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Abstract

We study a class of newly-introduced CFTs associated with even quadratic forms of general
signature, which we call generalized Narain theories. We first summarize the properties of
these theories. We then consider orbifolds of these theories, thereby obtaining a large class
of non-supersymmetric CFTs with exactly marginal deformations. We then discuss ensemble
averages of such theories over their moduli space, and obtain a modular form associated with
the quadratic form and an element of the discriminant group. The modular form can be
written as a Poincaré series, which contains novel invariants of lens spaces and suggests the
interpretation of the holographic bulk as a theory of anyons.
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1. Introduction

In physics one often makes progress by studying simple models which capture the essence of
complicated physical phenomena. This comment may well be true in the theories of holography:
instead of complicated full-fledged string theory setups for holography, one can hope to make
progress by first studying simpler solvable setups in detail and then try to embed the resulting
setups back into string theory.

Ensemble averages of Narain Conformal Field Theories (CFTs) as recently discussed in [1,2]
(see also [3–11]) can be regarded as perfect examples of such simplified models, especially when
we wish to explore ensemble averages in holography [12,13]. The ensemble averages of 2d CFTs
can be computed exactly over the CFT moduli space, and the result in the bulk generates an
exotic theory of quantum gravity, where we have a sum over geometries and the contribution
from each geometry is captured by an Abelian Chern-Simons theory. It was moreover suggested
that these holographic dualities can be embedded into string theory [14]1, based on an earlier
claim of [18].

In our previous paper [19] we analyzed ensemble averages of generalized Narain CFTs
associated with a general even integer lattice. Since the lattice is in general not unimodular,
the torus partition function is not modular invariant, and this is probably one of the reasons
why such theories have rarely been discussed in string theory literature.2 The generalized
CFTs, however, are otherwise well-defined theories, and we can average over their CFT moduli

1See e.g. [10,15–17] for a sample of papers which discuss the embedding of ensemble averages into string
theory, albeit in different setups.

2In the literature, modular invariance is sometimes included in the definition of the two-dimensional CFT,
and most of our theories are not CFTs under this definition. We find it useful, however, to be more flexible in
the definition of the CFTs, at least for the purposes of this paper. Note that even under the strict definition
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spaces, to obtain an exotic theory of gravity in the bulk described by a three-dimensional
Abelian Chern-Simons theory. Here the non-modular-invariance of the theory is accounted for
by the existence of the Chern-Simons term in the bulk. Moreover, the non-modular-invariance
implies that we have a non-trivial set of anyons in the holographic bulk, and this leads to global
symmetries in the bulk, some of which are emergent only after the ensemble averaging [14].

In this paper we discuss ensemble averages of orbifolds of the Narain CFT [20,21] associated
with a general quadratic form, generalizing the previous analysis [19] of the un-orbifolded case
and [8, 22] for even self-dual quadratic forms.3 We will also discuss generalizations of the
aforementioned ensemble averages where chemical potentials for flavor symmetries are turned
on in the Narain CFT partition function.

There are several motivations for studying orbifolds of generalized Narain CFTs. Firstly,
by studying orbifolds we can construct a new class of irrational (and rational) CFTs. Secondly,
it serves to understand the less-studied CFTs associated to general (indefinite) even quadratic
forms. Thirdly, it is rare to find non-supersymmetric CFTs with exactly marginal deformations,
and orbifolded Narain CFTs will provide further concrete examples to test the ideas of ensemble
averages in holography. Fourthly, orbifolding gauges part of the T-duality symmetry, and this
can be regarded as gauging of the “ensemble symmetries” in holography, as articulated in [14]
(see also [23]). Note that global symmetries are present only in exotic holographies involving
non-Einsteinian gravity, such as the ones discussed for generalized Narain theories. Lastly, our
analysis generates automorphic forms which are generalizations of the Siegel-Eisenstein series,
and could be of independent mathematical interest.

The rest of this paper is organized as follows. In Section 2 we first summarize generalized
Narain theories of [19]. In Section 3 we discuss orbifolds of the Narain theories. In Section 4
we then discuss ensemble averages of the torus partition functions over the CFT moduli space.
We will also extend the discussion of ensemble averages by including chemical potentials for
the flavor symmetries, and will encounter new Siegel-Jacobi forms associated with quadratic
forms. In Section 5 we briefly comment on the holographic-dual theories. We conclude with
summaries and discussions in Section 6. The appendices contain technical materials needed
for the understanding of the main text.

2. Generalized Narain Theories

In this section, we describe the generalized Narain theories, which contains the original
Narain CFTs (toroidal CFTs) [20,21] as special examples. While we mostly follow our previous
paper [19], we expand the discussion to clarify the construction. Our conventions and notations
are summarized in Appendix A.

2.1. Review of Standard Narain CFTs. We begin with a recasting of a familiar story—
Narain CFTs. Narain CFTs can be constructed from toroidal compactifications of superstring
theories, in particular the heterotic string4 [20, 21]. These theories are defined via Narain
lattices PNarain that are even and self-dual with respect to the inner product. For now, we
focus on Narain CFTs with equal left- and right-moving central charges cL = cR = D so that
the signature of PNarain is (D+, D−). The momenta (pL, pR) depend on the moduli of the
compactification: the background metric G, and the two-form B. These moduli parameterize
the marginal deformations of the CFT and take values in the typical Narain moduli space
MNarain defined below in (2.5). At a point m ∈ MNarain, the components of a lattice vector

requiring modular invariance, our theories can be used as building blocks for modular-invariant theories, as
discussed in Section 2.

3See also [11] for another paper on ensemble averages for orbifolded Narain theories for special choices of
unimodular quadratic forms.

4For a nice discussion whose conventions we follow, see [24].
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(pL, pR) ∈ PNarain can be written5

pL,i = ni +
1

2
(Gij −Bij)w

j ,

pR,i = ni −
1

2
(Gij +Bij)w

j ,

(2.1)

with ni, w
j ∈ Z (i, j = 1, · · ·D). The operator content of the Narain CFT consists of currents

JM = ∂XM and J̄M = ∂̄XM and vertex operators V = : exp

(
ipL · XL + ipR · XR

)
:, where

the XM = XM
L +XM

R (M = 1, . . . , D) are the compact bosons of the CFT.
The above can be reformulated in a more suggestive manner. The Narain lattice consists

of discrete data in the form of lattice points and continuous data from the moduli. The
discrete and continuous data can be separated using the Narain vielbein E . Re-expressing an
element of PNarain as (pL, pR) = Eℓ, where ℓ ∈ Z2D, we see that p2L − p2R = ℓTQNarainℓ, where
QNarain = ET

1D,DE is a quadratic form defining an inner product on the lattice

ΛNarain :=
{
ℓ ∈ Z2D

∣∣∣ ℓTQNarainℓ ∈ 2Z
}

. (2.2)

This lattice is the discrete data defining the Narain CFT. The moduli, which constitute the
continuous data, define E and can packaged in a secondary quadratic form H = ETE on the
lattice, which acts as ℓTHℓ = p2L + p2R. To make this more concrete, we can consider the torus
partition function of Narain CFTs,

|η(τ)|2DZNarain(τ ;m) :=
∑

(pL,pR)∈ PNarain

qp
2
L/2q̄p

2
R/2 =

∑
ℓ∈Z2D

exp

[
iπτ1Q(ℓ)− πτ2H(ℓ)

]
, (2.3)

where η(τ) is the Dedekind eta function, m collectively denotes the CFT moduli and q = e2πiτ ,
with τ = τ1 + iτ2, τ2 > 0 the modular parameter of the torus. Thus we see that the discrete
and continuous data can be directly used to write the partition function of the Narain CFT.
They can also be used to construct the vertex operators in the canonical manner.

Finally, we come to the Narain moduli space itself, MNarain. An arbitrary Narain lattice
can be obtained by the left action of an element of O(D,D;R) on a reference Narain lattice.
These lattices define unique Narain CFTs only up to independent O(D) rotations of the left-
and right-moving momenta and outer automorphisms of the lattice:

O(D,D;Z) :=
{
Σ ∈ GL(2D,Z)

∣∣∣ΣTQNarainΣ = QNarain

}
, (2.4)

which is precisely the T-duality group of the Narain CFT. Then the Narain moduli space is
given by the usual double quotient space

MNarain := O(D,D;Z)\O(D,D;R)/O(D;R)×O(D;R) . (2.5)

Finally, we note that T-duality manifests as an invariance of the partition function under
elements of O(D,D;Z), i.e.

ZNarain(τ ; g ·m) = ZNarain(τ ;m) , (2.6)

for all Σ ∈ O(D,D;Z).

2.2. Defining Data for Generalized Narain Theories. We now formalize the concepts
of the previous subsection and utilize them to construct generalizations of the Narain CFTs.
More specifically, we first define the discrete and continuous data (moduli) for a class of theories
and use this data to define partition functions and operators of the CFTs. In analogy with (2.2),

5For cL ̸= cR, there are also Wilson line moduli that will further modify these expressions.
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we first consider a lattice associated with an even, integral, quadratic form Q of signature
(p+, q−)

Q(ℓ) =

p+q∑
i,j=1

Qijℓ
iℓj ∈ 2Z, Qij ∈ Mat(p+q)×(p+q)(Z), ℓ ∈ Zp+q. (2.7)

We shall henceforth refer to an even, integral quadratic form simply as a quadratic form, unless
specified otherwise. A quadratic form corresponds to an even integer lattice, which we denote
by Λ:6

Λ :=
{
ℓ ∈ Rp+q

∣∣∣Q(ℓ) ∈ 2Z
}

. (2.8)

Owing to the relation between quadratic forms and integer lattices, one may think of an even
quadratic form as a norm function/inner product for vectors in an integer lattice. In other
words, an even quadratic form is bilinear Q : Λ× Λ → 2Z defined as

Q(ℓ, ℓ′) :=
Q(ℓ+ ℓ′)−Q(ℓ)−Q(ℓ′)

2
=

p+q∑
i,j=1

Qijℓ
iℓ′j ∈ 2Z . (2.9)

Unlike the previously mentioned self-dual lattices ΛNarain of typical Narain CFTs, we will not
restrict Λ to be self-dual. The dual lattice

Λ∗ :=
{
x ∈ Rp+q

∣∣∣Q(x, ℓ) ∈ Z (∀ ℓ ∈ Λ)
}

, with Λ ⊂ Λ∗ . (2.10)

This implies that Λ has a non-trivial discriminant group

DΛ := Λ∗/Λ . (2.11)

The elements of DΛ are equivalence classes [x] such that if [x] = [y] for x, y ∈ Λ∗, then x−y ∈ Λ.
We resort to a mild abuse of notation and use α to refer to both elements of DΛ as well as
representatives of the equivalence classes. We will specify the distinction in situations where it
is important. We will also let [0] denote the equivalence class of the zero element of Λ∗ so that
all representatives of [0] are elements of Λ.

For the continuous data, we must define a second quadratic form acting on the elements
of Λ. To define sensible theta functions that we will use to construct partition functions, we
must look at elements of the representation space hQ of the quadratic form Q defining Λ [25]:

hQ :=
{
H ∈ GL(p+ q,R)

∣∣∣HQ−1H = Q
}

. (2.12)

One could solve the condition on H in (2.12) and parameterize the solutions — the resulting
expression for H will depend on pq number of parameters, giving dimRhQ = pq. This is
equivalent to diagonalizing the quadratic form Q via the Narain vielbein7 E as Q = ET

1p,qE8

and defining H = ETE , as described in (2.1). Clearly, two distinct vielbeins E and E ′ are
related by an element R ∈ O(p, q;R) as E ′ = RE and so there exists H,H ′ ∈ hQ such that
H ′ = RTHR.

To properly define the continuous data of the generalized Narain CFTs, we must describe
the moduli space MΛ that defines distinct quadratic forms H and thereby distinct CFTs. Due
to the existence of a non-trivial discriminant group, this is a subtle point we return to below.
For now, we simply assume the existence of this moduli space and state that distinct Narain
CFTs correspond to points m ∈ MΛ.

With the discrete and continuous data Λ and hQ in hand, we can now define the generalized
Narain lattice PΛ associated to Λ (and hence Q) as

PΛ :=
{
p = (pL, pR) = Eℓ

∣∣∣ ℓ ∈ Λ & H = ETE ∈ hQ

}
. (2.13)

6An integer lattice is simply a freely generated Z−module.
7where “viel” = p+ q.
8The signature of the diagonalized quadratic form remains the same due to Sylvester’s law of inertia [26].
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Discrete Data: Λ ⇒ DΛ Continuous Data: MΛ

m

Vertex Operators

V [α]
(kL,kR)

Hilbert Space

HΛ

Partition Functions

ZΛ
α

Generalized Lattices PΛ and P∗
Λ

Figure 1. Logical flow of the construction of the generalized CFTs described
in this section. A choice of integral lattice Λ ((2.8)) defines a discriminant group
DΛ ((2.11)) as well as the moduli space MΛ ((2.45)) of the CFT. This data, with
a choice of m ∈ MΛ, can then be used to define the generalized Narain lattice
PΛ ((2.13)) and its dual P∗

Λ ((2.16)), vertex operators ( (2.20)), the Hilbert space
HΛ, and partition functions ZΛ

α (τ, τ ;m) ( (2.27)).

The inner product on PΛ is induced from that on Q(ℓ) as

I(p) = pT1p,qp = p2L − p2R = ℓTQℓ ∈ 2Z (2.14)

for all p = Eℓ ∈ PΛ. Thus we see clearly that the introduction of the Narain vielbien allows
a decomposition into left- and right-movers in analogy with standard Narain CFTs. Indeed
we also see that H(ℓ) = p2L + p2R. A convenient way to encapsulate the decomposition of the
momenta is via the quantities

QL(ℓ) :=
Q

2
+

H

2
, QR(ℓ) :=

H

2
− Q

2
, (2.15)

such that QL(ℓ) = p2L and QR(ℓ) = p2R.
We also define the dual Narain lattice

P∗
Λ :=

{
ρ = (ρL, ρR) = Eα

∣∣∣α ∈ Λ∗ & H := ETE ∈ hQ

}
, (2.16)

whose elements satisfy the expected property I(ρ, p) = ρT1p,qp = xTQℓ ∈ Z for all ρ = Eα ∈ P∗
Λ

and p = Eℓ ∈ PΛ. Let us also define a subset of P∗
Λ associated with a particular element [α] of

DΛ:

P∗
Λ,[α] :=

{
ρ = (ρL, ρR) = Eβ

∣∣∣ β ∈ Λ∗ & [α] = [β] ∈ DΛ & H := ETE ∈ hQ

}
, (2.17)

Note that this is not a lattice in general, and satisfies PΛ∗,[α] · PΛ∗,[β] ⊂ PΛ∗,[α+β].
Similar to standard Narain CFTs, the primary operators of our generalized theories are

built from compact chiral bosons with periodicity conditions(
Xa

L

Xm
R

)
∼

(
Xa

L

Xm
R

)
+ EL (2.18)

with L ∈ Zp+q, a = 1, 2, . . . , p and m = 1, . . . , q. The operators consist of holomorphic and
anti-holomorphic currents

Ja(z) := i∂Xa
L(z) ,

J
m
(z) := −i∂̄Xm

R (z̄) ,
(2.19)
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and vertex operators

V [α]
(kL,kR)(z, z) := : exp

(
ikL ·XL(z) + ikR ·XR(z)

)
: , (2.20)

where : : denotes the normal ordering, (ka
L, k

m
R ) ∈ P∗

Λ,[α], and the dot products are simply

kL · XL =
∑p

a=1 k
a
LX

a
L and kR · XR =

∑q
m=1 k

m
RX

m
R . We also can define holomorphic and

anti-holomorphic stress tensors

T (z) :=
∑
a

: Ja(z)Ja(z) : ,

T̄ (z) :=
∑
m

: J
m
(z)J

m
(z) : ,

(2.21)

The currents have the standard operator product expansions (OPEs)

Ja(z)J b(0) =
δab

2z2
+ · · · J

m
(z)J

n̄
(0) =

δmn̄

2z2
+ · · · , (2.22)

which give the vertex operator OPE

V [α1]
(kL,kR)(z, z)V

[α2]

(k′L,k
′
R)(0, 0) = zkL·k

′
LzkR·k′RV [α1+α2]

(kL+k′L,kR+k′R)(0, 0) + · · · . (2.23)

The existence of PΛ guarantees the closure of this OPE. Note while the vertex operators V [α]
(kL,kR)

are mutually local for α = 0, general vertex operators V [α]
(kL,kR) with α ̸= 0 are not necessarily

mutually local.
The Virasoro algebra can be realized from the mode expansion of the stress-energy tensor

in the usual way, and we denote the operators by Lh and L̃h.
We can define states in the theory using the typical state-operator correspondence. Apart

from oscillator modes, we have momentum modes

|α; kL, kR⟩ = lim
z,z→0

V [α]
(kL,kR)(z, z)|0⟩ , (2.24)

which satisfy the usual relations

L0|α; kL, kR⟩ =
k2
L

4
|α; kL, kR⟩ , L̃0|α; kL, kR⟩ =

k2
R

4
|α; kL, kR⟩ . (2.25)

One can also define higher oscillator states in the usual way, and the combination of momenta
and oscillator states defines the Hilbert space HΛ of the theory.

From the above, we have obtained definitions for primary operators, the stress-energy ten-
sor, sensible and closed OPEs, and states in the theory. It is also clear that the above is a
unitary CFT with the typical inner product between the momenta states defined in (2.24).
One may also wonder about the modular invariance of the partition function. We define the
partition functions in the next section and return to this question there.

Finally, one might be interested in the question of formulating the existence of generalized
CFTs in a mathematically rigorous fashion. For this purpose, one needs to choose a mathemat-
ical definition of CFT9 10. One attempt in this direction is [31], which defined “full VOAs” for
CFTs on the plane and showed that generalized Narain CFTs associated with a lattice satisfy
the axioms therein. The mathematical existence of generalized Narain CFTs is proven in this
sense.

9Discussions on toroidal CFTs can also be found in [27–30].
10While the Vertex Operator Algebras (VOAs) have often been used in the mathematical formulations of

CFT, this applies only to the chiral (anti-chiral) part of the CFTs, and is insufficient for our purposes here.
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2.3. Torus Partition Functions. The torus partition function is given by the trace over
the Hilbert space HΛ of the theory on the spatial S1:

ZΛ(τ, τ ;m) = TrHΛ

(
qL0− c

24 qL0− c
24

)
=

1

η(τ)pη(τ)q

∑
ℓ∈Λ

eiπτQL(ℓ)−iπτQR(ℓ) , (2.26)

where q := exp(2πiτ) and q := exp(−2πiτ), QL and QR are defined in terms of the Narain
data as in (2.15), and we have explicitly shown the dependence on the moduli m ∈ MΛ.

The modular transformations of the partition function ZΛ is better described in terms of
building blocks

ZΛ
α (τ, τ ;m) =

ϑΛ
α(τ, τ ;m)

η(τ)pη(τ)q
, (2.27)

which serve as the basis for more general partition functions.
Here the theta function ϑΛ

α is given by

ϑΛ
α(τ, τ ;m) :=

∑
ℓ∈Λ+α

eiπτQL(ℓ)−iπτQR(ℓ) =
∑

ℓ∈Λ+α

eiπτ1Q(ℓ)−πτ2H(ℓ) . (2.28)

Here α is a representative of [α] ∈ DΛ. There are |DΛ| theta functions, which are defined only
by the equivalence class and not by the particular representatives chosen, as can be seen by
re-defining the sum over Λ. The partition function (2.27) reduces to (2.26) when α = 0 ∈ DΛ.
By relabeling the sum in (2.27) as ℓ → −ℓ, we obtain

ϑΛ
α(τ, τ ;m) = ϑΛ

−α(τ, τ ;m) . (2.29)

The generators of SL(2,Z) are given by the matrices T and S:

T =

(
1 1
0 1

)
, S =

(
0 −1
1 0

)
. (2.30)

We have relations (ST )3 = 1, S2 = −1. The corresponding modular transformations are11

T : ϑΛ
α(τ + 1;m) = eiπQ(α)ϑΛ

α(τ ;m) ,

S : ϑΛ
α

(
−1

τ
;m

)
=

1√
|detQ|

e−
πi
4
(p−q)τ

p
2 τ

q
2

∑
γ∈DΛ

e−2πiQ(α,γ)ϑΛ
γ (τ ;m) ,

(2.31)

where here and in the following we often drop the τ dependence from the notation.
Let us consider a modular transformation

τ → τ[M ] :=
aτ + b

cτ + d
, [M ] = ±

(
a b
c d

)
∈ PSL(2,Z) (c ̸= 0) , (2.32)

where in the following we will denote an element of PSL(2,Z) as [M ] = ±M , with M being
an SL(2,Z) representative. Under the modular transformation (2.32) the theta functions mix
among themselves:

ϑΛ
α(τ[M ];m) =

∑
β∈DΛ

UΛ
α,β(M, τ)ϑΛ

β (τ ;m) . (2.33)

Here the transformation matrix U is given by

UΛ
α,β(M, τ) :=

{
(cτ + d)

p
2 (cτ + d)

q
2λΛ

α,β(M) (c ̸= 0) ,

UΛ
α,β(T, τ) := eiπQ(α)δα,β (c = 0) ,

(2.34)

and a version of the quadratic Gauss sum by

λΛ
α,β(M) :=

1√
|detQ|

e−
πi
4
(p−q)c−

p+q
2

∑
ℓc∈Λ/(cΛ)

e
πi
c
(aQ[ℓc+α]−2Q[ℓc+α,β]+dQ[β]) . (2.35)

11Strictly speaking we should rather consider the double cover of SL(2,Z), the metaplectic group Mp(2,Z),
and the representation is in (2.31) is the Weil representation of Mp(2,Z) [32].
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It is easy to verify that λα,β is preserved when we shift α, β by elements of Λ, so that we can
regard α, β to be elements of the discriminant DΛ, as implied by the notation.

Note that UΛ
α,β(M, τ) and λΛ

α,β(M) both depend on the choice of the SL(2,Z) representative
M . We can also verify, however, that the relation (2.33) is not affected by this choice; this
is verified by the relations (2.29), Uα,β(M) = Uα,−β(−M) and then a relabeling of the sum as
β → −β. In the following we will denote both [M ] and M simply by M , to avoid clutter in
notations.

The modular transformation formula (2.33) was known long ago to C. Siegel [25, §3]. The
matrix U satisfies

UΛ
α,β(M ·M ′, τ) =

∑
γ∈DΛ

UΛ
α,γ(M, τM ′)UΛ

γ,β(M
′, τ) , (2.36)

which ensures the consistency of the modular transformation (2.33) under the composition of
SL(2,Z) elements. Note that λ themselves satisfy τ -independent relations

λΛ
α,β(M ·M ′) =

∑
γ∈DΛ

λΛ
α,γ(M)λΛ

γ,β(M
′) . (2.37)

The modular transformations of the partition functions (2.27) are given by

T : ZΛ
α (τ + 1;m) = e−

2πi(p−q)
24 eiπQ(α)ZΛ

α (τ ;m) ,

S : ZΛ
α

(
−1

τ
;m

)
=

1√
|detQ|

∑
γ∈DΛ

e−2πiQ(α,γ)ZΛ
γ (τ ;m) ,

(2.38)

We comment here on the role of modular invariance and the generalized CFTs defined above.
The consistency conditions for a 2d CFT on arbitrary 2d surfaces include crossing symmetry
of the sphere four-point function and modular invariance of the torus partition function and
torus one-point function [33]. From the transformation properties in (2.38), it is clear that a
given torus partition function ZΛ

α is not invariant under PSL(2,Z) since the elements of the
discriminant group transform into one another under the S transformation. (The exception
to this statement is if the quadratic form Q corresponds to a self-dual lattice and thus the
discriminant group is trivial.) One possible viewpoint is that our CFTs are limited and not
defined on arbitrary 2d surfaces. Alternatively, we can consider the CFTs defined above as
being a subsector of a CFT with expanded content such that the total partition function is
modular invariant.12 Such a sector would furnish a projective representation of PSL(2,Z)
similar to that defined in (2.38), although the theory in itself need not be identical to the
generalized Narain CFT sector. There is some indication that such an expansion is necessary.
For example, the bulk Chern-Simons dual of the generalized Narain CFTs contains a global
one-form symmetry that should not exist within the context of quantum gravity. Thus at a bare
minimum the content of the expanded CFT is such that this global symmetry is eliminated.
While [18] discusses a stringy origin of the bulk Chern-Simons theories, we expect that the
discussion there should be supplemented with additional ingredients based on the arguments
here.

2.4. Operators and Moduli Space. Similar to standard Narain CFTs, the primary
operators of our generalized theories are holomorphic and anti-holomorphic currents formed
from compact bosons

Ja(z) := ∂Xa ,

J̄m(z̄) := ∂̄Xm ,
(2.39)

12For example, a modular invariant theory could be constructed by combining a generalized Narain CFT
defined by quadratic form Q with a “conjugate” CFT that is defined by −Q.
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and vertex operators

V := : exp

(
ipL ·XL + ipR ·XR

)
: , (2.40)

where a = 1, . . . , p and m = 1, . . . , q, and : : denotes the normal ordering. The existence of PΛ

guarantees the closure of the associated Operator Product Expansion (OPE).
We now return to the issue of the moduli space of the generalized CFTs. Naively, one may

draw an analogy with the T-duality group of Narain CFTs in (2.4) and define the T-duality
group for the generalized theories by simply collecting integral transformations that preserve
the quadratic form Q:

OQ(p, q;Z) :=
{
Σ ∈ GL(p, q;Z)

∣∣∣ΣTQΣ = Q
}

. (2.41)

This is essentially correct, but there are several subtleties that must be addressed. First,
the generalized partition functions in (2.27) are not necessarily invariant under the elements
of (2.41), and we instead have [14]

ϑΛ
g·α(τ, τ̄ ; g ·m) = ϑΛ

α(τ, τ̄ ;m) , (2.42)

where g · α := Σα and g ·m implies the replacement H → ΣTHΣ for Σ ∈ OQ(p, q;Z).
One is thus led to define T-duality groups that not only preserve Q but also an element α

the discriminant group:

OQ,α(p, q;Z) :=
{
Σ ∈ GL(p+ q;Z)

∣∣∣ΣTQΣ = Q & [Σα] = [α] ∈ DΛ

}
. (2.43)

Note that OQ,α(p, q;Z) ⊆ OQ(p, q;Z). Then we can define a moduli space for each element of
the discriminant group as

MQ,α := OQ,α(p, q;Z)
∖
M̃Q , M̃Q := (O(p, q;R)

/
(O(p;R)×O(q;R)) . (2.44)

which we sometimes denote as MΛ,α. However, these spaces are not the moduli space of the
complete theory, which includes all of the elements of DΛ. To determine this, we utilize several
more facts about the T-duality group and DΛ (see Appendix B for proofs).

The elements of OQ(p, q;Z) define bijective maps from DΛ to itself that leave [0] invariant.
Thus the T-duality group associated to [0] is OQ,[0](p, q;Z) = OQ(p, q;Z). For the other equiv-
alence classes in DΛ, the elements of OQ(p, q;Z) can either i) leave the class invariant, as for
the case of [0] or ii) map different equivalence classes into each other. Classes that satisfy the
former property again have T-duality groups given by (2.41). For classes that satisfy the latter
property, we associate with them the more limited groups of (2.43). However, so long as we
include all the different equivalence classes in the definition of the theory, the T-duality group
of the total theory is the full one presented in (2.41). These points are illustrated in Figure 2.

Thus in the full theory that contains all of the elements of DΛ, the true moduli space is

MQ := OQ(p, q;Z)
∖
M̃Q . (2.45)

which we sometimes denote as MΛ.
The moduli spaces (2.44) are endowed with a metric, known as the Zamolodchikov met-

ric whose measure we denote by [dm]. This measure is the Haar measure of an orthogonal
symmetric space with a canonical normalization. The dimension of the moduli space (2.44) is
dimR MQ,α = pq.

We can illustrate the points above by a simple example

Q =

(
0 2
2 0

)
. (2.46)

Then |det(Q)| = |DΛ| = 4 and we can choose representatives of the elements of DΛ as

α0 = (0, 0) , α1 =

(
1

2
,
1

2

)
, α2 =

(
1

2
, 0

)
, α3 =

(
0,

1

2

)
. (2.47)
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[α2]

[α3]
MΛ

[α1]

[α1]

MΛ,α2

Figure 2. Illustration of T-duality on elements of DΛ in the space of moduli
values of the generalized CFT. The blue region is the moduli space of the gen-
eralized CFT, MΛ, the orange region is the moduli space of [α2] ∈ DΛ, MΛ,α2 ,
and the white space corresponds to moduli values outside the fundamental do-
main. The two possibilities outlined in the text are i) an element of [α1] ∈ DΛ is
preserved by all elements of OQ(p, q;Z) and so is unchanged when mapping into
MΛ or ii) an element [α1] ∈ DΛ is mapped to [α2] ̸= [α1] under OQ(p, q;Z).

The vielbein is parameterized by elements of O(1, 1;R) as

E =

(
coshϕ sinhϕ
sinhϕ coshϕ

)(
1 1
−1 1

)
, (2.48)

which gives a parameterization for the elements of hQ:

H =

(
2(cosh(2ϕ)− sinh(2ϕ)) 0

0 2(coshϕ+ sinhϕ)2

)
=:

(
A 0
0 4A−1

)
. (2.49)

Finally, the T-duality group consists of a single element other than the identity, up to an overall
sign:

Σ =

(
0 1
1 0

)
. (2.50)

The action H → ΣTHΣ of Σ is equivalent to the replacement A → 4A−1. Then the naive
moduli space is the interval [4,∞) (or equivalently, the interval (0, 4]). However, we first note
the action of Σ on elements of DΛ. Using the representatives in (2.47), we see that [α0] and
[α1] are invariant but

[Σα2] = [α3] , [Σα3] = [α2] (2.51)

Thus the moduli spaces of the sectors of the theory described by α0,1 are identical to the naive
one: MΛ,α0 = MΛ,α1 = [4,∞). For the remaining sectors, we have MΛ,α2 = MΛ,α3 = (0,∞).
However, if we consider any point m ∈ (0, 4) for either of these latter two classes, we see that
it can be mapped to the interval [4,∞), provided that we swap the sector simultaneously as
α2 ↔ α3. Thus we see that the moduli space of the full theory is indeed the naive one, in
agreement with the discussion above.

3. Orbifolded Narain CFTs

Let us next further enlarge the class of theories, by considering orbifolds of generalized
Narain CFTs.

3.1. Orbifold Actions. We start with the un-orbifolded theory specified by the lattice
Λ. Given a group G, let us consider an action of g ∈ G on the momentum p = (pL, pR):

g : (pL, pR) 7→ (θL(g)pL + VL(g), θR(g)pR + VR(g)) . (3.1)
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This is defined by a pair of the rotation matrix θ(g) = (θL(g), θR(g)) and the “shift vector”
V (g) = (VL(g), VR(g)), where the latter is defined modulo the lattice Λ. In general, there
are multiple ways of expressing the same orbifold action in terms of θ and V . We will see,
however, that such ambiguities will not affect the subsequent discussions. For consistency with
the identification of the un-orbifolded theory we need to impose the condition that G is an
automorphism of the lattice Λ, namely g · Λ = Λ for any g ∈ G.

The rotations θ(g) generate the point group, while the pair (θ(g), V (g)), together with
the translations of the original lattice Λ, generates the space group. Its elements satisfy the
consistency condition

(θ(g1), V (g1)) ◦ (θ(g2), V (g2)) = (θ(g1g2), V (g2) + θ(g2)V (g1)) . (3.2)

The toroidal orbifold is defined by the identification of the momentum under the space group.
For simplicity of presentations, we choose G = ZN for the rest of this paper. We use the

symbol ω to be a generator of ZN , and sometimes denote the rotation θ(ω) (shift vector V (ω))
simply as θ (V ). In this case, ωn = (θ, V )N = (θN , NPωV ) = (1, 0) with

Pω := (1 + θ + θ2 + · · ·+ θN−1)/N (3.3)

being a projector onto θ-invariant states. Let us define I to be the invariant lattice of Λ under
ω (hence under G = ZN):

I := {ℓ ∈ Λ|ω · ℓ = ℓ} . (3.4)

This lattice is moduli-independent for symmetric orbifolds θL = θR, and we will in the following
restrict our analysis to symmetric orbifolds.13

We define W to be the “projected shift vector”

W := PωV . (3.5)

Since (θ, V )N = 1, we need θN = 1 and NW ∈ Λ. The former condition states that we can
denote the eigenvalues of θL(ω) and θR(ω) in terms of “twist vectors” lj, rj ∈ Z/NZ:

θL(g) : {e2πi lj} , θR(g) : {e2πi rj} . (3.6)

The latter condition can be written as a condition on W :

W ∈ I(N)/I , (3.7)

where we defined the I(N) to be

I(N) := {Nℓ ∈ Λ|Nℓ ∈ I} . (3.8)

Note that the ambiguity of the shift of V by an element of Λ does not affect the element (3.7)
modulo I. Moreover, the lattice I and the projected shift vector W is not affected by the
ambiguity of expressing ω in term of the rotation θ and the shift V .

In the following we consider symmetric orbifolds with θL = θR (and hence for example
lj = rj), so that the orbifold action (3.1) can be written in a moduli-independent manner:

g : p 7→ θL(g)p+ V (g) . (3.9)

The orbifold projects out the Narain moduli space (2.45) onto a smaller subspace

MI := OI(Z)
∖
(O(pI , qI ;R)

/
(O(pI ;R)×O(qI ;R)) ⊂ MQ , (3.10)

where we denoted the signature of I by (pI , qI). In the following we consider an ensemble
average over this moduli space.

Notice that in general the lattice I could be trivial—in the examples of Z2-orbifolds of
toroidally-compactified theories discussed in [8], for example, all the twisted sectors have no
moduli dependence, so that the ensemble average over MI is trivial. Nevertheless, since we

13For asymmetric orbifolds the invariant lattice I is in itself moduli-dependent, and it becomes more
challenging to discuss ensemble averages.
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consider a rather general class of orbifolds of general lattices, we will in general have non-trivial
invariant lattices and hence the associated moduli space.

3.2. Torus Partition Functions. Let us next discuss the torus partition functions of the
theory. While such partition functions have been extensively studied in the context of heterotic
string compactifications, we are not focusing on specific lattices and will keep the lattice to be
a general lattice associated with even quadratic forms.

The torus partition function of the ZN -orbifolded theory is built out of the following N2

partition functions:

untwisted sector : Z(1, ωn) (n = 0, 1, . . . , N − 1) , (3.11)

twisted sector : Z(ωm, ωn) (m = 1, . . . , N − 1;n = 0, 1, . . . , N − 1) . (3.12)

Here Z(g, h) denotes the torus partition function with twists g ∈ G (and h ∈ G) along spatial
(and temporal) directions:

Z(g, h) =
g

h . (3.13)

In general such twists require a compatibility condition gh = hg. This condition is automati-
cally satisfied for Abelian orbifolds.

The full torus partition function of the G-orbifolded theory is given by

ZQ/G =
1

N


untwisted sector︷ ︸︸ ︷∑
h∈G

Z(1, h) +

twisted sector︷ ︸︸ ︷∑
g,h∈G

[g,h]=1;g ̸=1

c(g, h)Z(g, h)

 , (3.14)

and in the literature the coefficients c(g, h) are chosen appropriately for the modular invariance
of the full partition function. We are, however, not imposing the modular invariance in this
paper,14 and for our paper it is enough to discuss individual blocks Z(g, h) separately.

For the untwisted sectors, the orbifold action is along the temporal direction and hence we
can still use the same Hilbert space HQ as in the un-orbifolded case, as long as we insert an
appropriate operator U(g) representing the twist by g ∈ G:

Z(1, g) = TrHΛ

(
U(g) qL0− c

24 qL0− c
24

)
. (3.15)

For g = 1, Z(1, 1) is nothing but the un-orbifolded partition function ZΛ given in (2.26).
For Z(1, g), from the g-action given in (3.1), we find that the only contribution comes from
the subspace of the un-orbifolded Hilbert space left invariant under the generator ω; this is
described by the the G-invariant sublattice I (3.4). This means that the partition function
(3.15) contains the contribution∑

ℓ∈I

eiπτQL(ℓ)−iπτQR(ℓ)e2πi(pL(ℓ)VL−pR(ℓ)VR) =
∑
ℓ∈I

eiπτQL(ℓ)−iπτQR(ℓ)e2πiQ(ℓ,W ) , (3.16)

where in the second line we used Q(ℓ, V ) = Q(Pωℓ, V ) = Q(ℓ,W ) for ℓ ∈ I.
We also need to take into account contributions from oscillators. For (mlj, nlj) = (0, 0) we

have the familiar contribution 1/η(τ) from the full set of chiral oscillators. For (mlj, nlj) ̸= (0, 0)

the contribution from chiral oscillators is η(τ)/ϑ
[

1
2
+mlj

1
2
+nlj

]
(τ), where the theta function ϑ

[
θ
ϕ

]
(τ)

14In [19] the modular non-invariance of the torus partition function on the boundary CFT matches with
the framing anomaly of the Chern-Simons theory in the bulk, and the modular non-invariance was a crucial
ingredient for the consistency of the discussion.
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is given by

ϑ

[
θ

ϕ

]
(τ) :=

∑
n∈Z

q
1
2
(n+θ)2e2πi(n+θ)ϕ

= η(τ) e2πiθϕq
1
2
θ2− 1

24

∞∏
k=1

(1 + qk+θ− 1
2 e2πiϕ)(1 + qk−θ− 1

2 e−2πiϕ) .

(3.17)

There are similar oscillator contributions for anti-chiral oscillators, with τ replaced by τ .
By collecting all the ingredients, we obtain

Z(ωm, ωn) =

ZΛ =
ϑΛ

ηpηq
(m,n) = (0, 0) ,

ZI⊥(ωm, ωn)ZI(ωm, ωn) (m,n) ̸= (0, 0) ,
(3.18)

The building blocks, ZI⊥ for the oscillators and ZI for the lattice, are given by

ZI⊥(ωm, ωn) = C(I, ϑ)
∏

j: lj ̸=0

η(τ)

ϑ
[

1
2
+mlj

1
2
+nlj

]
(τ)

∏
j: rj ̸=0

η(τ)

ϑ
[

1
2
+mrj

1
2
+nrj

]
(τ)

, (3.19)

ZI(ωm, ωn) =
ϑI
(mW,nW )(τ, τ ;m)

η(τ)pIη(τ)qI
, (3.20)

and C(I, ϑ) is a moduli-independent numerical factor which is not important for our analysis.15

In (3.20) we defined a generalized version of the theta function associated with the invariant
lattice I:

ϑI
(δ,η)(τ, τ ;m) :=

∑
ℓ∈I+δ

eiπτQL(ℓ)−iπτQR(ℓ)e2iπQI(ℓ,η) , (δ ∈ RpI+qI/I, η ∈ RpI+qI ) , (3.21)

where we have shown the dependence on the moduli m ∈ MI , and QI denotes the quadratic
form associated with the lattice I. Since QI is a restriction of Q, for notational simplify we
mostly use the same symbol Q to denote the quadratic form QI ; however, the distinction
matters when we discuss the determinants of the quadratic forms, for example.

We can verify from the definition that ϑI,(δ,η) is indeed preserved when we shift δ by an
element of I, as suggested in (3.21). By contrast, when we shift η by an element of β ∈ I∗ we
obtain an extra phase factor

ϑI
(δ,η+β)(τ, τ ;m) = e2iπQ(δ,β) ϑI

(δ,η)(τ, τ ;m) , (3.22)

and the phase factor is in general non-trivial even when β ∈ I.
By relabeling the sum as ℓ → −ℓ we obtain

ϑI
(δ,η)(τ, τ ;m) = ϑI

(−δ,−η)(τ, τ ;m) . (3.23)

Let us denote the signature of QI by (pI , qI), and define the dual lattice I∗ of I as a dual
inside RpI+qI (and not Rp+q):

I∗ :=
{
x ∈ RpI+qI

∣∣∣Q(x, ℓ) ∈ Z (∀ ℓ ∈ I)
}

. (3.24)

Similar to the case of Λ, we define the discriminant for I to be

DI = I∗/I . (3.25)

15This includes an integer
√
det′(1− θ)/|I∗/I| counts the number of fixed points under the θ-rotation [34].

Here I∗ is defined in (3.24) and the primed determinant det′ is defined by disregarding the zero eigenvalues.
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For T and S generators of SL(2,Z) we have the modular transformation (see Appendix C
for derivation):16

T : ϑI
(δ,η)(τ + 1;m) = e−πiQ(δ) ϑI

(δ,η+δ)(τ ;m) , (3.26)

S : ϑI
(δ,η)

(
−1

τ
;m

)
=

e−
iπ(pI−qI )

4

√
detQI

τ
pI
2 τ

qI
2 e2πiQ(δ,η)

∑
γ∈DI

ϑI
(γ+η,−δ)(τ ;m) . (3.27)

In terms of the ratio

ZI
(δ,η)(τ ;m) :=

ϑI
(δ,η)(τ ;m)

ηpI (τ)ηqI (τ)
, (3.28)

we have

T : ZI
(δ,η)(τ + 1;m) = e−

2πi(pI−qI )

24 e−πiQ(δ) ZI
(δ,η+δ)(τ ;m) , (3.29)

S : ZI
(δ,η)

(
−1

τ
;m

)
=

1√
detQI

e2πiQ(δ,η)
∑
γ∈DI

ZI
(γ+η,−δ)(τ ;m) . (3.30)

For our practical purposes, we do not need fully general choices of δ, η, and we only need
those needed for the discussion of the modular transformations of ZI

(mW,nW ) (3.20). This picks
up the choice δ = α +mW and η = β + nW for α, β ∈ DI and m,n ∈ ZN . The only effect of
β, however, is to change the overall normalization of the partition function

ϑI
(α+mW,β+nW )(τ ;m) = e2πiQ(α+mW,β) ϑI

(α+mW,nW )(τ ;m) , (3.31)

and hence we can set β = 0 when we are discussing basic building blocks up to overall nor-
malization factors. The modular transformations of the blocks ZI

(α+mW,nW ) are given by, after

using (3.31):

T : ZI
(α+mW,nW )(τ + 1;m) = e−

2πi(pI−qI )

24 e−πim2Q(W )+πiQ(α) ZI
(α+mW,(m+n)W )(τ ;m) , (3.32)

S : ZI
(α+mW,nW )

(
−1

τ
;m

)
=

1√
detQI

e2πimnQ(W )
∑
γ∈DI

e−2πiQ(γ,α)ZI
(γ+nW,−mW )(τ ;m) . (3.33)

As we prove in Appendix D, the partition functions ZI,(α+mW,nW ) are modular functions with
respect to a congruence subgroup Γ(N2L) of PSL(2,Z), where an integer L is a integer multiple
of the level LI of the quadratic form QI , where the level is defined as the smallest integer such
that LIQ

−1
I is integral.17

By comparing the modular transformations (3.32) with those of the un-orbifolded case
(2.38), one finds that the (m,n) ̸= 0 sector we have the same transformation as the un-
orbifolded case (represented by m = n = 0), the only difference being that

(i) the lattice Λ replaced by the G-invariant lattice I and
(ii) the discriminant D = Λ∗/Λ is replaced by

D̂ := DI ⊕ DN . (3.34)

which is larger than DI = I∗/I by a factor of DN := ZN , the choice of which is
determined by the projected shift vector W .

The braiding between the two elements of DN is determined by the quadratic form Q and the
projected shift vector W :

B(m,n) = e2πiQ(mW,nW ) , (m,n ∈ ZN) . (3.35)

16Special cases of these transformation rules appeared in string theoretic literature [35, section 3].
17The level LI was denoted as N in [19].
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For the special case N = 2 we have

ϑI
(α+mW,nW )(τ, τ) :=

∑
ℓ∈I+α+mW

eiπτQL(ℓ)−iπτQR(ℓ)(−1)nQ(ℓ,2W ) , (3.36)

with α, β ∈ I∗, W ∈ I/2 and m,n = 0, 1. This expression is reminiscent of the theta function
for spin CFTs in our previous paper [19], and the projected shift vector 2W ∈ I plays a role
analogous to the Wu class [36,37] for the spin CFT.

The modular transformation for the orbifolded lattice theta function (3.21) is given by (see
Appendix C for derivation)

ϑI
(δ,η)(τM ;m) = µ(δ,η)·M

∑
γ∈DI

U I
α,γ(M)ϑI

(γ,0)+(δ,η)·M(τ ;m) , (3.37)

Here we defined a phase µ(δ,η) by

µ(δ,η) := e−iπQ(δ,η) (3.38)

so that µ(−δ,−η) = µ(δ,η) and µ(δ,η)·M = µ(aδ+cη,bδ+dη) = e−iπQ(aδ+cη,bδ+dη). The matrix U I
α,γ(M, τ)

(for M given as in (2.32) with entries a, b, c, d) is given by the essentially same expression as
UΛ
α,γ(M, τ), with Λ replaced by I:

U I
α,γ(M, τ) :=

{
(cτ + d)

p
2 (cτ + d)

q
2λI

α,γ(M) (c ̸= 0) ,

U I
α,γ(T, τ) := eiπQ(α)δα,γ (c = 0) ,

(3.39)

and

λI
α,γ(M, τ) :=

1√
detQI

e−
πi
4
(pI−qI)c−

pI+qI
2

∑
ℓc∈I/(cI)

e
πi
c
(aQ[ℓc+α]−2Q[ℓc+α,γ]+dQ[γ]) . (3.40)

As in the un-orbifolded case (2.36), we have the consistency relations

U I
α,β(M ·M ′, τ) =

∑
γ∈DΛ

U I
α,γ(M, τM ′)U I

γ,β(M
′, τ) , (3.41)

for two SL(2,Z) matrices M,M ′. We also have the sign-flip relations

U I
α,γ(M, τ) = U I

α,−γ(−M, τ) , (3.42)

which ensures that the right hand side of (3.37) does not depend on the choice of the SL(2,Z)
representative M .

For the special case δ = α +mW, η = β + nW , we have

ϑI
(α+mW,β+nW )(τM ;m) = µ(α+mW,β+nW )·M

∑
γ∈DI

U I
α,γ(M)ϑI

(γ,0)+(α+mM,β+nW )·M(τ ;m) , (3.43)

4. Ensemble Average

4.1. Unorbifolded Case. The ensemble average of the theta function ϑQ,α over the mod-
uli space (2.43)18

⟨ϑQ
α ⟩MQ

(τ) :=
1

Vol(M̃Q)

∫
M̃Q

[dm]ϑQ
α (τ ;m) (4.1)

is given by the Siegel-Eisenstein series [2, 19, 25, 38] (henceforth referred to simply as the
Eisenstein series)

⟨ϑQ
α (τ)⟩MΛ

= EQ
α (τ) := δα∈Λ +

∑
(c,d)=1, c>0

γΛ
α (c, d)

(cτ + d)
p
2 (cτ + d)

q
2

, (4.2)

18We impose p+ q > 4 for the convergence of the integral.
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associated with the lattice Λ, where δα = 1 for α ∈ Λ, and δα = 0 for α /∈ Λ. The factor
γΛ
α (c, d) is given by

γΛ
α (c, d) := λα,0(M

−1) =
1√
detQ

e−
πi(p−q)

4 (−c)−
p+q
2

∑
ℓc∈Λ/cΛ

exp

[
−πi

d

c
Q(ℓc + α)

]
. (4.3)

with M given as in (2.32). Note that this depends only on the two entries c, d of the matrix
M , as opposed to general λα,β(M) given in (2.35).

Since the Eisenstein series is an ensemble average of the theta function, and since the
modular transformation matrices U in (2.33) are independent of the moduli, the modular
transformation of the Eisenstein series should be the same as in (2.33):

EΛ
α (τM) =

∑
β∈DΛ

UΛ
α,β(M, τ)EΛ

β (τ) . (4.4)

We can verify this expression explicitly from the definition (4.2) with the help of (4.3) and
(2.36). Finally, we have the counterparts of (2.29) and (2.42):

EΛ
α (τ) = EΛ

−α(τ) , EΛ
g·α(τ) = EΛ

α (τ) . (4.5)

4.2. Orbifolded Case. Let us next discuss the ensemble average of the partition functions
over the projected Narain moduli space MI (3.10).

19 We evaluate the ensemble average of the
theta function ϑI,(δ,η) introduced in (3.21), which we denote as EI

(δ,η) (in anticipation of the fact

this is a certain generalization of the Siegel-Eisenstein series) :

⟨ϑI,(δ,η)⟩MI
(τ, τ) =

1

Vol(MI)

∫
MI

[dm]ϑI,(δ,η)(τ, τ ;m) . (4.6)

To evaluate this average we need some generalization of the Siegel-Weil formula, which does
not seem to exist in the literature.20

Fortunately for us, the Siegel-Weil formula was re-derived in our previous paper [19, section
2.3] and we can use the same logic to derive the formula necessary for our present purposes, as
explained below.

We find that the ensemble average ⟨ϑI,(δ,η)⟩MI
evaluates to

EI
(δ,η)(τ, τ) := δδ∈I +

1√
detQI

e−
πi
4
(pI−qI)

∑
(c,d)=1,c>0

c−
pI+qI

2 (cτ + d)−
pI
2 (cτ̄ + d)−

qI
2

× µ(δ,η)·M−1λI
0,−dδ+cη(M

−1) , (4.7)

where M is a PSL(2,Z) matrix with the second row given by (c, d) as in (2.32), and we used
previously-defined µ(δ,η) as in (3.38), as well as

λI
0,−dδ+cη(M

−1) =
∑

ℓc∈I/(cI)

e−
πi
c
(dQ[ℓc]−2Q[ℓc,−dδ+cη]+aQ[−dδ+cη]) (4.8)

19We impose p+ q > 4 for the convergence of the integral.
20The exception is Ref. [22], where the authors considered the special cases of CFTs defined by even

self-dual lattices and vanishing chiral central charge (p = q in our notation). They considered the SU(N)
WZW models at level k, which describes the ZN -quotient of a product theory, i.e., Narain theory times the

parafermion theory. The theta functions in the two references are related as ϑ
(here)
(δ,η) (τ) = eπiδ·ηϑ

(there)
(−δ,η) (τ). Since

the difference is only an overall constant, the same trivially propagates into the definition of the Eisenstein
series after the ensemble averages. It should be noticed, however, that the phase factors transform non-trivially
under the modular transformation and hence we obtain slightly different expressions for the Poincaré sum.
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as in (2.35) (previously defined for Λ). This is one of the main technical results of this paper.
We can slightly simplify the formula into

EI
(δ,η)(τ, τ) = δδ∈I +

1√
detQI

e−
πi
4
(pI−qI)

∑
(c,d)=1,c>0

c−
pI+qI

2 (cτ + d)−
pI
2 (cτ̄ + d)−

qI
2

×
∑

ℓc∈I/(cI)+δ

e−
πi
c
(dQ[ℓc]−2cQ[ℓc,η]+cQ[δ,η]) . (4.9)

In the latter form it is manifest that the expression reduces to the un-orbifolded case (4.2) for
N = 1 (and hence δ = η = 0).

We call the function in (4.7) and (4.9) the “orbifold Eisenstein series,” since this is an
orbifold analogue of the non-holomorphic Eisenstein series. The orbifolded Eisenstein series
is a modular form with respect to a congruence subgroup Γ(N2LI) with LI being directly
proportional to the level ofQI ; see also Appendix D. As far as we are aware, there is no literature
discussing this Eisenstein-like series in the mathematical literature (apart from special cases).
It would be interesting to further study the properties of this function.

For application to orbifolds, we set (δ, η) = (α+mW,β+nW ) with α, β ∈ DI andm,n ∈ ZN ,
leading to

EI
(α+mW,β+nW )(τ) = δδ∈I +

∑
(c,d)=1,c>0

γI
(α,β;m,n)(c, d)(cτ + d)−

pI
2 (cτ̄ + d)−

qI
2 , (4.10)

with

γI
(α,β;m,n)(c, d) =

1√
detQI

e−
πi
4
(pI−qI)c−

pI+qI
2 µ(α+mW,β+nW )·M−1λI

0,−d(α+mW )+c(β+nW )(M
−1)

(4.11)

=
1√

detQI

e−
πi
4
(pI−qI)c−

pI+qI
2

×
∑

ℓc∈I/(cI)+α+mW

e−
πi
c
(dQ[ℓc]−2cQ[ℓc,β+nW ]+cQ[α+mW,β+nW ]) . (4.12)

The averaged partition functions are then

⟨ZI
(α+mW,β+nW )(τ, τ)⟩ =

EI
(α+mW,β+nW )(τ, τ)

η(τ)pIη(τ)qI

=
δmW∈I

η(τ)pIη(τ)qI
+

∑
g∈Γ∞\PSL(2,Z),g ̸=1

ϵ(g)pI−qI
γI
(α,β;m,n)(g)

η(g · τ)pIη(g · τ)qI
, (4.13)

where the phase ϵ(g) is the multiplier system for the Dedekind eta function and is described
in Appendix E. Their modular transformations are given by

T : ⟨ZI
(α+mW,nW )(τ + 1;m)⟩ = e−

2πi(pI−qI )

24 e−πiQ(mW )eπiQ(α) ⟨ZI
(α+mW,(m+n)W )(τ ;m)⟩ , (4.14)

S : ⟨ZI
(α+mW,nW )

(
−1

τ
;m

)
⟩ = 1√

detQI

e2πiQ(mW,nW )
∑
γ∈DI

e−2πiQ(α,γ)⟨ZI
(γ−α−mW,nW )(τ ;m)⟩ .

(4.15)

Modular Transformation:
Since the orbifold Eisenstein series is defined by the ensemble average of the orbifold theta

function, we expect the two have the same modular transformation properties

EI
(δ,η)(τM ′) = µ(δ,η)·M ′

∑
γ∈DI

U0,γ(M
′)EI

(γ,0)+(δ,η)·M ′(τ) , (4.16)
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and in particular

T : EI
(δ,η)(τ + 1) = e−πiQ(δ,η) EI

(δ,η+δ)(τ) , (4.17)

S : EI
(δ,η)

(
−1

τ

)
=

e−
iπ(pI−qI )

4

√
detQI

τ
pI
2 τ

qI
2 e−πiQ(δ,η)

∑
γ∈DI

EI
(γ−η,δ)(τ) . (4.18)

To verify this, let us write M ′ =

(
a′ b′

c′ d′

)
and

EI,(δ,η)(τ) = δδ∈I +
∑

(c,d)=1,c>0

(
−cτ + a

cτ + d

)− p
2
(
−cτ + a

cτ̄ + d

)− q
2

× µ(δ,η)·M−1

∑
γ∈DI

δγ+dδ−cη∈I U0,γ(M
−1
c,d , τ) . (4.19)

When evaluating EI
(δ,η)(τM ′) we can use from (3.41)

U I
0,γ(M

−1
c,d , τM ′) =

∑
β∈DI

UU
0,β

(
(M ′−1Mc,d)

−1, τ
)
U I
β,γ(M

′−1, τM ′) (4.20)

and

Uβ,γ(M
′−1, τ) = Uβ,γ(M

′−1, τM ′)

(
−cτ + a

cτ + d

)− p
2
(
−cτ + a

cτ̄ + d

)− q
2

. (4.21)

In the sum over M we can replace M by M ′M , to obtain

EI,(δ,η)(τM ′) = δδ∈I +
∑
β∈DI

Uβ,γ(M
′−1, τM ′)

∑
(c,d)=1,c>0

µ(δ,η)·M ′·M−1

∑
γ∈DI

δγ+dδ−cη∈I U0,β(M
−1
c,d , τ) .

(4.22)

Proof :
We can now prove (4.13). Let us consider the function FQ := EQ − ⟨ϑQ⟩. This function

satisfies the following three properties:

(i) FQ is a modular form for a particular congruence subgroup, denoted Γ, of PSL(2,Z);
see Appendix D. This congruence subgroup depends on the dimension of the lat-
tice/quadratic form, specifically if whether the lattice dimension is even or odd.

(ii) FQ has no singularities at the cusps of H/Γ, and hence is square-integrable. This is
because EQ and ϑQ have the same behaviour at the cusps; see Appendix C.2.

(iii) τ
(pI+qI)/4
2 FQ is an eigenfunction of the weight k Laplacian

□k := −τ 22
(
∂2
1 + ∂2

2

)
+ ikτ2∂1, (4.23)

where k = (pI − qI)/2, with eigenvalue − ((pI+qI)/4−1)(pI+qI)
4

. This follows since(
τ2(∂

2
1 + ∂2

2) +
pI + qI

2
∂2 +

i(qI − pI)

2
∂1

)
FQ(τ) = 0 . (4.24)

These facts are enough to conclude FQ = 0 as in [19, section 2.3]. We have thus proven the
identity (4.13).

Poincaré Sum:
We can interpret the right hand side of (4.13) as a sum over geometries in the bulk. Using

the transformation law of the Dedekind eta function from Appendix E, we have

⟨ZI
(α+mW,β+nW )(τ, τ)⟩ =

∑
g∈Γ∞\PSL(2,Z)

ϵ(g)σI
γI
(α,β;m,n)(g)

η(g · τ)pIη(g · τ)qI
. (4.25)

This suggests that the average has a holographic interpretation. However, (4.25) describes
only one sector of the boundary CFT, and we must cast the entire partition function as a
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Poincarè sum to justify a holographic interpretation. This can be done by folding in the
twisted sector partition functions ZI⊥(ωm, ωn) into the Poincarè sum in the same way as the
Dedekind eta functions above. Thus we write the averaged twisted sector contribution to the
partition function as

⟨ZI⊥(ωm, ωn)ZI(ωm, ωn)⟩ =

C(I, ϑ)
∑

g∈Γ∞\PSL(2,Z)

 ∏
j: lj ̸=0

η(g · τ)

ϑ
[

1
2
+m′lj

1
2
+n′lj

]
(g · τ)

∏
j: rj ̸=0

η(g · τ)

ϑ
[

1
2
+m′rj

1
2
+n′rj

]
(g · τ)


×

Ψ(α,β;m,n)(g)

η(g · τ)pIη(g · τ)qI

, (4.26)

where (
m′

n′

)
=

(
d −c
−b a

)(
m
n

)
(4.27)

and the phase Ψ(g) is a combination of phases from the twist and shift sectors:

Ψ(α,β;m,n)(g) =
∏

j: lj ̸=0

∏
j: rj ̸=0

ζ(g,mrj, nrj)

ζ(g,mlj, nlj)
ϵ(g)σIγI

(α,β;m,n)(g) . (4.28)

The phases ζ(g, α, β) are defined as

ζ(M,α, β) := eiπ(α(β+1)−α′(β′+1)) . (4.29)

(see Appendix E for further details). The untwisted sector average can also be written as a
Poincarè sum [19], and so we have shown that the entire averaged CFT partition function can
be cast as a Poincarè sum. Note that the summand in (4.26) appears to explicitly depend
on the upper two components of the SL(2,Z) matrix g. However, this is illusory since this
dependence in the theta functions cancels out with a similar dependence in the phase Ψ(g).

4.3. Flavored Case. Let us next go back to the un-orbifolded case N = 1.
In [7], ensemble averaging for Jacobi theta functions defined with respect to even self-dual

lattices was considered. Here, the average was taken over O(D,D;Z)\O(D,D;R) instead of
the usual Narain moduli space.

We shall generalize this analysis to the case of Jacobi theta functions associated with general
even integer lattices which take the form

ϑα(τ, z) =
∑
ℓ

exp (iπ {τQL(ℓ+ α)− τ̄QR(ℓ+ α)}) e2πi[QL(z,ℓ+α)−QR(z,ℓ+α)] , (4.30)

where the integration is now over OQ(p, q;Z)\O(p, q;R).21 These functions have a well-defined
transformation under PSL(2,Z), as shown in Appendix C.

Let us identify O(p, q;R) as a set of linear transformations which preserve the quadratic
form ηABZ

AZB, where A,B = 1, 2, . . . , p+ q, and where ηAB = diag (1p,−1q). The generators
of O(p, q,R) then have the following representation as differential operators :

JAB = ηBCZA ∂

∂ZC
− ηACZB ∂

∂ZC
, (4.31)

which can be shown to satisfy

[JAB, JCD] = ηBCJAD − ηDBJAC − ηACJBD + ηADJBC . (4.32)

The quadratic Casimir will be especially useful, since it is proportional to the Laplacian in the
present representation. This takes the form

J2 = ηACηBDJ
ABJCD. (4.33)

21As in previous cases, we impose p+ q > 4 for the convergence of the integral.
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It will be convenient to use the generalized vielbein E , as defined in (2.2), to define a basis
for Λ where Q is diagonal. In this basis, the Jacobi theta function takes the form

ϑh(τ, z) =
∑
l̃

exp
(
iπ

{
τIL(l̃)− τ̄IR(l̃)

})
e2πi[IL(z̃,l̃)−IR(z̃,l̃)] , (4.34)

where l̃ = E(ℓ + h), z̃ = Ez, and where IL and IR are defined such that QL = ET ILE and
QR = ET IRE . From (2.15), we may deduce that IL = (1+1p,q)/2 and IR = (1−1p,q)/2. Thus,
we may rewrite (4.34) as

ϑh(τ, z) =
∑
l̃

exp
(
iπ

{
τδabl̃

a
Ll̃

b
L − τ̄ δmnl̃

m
R l̃

n
R

})
e2πi[δabz̃

a
L l̃

b
L−δmnz̃

m
R z̃nR] , (4.35)

where we denote the p- and q-dimensional projections of l̃ and z̃ using the subscripts L and R
respectively, and employ the indices a, b = 1, 2, . . . p,m, n = 1, 2, . . . q as before.

Let us first consider the case where all the chemical potentials are set to zero. The vectors
l̃ = (l̃L, l̃R) transform as contravariant vectors under O(p, q,R) rotations, and we can combine

each of them into an O(p, q,R) vector l̃ = (l̃A) = (l̃a = l̃aL, l̃
m = l̃mR ). Let us define a second-order

differential operator J2 by

J2 := La
bLa

b +Rm
nRm

n − 2T a
nTa

n , (4.36)

with

La
b := l̃aL

∂

∂l̃bL
− l̃Lb

∂

∂l̃La
, Rm

n := l̃mR
∂

∂l̃nR
− l̃Rn

∂

∂l̃Rm

, T a
n := l̃aL

∂

∂l̃nR
+ l̃Rn

∂

∂l̃La
. (4.37)

With the definition ∆MQ
:= −J2/8, we can show that, when all the chemical potentials, z, are

set to zero,(
−τ 22

(
∂2
2 + ∂2

1

)
− (p+ q)τ2

2
∂2 − i

(q − p)τ2
2

∂1 +∆MQ

)
ϑQ,h(τ, τ̄ ;m) = 0 . (4.38)

When we turn on chemical potentials, the definition of the O(p, q;R) generators ought to
be extended:

L̂a
b = l̃aL

∂

∂l̃bL
− l̃Lb

∂

∂l̃La
+ z̃aL

∂

∂z̃bL
− z̃Lb

∂

∂z̃La
,

R̂m
n = l̃mR

∂

∂l̃nR
− l̃Rn

∂

∂l̃Rm

+ z̃mR
∂

∂z̃nR
− z̃Rn

∂

∂z̃Rm

,

T̂ a
n = l̃aL

∂

∂l̃nR
+ l̃Rn

∂

∂l̃La
+ z̃aL

∂

∂z̃nR
+ z̃Rn

∂

∂z̃La
.

(4.39)

These generators all annihilate the O(p, q,R) invariant combination δabz̃
a
Ll̃

b
L−δmnz̃

m
R l̃nR. Defining

the Casimir operator Ĵ for the generators given in (4.39) by analogy with (4.36), we now have(
−τ 22

(
∂2
2 + ∂2

1

)
− (p+ q)τ2

2
∂2 − i

(q − p)τ2
2

∂1 +∆MQ

)
ϑQ,h(τ, τ̄ , z̃;m) = 0 , (4.40)

since the statement in the previous sentence means that the proof of (4.40) follows from that
of (4.38).

Since the ensemble average is over OQ(p, q;Z)\OQ(p, q;R), the result of the averaging pro-
cedure will depend only on the chemical potentials via the O(p;R) × O(q;R) invariant com-

binations z̃2L = δabz̃
a
Lz̃

b
L and z̃2R = δmnz̃

m
R z̃nR. Notably, the terms that depend on z in L̂ and R̂

annihilate z̃2L and z̃2R. As a result, after averaging, only the potential-dependent parts of T̂ a
n

in ∆M contribute to the differential equation satisfied by the average. This allows us to obtain
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the average, denoted f(τ, z), by solving(
− τ 22

(
∂2
2 + ∂2

1

)
− (p+ q)τ2

2
∂2 − i

(q − p)τ2
2

∂1

+
1

4

(
z̃aL

∂

∂z̃mR
+ z̃Rm

∂

∂z̃La

)(
z̃La

∂

∂z̃Rm

+ z̃mR
∂

∂z̃aL

))
f(τ, z̃) = 0 .

(4.41)

To achieve this, we first note that(
z̃aL

∂

∂z̃mR
+ z̃Rm

∂

∂z̃La

)(
z̃La

∂

∂z̃Rm

+ z̃mR
∂

∂z̃aL

)
e
iπ

(
cz̃2L
cτ+d

− cz̃2R
cτ̄+d

)

=

(
4πc2τ2

(cτ + d)(cτ̄ + d)

)2

z̃2Rz̃
2
Le

iπ

(
cz̃2L
cτ+d

− cz̃2R
cτ̄+d

)

+

(
4πc2τ2

(cτ + d)(cτ̄ + d)

)
(z̃2Lq + z̃2Rp)e

iπ

(
cz̃2L
cτ+d

− cz̃2R
cτ̄+d

)
.

(4.42)

In addition, we find(
−τ 22

(
∂2
2 + ∂2

1

)
− (p+ q)τ2

2
∂2 − i

(q − p)τ2
2

∂1

)
e
iπ

(
cz̃2L
cτ+d

− cz̃2R
cτ̄+d

)

(cτ + d)
p
2 (cτ̄ + d)

p
2

=−

[
4

(
πc2τ2

(cτ + d)(cτ̄ + d)

)2

z̃2Rz̃
2
L +

(
πc2τ2

(cτ + d)(cτ̄ + d)

)
(z̃2Lq + z̃2Rp)

]
e
iπ

(
cz̃2L
cτ+d

− cz̃2R
cτ̄+d

)

(cτ + d)
p
2 (cτ̄ + d)

p
2

.

(4.43)
This allows us to propose a solution for the ensemble average. Recall that z̃IR and z̃IL are

defined in the basis where Q is diagonal, via the generalized vielbein E . Returning to our
original basis using δabz̃

a
Lz̃

b
L = QL(z) and δmnz̃

m
R z̃nR = QR(z), we claim that the average can be

described in terms of an Eisenstein-Jacobi series that takes the form

EQ,h(τ, z) := δh∈Λ +
∑

(c,d)=1,c>0

γQ,h(c, d) e
iπ( c

cτ+d
QL(z)− c

cτ̄+d
QR(z))

(cτ + d)
p
2 (cτ̄ + d)

q
2

. (4.44)

The justification for this claim is the uniqueness of this solution, which follows by compar-
ison with the case where all chemical potentials are set to zero, as well as the fact that the
Jacobi theta function (and its ensemble average) obeys a pair of heat equations. In the basis
where Q is diagonal, these equations take the form

∂

∂τ
f(z̃, τ) =

1

4πi
∇2

Lf(z̃, τ) ,
∂

∂τ̄
f(z̃, τ) = − 1

4πi
∇2

Rf(z̃, τ) , (4.45)

where

∇2
L =

∂2

∂z̃Li∂z̃iL
, ∇2

R =
∂2

∂z̃RI∂z̃IR
. (4.46)

Since the dependence of the average is only via z̃L =
√

z̃2L and z̃R =
√
z̃2R, the Laplace operators

can be written in spherical coordinates, with the angular parts acting trivially :

∂f

∂τ
=

1

4πi

[
∂2f

∂z̃2L
+

p− 1

z̃L

∂f

∂z̃L

]
,

∂f

∂τ̄
= − 1

4πi

[
∂2f

∂z̃2R
+

q − 1

z̃R

∂Y

∂z̃R

]
. (4.47)

Given that it is possible to expand the solution of these equations as
∑∞

m,n=0 fm,n(τ, τ̄)z̃
2m
L z̃2nR ,

and since

f(τ, z̃ = 0) = δh∈Λ +
∑

(c,d)=1,c>0

γQ,h(c, d)

(cτ + d)
p
2 (cτ̄ + d)

q
2

, (4.48)

we find that any possible term, denoted ∆f , that could be added to the solution (4.44) ought
to have no constant term in its expansion, that is, ∆f0,0 = 0. The equations (4.47) imply
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recursion relations relating fm+1,0 and fm,0, as well as f0,n+1 and f0,n, whereby we find that
∆f must be zero. Thus, (4.44) is indeed the unique solution to the differential equation that
remains after ensemble averaging, and is the result for the ensemble average of the Jacobi theta
function (4.30) over OQ(p, q,Z)\O(p, q,R).

To show that the expression (4.44) indeed satisfies the correct modular transformation
property, we note that for

f(M, τ, z) = eiπ(
c

cτ+d
QL(z)− c

cτ̄+d
QR(z)) (4.49)

we have
f(M1, τ, z)f(M2, τM1 , zM1τ ) = f(M2M1, τ, z) , (4.50)

which is the analogue of the composition law (2.36).
Although we shall not investigate this in detail, one can in principle go on to study the

ensemble average of orbifolded Narain CFTs with the inclusion of chemical potentials for global
symmetries in the partition function.

5. Comments on the Holographic Bulk

We next comment on the bulk holographic dual. While we leave a detailed analysis for
future work, we will here comment on the salient features of the bulk theory.22

Let us consider the holography for the orbifolded generalized Narain theory after the ensem-
ble average. First, the orbifold of the Narain theory by a symmetry group G will correspond
to a gauging of the global G-symmetry of the bulk. We expect that the resulting theory is
still a TQFT, whose anyon content will described by the enlarged discriminant group (3.34),
which contains the gauge-equivalence class of anyons of the original theory as well as newly
introduced anyons due to G-gauging. The modular transformations (4.14) of the theory deter-
mine the action of the modular group on the Hilbert space of the bulk theory on the boundary
two-torus.

The expression of the Eisenstein series as a Poincarè sum (4.25) can be interpreted as a sum
over PSL(2,Z) black holes [39,40], which contain thermal AdS3 and the BTZ black hole [41]
as special cases. As in the discussion of the un-orbifolded case [19], the coefficients γI

(α,β;m,n)(g)

in (4.25) can be regarded as an overlap of the two wave functions on the solid torus, which
functions are determined by the data (α,m) and (β, n), and g represents the gluing of the two
solid tori by an element g of the mapping class group, where g here should be regarded as an
element of PSL(2,Z)/Γ∞ = PSL(2,Z)/Z. The resulting overlap is the partition function of the
bulk TQFT on the lens space, where the choice of the lens space is determined by g and we
have in general non-trivial Wilson line insertions each of the solid tori, resulting in the Hopf
link invariant. Thus the ensemble average of the boundary torus partition function represents
a sum over an infinite set of lens space invariants of the bulk theory.

6. Summary and Discussion

In this paper, we discussed a class of generalized Narain CFTs associated with an even
integral quadratic form, studied previously in [19]. We discussed orbifolds of the generalized
Narain CFTs, in a procedure similar to the orbifolding of CFT associated with toroidal com-
pactification of string theory. We then discuss the ensemble averages of the orbifolded theories,
and we obtained a new generalization of Eisenstein series.

There are several obvious tasks to be pursued in the future. One problem is to identify
precise holographic duals for generalized Narain theories after ensemble average, along the lines
of Ref. [1,2,19]. One may also consider finding roles of such theories in string theory and more
generally quantum gravity (cf. [14]). A direct extension of this paper is to odd quadratic forms,
where we expect a spin CFT, i.e., a CFT dependent on the choice of the spin structure (See
Ref. [19] discussions on the un-orbifolded case.). Generalization of this work to asymmetric

22See [8] for discussion of orbifolded holography for some special examples of even self-dual Q.
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orbifolds [42] and CHL orbifolds would be an obvious next step. A recent topic of interest
seems to be the study of relationships between code CFTs and quantum error corrections, see
e.g. [1,4,43–46]. It would be an interesting undertaking to identify the points of the moduli
space where the generalized Narain CFT becomes rational (cf. [27,28,47]).
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Appendix A. Conventions and Notations

We list conventions, notations and standard definitions.

• Λ: discrete data defining a generalized Narain theory, i.e. integer lattice of signature
(p, q) endowed with a (p+ q)-ary quadratic form Q.

• Λ∗: dual lattice of Λ
• DΛ: discriminant group of Q, DΛ = Λ∗/Λ and |DΛ| = |det(Q)|
• hQ: representation space of Q, such that H ∈ hQ ⇝ HQ−1H = Q
• H: Majorant associated to quadratic form Q, such that HQ−1H = Q
• E : generalized Narain vielbein defined by Q = ET

1p,qE and defines H = ETE
• PΛ: generalized Narain momentum lattice built from Λ and E
• P∗

Λ: dual lattice of PΛ

• OQ(p, q;Z): T-duality group of entire generalized CFT, i.e. elements preserving Q
• OQ,α(p, q;Z): T-duality group associated to a specific anyon, i.e. elements preserving
Q and the class [α] ∈ DΛ

• p: element of PΛ

• MΛ: generalized Narain moduli space
• PNarain: (standard) Narain lattice
• MNarain: (standard) Narain Moduli space
• O(D,D;Z): T-duality group of the (standard) Narain CFT

Appendix B. T-dualities

Here we prove a few statements in the main text.

Lemma B.1. Every element of OQ(p, q;Z) defines an automorphism of Λ∗.
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Proof. Let Σ ∈ OQ(p, q;Z). First, we note that for every α1 ∈ Λ∗, there exists another
α2 ∈ Λ∗ such that α1 = Σα2. This follows from the fact that Σ−1 (which is integral and
unimodular) exists and

Q(Σ−1α, ℓ) = αTΣT−1Qℓ = αTQΣℓ ∈ Z (B.1)

for all ℓ ∈ Λ, so that α2 := Σ−1α1 ∈ Λ∗ for α1 ∈ Λ∗.
Next, we note that if α1 = Σα2, α

′
1 = Σα′

2, and α1 ̸= α2, then α′
1 ̸= α′

2. This follows by
contradiction: assume α′

1 = α′
2. Then

α1 − α2 = Σ−1(α′
1 − α′

2) = 0 . (B.2)

This implies α1 = α2, which is a contradiction. Thus Σ ∈ OQ(p, q;Z) defines a bijective map
from Λ∗ to itself.

□

Lemma B.2. Every element of OQ(p, q;Z) defines an automorphism of Λ.

Proof. The proof is essentially identical to that of (B.1). □

These give us the following corollaries immediately:

Corollary B.3. If α ∈ Λ∗ such that [α] = [0], then [Σα] = [0] ∀ Σ ∈ OQ(p, q;Z).

Corollary B.4. Let α1, α2 ∈ Λ∗ such that [α1] ̸= [α2]. Then [Σα1] ̸= [Σα2]. Furthermore,
Σα1 /∈ Λ unless [α1] = [0].

Theorem B.5. Then the elements of OQ(p, q;Z) define automorphisms of DΛ that leave [0]
invariant.

Proof. The proof follows from the above Lemmas and Corollaries. □

Appendix C. Orbifold Jacobi Theta Functions

In this section, we derive the transformation properties of the orbifold theta function (3.21)
and the Jacobi theta function (4.30). While we include these for completeness of the presen-
tation, we note that essentially the same transformations were derived previously in a recent
mathematics paper [48] (see also [49]).

Since S and T are generators of SL(2,Z), one can verify the general transformation (3.37)
by checking that (1) the formula coincides with (3.26), (3.27) for T, S-transformations and that
(2) composes consistently under the composition of two SL(2,Z) matrices. The latter statement
follows from (3.41), which is known for the un-orbifolded case since the times of C. Siegel. In
the following we will nevertheless directly prove the modular transformation under a general
element of SL(2,Z).

C.1. Modular Transformations. We shall now consider general modular transforma-
tions for Jacobi theta functions with characteristics, associated with an arbitrary even integral
lattice, denoted I, with indefinite signature (pI , qI):

ϑδ,η(τ, z) =
∑
y=ℓ+δ

exp (iπ {τQL(y)− τ̄QR(y)}) e2πiQ(y,η)e2πiQ(z,y). (C.1)

Under a modular transformation by [M ] =

[(
a b
c d

)]
∈ PSL(2,Z):

τ → τM :=
aτ + b

cτ + d
=

a

c
+ c−2 −c

cτ + d
,

z → zM,τ := Q−1

(
1

cτ + d
QL − 1

cτ̄ + d
QR

)
z,

(C.2)

where we assumed c ̸= 0. To simplify the notation, in this appendix we denote ϑI,(δ,η) by ϑδ,η.
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We begin with the expression

ϑI
δ,η(τM , zM,τ ) =

∑
ℓ∈I

eiπ[
a
c
Q(ℓ+δ)+c−2U(ℓ+δ)]e2πiQ(ℓ+δ,η)e−

2πi
c

U(z,ℓ+δ) , (C.3)

where we defined

τMQL − τ̄MQR =
a

c
Q+ c−2U , U :=

−cQL

cτ + d
+

cQR

cτ + d
. (C.4)

Note that U depends on the moduli τ, τ . We now write ℓ = cℓ′ + ℓc in the sum (C.3), where
ℓ′ ∈ I and ℓc ∈ I/(cI). After massaging the resulting expression, we obtain23

ϑI
δ,η(τM , zM,τ ) =

∑
ℓc∈I/(cI)

e(iπ
a
c
Q(ℓc+δ))e(−

2πia
c

Q(ℓc,δ)− 2πia
c

Q(δ))

×
∑
ℓ′∈I

e(iπU[ℓ
′+c−1(ℓc+δ)+(U−1Q)·(cη+aδ)−z])e−iπU−1[Q·(cη+aδ)]

× e2πiQ(cη+aδ,z)e−iπU(z,z). (C.5)

Performing a Poisson resummation in ℓ′ ∈ I, we obtain24

ϑI
δ,η(τM , zM,τ ) = [det(−iU)]−

1
2

∑
ℓc∈I/(cI)

e(iπ
a
c
Q(ℓc+δ))e(−

2πia
c

Q(ℓc,δ)− 2πia
c

Q(δ))e−iπU−1[Q(cη+aδ)]

×
∑
ℓ∈I

∑
γ∈DI

e(−iπU−1[Q·(ℓ+γ)]−2πi(Q·(ℓ+γ))T ·{c−1(ℓc+δ)+(U−1Q)·(cη+aδ)−z}) .

× e2πiQ(cη+aδ,z)e−iπU(z,z) (C.6)

Since we have (as follows from the definition of U in (C.4))

−U−1[Q · y] =
(
d

c
Q+ (QLτ −QRτ̄)

)
[y] , (C.7)

and

e−iπU(z,z) = eiπ(
c

cτ+d
QL(z)− c

cτ̄+d
QR(z)), (C.8)

we can rewrite

ϑI
δ,η(τM , zM,τ ) = [det(−iU)]−

1
2

 ∑
ℓc∈I/(cI)

e(iπ
a
c
Q(ℓc+δ))e(−

2πia
c

Q(ℓc,δ)− 2πia
c

Q(δ))


× eiπ

d
c
Q(cη+aδ)eiπ(τQL−τQR)(cη+aδ)eiπ(

c
cτ+d

QL(z)− c
cτ̄+d

QR(z))

×
∑
ℓ∈I

∑
γ∈DI

e[iπ
d
c
(ℓ+γ)+iπ(τQL−τQR)(ℓ+γ)− 2πi

c
Q(ℓ+γ,ℓc+δ)+ 2πid

c
Q(ℓ+γ,cη+aδ)+2πi(τQL−τQR)(ℓ+γ,cη+aδ)]

× e2iπQ(ℓ+γ+cη+aδ,z). (C.9)

While the expression (C.9) looks formidable, the moduli-dependent terms combine nicely into

eiπ(QLτ−QRτ̄)[ℓ+γ+cη+aδ]eiπ(
c

cτ+d
QL(z)− c

cτ̄+d
QR(z)) , (C.10)

23Here · denotes a multiplication for matrices and vectors. For example, in the expression U−1[Q ·(cη+aδ)],
the combination Q · (cη+ aδ) denotes the product of a matrix Q and a vector cη+ aδ, and the resulting vector
is then fed into the argument of the quadratic form U−1.

24After a Poisson resummation, we obtain a sum over an element ℓ∗ of the dual lattice I∗, which we can
write as ℓ∗ = ℓ+ γ with ℓ ∈ I, γ ∈ I∗/I.
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while the moduli-independent exponential terms combine into

e2iπQ(ℓ+γ+cη+aδ,z)e2iπQ[ℓ+γ+cη+aδ,dη+bδ] e−iπQ(aδ+cη,bδ+dη)

 ∑
ℓc∈I/(cI)

e
iπ
c
(aQ[ℓc]−2Q[ℓc,γ]+dQ[γ])

 .

(C.11)

This combination is preserved when we shift γ by an element of I, so that we can set ℓ = 0
in (C.11). This means we can bring (C.11) outside the sum over ℓ, and we find that the
sum over ℓ over the remaining ℓ-dependent expression gives rise to the Jacobi theta function
ϑI
(γ+aδ+cη,bδ+dη)(τ, z). Finally, we need to include the remaining factor

[det(−iU)]−
1
2 =

[
det

(
−icQL

cτ + d

)]− 1
2
[
det

(
icQR

cτ + d

)]− 1
2

=
e−

iπ
4
(pI−qI)c−

pI+qI
2 (detQ)−

1
2

(cτ + d)−
pI
2 (cτ + d)−

qI
2

.

(C.12)

Shifting δ by an element γ′ ∈ DI , and defining γ̃ = γ + aγ′ ∈ Λ∗/Λ allows us to retrieve the
most general modular transformation. By combining all the factors above, we obtain

ϑ(δ+γ′,η) (τM , zM,τ ) =
e−

iπ
4
(pI−qI)c−

pI+qI
2 (detQ)−

1
2

(cτ + d)−
pI
2 (cτ + d)−

qI
2

(
e−iπabQ[δ]−2iπbcQ[δ,η]−iπcdQ[η]

)
× eiπ(

c
cτ+d

QL(z)− c
cτ̄+d

QR(z))
∑
γ̃

λγ′,γ̃ϑ(γ̃+cη+aδ,dη+bδ)(τ, z),
(C.13)

where

λγ′,γ̃ :=
∑

ℓc∈I/cI

e
iπ
c
(aQ[ℓc+γ′]−2Q[γ̃,ℓc+γ′]+dQ[γ̃]) . (C.14)

In particular, setting δ = 0 = η, we find the transformation formula for a Jacobi theta function
associated with a general even integral lattice

ϑγ′ (τM , zM,τ ) =
e−

iπ
4
(pI−qI)c−

pI+qI
2 (detQ)−

1
2

(cτ + d)−
pI
2 (cτ + d)−

qI
2

∑
γ

λγ′,γϑγ(τ, z)e
iπ( c

cτ+d
QL(z)− c

cτ̄+d
QR(z)). (C.15)

If we instead set z = 0, we obtain (3.37).
We can see from (3.37) that the only effects of δ and η are to change the overall phases of

the modular transformation. Note that in our derivation we have not imposed any conditions
on δ and η. If we consider the S-transformations with a = d = 0 and c = −b = 1, we obtain

ϑI
δ,η

(
−1

τ

)
=

e−iπ
(pI−qI )

4√
|DI |

τ pI/2τ̄ qI/2e2πiQ[η,δ]
∑
γ∈DI

ϑI
(γ+η,−δ)(τ) . (C.16)

While we assumed c ̸= 0 in the derivation, the case c = 0 amounts to the T -transformation
of the form τ → τ + ab with a2 = 1, and z → az. In this case, it is straightforward to show
that

ϑ(δ+γ′,η) (τM , zM,τ ) = eπiabQ(γ′)e−πiabQ(δ)ϑ(δ+γ′,η+abδ) (τ, az)

= eπiabQ(γ′)e−πiabQ(δ)ϑ(aδ+aγ′,aη+bδ) (τ, z) .
(C.17)

In fact, the formula (3.37) works for the T-transformations with a = b = d = 1 and c = 0:

ϑI
δ,η(τ + 1) = e−iπQ[δ] ϑI

(δ,η+δ)(τ) , (C.18)

which formula can be verified directly from the definition of the theta function.
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C.2. Asymptotics at Cusps. At the cusp τ → i∞, we find from the definition (3.21)
that

ϑI,(δ,η)(τ → i∞) = δδ∈I . (C.19)

We use the transformation law of the theta functions to determine the behavior at another

cusp τ = −d/c. For this purpose we use (3.37) for M−1 =

(
d −b
−c a

)

ϑI
(δ,η)

(
dτ − b

−cτ + a

)
= µ(δ,η)·M−1

∑
γ∈DI

Uγ(M
−1)ϑ(γ+dδ−cη,−bδ+aη)(τ) , (C.20)

Let us define τ ′ := (dτ − b)/(−cτ + a), or equivalently τ = (aτ ′ + b)/(cτ ′ + d), and consider
taking the limit τ → i∞, which is equivalent to τ ′ → −d/c. In this limit, using (C.19), we
obtain25

ϑ(δ,η)

(
τ ′ → −d

c

)
→ 1√

detQI

e−
πi
4
(pI−qI)(cτ ′ + d)−

p
2 (cτ ′ + d)−

q
2µ(δ,η)·M−1λ0,−dδ+cη(M

−1) ,

(C.23)

where we used −cτ + a = 1/(cτ ′ + d). This matches the behavior of the Eisenstein series (4.7)
at the cusp.

As is clear from this discussion above, the only properties needed for the derivation of the
asymptotic behavior at the cups are (i) behavior at τ → i∞ as in (C.19) as well as (ii) the
modular transformation rule (3.21). Since we can directly verify these two properties for the
Eisenstein series (4.7), we can repeat the same argument to conclude that the Einstein series
has the same asymptotic as in (C.23).

Appendix D. Congruence Subgroup

In this appendix, we prove that the theta functions we have been working with are modular
forms for the congruence subgroup Γ(N2L), where N is the order of the orbifold action and L is
an integer multiple of the level LQ of the quadratic form. Our discussion here seems to be new
for N > 1. Our proof relies heavily on the result of [50,51], which discuss the un-orbifolded
case N = 1.26

25The expression on the right-hand side depends only on the element PSL(2,Z)/Γ∞, namely the expression
depends only on the entries c, d of the PSL(2,Z) matrix. To see this, let us pick up a modular inverse d∗ of the
integer d via dd∗ = 1 mod c, so that

a = ck + d∗ , b = dk +
dd∗ − 1

c
, (k ∈ Z) , (C.21)

where k labels an element of Γ∞ ≃ Z. The k-dependence generates an extra factor of

eiπk(Q(dδ−cη)−Q(β)) , (C.22)

which is equal to the identity under the delta-function constraint β+ dδ− cη ∈ I (recall β ∈ DI). This ensures
that the behavior at the cusp is independent of the upper two entries of the PSL(2,Z) matrix.

26For the special case N = 1, [50] already noted that the modular transformation formulas simplify for a
special congruence subgroup, and for example already considered Γ(lcm(LQ, 4)) for p+ q odd. The focus there,
however, was not necessarily to identify the precise congruence subgroup where the multiplier system evaluates
to 1, and we have not found an explicit statement in the literature that our theta function is modular (without
any multiplier system) for a concrete choice of Γ(L).
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We shall focus on the case modular transformations where c ̸= 0 first. Let us reproduce
the corresponding transformation law of the orbifold theta functions:

ϑ(α,0)+(δ,η)(τM) =
∑
β∈D

Uα,β(M, τ ; (δ, η))ϑ(β, 0) + (δ, η) ·M︸ ︷︷ ︸
characteristics

, (D.1)

Uα,β(M, τ ; (δ, η)) = (cτ + d)
p
2 (cτ + d)

q
2

× exp

[
− iπ(abQ[δ] + 2bcQ[δ, η] + cdQ[η])

]
︸ ︷︷ ︸

shift-dependent phase

λα,β(M)︸ ︷︷ ︸
transformation matrix

. (D.2)

We wish to show that this reduces to the standard transformation for modular functions when
M ∈ Γ(N2L). We break the proof into three parts: the shift-dependent phase, the theta
function characteristics, and the transformation matrix.

Shift-dependent Phase: We investigate the factor

exp

[
− iπ(abQ[δ] + 2bcQ[δ, η] + cdQ[η])

]
. (D.3)

For the factor of exp(−iπ(abQ[δ])), we observe that it is trivial since b ≡ 0 mod N2L, bQ[δ] ∈
2Z. This is because δ ∈ I/N and from the definition of the level, LQ[ℓ′] ∈ 2Z for ℓ′ ∈ I∗ (recall
that I ⊂ I∗). Similarly, since η ∈ I/N and c ≡ 0 mod N2L the factor of exp(−iπ(cdQ[η])) is
trivial as well. Finally, the factor of exp(−iπ(2bcQ[δ, η])) is trivial since c ≡ 0 mod N2L, so
that cQ[δ, η] ∈ Z.

Characteristics: We look at the behaviour of the characteristics (δ, η) under a modular
transformation:

(δ, η) → (δ, η)

(
a b
c d

)
= (aδ + cη, bδ + dη) . (D.4)

In the definition of our theta functions, we have a lattice sum over I + α + δ, α ∈ D and
δ ∈ I/N . After the transformation, we have the sum∑

ℓ∈I+α+aδ+cη

exp(iπτQL(ℓ)− iπτ̄QR(ℓ)) exp(2iπQI(ℓ, δb+ ηd)) . (D.5)

Now, since aδ ≡ δ mod I, dη ≡ η mod I, bδ ∈ I, cη ∈ I, the sum reduces to∑
ℓ∈I+α+δ

exp(iπτQL(ℓ)− iπτ̄QR(ℓ)) exp(2iπQI(ℓ, η)) , (D.6)

and therefore the characteristics of the transformed theta function reduce to those of the theta
function prior to modular transformation.

Transformation Matrix: We now show that the matrix λΛ
α,β(M) becomes trivial (i.e.

unity) for elements of the congruence subgroup Γ(N2L).
Since we are interested in the evaluation of λΛ

α,β(M), and since this factor was defined by the
modular transformation property of the un-orbifolded theta function, we can take advantage
of the literature for N = 1.

In the following we use the quadratic residue symbol
(a
b

)
as defined in [52], which is known

as the Kronecker symbol. This symbol is defined for an integer a and an odd integer b ̸= 0,
and coincides with the ordinary quadratic residue symbol (Legendre symbol) when b is an

odd prime. This symbol has many interesting properties, e.g.
(a
b

)
for a fixed b is a character

modulo b as a function of a. See [52] for further properties of this symbol.
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For p+ q even, it is known [51] that λα,β(M) = δα,β for M ∈ Γ(LQ). The case of p+ q odd
is more subtle: it was shown in [51] that

λα,β(M) =

(
−2

d

)( c
d

)(
det Q

d

)
δα,β (D.7)

for M ∈ Γ(lcm(LQ, 4)). If we further impose c ≡ 0 mod det Q, we have
( c
d

)
=

(
det Q

d

)
,

which cancels the two factors, leaving(
−2

d

)
=

(
−1

d

)
·
(
2

d

)
, (D.8)

which can be evaluated using the following identities(
2

d

)
= (−1)

d2−1
8 =

{
1, d ≡ 1, 7 mod 8

−1, d ≡ 3, 5 mod 8(
−1

d

)
= (−1)

d−1
2 =

{
1, d ≡ 1 mod 4

−1, d ≡ 3 mod 4
.

(D.9)

These symbols trivialize for d ≡ 1 mod 8, and hence λα,β(M) = δα,β. The restrictions imposed
on c, d can be realized by choosing M from a congruence subgroup Γ(lcm(LQ, 8, | det Q|) =
Γ(lcm(8, | det Q|)).

For future reference, let us state this as a Proposition:27

Proposition D.1. λα,β(M) = δα,β if M ∈ Γ(LQ) for p+ q even and if M ∈ Γ(lcm(8, | det Q|))
for p+ q odd.

Remark D.2. Proposition D.1 demonstrates that the Siegel-Weil formula holds for a suffi-
ciently small principal congruence group Γ ⊂ Γ(N2L). It is however possible that the congru-
ence subgroup can be enlarged slightly such that the Siegel-Weil theorem still holds, thereby
permitting ensemble averages, but we are unaware of justifiable constraints that allow us to do
this.

The c = 0 case. We have so far restricted ourselves to the case of c ̸= 0. We also need to
show that the theta function is a modular function for Γ(N2L) even when c = 0. In this case,
the modular transformation law takes the form

ϑ(δ+α,η) (τM) = eπiabQ(α)e−πiabQ(δ)ϑ(δ+α,η+abδ) (τ) , (D.10)

where α ∈ I∗/I, and δ, η ∈ I/N . Since c = 0, and a, d = 1 mod N2L for an element of Γ(N2L),
it must be the case that a = 1 and d = 1 since N > 1. In particular, cτ + d = 1, and the theta
function should be invariant under the modular transformation.

Now, since b = 0 mod N2L, and LQ[ℓ′] ∈ 2Z for ℓ′ ∈ I∗, we find that the phases in (D.10)
are trivial. Moreover,

ϑ(δ+α,η+abδ) (τ) =
∑

y=ℓ+α+δ

eπi(τQL[y]−τ̄QR[y])e2πiQ(y,η)e2πiQ(y,abδ), (D.11)

and we find that

e2πiQ(y,abδ) = e2πiQ(ℓ+α+δ,abδ) = 1 (D.12)

27The implication of this result is that if we consider a Narain moduli space of conformal field theories of
with difference in cleft and right moving central charges cL − cR = p− q ∈ 2Z admitting an action of an order
N orbifold, the theta function transforms as a modular form on Γ(N2L) (which we momentarily refer to as the
‘even’ congruence subgroup), where L is the level of the Narain lattice. However, if the chiral central charge
is odd, then the theta function transforms on a smaller congruence subgroup contained in the even congruence
subgroup.
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since a = 1 and b = 0 mod N2L. Thus, we find that

ϑ(δ+α,η) (τM) = ϑ(δ+α,η) (τ) , (D.13)

where M ∈ Γ(N2L) with c = 0. This completes a proof that the theta function is a modular
function for Γ(N2L).

Appendix E. Transformation of Eta and Theta Functions

We reproduce here modular transformation properties of some modular forms used in the
text.

For M =

(
a b
c d

)
∈ SL(2,Z), the Dedekind eta function transforms as

η(M · τ) = ϵ(M)(cτ + d)
1
2η(τ) , (E.1)

where the multiplier system ϵ(M) is given by

ϵ(M) :=


exp

(
iπb

12

)
, c = 0, d = 1

exp

(
a+ d

24c
− s(d, c)

2
− 1

8

)
, c > 0

, (E.2)

where the s(d, c) is the Dedekind sum given by

s(d, c) =
∑

n mod c

((n/c))((dn/c)) , (E.3)

and ((x)) is the sawtooth function

((x)) :=

{
x− [x]− 1

2
x ∈ R\Z ,

0 x ∈ Z ,
(E.4)

with [x] being the integer part of x.28

Consider the Jacobi theta function with characteristics

ϑ

[
α
β

]
(τ) :=

∑
n∈Z

eiπ(n+α)2τe2πi(n+α)β. (E.5)

Under an element of M =

(
a b
c d

)
∈ SL(2,Z) with c > 0, we have the transformation law

ϑ

[
α + 1

2
β + 1

2

]
(τ) =

ϵ(M)−3ζ(M,α, β)−1

√
cτ + d

ϑ

[
aα + cβ + 1

2
bα + dβ + 1

2

]
(M · τ) , (E.6)

where the characteristic-dependent phase is defined as in (4.29). This implies

ϑ

[
α + 1

2
β + 1

2

]
(τ)

η(τ)
= ϵ(M)−2ζ(M,α, β)−1

ϑ

[
aα + cβ + 1

2
bα + dβ + 1

2

]
(M · τ)

η(M · τ)
, (E.7)
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[3] A. Pérez and R. Troncoso, “Gravitational dual of averaged free CFT’s over the Narain lattice,” JHEP 11
(2020) 015, arXiv:2006.08216 [hep-th].

[4] A. Dymarsky and A. Shapere, “Solutions of modular bootstrap constraints from quantum codes,”
arXiv:2009.01236 [hep-th].

28A study of Dedekind sums and their relation to the study of the eta function can be found in [53].

http://arxiv.org/abs/2006.04839
http://dx.doi.org/10.1007/JHEP10(2020)187
http://arxiv.org/abs/2006.04855
http://dx.doi.org/10.1007/JHEP11(2020)015
http://dx.doi.org/10.1007/JHEP11(2020)015
http://arxiv.org/abs/2006.08216
http://arxiv.org/abs/2009.01236


GENERALIZED NARAIN THEORIES DECODED 31

[5] A. Dymarsky and A. Shapere, “Comments on the holographic description of Narain theories,”
arXiv:2012.15830 [hep-th].

[6] V. Meruliya, S. Mukhi, and P. Singh, “Poincaré Series, 3d Gravity and Averages of Rational CFT,”
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