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E-mail: nana@fisica.ugto.mx, josue.diaz@cinvestav.mx,

hugo.compean@cinvestav.mx

Abstract: Two dimensional gauged linear sigma models(GLSMs) with (0, 2) su-

persymmetry and U(1) gauge group possesing global symmetries are considered. For

the case obtained as a reduction from the (2, 2) supersymmetric GLSM, we find the

Abelian T-dual, comparing with previous studies. Then, the Abelian T-dual model

of the pure (0, 2) theory is found. Instanton corrections are also discussed in both

situations. In the cases under study we explore the vacua for the scalar potential

and we analyse the target space geometry of the dual model. A model with gauge

symmetry U(1)× U(1) is also discussed as precursor of an interesting example with

non-Abelian global symmetry. Non-Abelian T-dualization of U(1) (0, 2) 2d GLSMs

is implemented for models which arise as a reduction from (2, 2) supersymmetry; we

study a concrete model with U(1) gauge symmetry and SU(2) global symmetry. It

is shown that for a positive definite scalar potential, the dual vacua to P1 constitutes

a disk. Instanton corrections to the superpotential are obtained and shown to be

encoded in a shifting of the holomorphic function E. We conclude by analyzing an

example with SU(2)×SU(2) global symmetry and we obtain that the space of dual

vacua to P1 × P1 consists of two copies of the disk, also for the case of positive defi-

nite potential. Here we are able to fully integrate the equations of motion leading to

non-Abelian duality, improving with respect to previous (2, 2) studies.
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1 Introduction

The study of suitable features of string theory compactifications leading to more

realistic phenomenological scenarios has been always a great deal of interest in physics

and mathematics [1–3]. The physical aspects involve the reproduction of important

known features of the low energy physics and the possibility to have new predictions

of phenomenological interest [4]. Some of these features are relevant, for instance, in

the early universe or in microscopic aspects of black hole physics [5, 6], and moreover,

in the derivation of the Standard Model of particle physics and beyond [7]. The

study of string compactifications with fluxes have played a central role leading to

more realistic relations of string theory with phenomenological phenomena at low

energies [8]. A very important family of compactifications are described by a two-

dimensional non-linear sigma model (NLSM) on target spaces consisting of Calabi-

Yau manifolds. These models are superconformal field theories in two-dimensions
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with a certain central charge with supersymmetry (2, 2) [9, 10]. They have many

interesting features, however they lead to low energy effective field theories consistent

with Grand Unification Theories in the four-dimensional spacetime with exceptional

gauge groups. Much more realistic compactifications leading to SU(5) or SO(10)

GUTs are the non-linear sigma models with (0, 2) supersymmetry [11]. This family

represents a more general kind of compactifications than those of the (2, 2) kind (for

some reviews, see [12, 13]).

On the other hand, two-dimensional Gauged Linear Sigma Models (GLSMs) with

(2, 2) supersymmetry were introduced by Witten in [14], with the aim of studying

solutions in string theory with the possibility to implement a change in the spacetime

topology (target space) through a simple smooth variation of the parameters in the

GLSM. These changes were observed in [15–18]. More importantly these models

work as a theory which interpolate among different phases which involve topology

change. In some models the GLSMs lead to transitions between the Calabi-Yau (CY)

phase in the infrared (IR) to the Landau-Ginzburg phase in the ultraviolet (UV) and

vice-versa. In the IR the CY phase is obtained by studying the supersymmetric space

of vacua of the underlying effective scalar potential. This space may have different

geometries depending the specific GLSM that one is considering i.e. one may vary

the number of chiral superfields and the corresponding amount of charge which carry

these fields and the Abelian or non-Abelian groups of the gauge sector. In the same

reference [14], there were also introduced the (0, 2) GLSMs in two dimensions. These

models have similar properties as the (2, 2) models but there are many features on

which they differ. For instance, the (0, 2) models are chiral. These models have been

studied actively and very good sources can be found in [14, 19–21, 21–23].

Different aspects of (2, 2) GLSMs have been worked out extensively, one of

its prominent applications is the proof of Mirror Symmetry [24, 25]. The proce-

dure of Hori and Vafa looks to implement the Buscher-Giveon-Roček-Verlinde target

space (T-)duality algorithm (for some reviews, see [26–28]) to (2, 2) GLSMs, gauging

Abelian global symmetries. This procedure was successful to give a physical proof of

the Mirror Symmetry correspondence. Localization properties of the partition func-

tion have been used to test Abelian T-duality in GLSMs leading to Mirror Symmetry

[29]. Moreover, the duality algorithm can be generalized to consider the gauging of

a non-Abelian group in contrast to the gauging of an Abelian group. This is termed

the non-Abelian duality and many interesting traditional results have obtained in

this direction [30–32]. More recently some interesting results involving the idea of

non-Abelian duality can be found in Refs. [33–36].

As we mentioned before (2, 2) GLSMs are an important tool to prove Mirror

Symmetry of Calabi-Yau manifolds, in particular for the case of complete intersec-

tions of CY manifolds and toric varieties [24, 25], and there have been many studies

in GLSMs and their applications [37–49]. However for GLSMs with (0, 2) supersym-

metry the realization of Mirror Symmetry was least apparent. Certain kind of Mirror
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map can be defined for these models [50–55]. Other notions of the (0, 2) Mirror map

are discussed in Refs. [21–23, 56–58]. In particular, in [56] it was studied the Abelian

GLSM with a gauged Abelian global symmetry. The authors follow the duality al-

gorithm mentioned previously and they obtained a dual action which is also a (0, 2)

GLSM. In particular they found the instanton contributions in the dual action which

are compatible with the instanton corrections of the original (0, 2) GLSM. Other

developments of (0, 2) GLSMs in different contexts can be found in Refs. [59–64].

For a very recent overview of some important results of the GLSMs see [65, 66].

In the context of (2, 2) GLSMs with U(1) gauge symmetry, the possibility of

gauging up a non-Abelian global symmetry was explored in [67–69]. In this article,

the dual action was given and the instanton corrections of the dual action were deter-

mined. Moreover, for the Calabi-Yau phase, there were given some models in where

the geometry of the target space was found. One motivation to go beyond the realm

of Abelian T-duality in [24] comes from the fact that there is a large set of Calabi-

Yau manifolds that don’t constitute complete intersections but rather Grassmanians,

Pfaffians or determinantal; that can be studied as Non-Abelian GLSMs [70], and a

description of the symmetries in these models is of interest [38, 40, 42], in particular

the study of Mirror symmetry [44, 45, 58, 71]. Nevertheless one can also ask first

the question, whether the T-dualities leading to mirror symmetry even for Abelian

GLSMs can be generalized further, to obtain new geometric identifications. This is

the question that we explore in this manuscript.

In the present article we start from the family of (0, 2) GLSMs considered in

[56], arising from a reduction of the (2, 2) theory, and we study the gauging of a non-

Abelian global symmetry. We also consider pure (2, 0) GLSMs models, not obtained

from a supersymmetric reduction.

The present article is organized as follows: In Section 2 a brief overview of

(0, 2) GLSMs is given. Our aim is not to provide an extensive review but to give

the notation and conventions we will follow. We also discuss the field content and

interactions of these models. In Section 3 we describe Abelian T-duality in (0, 2)

GLSMs. We presented two examples, both of them with a single U(1) gauge group

and a pair of chiral superfields. In the first example we considered the case of a GLSM

which is a reduction of a (2, 2) GLSM and in the second example we study the case of

a pure (0, 2) GLSM. We find the equations of motion and the dual Lagrangian in both

cases. Moreover, we compute the scalar potential and discuss the geometry of these

vacua manifolds. The third example deals with a GLSM with U(1) × U(1) gauge

group and U(1)4 global symmetry group. We presented this model as a preliminary

material which will be later generalized to non-Abelian T-duality in Section 5 . In

Section 4 we perform non-Abelian dualization for a general global symmetry group

G. In order to be specific we particularize to SU(2) global group and give its dual

Lagrangian and study its vacua manifold. Finally in Section 5 we consider an example

with a SU(2)× SU(2) global symmetry. We conclude in Section 6 with our results
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and conclusions. At the end of the article we added Appendix A devoted to carry

out the algorithm of T-duality at the level of superfield components. We show that

for the simpler example of Abelian duality in this paper, the dual action coincides

with the dual action of the reduced GLSM in the superfields language presented in

Section 3.

2 Field representations of (0, 2) supersymmetry

In this section, in order to be as self-contained as possible, we write an overview of the

basic ingredients of two dimensional GLSMs with (0, 2) supersymmetry. Moreover,

we will write down their corresponding Lagrangians and symmetries and we will

describe the matter content and their interactions. Along the paper we follow the

notation and conventions on supersymmetric field theory as the one in the references

[72–74]. For reading background material regarding (0, 2) GLSMs it is useful to

consult the references [14, 19, 20].

We start by reviewing the two-dimensional GLSM with (0, 2) supersymmetry and

an Abelian gauge group, we will follow the original Witten’s paper in GLSMs [14].

As usual, the coordinates of the (0, 2) superspace are given by (y0, y1, θ+, θ
+
). Where

the first two are the space coordinates and the last two the fermionic counterparts.

The covariant superderivatives are given by

D+ = ∂θ+ − iθ
+
∂+ , D+ = −∂

θ
+ + iθ+∂+ , (2.1)

where ∂+ := ∂
∂y0

+ ∂
∂y1
, ∂− := ∂

∂y0
− ∂

∂y1
, ∂θ+ := ∂

∂θ+
and ∂

θ
+ := ∂

∂θ
+ .

The gauge covariant superderivatives D+, D+, D0 and D1 are constructed with

the following constraints:

D0 = D0 , D1 = D1 , (2.2)

D+ = e−ΨD+e
Ψ = (D+ +D+Ψ), (2.3)

D+ = eΨD+e
−Ψ = (D+ −D+Ψ), (2.4)

D0 −D1 = ∂− + iV, (2.5)

where Ψ and V are real functions, that constitute the gauge degrees of freedom. V

is the (0, 2) vector superfield and in the Wess-Zumino gauge they can be expanded

in components as follows:

V = v− − 2iθ+λ− − 2iθ
+
λ− + 2θ+θ

+
D, (2.6)

Ψ = v+θ
+θ

+
. (2.7)

The basic gauge invariant field strength Υ is defined as the field strength of V :

Υ = [D+,D0 −D1]V

= D+(iV + ∂−Ψ)

= iD+V + ∂−D+Ψ . (2.8)
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In components, field strength is written as:

Υ = −2λ− + [2iD + (∂−v+ − ∂+v−)]θ+ + 2i∂+λ−θ
+θ

+
. (2.9)

The U(1) gauge theory has a natural Lagrangian given by

Lgauge =
1

8e2

∫
dθ+dθ

+
ΥΥ, (2.10)

where e is the gauge coupling constant.

There are two kinds of matter fields: the chiral multiplets Φ and the Fermi

multiplets Γ. The bosonic covariant chiral fields Φ̃ are defined by the following

constraint:

D+Φ̃ = 0, (2.11)

where D+ is the covariant derivative and consequently it has the components expan-

sion:

Φ̃ = φ+
√
2θ+ψ+ − iθ+θ

+
(∂+ + iv+)φ, (2.12)

which is defined with Φ̃ := ΦeΨ, where the (uncharged) chiral superfield Φ fulfils the

relation D+Φ = 0. The corresponding gauge invariant Lagrangian is given by

Lchiral = − i
2

∫
dθ+dθ

+
Φ̃†(D0 −D1)Φ̃

= φφD + iψ+(∂− + iv−)ψ −
√
2i(λ−ψ+φ− ψ+λ−φ)

− 1

2
[φ(∂− + iv−)(∂+ + iv+)φ− (∂+ + iv+)φ(∂− + iv−)φ]. (2.13)

In order to complete the rest of matter content let us introduce Γ̃ which consti-

tutes a (0, 2) Fermi multiplet. This multiplet satisfies the constraint:

D+Γ̃ =
√
2Ẽ , then Ẽ =

√
2

2
eΨD+Γ, (2.14)

where Ẽ = E(Φ̃) is a holomorphic function of the superfield Φ̃. Similarly, we can

define Γ̃ := ΓeΨ and Ẽ := EeΨ, where D+Γ =
√
2E. Thus, the expansion for this

Fermi multiplet and the field E are given by:

Γ̃ = γ −
√
2Gθ+ − iθ+θ+(∂+ + iv+)λ−

√
2Ẽθ

+
. (2.15)

Ẽ(Φ) = E(φ) +
√
2θ+

∂E

∂φ
ψ+ − iθ+θ

+
(∂+ + iv+)E(φ). (2.16)

The dynamics of the Fermi field is given by the Lagrangian:

LFermi = −1
2

∫
dθ+dθ

+ ¯̃
ΓΓ̃

= iγ(∂+ + iv+)γ + |G|2 − |E|2 −
(
γ
∂E

∂φ
ψ+ +

∂E

∂φ
ψ+γ

)
. (2.17)
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In the case of U(1) gauge theories (or in non-Abelian gauge theories with a gauge

group with a U(1) factor) we have an additional term in the Lagrangian given by

the Fayet-Iliopoulos term

LD,θ =
t

4

∫
dθ+Υ|

θ
+
=0

+ h.c., (2.18)

where t = θ
2π

+ ir, with θ = 2πℜ(t) being an angular parameter and r = ℑ(t) is the
Fayet-Iliopoulos parameter.

In (0,2) theories there is a superpotential Lagrangian LJ , which is the (0, 2)

analog of the superpotential term of the (2, 2) model. LJ is of the form

LJ = − 1√
2

∫
dθ+

(
ΓpJ

p(Φ)|
θ
+
=0

)
− h.c., (2.19)

where Jp = Jp(Φ) is a holomorphic function of the (0, 2) chiral superfield Φ, and Γp
are Fermi superfields (different from the previous ones). Moreover Jp satisfies the

relation Ep(Φ)J
p(Φ) = 0, where of course D̃+Γp =

√
2Ep.

The scalar potential can be obtained by the usual procedure in supersymmetric

theories (integrating in the superspace) and it is given by

U(φi) =
e2

2

(∑

i

Qi|φi|2 − r
)2

+

(
|E(φ)|2 + |J(φ)|2

)
, (2.20)

where it is clear the contributions coming the D-terms from the (0, 2) gauge multiplet

and from the FI term. The last two terms come from the E field and the last one,

corresponds to the contribution from the superpotential.

In the present article it will be considered (0, 2) GLSMs with a U(1) gauge group,

and with non-Abelian global symmetries to be gauged. Thus the dynamics of the

models studied is given by the addition of all of these Lagrangians, i.e.,

L = Lgauge + Lchiral + LFermi + LD,θ + LJ . (2.21)

In the present article we will consider models without superpotential terms and

therefore LJ = 0.

2.1 Reduction of the (2, 2) multiplets to (0, 2) superfields

It is known that certain (0, 2) GLSMs can be regarded as a supersymmetric reduc-

tion of (2, 2) GLSMs. The (2, 2) GLSM consists of chiral supefield Φ(2,2), a vector

superfield V (2,2) and its twisted field strength Σ(2,2).

Next, we enumerate the steps for the decomposing (2, 2) multiplets terms of (0, 2)

multiplets:
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• The (2, 2) chiral superfield Φ(2,2) can be decomposed into the (0, 2) chiral super-

field by: Φ = Φ(2,2)|
θ−=θ

−

=0
; and the (0, 2) Fermi superfield can be decomposed

by: Γ = 1√
2
D−Φ

(2,2)|
θ−=θ

−

=0
. Both matter fields are supersymmetry reductions

of the single (2, 2) chiral superfield.

• The (2, 2) vector superfield V (2,2) gives the gauge field strength Υ = iD+(V −
i∂−Ψ) by: V − i∂−Ψ = −D−D−V

(2,2)|θ−=θ̄−=0. And also it gives a twisted

chiral superfield Σ, which is identified as: θ
+
Σ = − 1√

2
D−V |θ−=θ

−

=0
; which is

also simply: Σ = Σ(2,2)|
θ−=θ

−

=0
.

• It can be verified that if Φ(2,2) has charge Q, then the E field can be written as

E = Q
√
2ΣΦ.

• The holomorphic function J can be obtained from the (2, 2) superpotential W

in the form J = ∂W

∂Φ̃
.

3 Abelian T-duality in (0, 2) GLSMs

In this section we describe the T-duality for GLSMs with a Um(1) gauge group and

a U(1)k+s global symmetry group to be gauged. We present the original model and

find the T-dual model, by solving the equations of motion. For the sake of simplicity

we consider the case when the superpotential J of the (0, 2) model vanishes, thus

the underlying scalar potential consist only of the D-term and the Fayet-Iliopoulos

term. We found the dual action and the geometry of the space of dual vacua. We

study two separate cases, the first one is the case in which the (0, 2) GLSM can

be obtained by reduction from a (2, 2) model. The second case is the general case

of a pure (0, 2) GLSM which cannot be obtained from a reduction. In both cases

we describe their corresponding instanton corrections. In the rest of the section we

describe a particular reduced model with gauge group U(1)× U(1) and an Abelian

global symmetry U(1)4. This model was discussed in [56] and it will be analysed in

the context of non-Abelian duality in Section 4.

3.1 GLSM with U(1)m gauge symmetry and U(1)k+s global symmetry

Here we describe the Abelian T-dualization for general (0, 2) U(1)m GLSM with

U(1)k global symmetry related to the chiral fields and U(1)s global symmetry asso-

ciated to the Fermi fields. We start by writing a Lagrangian with a given number

of n chiral superfields Φi and ñ Fermi superfields Γj, and a given number m of U(1)
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gauge symmetries

L =

∫
dθ+dθ

+
{ m∑

a=1

1

8e2a
ΥaΥa −

n∑

i=1

i

2
Φie

2
∑m

a=1Q
a
i Ψa

(
∂− + i

m∑

a=1

Qa
i Va

)
Φi

}

+

∫
dθ+dθ

+
{ n∑

i=1

i

2
Φi

(←−
∂ − − i

m∑

a=1

Qa
i Va

)
e2

∑m
a=1

Qa
i ΨaΦi

}

−
∫

dθ+dθ
+
{ ñ∑

j=1

1

2
e2

∑m
a=1

Q̃a
jΨaΓjΓj

}

+

m∑

a=1

ta
4

∫
dθ+Υa|θ+=0

, (3.1)

where Qa
i are the charges of the chiral superfields Φi and Q̃

a
j are the charges of the

Fermi superfields Γai .

There are m vector superfields Va,Ψa with field strength Υa. In principle each

kinetic term has a global phase symmetry, under which the chiral or the Fermi fields

transform. As all the superfields are distinct, one can employ them gauge symmetries

to absorbm of these phases, giving a total of k+s global symmetries where k = n−m
(n > m) U(1) global symmetries, these fields transform as follows:

δΛVa = −∂−(Λa + Λa)/2, δΨ = −i(Λa − Λa)/2, (3.2)

Φi → ei
∑m

a=1
Qa

i ΛaΦi, Γj → ei
∑m

a=1
Q̃a

jΛaΓj. (3.3)

In general we would have the possibility to absorb with the m Abelian gauge sym-

metries not only the global symmetries of the chiral superfields but the total amount

of chiral and Fermi fields n + ñ. The master Lagrangian will remain the same with

some few modifications in the sum’s indices. This case will be not considered in this

work.

In general one can consider a generic number of Fermi multiplets, this is true

because the general (0,2) model, presented here, doesn’t come necessarily from a

SUSY reduction from the (2,2) theory. Therefore the Fermi multiplets are not nec-

essarily related or coupled to the chiral multiplets. In the opposite case when the

chiral superfields and the Fermi superfields come both from the (2,2) reduction, the

number of Fermi and chiral fields and their charges need to match.

Starting from (3.1) one can construct the master Lagrangian (or also named
intermediate Lagrangian) by gauging the global symmetries and adding terms with
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Lagrange multipliers Λb related to field strengths Υb

Lmaster =

∫
dθ+dθ

+
m∑

a=1

1

8e2a
ΥaΥa

−
∫

dθ+dθ
+
{ k∑

i=1

i

2
Φie

2
∑m

a=1
Qa

i Ψa+2
∑k

b=1
Qb

1iΨ1b

(
∂− + i

m∑

a=1

Qai Va + i

k∑

b=1

Qb1iV1b

)
Φi

}

+

∫
dθ+dθ

+
{ k∑

i=1

i

2
Φi

(←−
∂ − − i

m∑

a=1

Qai Va − i
k∑

a=1

Qb1iV1b

)
e2

∑m
a=1

Qa
i Ψa+2

∑k
b=1

Qb
1iΨ1bΦi

}

−
∫

dθ+dθ
+
{ s∑

j=1

1

2
e2

∑m
a=1

Q̃a
jΨa+2

∑s
c=1

Q̃c
1jΨ1cΓjΓj +

ñ∑

j=s+1

1

2
e2

∑m
a=1

Q̃a
jΨaΓjΓj

}

+
m∑

a=1

ta

4

∫
dθ+Υa|θ+=0

+
k∑

b=1

∫
dθ+dθ

+
ΛbΥ1b +

k+s∑

b=k+1

∫
dθ+dθ

+
ΛbΥ1b + h.c.

−
∫

dθ+dθ
+

n∑

i=k+1

{
i

2
Φie

2
∑n

a=1
Qa

i Ψa

(
∂− + i

m∑

a=1

Qai Va

)
Φi

− i

2
Φi

(←−
∂ − − i

m∑

a=1

Qai Va

)
e2

∑m
a=1Q

a
i ΨaΦi

}
. (3.4)

For simplicity in this expression we are assuming that the chiral superfields are not

charged under the global symmetries that the Fermi superfields are charged, and vice-

versa. One could choose that each of the chiral superfields to dualize it is charged

only under a single U(1) global, such that Qb
1i = δi

b, as it was done by Hori and

Vafa in their fundamental work on Mirror Symmetry as a T-duality [24]. There are

U(1)k+s global symmetries, where k + s = n − m + s. For models coming from

supersymmetric reduction s is zero and the Fermi superfield will be gauged with the

same global symmetry implemented by the chiral superfields. In the general case

there will be additional global symmetries arising thank to the presence of Fermi

superfields to those come from the chiral superfields in the (2, 2) GLSM.

Let us now analyze the equations of motion from this master Lagrangian when

the gauged fields are integrated. Due to the Weiss-Zumino gauge (2.7), e2Ψ = 1+2Ψ.

In this way, the fields Ψ1, V1 and Γ1 are linear and the variation is easy performed.

Carrying out the variation of the Lagrangian with respect to ψ1b we obtain for the

field V1b:

V1b = A−1
bd

(
− i

2
∂−Y

d
− −Rd

)
, (3.5)

where

Abd =

k∑

i=1

|φi|2Qd
1iQ

b
1i, (3.6)

and

Rd =

k∑

i=1

(
− i
2
Φiδ−ΦiQ

d
1i + |Φi|2

m∑

a=1

Qa
iVaQ

d
1i

)
. (3.7)
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Here the new dual variable is defined by: Y c
± ≡ iD+Λ

c ± iD+Λ
c
, and for simplicity,

it has been used δ− = ∂− −
←−
∂ −.

Performing the variation of the Lagrangian with respect to V1b, for the component

ψ1b we have

ψ1b = A−1
bd

(
− i

2
∂−Y

d
+ − Sd

)
, (3.8)

and

Sd =

k∑

i=1

|Φi|2Qd
1i + 2

m∑

a=1

|Φi|2Qd
1iQ

a
1iψa. (3.9)

The variation with respect the component ψ1d for d ∈ {k + 1, ..., 2k} yields

Qd
1jΓjΓj = −i∂−Y d

− → ΓjΓj = −Q−1
1jd∂−Y

d
−. (3.10)

These equations of motion are employed to find the dual model.

3.2 A T-duality algorithm from a model coming from (2,2) reduction

In this subsection we obtain explicit expressions for the equations of motion of a

general master Lagrangian of a (0, 2) GLSM which is obtained by reduction of a

(2, 2) model. In this case, there is a Fermi superfield for every chiral superfield and

there could be also extra Fermi superfields. These Fermi fields have the same charges

under the gauge group than the chiral superfields related to them i.e. Qi = Q̃i and

we consider the case s = 0, such that there are no extra Fermi fields. Then all the

global symmetries will affect equally the chiral superfields and the Fermi superfields.

In this case, the duality procedure will be carry out in the fields Φ and Γ, and there

are Lagrange multipliers χ associated to E. So, the new dual field is F̃ = eΨD+χ.
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We start from the following Lagrangian, with n chiral fields and then n Fermi
fields (related to them) and without any extra Fermi field. This is ñ = n:

Lmaster =

∫
dθ+dθ

+
m∑

a=1

1

8e2a
ΥaΥa

−
∫

dθ+dθ
+
{ k∑

i=1

i

2
Φie

2
∑m

a=1
Qa

i Ψa+2
∑k

b=1
Qb

1iΨ1b

(
∂− + i

m∑

a=1

Qai Va + i

k∑

b=1

Qb1iV1b

)
Φi

}

+

∫
dθ+dθ

+
{ k∑

i=1

i

2
Φi(
←−
∂ − − i

m∑

a=1

Qai Va − i
k∑

b=1

Qb1iV1b)e
2
∑m

a=1
Qa

i Ψa+2
∑k

b=1
Qb

1iΨ1bΦi

}

−
∫

dθ+dθ
+
{ k∑

j=1

1

2
e2

∑m
a=1

Qa
jΨa+2

∑k
b=1

Qb
1jΨ1b(Γj + Γ1j)(Γj + Γ1j)

}

+
m∑

a=1

ta

4

∫
dθ+Υa|θ+=0

+
k∑

b=1

∫
dθ+dθ

+
ΛbΥb +

k∑

b=1

∫
dθ+dθ

+
χ̄bEb + h.c.

− i

2

∫
dθ+dθ

+
n∑

i=k+1

{
Φie

2
∑m

a=1
Qa

i Ψa

(
∂− + i

m∑

a=1

Qai Va

)
Φi (3.11)

− Φi

(←−
∂ − − i

m∑

a=1

Qai Va

)
e2

∑m
a=1

Qa
i ΨaΦi

}
+

∫
dθ+dθ

+
ñ∑

j=k+1

1

2
e2

∑k
a=1

Qa
jΨaΓjΓj .

The terms in the last two lines are not charged under the global (gauged) symmetry

so those fields behave as spectators. The main difference with the other case (without

reduction) lies on the dualized fields. In this reduced model, the Fermi fields are also

gauged and new Lagrange multipliers were added, these terms are located on the 5th

line of previous equation. If exists Q ∈ GL(k) such that (Q)ci := Qc
1i, then let be

X := Q−1 to find the variations, which results in:

δV1cS = 0 :

(
1 + 2

m∑

a=1

Qa
jΨa + 2

k∑

b=1

Qb
1jΨ1b

)
= −X

j
cY

c
+

|Φj |2

or Ψ1d =
k∑

j=1

Xj
d

(
Xj
cY

c
+

2|Φj|2
+

1

2
+Qa

jΨa

)
, (3.12)

δΨ1c
S = 0 : −iΦjΦδ−Φj + 2

m∑

a=1

Qa
jVa|Φj |2 + 2

k∑

b=1

Qb
1jV1b|Φj|2 = −

i

2
Xj
c∂−Y

c
−,

(3.13)

δΓ1j
S = 0 :

(
1 + 2

m∑

a=1

Qa
jΨa + 2

k∑

b=1

Qb
1jΨ1b

)
(Γj + Γ1j) = −

√
2F̃ †

j . (3.14)

Notice that we have solved the equations for the gauged fields, we denote δfX to the

equation of motion obtained for the field X .

– 11 –



From the derived equations of motion, one can obtain the dual Lagrangian for

the (0, 2) models. In general it is involved to carry out this program, thus we shall

consider in this work the simpler models, with some specific values of m, n and ñ.

This will be developed in the following section for the case of susy reduction and

then for the pure (2, 0) case.

3.3 GLSMs with a U(1) global symmetry

Now we consider a concrete model described by the GLSM Lagrangian with m = 1,

two chiral multiplets (n = 2) and some Fermi superfields ñ. One of each kind will

act as spectator field, besides it will be considered Q = 1.

For the implementation of the algorithm of duality we consider only the relevant

terms in the Lagrangian; which we call partial Lagrangian ∆L, where the other

terms as the kinetic energies of the gauge fields, the FI terms and the spectator fields

are omitted. Thus the partial Lagrangian is given by:

∆Loriginal =

∫
dθ+dθ

+
{

1

8e2
ΥΥ− i

2
Φe2Ψ

(
∂− + iV

)
Φ +

i

2
Φ

(←−
∂ − − iV

)
e2ΨΦ

−1
2
e2ΨΓΓ

}
+
t

4

∫
dθ+Υ|

θ
+
=0

+ h.c. . (3.15)

From this common Lagrangian, the 2 cases: the reduction from (2, 2) and the pure

(0, 2) case are taken.

3.3.1 (0, 2) GLSM from a reduction of a (2, 2) GLSM

As we mentioned before in the case when the (0, 2) model is obtained as a reduction

from a (2, 2) model, all the chiral multiplets have associated an only Fermi field

(s = 0) and the E field has a special form with the reduced fields given by

E = iQ
√
2Σ′Φ′ , (3.16)

where Σ′ = Σ|
θ−=θ

−

=0
, and Φ′ = Φ|

θ−=θ
−

=0
. Thus the gauged Lagrangian is written

as

∆Lmaster =

∫
dθ+dθ

+
{
− i

2
Φe2(Ψ+Ψ1)

(
∂− + i(V + V1)

)
Φ (3.17)

+
i

2
Φ

(←−
∂ − − i(V + V1)

)
e2(Ψ+Ψ1)Φ

− 1

2
e2(Ψ+Ψ1)(Γ + Γ1)(Γ + Γ1) + ΛΥ1 +Υ1Λ + χẼ1 + Ẽ1χ

}
.
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Thus, the Eqs. (3.13-3.14) substituted back into (3.17) lead to the following La-

grangian

∆Lmaster =

∫
dθ+dθ

+
{
− i

2

Y−∂−Y+
Y+

+
|Φ|2F̃F̃
Y+

−
(
ΛΥ+ΥΛ+ χ̄E+Eχ

)}
. (3.18)

Then, after the gauge fixing |Φ|2 = 1 the dual Lagrangian is obtained and it can be

written as:

∆LDual =

∫
dθ+dθ

+
{
− i

2

Y−∂−Y+
Y+

+
F̃F̃
Y+

}
−
∫

dθ
+
(
iYΥ− ĒF

)
+ h.c.. (3.19)

This process can also be realized by components, gauging up each component field

to find the scalar potential; this procedure is carried out in Appendix A.

Now we describe the various contributions to the scalar potential coming from

the complete dual action (3.19). This is we show the complete Lagrangian adding

Fayet-Iliopoulos term, gauge action and the spectators fields. The kinetic term of the

dual variable Y in the first term of the dual action − i
2
Y−∂−Y+
Y+

, does not contribute

to the scalar potential. The third term in the Lagrangian iYΥ0 leads to a scalar

potential of the form −2Dy+ + 2iv01y− + h.c. Moreover, the Fayet-Iliopoulos term

gives rise to a potential of the form D( it
2
− it

2
) + v01(

t
2
+ t

2
). The gauge sector Lgauge

contributes with a term of the form
v2
01

2e2
+ D2

2e2
.We have two additional contributions

from the terms F̃F̃
Y+

and −F̃E +h.c. which lead to terms of the potential of the form
−2HH
y+

and −
√
2(HE + EH), respectively.

Thus, the scalar potential coming from (3.19) can be written as

Udual = D

(
i

2
(t− t)− 2y+ + |φ2|2

)
+
D2

2e2
+
v201
2e2

+ v01

(
i

2
(t+ t)− 2iy−

)

+
HH

ℜ(y) +
√
2(HE + EH). (3.20)

After eliminating the auxiliary fields D and v01, the potential is:

Udual =
e2

2

(
−ℑ(t)−ℜ(y) + |φ2|2

)2

(3.21)

+
e2

2

(
ℜ(t) + ℑ(y)

)2

+
HH

ℜ(y) +
√
2(HE + EH) (3.22)

which minimum condition with respect to H , E and ℜ(y) gives

E = 0, H = 0; ℜ(y) = |φ2|2 − ℑ(t). (3.23)

Thus the minimum for the dual scalar potential is

Udual = 0→ |φ2|2 −ℜ(y) = ℑ(t), (3.24)
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while for the original theory is:

Uoriginal = 0→ |φ|2 + |φ2|2 = ℑ(t). (3.25)

From ec. (3.24) one obtains a cone with vertex at y+ = −r. Considering the U(1)

gauge symmetry this will lead to the line R+, such that the dual expected vacua is

R+ × R while for the original model is P1. Notice that this dual is not the Abelian

T-dual leading to the mirror pair obtained in [24, 56]. That to obtain the mirror pair

we would need to add an spectator chiral superfield and gauge two U(1) symmetries,

one for each chiral superfield.

The superpotential of the original theory is given by [20]:

Woriginal =
Υ

4π
√
2
ln

(
Σ

qµ

)
. (3.26)

We propose the following ansatz for superpotential of the dual theory:

Wdual = iYΥ− EF + βFeαY , (3.27)

thus we have

Wdual =
iΥ

α
ln

(
E

β

)

=
iΥ

α
ln

(−iΥ0

αβF

)
. (3.28)

For (0, 2) theories coming from a reduction of a (2,2) model with E = −iQ
√
2ΣΦ,

the nonperturbative dual superpotential is written as [20]

Wdual =
iΥ

α
ln

(
Σ

β/(−iQ
√
2Φ)

)
, (3.29)

where we can see by comparison with (3.28) the choices of:

α = 4iπ
√
2 and β = −iqµ

√
2QΦ . (3.30)

3.3.2 The case of a pure (0, 2) GLSM

In this section we consider a building block (0, 2) model which is not coming from

reduction of a (2, 2) case, and study the Abelian T-duality on it. In this case we

have m = 1, n = 2, ñ = 1, k = 1 and s = 0.

For a pure (0, 2) Abelian case the model is the same

∆Lmaster =

∫
dθ+dθ

+
{
1

2
(1 + 2Ψ)(−iΦδ−Φ + 2VΨΨ− ΓΓ)

}
. (3.31)
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But this time the field Γ is not dualized and the gauged fields are only V and Ψ.

Thus the dual Lagrangian is given by

∆Ldual =

∫
dθ+dθ

+
{
− i
2

Y−∂−Y+
Y+

+
Y+ΓΓ

2|Φ|2
}
+

∫
dθ+(iYΥ)+

t

4

∫
dθ+Υ+h.c. (3.32)

The scalar potential is found to be the same that in the previous case discussed

in Section 3.1.1, except for the term Y+ΓΓ
2

which contributes to the scalar potential

with a term of the form y+GG− y+EE. Gathering all that, it results that the scalar

potential of the dual theory given by

Udual = D

(
i

2
(t−t)−2y++|φ|2

)
+
D2

2e2
+
v201
2e2

+v01

(
i

2
(t+t)−2iy−

)
+2ℜ(y)(EE−GG).

(3.33)

Thus, after eliminating D, the potential is:

Udual =
e2

2

(
−ℑ(t)−ℜ(y)+ |φ2|2

)2

+
e2

2

[
ℜ(t)+ℑ(y)

]2
+2ℜ(y)(EE−GG), (3.34)

which minimum condition with respect to G, E and ℜ(y) gives:

E = 0, G = 0; ℜ(y) = |φ2|2 −ℑ(t). (3.35)

Thus the minimum for the dual scalar potential is as in the previous case:

Udual = 0→ |φ2|2 − ℜ(y)− ℑ(t) = 0. (3.36)

This is precisely the same equation found in the previous case (3.24) and consequently

the topology of the manifold of vacua is a also R+ × R. Recall that for the original

model the scalar potential reads:

Uoriginal = 0→ |φ|2 + |φ2|2 = ℑ(t), (3.37)

which together with the U(1) gauge symmetry it constitutes a P1.

Thus, the ansatz for the superpotential in the dual model is

Wdual = iYΥ+ βeα(Y+1)

=
iΥ

α

[
ln

(−iΥ
αβ

)]
. (3.38)

In this case it was not possible to compare this to a corresponding case already

discussed in the literature, but we plan to discuss is obtention elsewhere.
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3.3.3 A model with two Abelian gauge symmetries

As an example, let us apply this T-dualization procedure to the case of a (0, 2) GLSM
coming from a reduction, as discussed in Ref. [56]. This is a GLSM with two gauge
groups U(1). We have to gauge 4 global symmetries, this is 3 chiral fields Φ and 3

Fermi fields Γ under a U(1) gauge symmetry and another 3 chiral Φ̃ and Fermi Γ̃
with the other U(1). In this case it has to be taken m = 2, n = 6, ñ = 6, k = 2
and s = 0. The former example has to give the same dual model, apart from the 2
spectator fields. Let us write the master Lagrangian in general:

Lmaster = − i

2
e2Ψ1+2Ψ′

1Φ1

(
∂− − i(V1 + V ′

1)

)
Φ1 + h.c.

− i

2
e2Ψ1+2Ψ′

2Φ̄2

(
∂− − i(V1 + V ′

2)

)
Φ2 + h.c.

− i

2
e2Ψ2+2Ψ′

3Φ̃1

(
∂− − i(V2 + V ′

3)

)
Φ̃1 + h.c.

− i

2
e2Ψ2+2Ψ′

4Φ̃2

(
∂− − i(V2 + V ′

4)

)
Φ̃2 + h.c.

− 1

2

(
Γ1 + Γ′

1

)
e2Ψ1+2Ψ′

1

(
Γ1 + Γ′

1

)
− 1

2

(
Γ2 + Γ′

2

)
e2Ψ1+2Ψ′

2

(
Γ2 + Γ′

2

)

− 1

2

(
Γ̃1 + Γ̃

′
1

)
e2Ψ2+2Ψ′

3

(
Γ̃1 + Γ̃′

1

)
− 1

2

(
Γ̃2 + Γ̃

′
2

)
e2Ψ2+2Ψ′

4

(
Γ̃2 + Γ̃′

2

)

+ Λ1Υ
′
1 + Λ2Υ

′
2 + Λ3Υ

′
3 + Λ4Υ

′
4 + h.c.+ χ1E

′
1 + χ2E

′
2 + χ3E

′
3 + χ4E

′
4 + h.c.

− i

2
e2Ψ1Φ3

(
∂− − iV1

)
Φ3 + h.c.− i

2
e2Ψ2Φ̃3

(
∂− − iV2

)
Φ̃3 + h.c.

− 1

2
e2Ψ1Γ3Γ3 −

1

2
e2Ψ1 Γ̃3Γ̃3 +

∫
dθ+dθ

+
{

1

8e21
Υ1Υ1 +

1

8e22
Υ2Υ2

}

+
t1

4

∫
dθ+Υ1|θ+=0

+
t2

4

∫
dθ+Υ2|θ+=0

+ h.c. (3.39)

Dual fields to the Fermi multiplet are given by F = D̄+χ, F = eψF . The scalar

potential, the analysis of the supersymmetric vacua and the instanton corrections

will not discussed here; since for the case of the non-Abelian global symmetry it will

be discussed in detail in Section 5. The Lagrangian previously obtained constitutes

two copies of (3.19), and that this Lagrangian is exactly the one obtained by [56]

excluding the spectator terms.

4 GLSMs with gauge group U(1)m and non-Abelian global

symmetries

In this section we construct the non-Abelian dual models of (0, 2) GLSMs. This can

be implemented when there is a non-Abelian global symmetry present. Thus duality
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algorithm is realized gauging this non-Abelian symmetry and adding Lagrange mul-

tipliers which take values in the Lie Algebra of the global group. The only models

considered in the present section are assumed to come from a reduction of a (2, 2)

supersymmetric model thus the number of chiral fields Φi and the number of Fermi

fields Γi coincide. And they are equally charged under the U(1)m gauge group and

they are assumed to be also equally charged under the global group. Moreover in

order to be as general as possible, we consider models where the total non-Abelian

gauged group is G = G1×· · ·×GS. The Lagrangian of this model can be written as

Lmaster =

∫
dθ+dθ

+
m∑

a=1

1

8e2a
ΥaΥa

−
∫

dθ+dθ
+
{ S∑

I=1

i

2
Φ†
Ie

2
∑m

a=1
Qa

I
Ψa+2Ψ1I

(
∂− + i

m∑

a=1

Qa
IVa + iV1I

)
ΦI

}

+

∫
dθ+dθ

+
{ S∑

I=1

i

2
Φ†
I

(←−
∂ − − i

m∑

a=1

Qa
IVa − iV1I

)
e2

∑m
a=1

Qa
IΨa+2Ψ1IΦI

}

−
∫

dθ+dθ
+
{ S∑

I=1

1

2

(
Γ†
I + Γ†

1I

)
e2

∑m
a=1

Qa
IΨa+2Ψ1I

(
ΓI + Γ1I

)}

+

∫
dθ+

m∑

a=1

ta
4
Υa|θ+=0

+

∫
dθ+dθ

+
S∑

I=1

Tr
(
ΛIΥI

)
+ h.c.

+

∫
dθ+dθ

+
S∑

I=1

(
χ

†
IẼI

)
+ h.c., (4.1)

where ΦI = (ΦIn1
, . . . ,ΦInI

), with I ∈ {1, . . . , S}, are vectors of chiral superfields,

nI is the dimension of the representation of the Lie algebra of GI and V1I = V1IaTa,
Ψ1I = Ψ1IaTa are superfields for each factor gauged group GI , and it is assumed an

inner product. In these definitions T a are the generators of the Lie algebra of GI .

In the notation of the Lagrangian it is understood an inner product on the vector

space indexed by the number of factors of the global group, thus we have to sum

over the S factors there. For the implementation of the duality algorithm we write
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the partial Lagrangian given by

∆Lmaster =

S∑

I=1

∫
dθ+dθ

+
{
− i

2
eIΦ

†
Iδ−ΦI +Φ†ΦeIQ

β
I Vβ + V b

1IeIZ
b
I

+ Ψa
1I

(
− iΦ†

IT aδ−ΦI + 2Qβ
IVβZ

a
I

)
+Ψa

1IV
b
1Ia

ab
I

− 1

2

(
Γ†
I + Γa†I T a

)(
eI + 2Ψa

1IT a
)(
ΓI + ΓaIT a

)

+

(
V b
1IY+a + iΨb

1I∂−Y
a
−I

)
Tr(T aT b)

−
√
2

2

(
Γa†1IT aT bF̃

b

I + F̃
a†
I T aT bΓb1I

)}
, (4.2)

which is basically the sum of Lagrangians corresponding to each factor of the global

group GI . In the previous Lagrangian we have the following definitions: aabI :=

Φ†
I{T a, T b}ΦI , eI := 1I + 2

∑m

α=1Q
α
IΨα, Z

a
I := Φ†

IT aΦI .

The variations with respect to V c
1I , Ψ

c
1I and Γc1I , give the following equations of

motion:

δV c
1I
S = 0 : Ψa

1Ia
ca = −Y+IaTr(T aT c)− eIZc

I := Kc
I , (4.3)

δΨc
1I
S = 0 : V b

1Ia
bc
I + 2Qβ

IVβZ
c
I − iΦ†

IT cδ−ΦI + i∂−Y−aITr(T aT c)
−(Γ†

I + Γa†I T a)T b(ΓI + ΓcIT c) = 0, (4.4)

δΓc
1I
S = 0 : −1

2
(Γ†

I + Γa†1IT a)(eI + 2Ψb
1IT b)T c −

√
2

2
F̃a†I T aT c = 0.(4.5)

Thus the corresponding partial dual Lagrangian becomes

∆Ldual =
S∑

I=1

∫
dθ+dθ

+
{
− i

2
eIΦ

†
Iδ−ΦI +Φ†

IΦIeIQ
β
I Vβ + F̃

†
IX

−1
I F̃ I

+

√
2

2
(F̃

†
IΓI + Γ†

IF̃ I)

(
− iΦ†

Iδ−T aΦI + 2Qβ
IVβZ

a
I

)

×
(
− Y+IbTr(T bT c)− eIZc

I

)
bac

}
, (4.6)

where bac is the inverse of acd, and XI := eI + 2T aKa
I = eI − 2T aeIZc

Ib
ca −

2T aY+bTr(T bT c)bca. Still it is necessary to remove the original chiral fields Φ from

the Lagrangian, step which will be implemented through the process of gauge fixing.

Up to this point we have used generic well behaved Lie groups Gi, it hasn’t been

necessary to specify the groups.

4.1 A model with SU(2) global symmetry

Let us consider the case of a model with global symmetry G = SU(2). Before

proceeding, some definitions and conventions related to the SU(2) group are intro-
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duced for future reference. Hence, the following relations hold: Tr(T aT b) = 2δab,

{T a, T b} = 2δabId for the generators of the Lie algeba of the group SU(2); in

this way we have the relations aab = 2|Φ|2 and bbc = 1
2|Φ|2 . Consequently, with

eI := 1I + 2
∑m

α=1Q
α
IΨα, it is obtained that XI := eIId − T a eIZ

a
I +2Y a

+

|ΦI |2 .

For the specific model with a U(1) gauge group and an SU(2) global symmetry

the partial Lagrangian is given by

∆Lmaster =
s∑

I=1

∫
dθ+dθ

+
{(
− iΦ†

Iδ−T aΦI +QβV
β

)

×
(
eI |ΦI |2 −

eI
|ΦI |2

ZaZa − Y a
+

Za

|ΦI |2
)

+ F̃
†
X−1

F̃ +

√
2

2
(F̃

†
IΓI + Γ†

IF̃ I)−
i

2
eIΦ

†
Iδ−ΦI

}
. (4.7)

For future convenience the fields Φ =

(
Φ1

Φ2

)
, which are 2 complex fields, can be

redefined in terms of new fields Z0, Z1, Z2, Z3:

Z0 = Φ1Φ1+Φ2Φ2, Z1 = 2ℜ(Φ1Φ2), Z2 = 2ℑ(Φ1Φ2), Z3 = Φ1Φ1−Φ2Φ2,

(4.8)

Then, the original chiral fields can be eliminated by gauge fixing the Z’s, these

are 4 real constants and the products are written as sums of chiral fields

Φ1Φ1 =
Z0 + Z3

2
, Φ1Φ2 =

Z1 + iZ2

2
, Φ2Φ2 =

Z0 − Z3

2
. (4.9)

Thus, with the partial gauge fixing: Φ†
IT

b∂−ΦI = ∂−Φ
†
IT

bΦI , for b ∈ {0, 1, 2, 3}, the
partial dual Lagrangian has the following form

∆Ldual =

s∑

I=1

∫
dθ+dθ

+
{
QβV

β

(
eI − eI

ZaZa
Z0
− Y a

+Z
a

Z0

)

+ F̃
†(
eIId −

T a
Z0

(eIZ
a
I + 2Y a

+)
)−1

F̃

+

√
2

2

(
F̃

†
IΓI + Γ†

IF̃ I

)}
+
t

4

∫
dθ+Υ|

θ
+
=0
. (4.10)

To write the scalar potential in a more convenient form, it can be defined the variable

ua = 2
ya
+

Z0
+ Za

Z0
. Therefore, the new dual coordinate is denoted as ua. As a result,

considering all the corresponding terms, the scalar potential can be expressed as
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follows

Udual =
−2

1− uaua − 2Z
aZa

Z2
0

+ 2Zaua

Z0

(4.11)

×
[
H1H1 +H2H2 +

(
H1H1 −H2H2

)
u3 +H2H1u

12 + h.c.

]

+
√
2

[
H1E1(φ) +H2E2(φ) +H1E1(φ) +H2E2(φ)

]
− iQv−∂+u

a
−Za

Z2
0

+ 2Q2v−v+

(
1− ZaZa

Z2
0

)
+ 2QD

(
1− ZaZa

2Z2
0

− uaZa
2Z2

0

)
+
D2

2e
− rD.

After eliminating the auxiliary field D we have for the potential the following form

Udual =
−2

1− uaua − 2Z
aZa

Z2
0

+ 2Zaua

Z0

[
H1H1 +H2H2 +

(
H1H1 −H2H2

)
u3

+ H2H1u
12 + h.c.

]
+
√
2

[
H̄1E1(φ) + H̄2E2(φ) +H1Ē1(φ) +H2Ē2(φ)

]

− iQv−∂+u
a
−Za

Z2
0

+ 2Q2v−v+

(
1− ZaZa

Z2
0

)

− e

2

(
1− ZaZa

2Z2
0

− uaZa
2Z2

0

+ r

)2

. (4.12)

In order to find the minimum through derivatives of H ’s it is found the vacuum

condition U = 0, and integrating the fields v− and v+ we have

0 =
e

2

(
r + 1 +

ZaZa
2Z2

0

− uaZa
2Z2

0

)2

+
ucuc − 2ucZc

Z0
+ 2ZaZa

Z2
0

− 1

1− ucuc
×
[
|E1|2(1− u3) + |E2|2(1 + u3)− E1E2u12 − E2E1u12

]
. (4.13)

If A =
−2yb

+
yb
+

1−ucuc

(
u3 − 1 u12
ū12 −1− u3

)
, then this previous condition is rewritten in the

following form

Udual =
e

2

(
ℑ(t)− ya+Za

)2

+ (E1 E2)A

(
E1

E2

)
= 0 . (4.14)

This analysis is valid in the IR when the vector fields are integrated.

For future convenience let us write the original scalar potential:

Uoriginal =
e2

2

(
∑

i

Qi|φi|2 − r
)2

+
∑

a

|Ea|2. (4.15)
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The vacua manifold is characterized by the 3 coordinates: ya+, and there’s one equa-

tion for the vacua, thus it is a two dimensional surface. The Y− term doesn’t appear

on the Lagrangian, then y− isn’t a coordinate in the potential. The eigenvalues of

the matrix A are: λ± =
2ya

+
ya
+

1∓
√
uaua

. So due to A be Hermitian, there exists a unitary

matrix P such that A = P †DP , and D is the diagonal matrix with eigenvalues as

entries; therefore:

Ẽ
†
AẼ = Ẽ

†
P †DP Ẽ = (P Ẽ)†D(P Ẽ) = λ+|(P Ẽ)+|2 + λ−|(P Ẽ)−|2, (4.16)

which is a quadratic form. Thus, the vacua is made up of 3 regions1 depending on

whether ya+y
a
+ is greater than, less than or equal to Zaya+, these regions are: the

inside of a sphere, the outside of it and the sphere shell. Thus we have three cases:

• Region 1:

yaya < Zaya, ℑ(t) = ya+Z
a and |Ẽ|2 = 0. (4.17)

• Region 2:

yaya = Zaya, ℑ(t) = ya+Z
a and |(P Ẽ)−|2 = 0. (4.18)

• Region 3:

yaya > Zaya,
e

2
(ℑ(t)− ya+Za)2 + λ−|(P Ẽ)−|2 = −λ+|(P Ẽ)+|2. (4.19)

This can be also written ℑ(t) = ya+Z
a −

√
−2
e
Ẽ

†
AẼ, where

(P Ẽ)± =
∓u12E1 + (

√
ucuc ± u3)E2√

2
√
ucuc(

√
ucuc ± u3)

, (4.20)

and consequently

|(P Ẽ)±|2 = (4.21)

=
|u12|2|E1|2 + (

√
ucuc ± u3)2|E2|2 ∓ 2(

√
ucuc ± u3)[u1ℜ(E1E2)− u2ℑ(E1E2)]

2
√
ucuc(

√
ucuc ± u3)

.

For the regions 1 and 2, the potential is semi-definite positive and the surface ya+Za =

ℑ(t) is a plane inside the sphere, thus this is a disk D, where the modulus r = ℑ(t)
determines the size of the disk (as its relative position inside the sphere). While for

the case outside of the sphere, one has a more sophisticated surface, whose boundary

is the same as the one of the disk, with the topology R2�D.

1The point ya = 0 is also solution only if ℑ(t) = 0.
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Until this point the superfield E has been arbitrary and it is a function only on Φ

(which is gauge fixed) and other parameters; however, it can be chosen a particular

form of it that comes from the (2, 2) reduction:

(
E1

E2

)
= Σ

(
Φ1

Φ2

)
, (4.22)

where Σ = σ +
√
2θ+λ+ − iθ+θ

+
∂+σ, this means for region 1: |σ|2 = 0.

It is remarkable that in this case the equations of motion (4.3),(4.4) and (4.5)

can be exactly solved, without requiring to project out to an Abelian component (or

to particularize to a semichiral vector field) as in the (2, 2) supersymmetric case [67].

4.1.1 Instanton correction

The Lagrangian with the instanton correction is given by

Ldual =

s∑

I=1

∫
dθ+dθ

+
{
QβV

β

(
eI − eI

ZaZa
Z0
− Y a

+Z
a

Z0

)

+ F̃
†(
eIId −

T a
Z0

(eIZ
a
I + 2Y a

+)
)−1

F̃ +

√
2

2

(
F̃

†
IΓI + Γ†

IF̃ I

)}

+

∫
dθ+

{
t

4
Υ|

θ
+
=0

+ F̃
†
βeα

bYb

}
, (4.23)

where the last term is the instanton correction and its contribution to the bosonic

scalar potential is:

∫
dθ+F̃

†
βeα

bYb = −
√
2
(
H0β

0 +H1β
1
)
eαby

b
+ . (4.24)

Then, the new vacua equation is:

e

2

(
ℑ(t)− ya+Za

)2

+

(
Ẽ − eαby

b
+β

)†
A

(
Ẽ − eαby

b
+β

)
= 0 , (4.25)

and similarly, when 0 > ya+y
a
+ + ya+Za the solution gives:

e

2

(
ℑ(t)−ya+Za

)2

= 0 and |ε1|2(1−u3)+ |ε2|2(1+u3)−ε1ε2u12−ε2ε1u12 = 0,

(4.26)

where ε = Ẽ − eαby
b
+β. Notice that the effect of the instanton in the effective

potential is just a displacement of the holomorphic function E. Therefore the dual

geometry coincides with the analysis performed without instanton corrections. This

is a common point with observations of the dualities in the (2, 2) GLSMs [67].
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5 A model with global symmetry SU(2)× SU(2)
In this section we study a generalization of the model presented in [56] which consist

of a GLSM with gauge symmetry U(1)1 × U(1)2, two chiral fields Φ1, Φ2 and two

Fermi Γ1, Γ2 with charge 1 under the first factor of the gauge symmetry U(1)1; as well

as two chiral fields Φ̃1, Φ̃2 and two Fermi Γ̃1, Γ̃2 with charge 1 under the U(1)2 gauge

group. This a deformation of a (2, 2) model into a (0, 2) model, so the restrictions

for the fields E’s are:

E1 =
√
2{Φ1Σ+ Σ̃(α1Φ1 + α2Φ2)},

E2 =
√
2{Φ2Σ+ Σ̃(α′

1Φ1 + α′
2Φ2)},

Ẽ1 =
√
2{Φ̃1Σ̃ + Σ(β1Φ̃1 + β2Φ̃2)},

Ẽ2 =
√
2{Φ̃2Σ̃ + Σ(β ′

1Φ̃1 + β ′
2Φ̃2)}, (5.1)

where α, α′, β and β ′ are real parameters. In the limit when the α’s and β’s param-

eters vanish the reduced (0, 2) model is recovered. The Lagrangian of this model is

given by [56]

∆Loriginal =
2∑

i=1

∫
dθ+dθ

+
{
− i

2
Φi

(
e2Ψ∂− −

←−
∂ −e

2Ψ

)
Φi + V e2Ψ|Φi|2 −

1

2
e2ΨΓiΓi

}

+
2∑

i=1

∫
dθ+dθ

+
{
− i

2
Φ̃i

(
e2Ψ̃∂− −

←−
∂ −e

2Ψ̃

)
Φ̃i + V e2Ψ̃|Φ̃i|2 −

1

2
e2Ψ̃Γ̃iΓ̃i

}
. (5.2)

While the potential of this Lagrangian is given by

Uoriginal =
e2

2

(
|φ1|2+|φ2|2−r1

)2

+
e2

2

(
|φ̃1|2+|φ̃2|2−r2

)2

+|E1|2+|E2|2+|Ẽ1|2+|Ẽ2|2.
(5.3)

The vacuum solution for this model is [56]:

|φ1|2 + |φ2|2 = r1, |φ̃1|2 + |φ̃2|2 = r2, (5.4)

i.e., the vacua manifold is a product of P1×P1 with Kähler classes r1 and r2 respec-

tively, and

Ei = Ẽi = 0. (5.5)

In the SU(2) × SU(2) generalization both chiral fields and Fermi fields are SU(2)
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multiplets related a different SU(2) sector. Let us write the dual Lagrangian

∆Lmaster =

∫
dθ+dθ

+
2∑

i=1

1

8e2i
ΥiΥi +

∫
dθ+

2∑

i=1

ti
4
Υi|θ+=0

−
∫

dθ+dθ
+ i

2
Φe2Ψ1+2Ψ1aTa

(
∂− + iV1 + iV1aTa

)
Φ

−
∫

dθ+dθ
+ i

2
Φ̃e2Ψ2+2Ψ2aTa

(
∂− + iV1 + iV2aTa

)
Φ̃

+

∫
dθ+dθ

+
{
i

2
Φ

(←−
∂ − − iV1 − iV1aTa

)
e2Ψ1+2Ψ1aTaΦ

}

+

∫
dθ+dθ

+
{
i

2
Φ̃

(←−
∂ − − iV2 − iV2aTa

)
e2Ψ2+2Ψ2aTaΦ̃

}

−
∫

dθ+dθ
+
{

1

2

(
Γ + Γ1

)
e2Ψ1+2Ψ1aTa

(
Γ + Γ1

)}

−
∫

dθ+dθ
+
{

1

2

(
Γ̃ + Γ̃2)e

2Ψ2+2Ψ2aTa(Γ̃ + Γ̃2)

}

+

2∑

i=1

∫
dθ+dθ

+
Tr(ΛiΥi) +

2∑

i=1

∫
dθ+dθ

+
Tr(Λ̃iΥi) + h.c.

+
2∑

i=1

∫
dθ+dθ

+
χiEi +

2∑

i=1

∫
dθ+dθ

+
χ̃iEi + h.c. (5.6)

Let us consider the following ansatz for the deformation of the (2,2) model in
which α and β are the parameters of the deformation:

(
E1

E2

)
= Σ0

(
Φ1

Φ2

)
+ Σ̃0

(
Φ1

Φ2

)
α1 +Σ

(
Φ1

Φ2

)
α2,

(
Ẽ1

Ẽ2

)
= Σ̃0

(
Φ̃1

Φ̃2

)
+Σ0

(
Φ̃1

Φ̃2

)
β1 + Σ̃

(
Φ̃1

Φ̃2

)
β2,

(5.7)

This implies that (E1, E2) and (Ẽ1, Ẽ2) are vectors under SU(2)1 and SU(2)2 respectively.

As well (E1, E2) and (Ẽ1, Ẽ2) are charged with charges 1 under the U(1)1 and U(1)2
respectively. Then, the dual Lagrangian becomes:

∆Ldual =

∫
dθ+dθ

+
{ [

V e− V eZ
aZa

Z0
− V Y a

+Z
a

Z0

]
+ F̃

†(
eId −

T a
Z0

(eZa + 2Y a
+)
)−1

F̃

+
[
Ṽ ẽ− Ṽ ẽ Z̃

aZ̃a

Z̃0

− Ṽ Ỹ a
+Z̃

a

Z̃0

]
+ F̃

†(
ẽId −

T a
Z̃0

(ẽZ̃a + 2Ỹ a
+)
)−1

F̃

}

+
t

4

∫
dθ+Υ|

θ
+
=0
−
∫

dθ+
[
(Σ0 + α1Σ̃0)F̃

†
Φ+ α2F̃

†
ΣΦ

]

+
t̃

4

∫
dθ+Υ̃|

θ
+
=0
−
∫

dθ+
[
(Σ̃0 + β1Σ0)F̃

†
Φ̃+ β2F̃

†
Σ̃Φ̃

]
, (5.8)
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where the Φ is fixed (in terms of the Z-parameters) with (4.9).

For the scalar potential we have:

Udual = −e
(
− ya+Za + ℑ(t)

)2

− ẽ
(
− ỹa+Z̃a +ℑ(t̃)

)2

+
1

2ya+ya+

[
H1H1 +H2H2 +

(
H1H1 −H2H2

)(
Z3 + 2y3+

)

+H2H1

(
2w + Z

12
)
+ h.c.

]

+
1

2ỹa+ỹa+

[
H̃1H̃1 + H̃2H̃2 +

(
H̃1H̃1 − H̃2H̃2

)(
Z̃3 + 2ỹ3+

)

+H̃2H̃1

(
2w + Z

12
)
+ h.c.

]

+
√
2

[
(σ0 + α1σ̃0)(H1φ1 +H2φ2) + α2H1(σ

11φ1 + σ12φ2)

+α2H2(σ
21φ1 + σ22φ2) + h.c

]

+
√
2

[
(σ̃0 + β1σ0)

(
H̃1φ̃1 + H̃2φ̃2

)
+ β2H̃1

(
σ̃11φ̃1 + σ̃12φ̃2

)

+β2H̃2

(
σ̃21φ̃1 + σ̃22φ̃2

)
+ h.c

]
. (5.9)

Thus, the bosonic scalar potential depends of 6 coordinates ya+ and ỹa+, and the vacua

Udual = 0 after the minimum condition for H’s gives:

Udual =
e

2

(
ℑ(t)− ya+Za

)2

+ (E1 E2)A

(
E1

E2

)

+
e

2

(
ℑ(t)− ya+Z̃a

)2

+ (Ẽ1 Ẽ2)A

(
Ẽ1

Ẽ2

)
= 0, (5.10)

with A =
−2yb

+
yb
+

1−ucuc

(
u3 − 1 u12

u12 −1− u3

)
, Ã =

−2ỹb
+
ỹb
+

1−ũcũc

(
ũ3 − 1 ũ12

ũ12 −1− ũ3

)
and

E1 =
[
σ0 + α1σ̃0 + α2(σ11 + σ12)

]
φ1, E2 =

[
σ0 + α1σ̃0 + α2(σ21 + σ22)

]
φ2 .

Ẽ1 =
[
σ̃0 + β1σ0 + β2(σ̃11 + σ̃12)

]
φ̃1, Ẽ2 =

[
σ̃0 + β1σ0 + β2(σ̃21 + σ̃22)

]
φ̃2 , (5.11)

which as in the previous case, each one is positive quadratic form when 0 < 1− uaua and

0 < 1− ũaũa. If it is this case, the solution is

r = ya+Z
a, r̃ = ỹa+Z̃

a,

σ0 + α1σ̃0 + α2(σ11 + σ12) = 0, σ0 + α1σ̃0 + α2(σ21 + σ22) = 0,

σ̃0 + β1σ0 + β2(σ̃11 + σ̃12) = 0 and σ̃0 + β1σ0 + β2(σ̃21 + σ̃22) = 0. (5.12)
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which is simply two copies of the potential with a single group factor. For the instanton

correction, it is ∫
dθ+

(
F̃

†
βeα

bYb +
˜̃
F

†
β̃eα̃

bỸb

)
. (5.13)

Thus the change for the scalar potential is given by: Ẽ → Ẽ − eαby
b
+β. This means that

the last 4 equations in (5.12) are equal to |eαby
b
+β|2.

For the analyzed case the geometry of the dual model is the one of the product of

two disks D1 ×D2, which are the building blocks of the duality in subsection 4.1. Other

possible cases involve a not positive definite matrix A or Ã. Notice also that the inclusion

of instanton corrections preserves the geometry.

6 Discussion and outlook

In this work we describe T-dualities of two dimensional (0, 2) Abelian GLSMs. After a brief

review on the basics of (0, 2) GLSMs, we started by constructing Abelian T-duality. This

is implemented in models with U(1) global symmetries; by gauging them. We analyse two

cases: models coming from a (2, 2) supersymmetry reduction and pure (0, 2) models. The

fundamental difference is that in the first case (reduction) the Fermi multiplet is dualized,

while in the second case it is not. We study the simple example of a model with two

chiral superfields, the first chiral field is charged under the U(1) global symmetry and the

other remains as an spectator, which just assists to obtain the global symmetry. A master

Lagrangian is obtained by promoting the global symmetry to be local, and adding Lagrange

multiplier fields. The equations of motion for the gauge fields are obtained from the master

Lagrangian leading to the dual action. The original chiral fields are eliminated by the gauge

fixing procedure. We then compute the contributions to the scalar potential for all the

terms in the dual Lagrangian. From the potential we determine the geometry of the space

of supersymmetric vacua. The geometry of the vacua space for the original model in both

cases is P1. The dual model, under a single U(1) T-duality, has the topology of R+ × R

for both cases. Notice that this is very different to the standard Mirror Symmetry duality,

which will be a T-dualization of both chiral superfields. The instanton contributions to

the superpotential are known for (0, 2) models coming from a (2, 2) reduction [20, 56]. For

the case of a pure (0, 2) model, we still haven’t obtained them, we leave this for future

work. From our results it seems that there is a difference of considering (0, 2) models and

their dual counterparts, if they come from a reduction or not. Moreover, in Section 3 we

carried out the duality algorithm for a model with two global Abelian symmetries [56].

This is a model which was later generalized in Section 5 to the non-Abelian T-duality

case. It consists of a reduction (0, 2) GLSM with gauge symmetry U(1)× U(1), six chiral

superfields and six Fermi fields. The global Abelian symmetry is given by U(1)4.

Furthermore we construct T-dualities for Abelian GLSMs which non-Abelian global

symmetry. Here we considered only the case coming from the reduction of a (2, 2) model.

To be as general as possible, we obtain the master Lagrangian of a model with U(1)m

gauge symmetry and non-Abelian global group G1 × · · · × GS . Starting from an original
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(2, 0) model with chiral, fermi superfields and a gauge multiplet, we obtain the master

Lagrangian by gauging the global symmetries. We find suitable variables to write down

the original master Lagrangians as a sum over the S factors of the gauged symmetry group;

then we find the equations of motion for the gauge fields. We considered a particular case

with just one global G = SU(2) factor and U(1) gauge symmetry. The dual action is

obtained by gauging the global symmetry SU(2). It is observed that under a suitable

redefinition of the chiral superfields in terms of new variables (fields) Z’s and ua, the

dual action can be rewritten in a simpler form. In these variables also was found the

scalar potential (4.14). We also identify the conditions for which the potential is definite

positive. This lead us to consider 3 regions depending on whether ya+y
a
+ is less than, equal

or greater to Zaya+. We argued that these regions correspond to the condition with the

topology of a open ball, a two-sphere or to the outside part of the sphere, respectively.

Thus the vacua manifold for a positive semidefinite scalar potential corresponds to the

closed disk D. If the potential is not definite positive the component of the vacua manifold

is R2�D. Furthermore, we discussed non-perturbative corrections to the superpotential

via instantons. We find that if the instanton corrections are incorporated in the potential

Udual the effect is equivalent to shift Ẽ function as Ẽ − eαby
b
+β in the potential without

instanton corrections. This coincides with the observation in the (2, 2) GLSMs non-Abelian

T-duality were the instanton corrections preserve the dual geometry [67].

In Section 5 we present the example of GLSM discussed in [56], which comes from a

continuous (0, 2) deformation of a (2, 2) model. This model is a genuine pure (0, 2) GLSM.

We worked out this model by gauging the global non-Abelian symmetry SU(2) × SU(2).

We find the dual Lagrangian, and analyze the dual geometry of the vacua manifold. For

the case of a positive definite potential the manifold is the Cartesian product of the vacua

space of the SU(2) simple model already discussed in Section 4, i.e. D1 ×D2. There are

also instanton corrections affecting both sectors by a similar shifting of Ẽ.

To summarize we have constructed systematically non-Abelian T-duality in (0, 2)

gauged linear sigma models in two dimensions. In the future we would like to analyze

more examples, given by realistic Calabi-Yau manifolds, and their Mirror duals. We also

are interested in analyzing models with a non-zero superpotential J 6= 0, which will lead to

compact Calabi-Yau. It would also be interesting to explore the connection of non-Abelian

T-dualities in (0, 2) models with Mirror Symmetry in more general Calabi-Yau construc-

tions (as Pfaffians and determinantal varieties). We would like to explore the implications

of these GLSMs non-Abelian T-dualities in string theory, as possible extensions of Mirror

symmetry.
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de cuerdas y sus aplicaciones a la f́ısica de part́ıculas y cosmoloǵıa” and University of
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A Abelian T-duality algorithm in superfield components

In this appendix, we implement the Abelian dualization of a (0, 2) GLSM coming from

a (2, 2) reduction in terms of superfield components. This is as an alternative way to

the superfield language, to carry out the duality. First, we write down the component

expansion of the fields. The gauge superfield is given by

V = v− − 2iθ+λ− − 2iθ
+
λ− + 2θ+θ

+
D, Ψ = v+θ

+θ
+
. (A.1)

The fields in the model, including the chiral superfield, the Fermi superfield and the su-

perfield E are written as:

Φ̃ = φ+
√
2θ+ψ+ − iθ+θ+(∂+ + iv+)φ, (A.2)

Γ = γ− −
√
2Gθ+ − iθ+θ+∂+γ− −

√
2Eθ

+
, (A.3)

E(Φ) = E(φ) +
√
2θ+

∂E

∂φ
ψ+ − iθ+θ+∂+E, (A.4)

The field component expansion for the Lagrangian multipliers which have been used in the

bulk of the article are:

χ = x+ ξθ+ + ρθ
+
+ zθ+θ

+
, (A.5)

Λ = ω + kθ+ + lθ
+
+ εθ+θ

+
. (A.6)

The new dual fields are given by

Y± = y± +
√
2(θ+ξ+ + ξθ

+
)− iθ+θ+∂+y∓, (A.7)
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F = η− −
√
2θ+Ha − iθ+θ+∂+η−. (A.8)

Then the appropriate Lagrangian of a single chiral field and a Fermi one with Abelian

global symmetry in component fields is written as

Lcomponents = φφD + iψ+(∂− + iv−)ψ+ −
√
2i(λ−ψ+φ− ψ+λ−φ)

− 1

2
[φ(∂− + iv−)(∂+ + iv+)φ− (∂+ + iv+)φ(∂− + iv−)φ] +Dℑ(t) + v01ℜ(t)

+ iγ(∂+ + iv+)γ + |G|2 − |E|2 −
(
γ
∂E

∂φ
ψ+ +

∂E

∂φ
ψ+γ

)
+
v201 +D2

2e2
. (A.9)

To realize the T duality algorithm, gauging the global symmetry we add the fields v±,
λ−, D, γ and G (components of V , Ψ and Γ) as well as the Lagrange multipliers. The

original fields will be denoted with a subindex 0, the gauged ones with a subindex 1 and

the sum of both without any subindex. Thus, for example: a := a0 + a1, etc. Besides it is

convenient to define: δ± := ∂± −
←−
∂ ±, thus:

Lmaster = φ̄φD + iψ+(∂− + iv−)ψ+ −
√
2i(λ−ψ+φ− ψ+λ−φ)

− 1

2

[
φ(∂− + iv−)(∂+ + iv+)φ− (∂+ + iv+)φ(∂− + iv−)φ

]
+Dℑ(t) + v01ℜ(t)

+ iγ(∂+ + iv+)γ + |G|2 − |E|2 −
(
γ
∂E

∂φ
ψ+ +

∂E

∂φ
ψ+γ

)
+
v201 +D2

2e2

+ 2iD(ω − ω) + v01(l + l) + 2(ελ− + λ−ε)− 2i(l∂+λ− + ∂+λ−l)

+ i(x∂+E − x∂+E)−
√
2

(
ξ
∂E

∂φ
ψ+ + ψ+

∂E

∂φ
ξ

)
− zE − zE. (A.10)

Taking variations with respect to v±,1, λ1, D1, γ1 and G1 one obtains the corresponding

equations of motion:

For δD1
L:

i(l − l) = 2|φ|2. (A.11)

For δλ1L:

ε+ 2i∂+ω = 4φψ+. (A.12)

For δb1L:

4v+|φ|2 = 4ψ+ψ+ + 2i(φδ+φ) + ∂++(l + l). (A.13)

For δa1L:

4v−|φ|2 = −
i

2
γγ + 2i(φδ−φ)− ∂−−(l + l) + γγ. (A.14)

For δγ1L:

(∂+ − iv+ + 2v+)(γ0 + γ1) = i(µφ+ sψ+). (A.15)

For δG1
L:

G0 +G1 = 0. (A.16)

New variables can be defined in the form:

l± := l ± l, y := −iε+ 2∂++ω and f := z + 2i∂++x . (A.17)
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Thus, using Eqs. (A.11, A.12, A.13, A.14) in the Lagrangian (A.10) it results the dual

Lagrangian:

1

2
Ldual = −i(yλ0− − λ0−y) +

1

2
(fs0 + fs0)− iD0l− − b0∂+l+ + a0∂−l+

= −i(µ0ρ− ρµ0) + φδ−δ+φ+ 4ab|φ|2 − |G|2 − 2iψ+δ−ψ+ −
i

2
γδ+γ. (A.18)

It is useful to emphasize that a = a0+a1 and b = b0+ b1. It is easy to check that this dual

Lagrangian coincides with the component field expansion of the dual Lagrangian (3.19). A

similar procedure could be carried over in the case of models with non-Abelian T-duality.
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