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Abstract. We take a data-scientific approach to study whether Kronecker coefficients are zero or

not. Motivated by principal component analysis and kernel methods, we define loadings of partitions

and use them to describe a sufficient condition for Kronecker coefficients to be nonzero. The results

provide new methods and perspectives for the study of these coefficients.

1. Introduction

For the last several years, it has been much discussed how AI and machine learning will change

mathematics research (e.g. [DVB+, W, B]). There is no doubt that machine learning has excep-

tional capability to recognize patterns in mathematical datasets (e.g. [AHO, CHKN, DLQ, HK,

HLOa, HLOb, JKP]). Nonetheless, the recent discovery [HLOP] of a new phenomenon, called mur-

muration, shows that considering mathematical objects in the framework of data-science already

has great potential for new developments without regard to use of machine learning. All these

circumstances seem to call us to regard mathematics as a study of datasets1.

In the previous article [L], where we refer the reader for the backgrounds of Kronecker coefficients,

we applied standard machine learning tools to datasets of the Kronecker coefficients, and observed

that the trained classifiers attained high accuracies (> 98%) in determining whether Kronecker

coefficients are zero or not. The outcomes clearly suggest that further data-scientific analysis may

reveal new structures in the datasets of the Kronecker coefficients. In this paper, we indeed pursue

that direction; more precisely, we adopt ideas from principal component analysis (PCA) and kernel

methods to define the similitude matrix and the difference matrix for the set P(n) of partitions

of n. Then we introduce loadings of the partitions in terms of eigenvectors associated to the

largest eigenvalues of these matrices, and use the loadings to describe a sufficient condition for the

Kronecker coefficients to be nonzero. This condition can be used very effectively. See (4.1) and

Example 4.2 below it.

The observations made in this paper are purely data-scientific and experimental, and no attempts

are undertaken to prove them using representation theory. Rigorous proofs will appear elsewhere.

Also, it should be noted that our sufficient condition does not cover the middle part where loadings

for zero and nonzero Kronecker coefficients overlap. Since our method is a variation of PCA, it

is essentially linear. In order to cover the middle part, it is likely that one needs to adopt some

nonlinear methods. The aforementioned high accuracies reported in [L] indicate that we can go

much deeper into the middle part using such methods.

Date: November 2, 2023.
1This viewpoint is not new. For instance, the Prime Number Theorem and the Birch–Swinnerton-Dyer Conjecture

are results of this viewpoint.
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After this introduction, in Section 2, we define the similitude and difference matrices and the

loadings of partitions. In Section 3, we investigate the probabilistic distributions of loadings. In the

final section, we consider the minimum values of the loadings to determine whether the Kronecker

coefficients are zero or nonzero. In Appendix, we tabulate the loadings of partitions in P(n) for

6 ≤ n ≤ 12.
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2. Similitude and difference matrices

Let Sn be the symmetric group of degree n and consider representations of Sn over C. The

irreducible representations Sλ of Sn are parametrized by partitions λ ∈ P(n). Consider the tensor

product of two irreducible representations Sλ and Sµ for λ, µ ∈ P(n). Then the tensor product is

decomposed into a sum of irreducible representations:

Sλ ⊗ Sµ =
⊕
ν`n

gνλ,µSν (gνλ,µ ∈ Z≥0).

The decomposition multiplicities gνλ,µ are called the Kronecker coefficients.

There are symmetries among gνλ,µ.

Lemma 2.1. [FH, p.61] Let λ, µ, ν ` n. Then the Kronecker coefficients gνλ,µ are invariant under

the permutations of λ, µ, ν. That is, we have

gνλ,µ = gνµ,λ = gµλ,ν = gµν,λ = gλµ,ν = gλν,µ.

For a partition λ = (λ1 ≥ λ2 ≥ · · · ) of n, define dλ := n−λ1, called the depth of λ. The following

theorem provides a necessary condition for the Kronecker coefficient gνλ,µ to be nonzero. Other

necessary conditions for gνλ,µ 6= 0, which generalize Horn inequalities, can be found in [Res]. We

will describe a sufficient condition for for gνλ,µ 6= 0 in this paper.

Theorem 2.2. [JK, Theorem 2.9.22] If gνλ,µ 6= 0 then

(2.1) |dλ − dµ| ≤ dν ≤ dλ + dµ.

Now, for n ∈ Z>0, let P(n) be the set of partitions of n as before. We identify each element λ

of P(n) with a sequence of length n by adding 0-entries as many as needed. For example, when

n = 6, we have

P(6) = {(6, 0, 0, 0, 0, 0), (5, 1, 0, 0, 0, 0), (4, 2, 0, 0, 0, 0), (4, 1, 1, 0, 0, 0),

(3, 3, 0, 0, 0, 0), (3, 2, 1, 0, 0, 0), (3, 1, 1, 1, 0, 0), (2, 2, 2, 0, 0, 0),

(2, 2, 1, 1, 0, 0), (2, 1, 1, 1, 1, 0), (1, 1, 1, 1, 1, 1)}.
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We consider P(n) as an ordered set by the lexicographic order as in the above example.

When there is no peril of confusion, we will skip writing 0’s in the sequence. For instance, we

write (5, 1) for (5, 1, 0, 0, 0, 0). Moreover, when the same part is repeated multiple times we may

abbreviate it into an exponent. For example, (2, 1, 1, 1, 1, 1) may be written as (2, 15). The size of

the set P(n) will be denoted by p(n), and the set of triples t = (λ, µ, ν) of partitions of n will be

denote by P(n)3 := P(n) × P(n) × P(n). A partition is depicted by a collection of left-justified

rows of boxes. For example, partition (5, 4, 1) is depicted by . The conjugate or transpose

of a partition is defined to be the flip of the original diagram along the main diagonal. Hence the

conjugate of (5, 4, 1) is (3, 2, 2, 2, 1) as you can see below:

←→

Let Pn be the p(n) × n matrix having elements of P(n) as rows, and define the p(n) × p(n)

symmetric matrix

Yn := PnP
>
n .

The matrix Yn will be called the similitude matrix of P(n). For example, we have

P6 =



6 0 0 0 0 0

5 1 0 0 0 0

4 2 0 0 0 0

4 1 1 0 0 0

3 3 0 0 0 0

3 2 1 0 0 0

3 1 1 1 0 0

2 2 2 0 0 0

2 2 1 1 0 0

2 1 1 1 1 0

1 1 1 1 1 1


and Y6 =



36 30 24 24 18 18 18 12 12 12 6

30 26 22 21 18 17 16 12 12 11 6

24 22 20 18 18 16 14 12 12 10 6

24 21 18 18 15 15 14 12 11 10 6

18 18 18 15 18 15 12 12 12 9 6

18 17 16 15 15 14 12 12 11 9 6

18 16 14 14 12 12 12 10 10 9 6

12 12 12 12 12 12 10 12 10 8 6

12 12 12 11 12 11 10 10 10 8 6

12 11 10 10 9 9 9 8 8 8 6

6 6 6 6 6 6 6 6 6 6 6


.

Note that an entry yλ,µ of Yn = [yλ,µ] is indexed by λ, µ ∈ P(n).

Definition 2.3. Let v = (vλ)λ∈P(n) be an eigenvector of the largest eigenvalue of Yn such that

vλ > 0 for all λ ∈ P(n). Denote by vmax (resp. vmin) a maximum (resp. minimum) of {vλ}λ∈P(n).
Define

rλ := 100× vλ − vmin

vmax − vmin
for λ ∈ P(n).

The value rλ is called the r-loading of partition λ ∈ P(n).

Remark 2.4. An efficient algorithm to calculate an eigenvector v in Definition 2.3 is the power it-

eration: Let v0 = (1, 0, . . . , 0)> be the first standard column vector. Inductively, for k = 0, 1, 2, . . . ,

define

vk+1 =
Ynvk
‖Ynvk‖2

,
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where ‖(x1, x2, . . . , xn)>‖2 = (
∑n

i=1 x
2
i )

1/2. Then the limit

v = lim
k→∞

vk

is an eigenvector of the largest eigenvalue of Yn.

For example, when n = 6, we have

v1 = (0.5203, 0.4336, 0.3468, 0.3468, 0.2601, 0.2601, 0.2601, 0.1734, 0.1734, 0.1734, 0.0867)>

v2 = (0.4514, 0.4022, 0.3530, 0.3377, 0.3038, 0.2885, 0.2670, 0.2240, 0.2178, 0.1934, 0.1188)>

v3 = (0.4441, 0.3985, 0.3530, 0.3366, 0.3074, 0.2910, 0.2678, 0.2291, 0.2222, 0.1957, 0.1225)>

v4 = (0.4434, 0.3982, 0.3529, 0.3365, 0.3077, 0.2913, 0.2678, 0.2296, 0.2226, 0.1960, 0.1229)>

v5 = (0.4433, 0.3981, 0.3529, 0.3365, 0.3077, 0.2913, 0.2678, 0.2297, 0.2226, 0.1960, 0.1229)>

v6 = (0.4433, 0.3981, 0.3529, 0.3365, 0.3077, 0.2913, 0.2678, 0.2297, 0.2227, 0.1960, 0.1229)>,

where equality means approximation. Thus we can take as an approximation

v = (0.4433, 0.3981, 0.3529, 0.3365, 0.3077, 0.2913, 0.2678, 0.2297, 0.2227, 0.1960, 0.1229)>,

and the r-loadings are given by

(rλ)λ∈P(n) = (100.00, 85.89, 71.79, 66.66, 57.68, 52.55, 45.23, 33.32, 31.12, 22.81, 0.00).

In this case of n = 6, we see that the r-loadings are compatible with the lexicographic order. In

particular, the partition (6) has r-loading 100 and (1, 1, 1, 1, 1, 1) has r-loading 0. However, in

general, the r-loadings are not completely compatible with the lexicographic order though they are

strongly correlated. For instance, when n = 9, the partition (5, 1, 1, 1, 1) has r-loading 55.32, while

(4, 4, 1) has 56.55. See Appendix A for the values of r-loadings. On the other hand, we observe

that the r-loadings are compatible with the dominance order.2

Define a p(n)× p(n) symmetric matrix Zn = [zλ,µ]λ,µ∈P(n) by

zλ,µ = ‖λ− µ‖1 :=
n∑
i=1

|λi − µi|

for λ = (λ1, λ2, . . . , λn) and µ = (µ1, µ2, . . . , µn) ∈ P(n). The matrix Zn will be called the difference

matrix of P(n). For example, we have

Z6 =



0 2 4 4 6 6 6 8 8 8 10

2 0 2 2 4 4 4 6 6 6 8

4 2 0 2 2 2 4 4 4 6 8

4 2 2 0 4 2 2 4 4 4 6

6 4 2 4 0 2 4 4 4 6 8

6 4 2 2 2 0 2 2 2 4 6

6 4 4 2 4 2 0 4 2 2 4

8 6 4 4 4 2 4 0 2 4 6

8 6 4 4 4 2 2 2 0 2 4

8 6 6 4 6 4 2 4 2 0 2

10 8 8 6 8 6 4 6 4 2 0


.

2This was noticed by David Anderson after the first version of this paper was posted on the arXiv.
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Definition 2.5. Let w = (wλ)λ∈P(n) be an eigenvector of the largest eigenvalue of Zn such that

wλ > 0 for all λ ∈ P(n). Denote by wmax (resp. wmin) a maximum (resp. minimum) of {wλ}λ∈P(n).
Define

bλ := 100× wλ − wmin

wmax − wmin
for λ ∈ P(n).

The value bλ is called the b-loading of partition λ ∈ P(n).

The power iteration in Remark 2.4 works equally well to compute w: Let w0 = (1, 0, . . . , 0)>

and define

wk+1 =
Znwk

‖Znwk‖2
.

Then the limit

w = lim
k→∞

wk

is an eigenvector of the largest eigenvalue of Zn.

For example, when n = 6, we have

w1 = (0.0000, 0.0958, 0.1916, 0.1916, 0.2873, 0.2873, 0.2873, 0.3831, 0.3831, 0.3831, 0.4789)>

w2 = (0.5177, 0.3705, 0.2992, 0.2565, 0.3087, 0.2042, 0.2042, 0.2517, 0.1947, 0.2280, 0.3277)>

..

.

w10 = (0.4046, 0.2962, 0.2662, 0.2394, 0.3061, 0.2318, 0.2393, 0.3060, 0.2662, 0.2961, 0.4044)>

w11 = (0.4045, 0.2961, 0.2662, 0.2393, 0.3061, 0.2318, 0.2393, 0.3061, 0.2662, 0.2962, 0.4045)>

w12 = (0.4045, 0.2961, 0.2662, 0.2393, 0.3061, 0.2318, 0.2393, 0.3061, 0.2662, 0.2961, 0.4045)>,

where equality means approximation. Thus we can take as an approximation

w = (0.4045, 0.2961, 0.2662, 0.2393, 0.3061, 0.2318, 0.2393, 0.3061, 0.2662, 0.2961, 0.4045)>,

and the b-loadings are given by

(bλ)λ∈P(n) = (100.00, 37.25, 19.93, 4.36, 43.01, 0.00, 4.36, 43.01, 19.93, 37.25, 100.00).

Notice that the partitions (6, 0, 0, 0, 0, 0) and (1, 1, 1, 1, 1, 1) both have b-loading 100 and the parti-

tion (3, 2, 1, 0, 0, 0) has b-loading 0. In general, we observe that

(2.2) if λ and µ are conjugate in P(n), then their b-loadings are the same, i.e., bλ = bµ.

Remark 2.6. It would be interesting to combinatorially characterize the loadings of λ ∈ P(n).

For t = (λ, µ, ν) ∈ P(n)3, we will write

g(t) := gνλ,µ.

Definition 2.7. Let t = (λ, µ, ν) ∈ P(n)3. Define the r-loading of t, denoted by r(t), to be the

sum of the r-loadings of λ, µ and ν, i.e.,

r(t) := rλ + rµ + rν .

Similarly, define the b-loading of t, denoted by b(t), to be the sum of the b-loadings of λ, µ and ν,

i.e.,

b(t) := bλ + bµ + bν .
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2.1. Connections to PCA and kernel method. The definitions of similitude and difference

matrices are closely related to PCA and kernel methods (see, e.g., [HTF]), respectively. Indeed, we

look at the matrix P>n as a data matrix. For example, when n = 6, we have

P>6 =


6 5 4 4 3 3 3 2 2 2 1

0 1 2 1 3 2 1 2 2 1 1

0 0 0 1 0 1 1 2 1 1 1

0 0 0 0 0 0 1 0 1 1 1

0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 1

,
and consider this as a data matrix of 6 data points with 11 features.

Since the average of each column is 1 for P>n , the covariance matrix of the data matrix P>n is

(Pn − 1)(Pn − 1)>, where 1 is the matrix with all entries equal to 1. As there seems to be no

meaningful difference in computational results, we take the similitude matrix Yn = PnP
>
n to be a

replacement of the covariance matrix. Then an eigenvector of the largest eigenvalue of Yn is nothing

but a weight vector of the first principal component, and this leads to the definition of r-loadings.

The idea of a kernel method is to embed a dataset into a different space of (usually) higher

dimension. In order to utilize this idea, we consider the matrix Pn as a data matrix with p(n)

data points and n features. Then we map a partition λ, which is an n-dimensional row vector of

Pn, onto the p(n)-dimensional vector (‖λ−µ‖1)µ∈P(n), and the resulting new matrix is exactly the

difference matrix Zn. For example, when n = 6, we have

P6 =



6 0 0 0 0 0

5 1 0 0 0 0

4 2 0 0 0 0

4 1 1 0 0 0

3 3 0 0 0 0

3 2 1 0 0 0

3 1 1 1 0 0

2 2 2 0 0 0

2 2 1 1 0 0

2 1 1 1 1 0

1 1 1 1 1 1


7→ Z6 =



0 2 4 4 6 6 6 8 8 8 10

2 0 2 2 4 4 4 6 6 6 8

4 2 0 2 2 2 4 4 4 6 8

4 2 2 0 4 2 2 4 4 4 6

6 4 2 4 0 2 4 4 4 6 8

6 4 2 2 2 0 2 2 2 4 6

6 4 4 2 4 2 0 4 2 2 4

8 6 4 4 4 2 4 0 2 4 6

8 6 4 4 4 2 2 2 0 2 4

8 6 6 4 6 4 2 4 2 0 2

10 8 8 6 8 6 4 6 4 2 0


.

Since the difference matrix Zn is a symmetric matrix, we consider an eigenvector of the largest

eigenvalue of Zn to obtain the direction of largest variations in the differences. This leads to the

definition of b-loadings.

3. Distributions of loadings

In this section, we present the histograms of loadings and describe the corresponding distribu-

tions. First, we consider all the triples of t ∈ P(n)3, and after that, separate them according to

whether g(t) 6= 0 or = 0.

Figure 1 has the histograms of r-loadings of t ∈ P(n)3 for n = 14, 15, 16. According to what

the histograms suggest, we conjecture that the distribution of the r-loadings of t converges to a

normal distribution as n → ∞, and sketch the curves of normal distributions on the histograms.
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Here we note that the mean is not exactly 150. Actually, the mean values of the r-loadings are

≈ 148.86, 148.15, 147.65 for n = 14, 15, 16, respectively.

Similarly, Figure 2 shows the histograms of b-loadings of t ∈ P(n)3 for n = 14, 15, 16, and we

conjecture that the distribution of the b-loadings of t is a gamma distribution as n → ∞, and

draw the curves of gamma distributions on the histograms. The mean values of the b-loadings are

≈ 72.07, 66.71, 63.48 for n = 14, 15, 16, respectively.

Figure 1. Histograms of r-loadings of t ∈ P(n)3 for n = 14, 15, 16 from left to right along

with curves (red) of normal distributions

Figure 2. Histograms of b-loadings of t ∈ P(n)3 for n = 14, 15, 16 from left to right along

with curves (red) of gamma distributions

When n = 14, 15, 16, the histograms of loadings of partitions λ ∈ P(n) do not have enough

number of points to tell which distributions they follow. (Note that p(16) = 231.) Nonetheless, it

seems reasonable to expect that the r-loadings of λ follow a normal distribution and that the b-

loadings of λ follow a gamma distribution. Then the loadings of t ∈ P(n)3 will have the distributions

given as a sum of three independent distributions. (Recall Definition 2.7.) Figure 3 has the

histograms of loadings of λ and t when n = 20, which seem to be consistent with this expectation.

4. Separation of g(t) 6= 0 from g(t) = 0

In this section, we consider the distributions of loadings according to whether the Kronecker

coefficients g(t) are zero or nonzero. Using minimum values of loadings in each case, we will obtain

vertical lines which separate the distributions of these two cases.

In Figures 4–7, we present the ranges and histograms of loadings of t ∈ P(n)3 for n = 10, 11, 12, 13

according to whether g(t) 6= 0 (red) or = 0 (blue). As one can see, the ranges and histograms do

not vary much as n varies. The separation between the regions corresponding to g(t) 6= 0 (red) and
7



Figure 3. Histograms of r-loadings of λ ∈ P(n) (top-left) and t ∈ P(n)3 (top-right) and

histograms of b-loadings of λ (bottom-left) and t (bottom-right) when n = 20

= 0 (blue) is more distinctive in the case of b-loadings. It is clear that we may use the minimum

values of loadings to obtain vertical lines that separate the red regions from the blue ones.

Figure 4. Ranges of r-loadings for n = 10, 11, 12, 13 from top to bottom. A red (resp. blue)

dot at (x, 1) (resp. (x, 0)) corresponds to t ∈ P(n)3 with r(t) = x and g(t) 6= 0 (resp.

g(t) = 0).

With this in mind, define

r? := min{r(t) : g(t) 6= 0, t ∈ P(n)3} and

b? := min{b(t) : g(t) = 0, t ∈ P(n)3}.
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Figure 5. Histograms of r-loadings for n = 10 (top-left), 11 (top-right), 12 (bottom-left) and

13 (bottom-right). The red (resp. blue) region represents the numbers of t such that g(t) 6= 0

(resp. g(t) = 0).

Figure 6. Ranges of b-loadings for n = 10, 11, 12, 13 from top to bottom. A red (resp. blue)

dot at (x, 1) (resp. (x, 0)) corresponds to t ∈ P(n)3 with b(t) = x and g(t) 6= 0 (resp.

g(t) = 0).

Then, for t ∈ P(n)3,

(4.1) if r(t) < r? then g(t) = 0 and if b(t) < b? then g(t) 6= 0 .

This provides sufficient conditions for g(t) = 0 and g(t) 6= 0, respectively, once we know the values

of r? and b?. However, the values r? do not turn out to be very useful for bigger n in distinguishing

g(t) = 0 from g(t) 6= 0, though they are interesting for their own sake and can be useful for further

analysis. See Example 4.2 (2).

Remark 4.1. It appears that the b-loadings of t with g(t) 6= 0 is a gamma distribution by itself.

See the histogram and the curve of a gamma distribution when n = 13 in Figure 8.
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Figure 7. Histograms of b-loadings for n = 10 (top-left), 11 (top-right), 12 (bottom-left) and

13 (bottom-right). The red (resp. blue) region represents the numbers of t such that g(t) 6= 0

(resp. g(t) = 0).

Figure 8. Histogram and curve (red) of a gamma distribution when n = 13

In the rest of this section, computational results of the values of r? and b? for 6 ≤ n ≤ 20 will be

presented along with some conjectures. This information can be used very effectively as illustrated

in the example below.

Example 4.2.

(1) When n = 18, we obtain b? ≈ 44.18. Now that the b-loading of

t = ((12, 4, 2), (8, 4, 2, 2, 1, 1), (5, 4, 3, 3, 1, 1, 1))

is readily computed to be approximately 41.07 < b?, we immediately conclude that g(t) 6= 0

by (4.1).

(2) When n = 20, there are 246, 491, 883 triples t ∈ P(20). Among them, 78, 382, 890 triples

satisfy b(t) < b? ≈ 43.74 so that g(t) 6= 0. The percentage of these triples is about 31.8%.

In contrast, 909, 200 triples satisfy r(t) < r? ≈ 70.88 and the percentage is only 0.37%.

4.1. r-loadings results. We compute and record r? and t = (λ, µ, ν) such that r? = r(t) and

λ ≥ µ ≥ ν lexicographically, for 6 ≤ n ≤ 20 in Table 1. We do not consider n ≤ 5 because they

seem to be too small for statistical analysis.
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n r? λ µ ν

6 90.9986 (3, 3) (2, 2, 2) (1, 1, 1, 1, 1, 1)

7 85.0932 (2, 2, 2, 1) (2, 2, 2, 1) (2, 2, 2, 1)

8 79.1637 (24) (24) (24)

9 84.5605 (3, 2, 2, 2) (2, 2, 2, 2, 1) (2, 2, 2, 2, 1)

10 82.5959 (3, 3, 2, 2) (2, 2, 2, 2, 2) (2, 2, 2, 2, 1, 1)

11 78.1018 (3, 3, 3, 2) (25, 1) (25, 1)

12 74.6018 (34) (26) (26)

13 78.1813 (4, 3, 3, 3) (26, 1) (26, 1)

14 77.3651 (4, 4, 3, 3) (27) (26, 1, 1)

15 74.8437 (4, 4, 4, 3) (27, 1) (27, 1)

16 72.1837 (44) (28) (28)

17 71.2716 (35, 2) (35, 2) (28, 1)

18 68.9559 (36) (36) (29)

19 71.9678 (4, 35) (36, 1) (29, 1)

20 70.8806 (54) (210) (210)

Table 1. Values of r? and t = (λ, µ, ν) such that r? = r(t) and λ ≥ µ ≥ ν lexicographically

Based on the results of n = 8, 12, 16, 20 as written in blue in Table 1, we make the following

conjecture.

Conjecture 4.3. When n = 4k (k ≥ 2), the values r? are attained by t = ((k4), (22k), (22k)).

As an exhaustive computation for all possible triples becomes exponentially expensive, we assume

that Conjecture 4.3 is true and continue computation. The results are in Table 2. Since we know

t exactly under Conjecture 4.3, we could calculate r? for n much bigger than those n in the case of

b? that will be presented in Table 4.

n r? t

24 70.0772 ((64), (212), (212))

28 69.5351 ((74), (214), (214))

32 69.1732 ((84), (216), (216))

36 68.9254 ((94), (218), (218))

40 68.7518 ((104), (220), (220))

44 68.6334 ((114), (222), (222))

48 68.5549 ((124), (224), (224))

Table 2. Under Conjecture 4.3, values of r? and t = ((k4), (22k), (22k)) for n = 4k such that

r? = r(t)
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Remark 4.4. The values of r? seem to keep decreasing though slowly. However, it is not clear

whether r? converges to a limit as n→∞.

Notice that we have a sufficient condition for g(t) = 0 by taking the contrapositive of (2.1):

(4.2) dν < |dλ − dµ| or dν > dλ + dµ =⇒ g(t) = 0.

As r? provides another sufficient condition for g(t) = 0 in (4.1), one may be curious about their

relationship. As a matter of fact, we observe that

r? < r(t) for any t satisfying the condition in (4.2).

Thus conditions in (4.1) and (4.2) for g(t) = 0 do not have overlaps. Let us look at pictures when

n = 12. In the graph of Figure 9, red dots and blue dots are as before, while a black dot at (x, 12)

corresponds to t ∈ P(12)3 satisfying the condition in (4.2) with r(t) = x and g(t) = 0. In the

histograms of Figure 9, the red region and blue region are as before, while the dark brown region

represents the numbers of t satisfying the condition in (4.2) and g(t) = 0.

Figure 9. Ranges of r-loadings where a black dot at (x, 12 ) corresponds to t ∈ P(12)3

satisfying the condition in (4.2) with r(t) = x and g(t) = 0 and histograms of r-loadings where

the dark brown region represents the numbers of t satisfying the condition in (4.2) and g(t) = 0.

4.2. b-loadings results. In Table 3, we record b? and t = (λ, µ, ν) such that b? = b(t) and

λ ≥ µ ≥ ν lexicographically, for 6 ≤ n ≤ 20. When there are more than one t such that b? = b(t),

we only record the lexicographically smallest one. (Recall (2.2).) For example, when n = 16, we

have b? = b(t1) = b(t2) = b(t3) with

t1 = [(10, 3, 2, 1), (10, 3, 2, 1), (5, 3, 2, 16)],

t2 = [(10, 3, 2, 1), (9, 3, 2, 1, 1), (4, 3, 2, 17)],

t3 = [(5, 3, 2, 16), (4, 3, 2, 17), (4, 3, 2, 17)],

and only t3 is recorded in the table.
12



n b? λ µ ν

6 59.7812 (2, 2, 1, 1) (2, 2, 1, 1) (2, 2, 1, 1)

7 47.9477 (3, 3, 1) (3, 1, 1, 1, 1) (3, 1, 1, 1, 1)

8 54.6650 (3, 2, 1, 1, 1) (3, 2, 1, 1, 1) (2, 2, 1, 1, 1, 1)

9 39.8213 (3, 2, 1, 1, 1, 1) (3, 2, 1, 1, 1, 1) (3, 2, 1, 1, 1, 1)

10 46.6592 (4, 2, 14) (3, 2, 15) (3, 2, 15)

11 44.4953 (6, 15) (6, 15) (4, 3, 3, 1)

12 47.3571 (3, 3, 2, 14) (3, 3, 2, 14) (3, 3, 2, 14)

13 45.1104 (4, 3, 2, 14) (3, 3, 2, 15) (3, 3, 2, 15)

14 44.9312 (4, 3, 2, 15) (4, 3, 2, 15) (3, 3, 2, 16)

15 40.3916 (4, 3, 2, 16) (4, 3, 2, 16) (4, 3, 2, 16)

16 41.7064 (5, 3, 2, 16) (4, 3, 2, 17) (4, 3, 2, 17)

17 43.4181 (5, 3, 2, 17) (4, 3, 2, 2, 16) (4, 3, 2, 2, 16)

18 44.1817 (4, 4, 2, 2, 16) (4, 4, 2, 2, 16) (4, 4, 2, 2, 16)

19 44.3797 (5, 4, 2, 2, 16) (4, 4, 2, 2, 17) (4, 4, 2, 2, 17)

20 43.7424 (5, 4, 2, 2, 17) (4, 4, 3, 2, 17) (4, 4, 3, 2, 17)

Table 3. Values of b? and t = (λ, µ, ν) such that b? = b(t)

Based on the results in Table 3—in particular, on the results of n = 6, 9, 12, 15, 18 as written in

blue—we make the following conjecture.

Conjecture 4.5. For n ≥ 6, the values b? are attained by t = (λ, µ, ν) such that λ = µ or µ = ν.

Moreover, when n = 3k, k ≥ 2, the values b? are attained by t = (λ, µ, ν) such that λ = µ = ν.

As an exhaustive computation for all possible triples becomes exponentially expensive, we assume

that Conjecture 4.5 is true for n = 3k and continue computation. The results are in Table 4.

n b? λ = µ = ν

21 45.0545 (5, 4, 2, 2, 18)

24 43.7126 (5, 4, 3, 2, 2, 18)

27 44.0699 (5, 5, 3, 3, 2, 19)

30 45.0141 (5, 5, 4, 3, 2, 2, 19)

33 44.7615 (6, 6, 4, 3, 2, 112)

36 44.3350 (6, 6, 4, 3, 23, 111)

Table 4. Under Conjecture 4.5, values of b? and t = (λ, λ, λ) for n = 3k such that b? = b(t)

Remark 4.6. The values of b? seem to be fluctuating with decreasing amplitudes as n increases.

However, it is not clear if b? converges as n→∞.
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Appendix A. Table of Loadings

We tabulate the r-loading rλ and b-loading bλ of each partition λ ∈ P(n) for 6 ≤ n ≤ 12.

λ rλ bλ
(6, 0, 0, 0, 0, 0) 100.0 100.0
(5, 1, 0, 0, 0, 0) 85.8934 37.252

(4, 2, 0, 0, 0, 0) 71.7868 19.9271

(4, 1, 1, 0, 0, 0) 66.6591 4.363
(3, 3, 0, 0, 0, 0) 57.6803 43.005

(3, 2, 1, 0, 0, 0) 52.5526 0.0
(3, 1, 1, 1, 0, 0) 45.2311 4.363

(2, 2, 2, 0, 0, 0) 33.3183 43.005

(2, 2, 1, 1, 0, 0) 31.1245 19.9271
(2, 1, 1, 1, 1, 0) 22.8133 37.252

(1, 1, 1, 1, 1, 1) 0.0 100.0

(7, 0, 0, 0, 0, 0, 0) 100.0 100.0
(6, 1, 0, 0, 0, 0, 0) 88.302 47.507
(5, 2, 0, 0, 0, 0, 0) 76.604 26.483

(5, 1, 1, 0, 0, 0, 0) 72.8338 13.1061
(4, 3, 0, 0, 0, 0, 0) 64.906 36.928
(4, 2, 1, 0, 0, 0, 0) 61.1358 0.0
(4, 1, 1, 1, 0, 0, 0) 55.5306 1.81

(3, 3, 1, 0, 0, 0, 0) 49.4378 21.735
(3, 2, 2, 0, 0, 0, 0) 45.6676 21.735
(3, 2, 1, 1, 0, 0, 0) 43.8326 0.0

(3, 1, 1, 1, 1, 0, 0) 37.3978 13.1061
(2, 2, 2, 1, 0, 0, 0) 28.3644 36.928
(2, 2, 1, 1, 1, 0, 0) 25.6998 26.483
(2, 1, 1, 1, 1, 1, 0) 18.7933 47.507
(1, 1, 1, 1, 1, 1, 1) 0.0 100.0

(8, 0, 0, 0, 0, 0, 0, 0) 100.0 100.0
(7, 1, 0, 0, 0, 0, 0, 0) 90.5921 58.055

(6, 2, 0, 0, 0, 0, 0, 0) 81.1842 35.198
(6, 1, 1, 0, 0, 0, 0, 0) 77.6539 28.246
(5, 3, 0, 0, 0, 0, 0, 0) 71.7763 34.854
(5, 2, 1, 0, 0, 0, 0, 0) 68.2461 9.7331

(5, 1, 1, 1, 0, 0, 0, 0) 63.194 12.637
(4, 4, 0, 0, 0, 0, 0, 0) 62.3685 48.552
(4, 3, 1, 0, 0, 0, 0, 0) 58.8382 15.265

(4, 2, 2, 0, 0, 0, 0, 0) 55.3079 15.265
(4, 2, 1, 1, 0, 0, 0, 0) 53.7861 0.0
(4, 1, 1, 1, 1, 0, 0, 0) 47.8449 12.637
(3, 3, 2, 0, 0, 0, 0, 0) 45.9 30.531

(3, 3, 1, 1, 0, 0, 0, 0) 44.3782 15.265
(3, 2, 2, 1, 0, 0, 0, 0) 40.8479 15.265
(3, 2, 1, 1, 1, 0, 0, 0) 38.437 9.7331
(3, 1, 1, 1, 1, 1, 0, 0) 32.0837 28.246
(2, 2, 2, 2, 0, 0, 0, 0) 26.3879 48.552

(2, 2, 2, 1, 1, 0, 0, 0) 25.4988 34.854
(2, 2, 1, 1, 1, 1, 0, 0) 22.6758 35.198

(2, 1, 1, 1, 1, 1, 1, 0) 16.0886 58.055
(1, 1, 1, 1, 1, 1, 1, 1) 0.0 100.0

(9, 0, 0, 0, 0, 0, 0, 0, 0) 100.0 100.0
(8, 1, 0, 0, 0, 0, 0, 0, 0) 91.876 62.802

(7, 2, 0, 0, 0, 0, 0, 0, 0) 83.7521 39.559

(7, 1, 1, 0, 0, 0, 0, 0, 0) 80.9205 33.587
(6, 3, 0, 0, 0, 0, 0, 0, 0) 75.6281 34.591

(6, 2, 1, 0, 0, 0, 0, 0, 0) 72.7965 13.273

(6, 1, 1, 1, 0, 0, 0, 0, 0) 68.4825 16.425
(5, 4, 0, 0, 0, 0, 0, 0, 0) 67.5041 42.455

(5, 3, 1, 0, 0, 0, 0, 0, 0) 64.6726 12.1941

(5, 2, 2, 0, 0, 0, 0, 0, 0) 61.841 12.1941

λ rλ bλ
(5, 2, 1, 1, 0, 0, 0, 0, 0) 60.3586 0.0

(5, 1, 1, 1, 1, 0, 0, 0, 0) 55.3152 10.278
(4, 4, 1, 0, 0, 0, 0, 0, 0) 56.5486 26.205
(4, 3, 2, 0, 0, 0, 0, 0, 0) 53.7171 17.261

(4, 3, 1, 1, 0, 0, 0, 0, 0) 52.2346 5.067
(4, 2, 2, 1, 0, 0, 0, 0, 0) 49.4031 5.067
(4, 2, 1, 1, 1, 0, 0, 0, 0) 47.1912 0.0

(4, 1, 1, 1, 1, 1, 0, 0, 0) 41.7289 16.425
(3, 3, 3, 0, 0, 0, 0, 0, 0) 42.7616 39.778
(3, 3, 2, 1, 0, 0, 0, 0, 0) 41.2791 17.261
(3, 3, 1, 1, 1, 0, 0, 0, 0) 39.0672 12.1941

(3, 2, 2, 2, 0, 0, 0, 0, 0) 36.9651 26.205
(3, 2, 2, 1, 1, 0, 0, 0, 0) 36.2357 12.1941
(3, 2, 1, 1, 1, 1, 0, 0, 0) 33.6049 13.273

(3, 1, 1, 1, 1, 1, 1, 0, 0) 27.9202 33.587
(2, 2, 2, 2, 1, 0, 0, 0, 0) 23.7977 42.455
(2, 2, 2, 1, 1, 1, 0, 0, 0) 22.6494 34.591
(2, 2, 1, 1, 1, 1, 1, 0, 0) 19.7962 39.559

(2, 1, 1, 1, 1, 1, 1, 1, 0) 13.9854 62.802
(1, 1, 1, 1, 1, 1, 1, 1, 1) 0.0 100.0

(10, 0, 0, 0, 0, 0, 0, 0, 0, 0) 100.0 100.0
(9, 1, 0, 0, 0, 0, 0, 0, 0, 0) 93.0766 67.7441

(8, 2, 0, 0, 0, 0, 0, 0, 0, 0) 86.1532 45.12
(8, 1, 1, 0, 0, 0, 0, 0, 0, 0) 83.5036 41.476
(7, 3, 0, 0, 0, 0, 0, 0, 0, 0) 79.2298 36.947

(7, 2, 1, 0, 0, 0, 0, 0, 0, 0) 76.5802 20.739
(7, 1, 1, 1, 0, 0, 0, 0, 0, 0) 72.6788 23.437
(6, 4, 0, 0, 0, 0, 0, 0, 0, 0) 72.3065 39.542

(6, 3, 1, 0, 0, 0, 0, 0, 0, 0) 69.6568 15.044
(6, 2, 2, 0, 0, 0, 0, 0, 0, 0) 67.0072 15.044
(6, 2, 1, 1, 0, 0, 0, 0, 0, 0) 65.7554 5.179
(6, 1, 1, 1, 1, 0, 0, 0, 0, 0) 61.1395 14.455

(5, 5, 0, 0, 0, 0, 0, 0, 0, 0) 65.3831 49.1901
(5, 4, 1, 0, 0, 0, 0, 0, 0, 0) 62.7334 21.441
(5, 3, 2, 0, 0, 0, 0, 0, 0, 0) 60.0838 13.151

(5, 3, 1, 1, 0, 0, 0, 0, 0, 0) 58.832 3.286
(5, 2, 2, 1, 0, 0, 0, 0, 0, 0) 56.1824 3.286
(5, 2, 1, 1, 1, 0, 0, 0, 0, 0) 54.2161 0.0
(5, 1, 1, 1, 1, 1, 0, 0, 0, 0) 49.2041 14.455

(4, 4, 2, 0, 0, 0, 0, 0, 0, 0) 53.1604 24.72
(4, 4, 1, 1, 0, 0, 0, 0, 0, 0) 51.9086 14.862
(4, 3, 3, 0, 0, 0, 0, 0, 0, 0) 50.5108 27.307
(4, 3, 2, 1, 0, 0, 0, 0, 0, 0) 49.259 6.572
(4, 3, 1, 1, 1, 0, 0, 0, 0, 0) 47.2927 3.286

(4, 2, 2, 2, 0, 0, 0, 0, 0, 0) 45.3575 14.862
(4, 2, 2, 1, 1, 0, 0, 0, 0, 0) 44.6431 3.286

(4, 2, 1, 1, 1, 1, 0, 0, 0, 0) 42.2807 5.179
(4, 1, 1, 1, 1, 1, 1, 0, 0, 0) 37.0369 23.437
(3, 3, 3, 1, 0, 0, 0, 0, 0, 0) 39.686 27.307
(3, 3, 2, 2, 0, 0, 0, 0, 0, 0) 38.4341 24.72

(3, 3, 2, 1, 1, 0, 0, 0, 0, 0) 37.7197 13.151
(3, 3, 1, 1, 1, 1, 0, 0, 0, 0) 35.3573 15.044

(3, 2, 2, 2, 1, 0, 0, 0, 0, 0) 33.8182 21.441
(3, 2, 2, 1, 1, 1, 0, 0, 0, 0) 32.7077 15.044
(3, 2, 1, 1, 1, 1, 1, 0, 0, 0) 30.1135 20.739
(3, 1, 1, 1, 1, 1, 1, 1, 0, 0) 24.747 41.476
(2, 2, 2, 2, 2, 0, 0, 0, 0, 0) 22.2789 49.1901

(2, 2, 2, 2, 1, 1, 0, 0, 0, 0) 21.8828 39.542
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λ rλ bλ
(2, 2, 2, 1, 1, 1, 1, 0, 0, 0) 20.5405 36.947

(2, 2, 1, 1, 1, 1, 1, 1, 0, 0) 17.8237 45.12

(2, 1, 1, 1, 1, 1, 1, 1, 1, 0) 12.3875 67.7441
(1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 0.0 100.0

(11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 100.0 100.0
(10, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0) 93.8295 71.265

(9, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0) 87.6591 49.697
(9, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0) 85.397 46.624

(8, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0) 81.4886 39.924

(8, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0) 79.2265 26.3731
(8, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0) 75.8034 28.711

(7, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0) 75.3182 39.780

(7, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0) 73.0561 18.329
(7, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0) 70.794 18.329

(7, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0) 69.6329 10.1901

(7, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0) 65.58 17.872
(6, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0) 69.1477 45.913

(6, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0) 66.8856 20.801
(6, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0) 64.6236 12.90

(6, 3, 1, 1, 0, 0, 0, 0, 0, 0, 0) 63.4625 4.762

(6, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0) 61.2004 4.762
(6, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0) 59.4095 1.967

(6, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0) 54.969 14.412

(5, 5, 1, 0, 0, 0, 0, 0, 0, 0, 0) 60.7152 30.394
(5, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0) 58.4531 18.834

(5, 4, 1, 1, 0, 0, 0, 0, 0, 0, 0) 57.292 10.694

(5, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0) 56.191 21.014
(5, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0) 55.0299 2.795

(5, 3, 1, 1, 1, 0, 0, 0, 0, 0, 0) 53.2391 0.0

(5, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0) 51.6068 10.694
(5, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0) 50.977 0.0

(5, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0) 48.7986 1.967
(5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) 44.1465 17.872
(4, 4, 3, 0, 0, 0, 0, 0, 0, 0, 0) 50.0206 31.70

(4, 4, 2, 1, 0, 0, 0, 0, 0, 0, 0) 48.8595 13.4
(4, 4, 1, 1, 1, 0, 0, 0, 0, 0, 0) 47.0686 10.694
(4, 3, 3, 1, 0, 0, 0, 0, 0, 0, 0) 46.5974 15.6

(4, 3, 2, 2, 0, 0, 0, 0, 0, 0, 0) 45.4363 13.4
(4, 3, 2, 1, 1, 0, 0, 0, 0, 0, 0) 44.8065 2.795
(4, 3, 1, 1, 1, 1, 0, 0, 0, 0, 0) 42.6281 4.762

(4, 2, 2, 2, 1, 0, 0, 0, 0, 0, 0) 41.3834 10.694
(4, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0) 40.366 4.762
(4, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0) 37.9761 10.1901
(4, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0) 33.1883 28.711

(3, 3, 3, 2, 0, 0, 0, 0, 0, 0, 0) 37.0038 31.70
(3, 3, 3, 1, 1, 0, 0, 0, 0, 0, 0) 36.374 21.014
(3, 3, 2, 2, 1, 0, 0, 0, 0, 0, 0) 35.2129 18.834

(3, 3, 2, 1, 1, 1, 0, 0, 0, 0, 0) 34.1956 12.90

(3, 3, 1, 1, 1, 1, 1, 0, 0, 0, 0) 31.8056 18.329
(3, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0) 31.1599 30.394

(3, 2, 2, 2, 1, 1, 0, 0, 0, 0, 0) 30.7724 20.801
(3, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0) 29.5435 18.329
(3, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0) 27.0179 26.3731

(3, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0) 22.1582 46.624

(2, 2, 2, 2, 2, 1, 0, 0, 0, 0, 0) 20.549 45.913
(2, 2, 2, 2, 1, 1, 1, 0, 0, 0, 0) 19.9499 39.780
(2, 2, 2, 1, 1, 1, 1, 1, 0, 0, 0) 18.5853 39.924
(2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 0) 15.9878 49.697
(2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0) 11.0873 71.265

(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 0.0 100.0

(12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 100.0 100.0

(11, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 94.5958 74.832
(10, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 89.1916 54.707

λ rλ bλ
(10, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0) 87.0838 52.743
(9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 83.7874 43.844
(9, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0) 81.6796 33.490

(9, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0) 78.5079 35.703
(8, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 78.3831 41.257
(8, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0) 76.2754 23.775

(8, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0) 74.1676 23.775
(8, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0) 73.1037 17.598

(8, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0) 69.3148 24.48

(7, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 72.9789 44.246
(7, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0) 70.8711 22.913

(7, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0) 68.7634 15.785

(7, 3, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0) 67.6995 9.608
(7, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0) 65.5917 9.608

(7, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0) 63.9106 8.104

(7, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0) 59.7695 18.845
(6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 67.5747 50.894

(6, 5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0) 65.4669 28.138
(6, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0) 63.3591 17.15

(6, 4, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0) 62.2953 10.981

(6, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0) 61.2514 19.530
(6, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0) 60.1875 3.854

(6, 3, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0) 58.5064 2.350

(6, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0) 57.0159 10.981
(6, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0) 56.3986 2.350

(6, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0) 54.3653 4.700

(6, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0) 49.9969 18.845
(5, 5, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0) 57.9549 25.7881

(5, 5, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0) 56.8911 19.6111

(5, 4, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0) 55.8471 24.3081
(5, 4, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0) 54.7833 8.631

(5, 4, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0) 53.1022 7.127
(5, 3, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0) 52.6755 11.003
(5, 3, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0) 51.6117 8.631

(5, 3, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0) 50.9944 0.0
(5, 3, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0) 48.9611 2.350
(5, 2, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0) 47.8227 7.127

(5, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0) 46.8533 2.350
(5, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0) 44.5927 8.104
(5, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) 40.099 24.48

(4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0) 48.3351 38.25
(4, 4, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0) 47.2713 19.634
(4, 4, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0) 46.2074 17.2631
(4, 4, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0) 45.5902 8.631

(4, 4, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0) 43.5569 10.981
(4, 3, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0) 44.0997 19.634
(4, 3, 3, 1, 1, 0, 0, 0, 0, 0, 0, 0) 43.4824 11.003

(4, 3, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0) 42.4185 8.631

(4, 3, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0) 41.4491 3.854
(4, 3, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0) 39.1885 9.608

(4, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0) 38.6296 19.6111
(4, 2, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0) 38.2774 10.981
(4, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0) 37.0807 9.608

(4, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) 34.6948 17.598

(4, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0) 30.1207 35.703
(3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0) 35.5238 38.25
(3, 3, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0) 34.9065 24.3081
(3, 3, 3, 1, 1, 1, 0, 0, 0, 0, 0, 0) 33.9371 19.530
(3, 3, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0) 33.2254 25.7881

(3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0) 32.8732 17.15
(3, 3, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0) 31.6765 15.785

(3, 3, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) 29.2906 23.775
(3, 2, 2, 2, 2, 1, 0, 0, 0, 0, 0, 0) 29.0843 28.138
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λ rλ bλ
(3, 2, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0) 28.5049 22.913

(3, 2, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0) 27.1828 23.775

(3, 2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0) 24.7165 33.490
(3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0) 20.0998 52.743

(2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0) 19.539 50.894

(2, 2, 2, 2, 2, 1, 1, 0, 0, 0, 0, 0) 19.3117 44.246
(2, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0) 18.6069 41.257

(2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0) 17.2045 43.844

(2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0) 14.6956 54.707
(2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0) 10.0548 74.832

(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 0.0 100.0

References

[AHO] A. Ashmore, Y.-H. He, and B. A. Ovrut, Machine learning Calabi–Yau metrics, arXiv:1910.08605.
[B] K. Buzzard, What is the point of computers? A question for pure mathematicians, arXiv:2112.11598.
[CHKN] J. Carifio, J. Halverson, D. Krioukov, and B. D. Nelson, Machine learning in the string landscape, JHEP

157 (2017), no. 9.
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