2πikαn∂ξΣΨγ̂

]

,

Iγ,ΛΣ(t) =
1

(2πik)2
Jγ

[

e2πikαn∂ξΛ∂ξΣΨγ̂

]

,

(C.10)

where Ψγ̂ is evaluated at ξΛ − nΛ as in (2.24). It should be clear that the functions IΛ
γ
, Iγ,Λ are

proportional to the integral transform of the derivatives (−∂̂ξ̃ΛHγ), ∂̂ξΛHγ , while IΛΣ
γ

, IΛ
γ,Σ, Iγ,ΛΣ

correspond to the second derivatives ∂̂ξ̃Λ ∂̂ξ̃ΣHγ , (−∂̂ξ̃Λ ∂̂ξΣHγ), ∂̂ξΛ ∂̂ξΣHγ . Since the derivatives

(2.15) do not commute
[

∂̂ξΛ , ∂̂ξ̃Σ

]

= 2δΣΛ∂α̃, (C.11)

it makes sense also to introduce the function

ÎΛ
γ,Σ(t) =

1

2πik
Jγ

[

e2πikαn∂ξΣ
(

(ξΛ − nΛ)Ψγ̂

)]

= IΛ
γ,Σ +

1

2πik
Iγ . (C.12)

Similarly to (C.2), we define expansion coefficients of all these functions, which satisfy exactly

the same conjugation property as in (C.6).

We also often use the following combinations

L(n)
γ,Λ =I(n)

γ,Λ − FΛΣI(n)Σ
γ

, L (n)
γ

= zΛL(n)
γ,Λ,

L̄(n)
γ,Λ =I(n)

γ,Λ − F̄ΛΣI(n)Σ
γ

, L̄ (n)
γ

= z̄ΛL̄(n)
γ,Λ,

(C.13)
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K(n)
γ,ΛΣ = I(n)

γ,ΛΣ − FΛΛ′I(n)Λ′

γ,Σ − FΣΣ′ Î(n)Σ′

γ,Λ + FΛΛ′FΣΣ′I(n)Λ′Σ′

γ
,

K(n)

γ,ΛΣ̄
= I(n)

γ,ΛΣ − FΛΛ′I(n)Λ′

γ,Σ − F̄ΣΣ′ Î(n)Σ′

γ,Λ + FΛΛ′F̄ΣΣ′I(n)Λ′Σ′

γ
,

K(n)

γ,Λ̄Σ
= I(n)

γ,ΛΣ − F̄ΛΛ′I(n)Λ′

γ,Σ − FΣΣ′ Î(n)Σ′

γ,Λ + F̄ΛΛ′FΣΣ′I(n)Λ′Σ′

γ
,

K(n)

γ,Λ̄Σ̄
= I(n)

γ,ΛΣ − F̄ΛΛ′I(n)Λ′

γ,Σ − F̄ΣΣ′ Î(n)Σ′

γ,Λ + F̄ΛΛ′F̄ΣΣ′I(n)Λ′Σ′

γ
,

(C.14)

Kγ = zΛzΣK(2)
γ,ΛΣ − zΛz̄ΣK(0)

γ,ΛΣ̄
− z̄ΛzΣK(0)

γ,Λ̄Σ
+ z̄Λz̄ΣK(−2)

γ,Λ̄Σ̄
, (C.15)

and the one-forms

Lγ,Λ =dIγ,Λ − FΛΣdIΣ
γ
,

L̄γ,Λ =dIγ,Λ − F̄ΛΣdIΣ
γ
,

(C.16)

so that

dL (n)
γ

= L
(n)
γ,Λ + L(n)

γ,Λdz
Λ, dzΛ ∧ dL(n)

γ,Λ = dzΛ ∧ L
(n)
γ,Λ. (C.17)

Note that the bar on the functions and the one-forms introduced above does not mean complex

conjugation. For the latter we use overline and it involves also flipping the sign of the charge

and the index n. For instance, we have

L
(n)
γ = L̄

(−n)
−γ . (C.18)

Using integration by parts and the relation

t
(

∂tα̃
pert + ξ̃pertΛ ∂tξ

Λ
pert − ξΛpert∂tξ̃

pert
Λ

)

= 8irpert, (C.19)

where rpert is given in (2.12), one can establish the following identities

L (1)
γ

− L̄ (−1)
γ

= −4ir

R I(0)
γ

, (C.20a)

L (2)
γ

+ L̄ (0)
γ

=
i

R

(

1

2πk
− 4r

)

I(1)
γ

, (C.20b)

L (0)
γ

+ L̄ (−2)
γ

=
i

R

(

1

2πk
+ 4r

)

I(−1)
γ

, (C.20c)

where we dropped the index pert on r. It is also straightforward to find the following differentials

dI(0)
γ

= −2πik

[

2I(0)
γ

(S+ 2rAK) + iNΛΣ
(

L̄(0)
γ,ΛZΣ − L(0)

γ,ΛZ̄Σ

)

−R
(

I(1)
γ

J + I(−1)
γ

J̄ + L(1)
γ,Λdz

Λ + L̄(−1)
γ,Λ dz̄Λ

)

−
(

L (1)
γ

+ L̄ (−1)
γ

)

dR
]

, (C.21a)

dI(1)
γ

= −2πik

[

2I(1)
γ

(S+ 2rAK) + iNΛΣ
(

L̄(1)
γ,ΛZΣ − L(1)

γ,ΛZ̄Σ

)

−R
(

I(2)
γ

J− I(0)
γ

J̄+ L(2)
γ,Λdz

Λ − L̄(0)
γ,Λdz̄

Λ
)

−
(

L (2)
γ

− L̄ (0)
γ

)

dR
]

, (C.21b)

dI(−1)
γ

= −2πik

[

2I(−1)
γ

(S+ 2rAK) + iNΛΣ
(

L̄(−1)
γ,Λ ZΣ −L(−1)

γ,Λ Z̄Σ

)

+R
(

I(0)
γ

J− I(−2)
γ

J̄ + L(0)
γ,Λdz

Λ − L̄(−2)
γ,Λ dz̄Λ

)

+
(

L (0)
γ

− L̄ (−2)
γ

)

dR
]

, (C.21c)
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and

L
(0)
γ,Λ = −2πik

[

2L(0)
γ,Λ (S+ 2rAK)−R

(

L(1)
γ,ΛJ+ L(−1)

γ,Λ J̄
)

+iNΣΞ
(

K(0)

γ,ΛΣ̄
ZΞ −K(0)

γ,ΛΣ Z̄Ξ

)

−K(1)
γ,ΛΣd(RzΣ)−K(−1)

γ,ΛΣ̄
d(Rz̄Σ)

]

, (C.22a)

L̄
(0)
γ,Λ = −2πik

[

2L̄(0)
γ,Λ (S+ 2rAK)−R

(

L̄(1)
γ,ΛJ+ L̄(−1)

γ,Λ J̄
)

+iNΣΞ
(

K(0)

γ,Λ̄Σ̄
ZΞ −K(0)

γ,Λ̄Σ
Z̄Ξ

)

−K(1)

γ,Λ̄Σ
d(RzΣ)−K(−1)

γ,Λ̄Σ̄
d(Rz̄Σ)

]

, (C.22b)

L
(1)
γ,Λ = −2πik

[

2L(1)
γ,Λ (S+ 2rAK)−R

(

L(2)
γ,ΛJ−L(0)

γ,ΛJ̄
)

+iNΣΞ
(

K(1)

γ,ΛΣ̄
ZΞ −K(1)

γ,ΛΣ Z̄Ξ

)

−K(2)
γ,ΛΣd(RzΣ) +K(0)

γ,ΛΣ̄
d(Rz̄Σ)

]

, (C.22c)

L̄
(−1)
γ,Λ = −2πik

[

2L̄(−1)
γ,Λ (S+ 2rAK) +R

(

L̄(0)
γ,ΛJ− L̄(−2)

γ,Λ J̄
)

+iNΣΞ
(

K(−1)

γ,Λ̄Σ̄
ZΞ −K(−1)

γ,Λ̄Σ
Z̄Ξ

)

+K(0)

γ,Λ̄Σ
d(RzΣ)−K(−2)

γ,Λ̄Σ̄
d(Rz̄Σ)

]

. (C.22d)

D. Details on the metric calculation

In this appendix we provide details of the calculation of the one-instanton corrected metric (3.4).

We follow the procedure described in appendix B and extensively use the notations introduced

in (3.2), (3.3) and in the previous appendix.

D.1 SU(2) connection and quaternionic 2-forms

The first step towards the metric is to evaluate the expansion coefficients near t = 0 of ξΛ and

the redefined Darboux coordinates ξ̃
[+]
Λ and α[+] (B.1). Starting from the expressions (2.13)

where the sums run over charges γ and γ, and using the functions defined in (C.1), (C.10) and

(C.13), it is straightforward to get

ξΛ−1 = RzΛ, (D.1a)

ξΛ0 = ζΛ +
1

8π2

∑

γ

σγΩ̄γ p
ΛJ (0)

γ − 1

8π2

∑

γ

Ω̄γ k I(0)Λ
γ

, (D.1b)

ξ̃
[+]
Λ,0 = ζ̃Λ − FΛΣζ

Σ +
1

8π2

∑

γ

σγΩ̄γ VγΛJ (0)
γ − 1

8π2

∑

γ

Ω̄γ kL(0)
γ,Λ, (D.1c)

ξ̃
[+]
Λ,1 = −iRz̄ΣNΛΣ − 1

2R FΛΣΘζ
ΣζΘ +

1

8π2

∑

γ

σγΩ̄γ

[

2VγΛJ (1)
γ − 1

R FΛΣΘp
ΣζΘJ (0)

γ

]

− 1

8π2

∑

γ

Ω̄γ k

[

2L(1)
γ,Λ − 1

R FΛΣΘζ
ΘI(0)Σ

γ

]

, (D.1d)

α
[+]
0 = −1

2

(

σ + ζΛζ̃Λ − FΛΣζ
ΛζΣ
)

+ 2i(r + c)
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+
i

16π3

∑

γ

σγΩ̄γ

[

(

1 + 2πiζΛVγΛ

)

J (0)
γ + 2πiRZγJ (1)

γ

]

+
i

16π3

∑

γ

Ω̄γ

[

I(0)
γ

− 2πikζΛL(0)
γ,Λ − 2πikRL (1)

γ

]

, (D.1e)

where we used one more convenient notation

VγΛ = qΛ − FΛΣp
Σ (D.2)

and the definition of our coordinate r (3.1) which together with (2.19) gives

r =
R2

4
K − c+

iR
32π2

∑

γ

σγΩ̄γ

(

ZγJ (1)
γ + Z̄γJ (−1)

γ

)

− iR
32π2

∑

γ

Ω̄γ k
(

L (1)
γ

+ L̄ (−1)
γ

)

. (D.3)

The full contact potential (2.18) is easily found to be

Φ(t) = log r − 1

8π2

∑

γ

Ω̄γ k Iγ(t). (D.4)

Substituting the above coefficients into (B.4), using (C.7a), (C.8a), (C.20a) and keeping

only the linear order in the instantons, one obtains the components of the SU(2) connection

p+ =
iR
4r

[

J +
1

8π2

∑

γ

σγΩ̄γ ZγdJ (0)
γ − 1

8π2

∑

γ

Ω̄γ k
(

zΛL
(0)
γ,Λ − I(0)

γ
J
)

]

, (D.5)

p3 =
1

2r

{

S+

(

1

2
R2K − 2c

)

AK +
R

16π2

∑

γ

σγΩ̄γ

(

J (1)
γ dZγ − J (−1)

γ dZ̄γ

)

(D.6)

− R
16π2

∑

γ

Ω̄γ k

[

I(1)
γ

J− I(−1)
γ

J̄+ L(1)
γ,Λdz

Λ − L̄(−1)
γ,Λ dz̄Λ + 2iRd

( r

R2
I(0)
γ

)

]

}

.

Plugging these results into (B.5), one finds

ω3 =
4dr

r
∧ p3 + 8ip+ ∧ p− +

1

r
dζΛ ∧ dζ̃Λ − 2RK

r
dR∧AK − iR2

r
NΛΣdz

Λ ∧ dz̄Σ

− 1

8π2r

∑

γ

σγΩ̄γ

(

dJ (1)
γ ∧ d(RZγ)− dJ (−1)

γ ∧ d(RZ̄γ)
)

(D.7)

− 1

8π2r

∑

γ

Ω̄γ k

[

dζ̃Λ ∧ d
(

R
(

zΛI(1)
γ

− z̄ΛI(−1)
γ

))

− dζΛ ∧ d
(

R
(

FΛI(1)
γ

− F̄ΛI(−1)
γ

))

+R
(

dzΛ ∧ dL(1)
γ,Λ − dz̄Λ ∧ dL̄(−1)

γ,Λ

)

− dR ∧
(

L(1)
γ,Λdz

Λ − L̄(−1)
γ,Λ dz̄Λ +

4i

R d
(

rI(0)
γ

)

)]

.

D.2 Basis of (1,0)-forms

The next step is to evaluate explicitly the basis of (1,0) forms (B.6) in the almost complex

structure J3. This is straightforward to do given the results (D.1). But the basis can actually
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be further simplified. First, since πa = dza, one can drop any terms proportional to this one-

form in other basis elements. Second, it turns out to be convenient to add to π̃α the term

− i
2
ξΛ0 π̃Λ + 2rΦ1p

+. As a result, we can choose the following one-forms to constitute our basis

dza,

YΛ ≡ ZΛ +
1

8π2

∑

γ

σγΩ̄γVγΛdJ (0)
γ − 1

8π2

∑

γ

Ω̄γ k L
(0)
γ,Λ,

Σ ≡ dr + c d log(R2K) + iS+
i

16π2

∑

γ

σγΩ̄γ

(

RZ̄γdJ (−1)
γ +RJ (1)

γ dZγ − ZγJ (1)
γ dR

)

− i

16π2

∑

γ

Ω̄γ k

[

R
(

I(1)
γ

J− I(−1)
γ

J̄
)

+RzΛL
(1)
γ,Λ − L (−1)

γ
dR

+2RL(1)
γ,Λdz

Λ −RL̄(−1)
γ,Λ dz̄Λ + 2I(0)

γ
(S+ ird logK)

]

. (D.8)

Note that with these definitions the perturbative approximation of (D.8) is expressed through

the one-forms defined in (3.2):

Ypert
Λ = ZΛ, Σpert =

r + 2c

r + c
dr + iS. (D.9)

It is also useful to note that

p+ =
iR
4r

(

1 +
1

8π2

∑

γ

Ω̄γ k I(0)
γ

)

zΛYΛ, (D.10)

p3 =
1

2r

[

ImΣ +

(

1

2
R2K − 2c

)

AK − i

8π2

∑

γ

Ω̄γ k

(

2rdI(0)
γ

+
r + 2c

r + c
I(0)
γ

dr

)

]

. (D.11)

D.3 ω3 in the holomorphic basis

The final step is to express the quaternionic 2-form ω3 in terms of the basis (D.8). This is a

quite tedious exercise. Therefore, we simply give the final result:

ω3 =
iΣ ∧ Σ̄

r2
(

1 + 4c
R2K

) − i

r

(

NΛΣ − R2

2r
zΛz̄Σ

)

YΛ ∧ ȲΣ +
iR2K

r
Kabdz

a ∧ dz̄b

+
R
4πr

∑

γ

σγΩ̄γ ω
D
γ +

R
8π2r

∑

γ

Ω̄γ k ω
NS
γ
,

(D.12)

where

ωD
γ = 2iJ (0)

γ

[

− 1

R NΛΛ′

V̄γΛ′YΛ ∧NΣΣ′

VγΣ′ȲΣ +R (ZγΣK + dZγ) ∧
(

Z̄γΣ̄K + dZ̄γ

)

]

−
(

ZγJ (1)
γ + Z̄γJ (−1)

γ

)

[

r + c

2πr

(

ΣK ∧ Σ̄K − ∂K

K
∧ ∂̄K

K

)

− ΣK ∧NΛΣVγΣȲΛ +NΛΣV̄γΣYΛ ∧ Σ̄K

]

+ 2NΛΣ
(

J (1)
γ dZγ ∧ VγΛȲΣ − J (−1)

γ V̄γΛYΣ ∧ dZ̄γ

)

, (D.13)
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ωNS
γ

=
1

2r

(

L (1)
γ

+ L̄ (−1)
γ

)

[

(r + 2c)ΣK ∧ Σ̄K − 2(r + c)
∂K

K
∧ ∂̄K

K

]

− ΣK ∧ L̄(−1)
γ,Λ dz̄Λ −L(1)

γ,Λdz
Λ ∧ Σ̄K

− 2πik

{

2

R I(0)
γ

(

Σ+
2r

K
∂K

)

∧
(

Σ̄ +
2r

K
∂̄K

)

+
2i(r + c)

K(r + 2c)

(

L (1)
γ

+ L̄ (−1)
γ

)

(

∂K ∧ Σ̄− Σ ∧ ∂̄K
)

+R
[

(

L (2)
γ

− L̄ (0)
γ

)

zΛYΛ ∧ Σ̄K −
(

L (0)
γ

− L̄ (−2)
γ

)

ΣK ∧ z̄ΛȲΛ

]

−2

[

iI(1)
γ

zΛYΛ +
NΛΣ

R L̄(0)
γ,ΛYΣ + iL(1)

γ,Λdz
Λ

]

∧
(

Σ̄ +
2r

K
∂̄K

)

+2

(

Σ +
2r

K
∂K

)

∧
[

iI(−1)
γ

z̄ΛȲΛ − NΛΣ

R L(0)
γ,ΛȲΣ + iL̄(−1)

γ,Λ dz̄Λ
]

+2
[

zΞYΞ ∧
(

iNΛΣL(1)
γ,ΛȲΣ −RL̄(0)

γ,Λdz̄
Λ
)

−
(

iNΛΣL̄(−1)
γ,Λ YΣ +RL(0)

γ,Λdz
Λ
)

∧ z̄ΞȲΞ

]

−2RI(0)
γ

zΛYΛ ∧ z̄ΣȲΣ +
R
2

Kγ ΣK ∧ Σ̄K

+ΣK ∧
[

iNΛΣ
(

zΞK(1)
γ,ΞΣ + z̄ΞK(−1)

γ,Ξ̄Σ

)

ȲΛ −R
(

zΛK(0)

γ,ΛΣ̄
− z̄ΛK(−2)

γ,Λ̄Σ̄

)

dz̄Σ
]

−
[

iNΛΣ
(

zΞK(1)

γ,ΞΣ̄
+ z̄ΞK(−1)

γ,Ξ̄Σ̄

)

YΛ −R
(

zΛK(2)
γ,ΛΣ − z̄ΛK(0)

γ,Λ̄Σ

)

dzΣ
]

∧ Σ̄K

+
(

K(0)

γ,ΛΣ̄
+K(0)

γ,Σ̄Λ

)

(

1

R NΛΞNΣΘYΘ ∧ ȲΞ −RdzΛ ∧ dz̄Σ
)

+2iNΛΣ
(

K(1)
γ,ΣΞdz

Ξ ∧ ȲΛ −K(−1)

γ,Σ̄Ξ̄
YΛ ∧ dz̄Ξ

)

}

, (D.14)

and we used the shorthand notations (D.2) and

ΣK =
Σ

2(r + 2c)
− ∂K

K
. (D.15)

Importantly, (D.12) is manifestly a (1,1)-form. To check that it coincides with the original

expression (D.7), it is much easier to start from the end: one should substitute the expressions

(D.8) for the (1,0)-forms YΛ and Σ into (D.12), expand up to linear order in DT invariants, and

compare with (D.7) after using there the results for the differentials of the integral functions

(C.8), (C.17), (C.21) and (C.22). Note that in our approximation, one can replace YΛ and Σ

appearing in ωD
γ and ωNS

γ
by their simple perturbative expressions (D.9).

The metric follows from (D.12) by replacing all wedge products by tensor products and

multiplying the resulting expression by −i. Then, to extract the one-instanton approximation,

one should again substitute YΛ and Σ from (D.8), in all perturbative terms express all instances

of R in terms of r by means of (D.3), and keep only terms linear in DT invariants. In doing

this, one can use the following identities valid up to the first instanton order

|Σ|2 =
(r + 2c)2

(r + c)2
(dr)2 +S2 +

R
8π2

∑

γ

σγΩ̄γ

{

(

J (1)
γ dZγ − J (−1)

γ dZ̄γ

)

S

+
ir(r + 2c)

4π(r + c)2

[

2d
(

ZγJ (1)
γ + Z̄γJ (−1)

γ

)

−
(

ZγJ (1)
γ + Z̄γJ (−1)

γ

)

(

dr

r + c
− r + 2c

r

dK

K

)]

dr

}

− R
8π2

∑

γ

Ω̄γ k

{

ir(r + 2c)

4(r + c)2

[

2
(

dL (1)
γ

+ dL̄ (−1)
γ

)

−
(

L (1)
γ

+ L̄ (−1)
γ

)

(

dr

r + c
− r + 2c

r

dK

K

)]

dr
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+

[

2i

R I(0)
γ

(

cdr

r + c
+ rd logK

)

− 2ir

R dI(0)
γ

+
(

L(1)
γ,Λdz

Λ − L̄(1)
γ,Λdz̄

Λ
)

+ I(1)
γ

J− I(−1)
γ

J̄

]

S

}

,

NΛΣYΛȲΣ = NΛΣZΛZ̄Σ − i

8π2

∑

γ

σγΩ̄γ dΘγ dJ (0)
γ − i

8π2

∑

γ

Ω̄γ k
(

dI(0)Λ
γ

dζ̃Λ − dI(0)
γ,Λdζ

Λ
)

,

R2

2r2
∣

∣zΛYΛ

∣

∣

2
=

(

2(r + c)

r2K
− 2rinst

r2K

)

|J|2 − i(r + c)

2π2r2K

∑

γ

σγΩ̄γ Im (Z̄γJ) dJ (0)
γ (D.16)

− r + c

2π2r2K

∑

γ

Ω̄γ k Re
(

zΛL
(0)
γ,Λ J̄

)

,

where rinst denotes the instanton terms on the r.h.s. of (D.3). The final result turns out to be

the one-instanton corrected metric given in (3.4).

E. Details on the universal hypermultiplet case

Here we provide some useful formulae concerning the universal hypermultiplet and its Przanowski

description.

First, the relation between the derivatives with respect to the real variables and the complex

Przanowski coordinates (4.3) is given by

∂1 = − r + c

2(r + 2c)
∂r + 2i∂σ,

∂2 = ∂̂2 + ζ∂1, ∂̂2 =
1

τ2

(

τ̄ (∂ζ̃ + ζ∂σ)− (∂ζ − ζ̃∂σ)
)

.

(E.1)

Note that we have the relations

∂2∂1̄ = ∂̂2∂1̄ + ζ∂1∂1̄,

∂1∂2̄ = ∂1∂̂2̄ + ζ∂1∂1̄,

∂2∂2̄ = ∂̂2∂̂2̄ + ζ(∂1∂̂2̄ + ∂̂2∂1̄)− ζ2∂1∂1̄ +
1

τ2
∂1̄

(E.2)

and the shifted derivatives ∂̂2 are non-commutative, namely ∂̂2∂̂2̄ 6= ∂̂2̄∂̂2. The relation (E.1)

leads to the following derivatives of the perturbative Przanowski potential (4.4)

h
(0)
1 =

1

2r
, h

(0)
2 = ζh

(0)
1 , (E.3)

h
(0)
11 =

r + c

4r2(r + 2c)
, h

(0)
12 = ζh

(0)
11 , h

(0)
22 = ζ2h

(0)
11 − 1

2τ2r
. (E.4)

h
(0)
111 =

(r + c)(2r2 + 5cr + 4c2)

8r3(r + 2c)3
, h

(0)
112 = ζh

(0)
111,

h
(0)
122 = ζ2h

(0)
111 −

r + c

4τ2r2(r + 2c)
, h

(0)
222 = ζ3h

(0)
111 −

3ζ(r + c)

4τ2r2(r + 2c)
.

(E.5)
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Given that for the quadratic prepotential

K = N00 = 2τ2, (E.6)

it is straightforward to compute the Laplace-Beltrami operator using its standard definition in

terms of the metric which we take to be the specification of the perturbative metric (2.2) to the

four-dimensional case. The result can be written as17

∆ =
r2

r + 2c

[

(r + c)∂2
r +

16(r + 2c)2

r + c
∂2
σ +

2

τ2

∣

∣

∣
(ζ̃ + τζ)∂σ + τ∂ζ̃ − ∂ζ

∣

∣

∣

2

− r + 2c

r
∂r

]

. (E.7)

This formula can also be obtained by linearizing the Przanowski differential equation (4.2) and

writing the result as in (4.6).

Let us now compute the deformation of the metric (4.12) induced by the instanton correc-

tions to the Przanowski potential (4.17) and the complex coordinates (4.15), and hence given by

the two contributions whose general expressions can be found in (4.9) and (4.14). To compute

them explicitly, we will use that the differentials of the non-deformed complex coordinates (4.3)

are given by

dz10 = −iS − r + 2c

r + c
dr − ζdz20 , dz20 =

i

2
J. (E.8)

Substituting this into (4.9) and using the relations (E.2), one can show that the first contribution

takes the form

δhds
2 =4δh11̄

∣

∣

∣

∣

r + 2c

r + c
dr + iS

∣

∣

∣

∣

2

− 2
(

δh2̂1̄J+ δh
1ˆ̄2
J̄
)

S

− 2i(r + 2c)

r + c

(

δh2̂1̄J− δh
1ˆ̄2
J̄
)

dr + |J|2
(

δh
2̂ˆ̄2
− 1

τ2
δh1̄ +

r + c

τ2r2
δh

)

,

(E.9)

where the subscript 2̂ denotes the shifted derivative ∂̂2. In a similar way we can evaluate the

second contribution (4.14). In view of (4.15), it is natural to write it in terms of δẑ1 ≡ δz1+ζδz2.

As a result, one finds

δzds
2 =8Re (δẑ1)

(

h
(0)
111

∣

∣

∣

∣

r + 2c

r + c
dr + iS

∣

∣

∣

∣

2

+
r + 4c

4τ2r
h
(0)
11 |J|2

)

+
8h

(0)
11

τ2
SRe (δz2J̄)

− 2

r2

(

drRe (dδẑ1) +
r + c

r + 2c
S Im (dδẑ1)

)

+
2(r + 2c)

τ2r2
Im
(

J̄ dδz2
)

.

(E.10)

We still need to compute the derivatives δhαβ̄ and the differentials dδẑ1 and dδz2. This

requires computing the action of the derivatives ∂1 and ∂̂2 on the integral functions introduced

in appendix C. Here we provide some of them:

∂1J (0)
γ =

πiR
2(r + 2c)

(

(q + τp)J (1)
γ + (q + τ̄ p)J (−1)

γ

)

,

∂1J (±n)
γ = ± πiR

2(r + 2c)

(

(q + τp)J (±n+1)
γ − (q + τ̄ p)J (±n−1)

γ

)

, n ≥ 1,

∂̂2J (±n)
γ =

2πi

τ2
(q + τ̄ p)J (±n)

γ , n ≥ 0,

(E.11)

17In the third term all derivatives are supposed to be on the right and not act on the coefficients.
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∂1∂1̄J (0)
γ =

πiR(r + c)

4(r + 2c)3
(

(q + τp)J (1)
γ + (q + τ̄ p)J (−1)

γ

)

+
2π2(r + c)

τ2(r + 2c)2
|q + τp|2J (0)

γ ,

∂1∂̂2̄J (0)
γ = − π2R

τ2(r + 2c)

(

(q + τp)2J (1)
γ + |q + τ̄ p|2J (−1)

γ

)

∂̂2∂̂2̄J (0)
γ = − 4π2

τ 22
|q + τp|2J (0)

γ ,

(E.12)

∂1I(0)
γ

=2πk I(0)
γ

− πikR
2(r + 2c)

(

L (1)
γ

+ L̄ (−1)
γ

)

,

∂̂2I(0)
γ

= − 2πik

τ2
L̄ (0)

γ
+ 4πkRI(1)

γ
,

(E.13)

∂1L
(0)
γ

=2πkL (0)
γ

− πikR
2(r + 2c)

(

K(1)
γ,00 +K(−1)

γ,00̄

)

,

∂̂2L
(0)
γ

= − 2πik

τ2
K(0)

γ,00̄
+ 4πkRL (1)

γ
,

(E.14)

∂1L
(1)
γ

=2πkL (1)
γ

− πikR
2(r + 2c)

(

K(2)
γ,00 −K(0)

γ,00̄

)

,

∂̂2L
(1)
γ

= − 2πik

τ2
K(1)

γ,00̄
+ 4πkRL (2)

γ
,

(E.15)

∂1∂1̄I(0)
γ = − 4π2k2 I(0)

γ − πikRr

8(r + 2c)3
(

L (1)
γ

+ L̄ (−1)
γ

)

− π2k2(r + c)

2τ2(r + 2c)2
Kγ ,

∂1∂̂2̄I(0)
γ = − 4iπ2k2

τ2(r + 2c)

(

(2r + 3c)L (0)
γ

− (r + c)L̄ (−2)
γ

)

− π2k2R
τ2(r + 2c)

(

K(1)
γ,00 +K(−1)

γ,0̄0

)

− 8π2k2RI(−1)
γ

,

∂̂2∂̂2̄I(0)
γ = − 2π2k2

τ 22

(

K(0)

γ,00̄
+K(0)

γ,0̄0

)

− 2πk

τ2
(1− 16πkc)I(0)

γ
.

(E.16)

The complex conjugate derivatives can be obtained using (C.6) and similar relations for the

functions associated with NS5-instantons like, e.g., (C.18). Besides, one can obtain derivatives

of L̄
(0)
γ from (E.14) by putting bar on functions L

(n)
γ and on the first index of functions K

(n)
γ ,

and derivatives of L̄
(−1)
γ from (E.15) by doing the same plus lowering all upper indices by 2 and

flipping the sign of the second terms on the r.h.s.

It is a straightforward although a bit tedious exercise to substitute (4.17) and (4.15) into

(E.9) and (E.10), respectively, and use the above results for derivatives of the integral functions

to compute them explicitly. Then combining the two contributions, one finally obtains

δds2 =
R

8π2r

∑

γ

σγΩ̄γ Dγ +
R

8π2r

∑

γ

Ω̄γ kVγ , (E.17)

where

Dγ =
π

R J (0)
γ

[

R2|Zγ|2
(

Im Σ̂2

(r + 2c)2
− dr2

(r + c)2

)

− 3r + 4c

r
dΘ2

γ − 4C2
γ

]

(E.18)

+
(

ZγJ (1)
γ + Z̄γJ (−1)

γ

)

[

iS2

4(r + 2c)2
− idr2

4(r + c)2
− i|J|2

4rτ2
+

2πCγS
r + 2c

− π(r + 2c)

r(r + c)
drdΘγ

]

,
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and

Vγ =
(

L (1)
γ

+ L̄ (−1)
γ

)

[

i

8

(

dr2

(r + c)2
− S2

(r + 2c)2

)

+
i|J|2
4rτ2

]

− 2(r + c)

r(r + 2c)
S

[

ic

R I(0)
γ

dr

r + c
+ Re (I(1)

γ
J)

]

− i(r + 2c)

2r(r + c)
Re (dL (0)

γ
J̄)

−2πk

{

2

R I(0)
γ

[

(r + 2c)2

(r + c)2
dr2 − rS2

r + 2c
− 2c

τ2
|J|2
]

(E.19)

+
S

r + 2c

[

R Im
(

L (2)
γ

J
)

− R(r + 2c)

r + c
Im
(

L̄ (0)
γ

J
)

− 4cRe
(

I(1)
γ

J
)

]

+
r + 2c

r + c
dr

[

4 Im
(

I(1)
γ

J
)

− R
r + c

Re
(

L̄ (0)
γ

J
)

]

+
(2r + 3c)Sdr

(r + c)(r + 2c)

(

L (1)
γ

+ L̄ (−1)
γ

)

+
R
8

Kγ

[

S2

(r + 2c)2
− dr2

(r + c)2

]

− S

2τ2(r + 2c)
Re
[(

K(1)

γ,00̄
+K(−1)

γ,0̄0̄

)

J
]

+ Re
(

K(0)

γ,00̄

) |J|2
2τ 22R

}

.

It is easy to check that these expressions for Dγ and Vγ coincide with (3.5) and (3.6), respec-

tively, specified to the one-modulus case. This confirms that the instanton corrected metric

computed in section 3 is consistent with the Przanowski description.

F. One-loop effects at small gs

Let us consider the integral
∫

ℓγ

dt

tn+1
e−2πikSγ(t), (F.1)

which is a particular case of the integral in (5.13). We are interested in its leading behavior

in the limit r → ∞ keeping all other fields za, ζΛ, ζ̃Λ and σ fixed. Of course, in this limit we

also have R ∼ r1/2. Since the action Sγ(t) scales as r, one can hope to apply the saddle point

approximation. It is easy to see that, for positive k, the saddle point scales itself as r−1/2 (cf.

(5.32)). Therefore, we can redefine the integration variable as t = t′/R and expand Sγ(t) in

inverse powers of R. This gives

Sγ(t
′) = − i

2
R2K +

1

2

(

σ + ζ̃Λζ
Λ − 2nΛζ̃Λ

)

− 1

2
FΛΣ(ζ

Λ − nΛ)(ζΣ − nΣ)− mΛ

k
zΛ

− it′NΛΣz̄
Λ(ζΣ − nΣ) +

i

2
t′2NΛΣz̄

Λz̄Σ − 4ic log(t′/R) +O(R−1).
(F.2)

If one sets c = 0 thereby ignoring the logarithmic term, the saddle point is found to be

t′0 =
NΛΣz̄

Λ(ζΣ − nΣ)

NXY z̄X z̄Y
(F.3)

and 2πikSγ(t
′
0) = S

(0)
γ reproducing the instanton action (5.10) found in [25].

If however one retains the one-loop parameter c non-vanishing, the saddle point approxi-

mation appears to break down. While the initial integral (F.1) is still localized at small t so
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that the expansion (F.2) remains justified, it is not true anymore that the leading contribution

comes from a Gaussian integral near t′ = t′0. Instead, one finds that it is given by

Rn+8πkcD−n−8πkc

(

−πkNΛΣz̄
Λz̄Σ, t′0

)

e−(S
(0)
γ +4πkc), (F.4)

where

Dν(a, b) =

∫ ∞

−∞

ds sν−1 e−a(s−b)2 (F.5)

and we assume that the logarithmic branch cut is in the positive half plane, while the integration

contour avoids the singularity at s = 0 from below. Since the factor given by the function Dν

does not contain the scaling parameter, it cannot be simplified anymore. In fact, it can be

evaluated in terms of the parabolic cylinder function Dν(z) using the formula [57, 3.462.3]

∫ ∞

−∞

ds (is)ν e−as2−iqs = 2−
ν
2
√
π a−

ν+1
2 e−

q2

8aDν

(

q√
2a

)

, (F.6)

valid for Re a > 0 and Re ν > −1. The last condition can be dropped once we do an analytic

continuation which precisely corresponds to the deformation of the contour away from the

singularity at the origin. As a result, we obtain

Dν(a, b) = (−2)−
ν−1
2
√
π a−

ν
2 e−

1
2
ab2Dν−1

(

i
√
2a b
)

. (F.7)

Since for large arguments Dν(z) behaves like z
νe−z2/4 times a polynomial in 1/z, in the function

Dν(a, b) the exponential factors cancel so that it scales as bν . Therefore, it does not affect the

instanton action in (F.4).

We conclude that in the limit where one scales only the dilaton field, the effect of the one-

loop string correction on the NS5-instanton contributions is very non-trivial and captured by

the parabolic cylinder functions, but consistently with physical expectations it affects only the

prefactor corresponding to the determinant of fluctuations around the instanton.
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