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Abstract: We study charged black hole and wormhole solutions of Type 0A/IIA string
theory in two dimensions. There is a competition between Euclidean wormholes and near
extremal black holes in the thermodynamic ensemble. In a certain regime of phase space,
the former can disassociate into the latter. Since such solutions are of string scale near
the wormhole throat that takes an AdS2 form, there is a need for an exact worldsheet
description. We discuss relevant WZW coset models which we we argue will shed light on
this problem. Finally, we present appropriate versions of the Type 0A/IIA matrix quantum
mechanics models that are expected to describe these geometries.
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1 Introduction

The role of topologically non-trivial configurations in the gravitational path integral is
among the least understood problems in quantum gravity. Euclidean configurations such
as instantons are known to affect the vacuum structure of quantum field theories and the
same can be expected of gravitating objects such as wormholes or gravitational instantons.
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From a Lorentzian, real time perspective, given some initial configuration, whether
dynamics lead to non-trivial topologies is a question with far reaching consequences that
we have no conclusive answer to. For instance, should quantum gravitational dynamics
indeed lead to non-trivial topologies, such as the production of baby universes [1], it is
unclear whether and in what sense unitarity of the theory can be preserved. Should no
such configurations arise via quantum dynamics from the space of initial configurations,
the role of known Euclidean saddles with non-trivial topologies would then be suspended
in a state of indeterminacy. While several types of wormholes have been studied in various
low energy effective gravitational theories, little is known about their fate in a true UV
complete theory of quantum gravity (like string theory).

The aim of this article is to lay some ground work on this problem in simple examples of
string theory in two dimensions, namely Type 0A/IIA string theories that have microscopic
(UV complete) dual descriptions in the form of matrix quantum mechanics (MQM) models.
The target space low energy effective actions of these theories in two dimensions admit both
charged black hole and wormhole solutions. We demonstrate that in Euclidean signature,
there is a competition between a charged wormhole with cylindrical topology and two
factorised disks describing a pair of Euclidean charged near-extremal black holes. This leads
to an interesting physical interplay between charged wormholes and near-extremal black
holes and to different regimes and phases in which either can dominate in the gravitational
path integral.

The minimal mass that a stationary black hole can have is governed by the charge it
carries, Mext. ≥ Q.1 Extremal black holes saturate this bound whereas near-extremal ones
are close to saturating it. In the near-extremal limit, the temperature of the black hole
is driven to zero (whilst its entropy can remain finite). The super-extremal region that
violates the bound leaves behind a naked singularity which is a pathological background
that is forbidden by the “cosmic censorship conjecture”.

In Euclidean signature, this bound has a geometric and topological avatar. The Eu-
clidean black hole corresponds to a thermal background and therefore has a natural periodic
dimension parameterised by the thermal circle S1

β . Sub-extremal black hole solutions have
the topology of a Eucliden cigar times a transverse space: D2 × Σ, and the thermal circle
is the boundary of the cigar ∂D2 = S1

β . In the near-extremal limit, the disk acquires the
geometry of Euclidean AdS2 near its tip, whereas at exact extremality the temperature goes
to zero and the periodic identification is lost. Near-extremal black holes are very interesting
in that a conformal SL(2, R) symmetry emerges in their near horizon region that manifests
itself through the presence of the near horizon AdS2 factor.

Hawking evaporation of non-extremal black holes drives them towards extremality,
which in the near-extremal limit becomes very slow due to the infinitesimal temperature.

1Of course, this inequality depends on the space-time dimension of the problem and the various scales
in the corresponding gravitational action. For example, in four dimensions, we have that Mext. = Q/

√
GN .

In the two-dimensional case of interest, the scale is set by the string scale α′ and we have that Mext. =

Q/gs
√
2πα′ as we will show in eqn. (3.28). Similar relations hold for other extremal black holes in string

theory [2].
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On the other hand, Schwinger pair production can drive them away from extremality2 due
to a production of elementary charged particles (which violate the extremality bound by
virtue of not being black holes themselves—a basic observation behind the weak gravity
conjecture [3]), at the expense of electromagnetic energy. One may have been worried about
a potential competition between these effects leading to an invalidation of the thermal
regime. However, as the (string) coupling constant is tuned, it is well known that string
theory provides for new degrees of freedom that resolve this tension.3 Nevertheless, it is
fair to say that this fascinating interplay between thermal, quantum, and string effects is
not yet fully understood.

Instead of sub-extremal black holes, if we venture to consider the super-extremal limit,
a conceivable possibility is that while single black holes are indeed forbidden by strong
cosmic censorship, a bound state of charge-dipole objects forms. Then, the gravitationally
backreacted solutions would be wormholes, of which the most well known examples are of
the axionic kind [5–9] 4. In a sense, gravity can be thought to regulate the super-extremal
naked singularity via the wormhole throat, forcing the solution to either develop a second
asymptotic boundary or a handle between far separated regions of the same manifold. In
both cases, non trivial topology is induced.

Reversing this logic, wormholes are also expected to potentially fragment into semi-
wormholes [10], or to other (sub) extremal objects, either by perturbative or non-perturbative
processes. In some regime of phase space in an ensemble of these solutions, we may expect
the connected wormhole to be the dominant saddle of the gravitational path integral while
the factorised solutions to dominate in its complement.

This is indeed what happens in some two-dimensional string theories as we will show,
where the factorised solutions correspond to (near) extremal black holes. At exact ex-
tremality, they develop an infinite throat and can be thought of as regular versions of
semi-wormholes. The difference between the wormhole geometry and the factorised (near)
extremal black hole is that the geometry near the throat of the former is that of global AdS2,
while in the latter, it is that of the Rindler patch of AdS2 which gives rise to a horizon
(see appendix A for more details). In Euclidean signature, the difference is topologically
pronounced since the wormhole has the topology of a cylinder S1

β × I, while each near-
extremal black hole has the topology of a EAdS2 disk D2. So they correspond to different
compactifications of EAdS2 with distinct topological features. In the Gibbs ensemble, we
find a phase transition between the factorised and the connected wormhole saddles. This
phase transition is determined by the difference between the electrostatic energies of the

2However, see [18] for an analysis of Schwinger pair production in AdS2 where stability of exactly ex-
tremal background is argued for. What is instead possible is a fragmentation of AdS2 into various copies [19]
because there exists a plethora of charged BPS states which saturate the generalized Breitenlohner-
Freedman bound in AdS2 with background flux.

3For instance in theD1-D5 theory, microstates of BPS black holes are counted by the brane world-volume
theory with excitations in only one of the chiral sectors. Near-extremal entropy is accounted for by exciting
both sectors with a large degeneracy whilst preserving a yet larger hierarchy between the degeneracies in
the two sectors to keep the temperature low [84–86].

4Another example in higher dimensions is that of a “meron” wormhole, with two asymptotic regions
[11, 12]. In this case, a BPST instanton can be thought of as a bound state of a meron pair.
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two backgrounds Estatic = QΦ, where Q is the charge (measured in units of string length)
and Φ is the electric potential5. The transition is of first order since the first derivative
of the free energy with respect to Φ is discontinuous (as we compare solutions with the
same Q). This result is consistent with the coexistence of the two solutions and analo-
gous to a confinement-deconfinement transition (which can be seen as a dissociation of the
wormhole).

As we mentioned above, this phase transition is displayed by solutions to the equations
of motion of the target space low energy effective theory at leading order in α′. However,
the throat of the wormhole (even in the phase where it dominates) is found to be of string
scale. Therefore, it is natural to worry about its validity in the effective theory. A more
powerful analysis is needed to address the fate of the phase transition in the string regime.
In fact, a similar problem arises for the uncharged black hole solution, and is resolved
using an exact worldsheet CFT that describes the uncharged cigar geometry. This takes
the form of an SL(2, R)/U(1) coset Wess-Zumino-Witten (WZW) model [41] which has a
dual worldsheet description in terms of sine-Liouville theory [43, 44], that becomes weakly
coupled when the cigar radius is of string scale. In fact, variants of this coset describe
charged two dimensional black holes or an AdS2 geometry supported by flux.6 We describe
these cosets in section 5, and give some details on how they can be used to understand the
fate of our phase transition when string effects are included.

Even if we were to be provided with an exact worldsheet CFT description, finite string
coupling (quantum) effects are technically intractable. However, these two dimensional
theories often have a dual matrix model description. In principle, the dual matrix models
are to provide an exact description of the string theory backgrounds to all orders in α′ and
gs.

In fact, the interpretation of ĉ = 1 matrix quantum mechanics (MQM) models as
holographic duals of Type 0 string theories [21, 22] revitalized the role of two dimensional
string theories as useful models for understanding higher-dimensional examples of string
theory in non-trivial backgrounds. Two dimensional string theory provides a tractable
system, where string dynamics can be studied exactly using the connection with the MQM
model. The Type 0A MQM model we shall be interested in, is defined as a theory of complex
random matrices which describe open string (tachyon) degrees of freedom in a D0 − D0

brane-antibrane system. This model does not suffer from non-perturbative instabilities
encountered in the bosonic string theory and corresponds to a consistent unitary theory
(the same holds for the other variant - the Type 0B model).

The primary obstacle, though, is that the singlet sector of the MQM models does not
capture the large classical entropy of near extremal black holes. This issue has also been
observed in the bosonic version of c = 1 Liouville string theory, for which the matrix model
only describes the linear dilaton background, while an uncharged version of the black hole
is understood from the perspective of the WZW coset worldsheet CFT and its dual sine-

5In our analysis we assume very low temperatures so that the black hole is near extremal and has an
AdS2 near horizon region. Far away from extremality our results cease to be valid and finite temperature
effects become important.

6These are either super-cosets or asymmetrically gauged cosets.
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Liouville theory, that led to an identification of the dual MQM model [23–25, 44, 59, 60].
In analogy with the uncharged case, we expect that the correct model should be some
extended version of the gauged Type 0A MQM model, with additional fields that source
its non-singlet sectors7 as we discuss in section 6.1.

Another clue in this endeavor comes from the emergent conformal SL(2, R) symmetry
in the near-horizon AdS2 region. This points to a microscopic dual of conformal quantum
mechanics for which there exist various proposals in the literature. A typical problem with
these models is that they suffer from the absence of a well defined ground state. In well
defined microscopic models of matrix quantum mechanics, such as the Type 0A MQM model
that we discuss in section 6.1, the AdS2 part of the geometry is glued to an asymptotically
flat region. A well defined ground state for these models does indeed exist. At finite N , the
potential is quartic and stable. A certain double scaling limit, however, “zooms in” to the
unstable region of the potential. Since the elementary degrees of freedom are fermionic in
nature, there is nevertheless a well defined Fermi sea description of the ground state and
low energy excitations thereof.8

In addition to providing a complete non-perturbative description of the target space
backgrounds, the dual matrix models in the double-scaling limit often make several com-
plementary aspects of the physics easier to understand. For instance, precisely because we
are interested in two dimensional target space backgrounds, it is very important to dis-
tinguish between the worldsheet and target space topologies as first emphasised in [20].
In string theory, the double scaled matrix model duals typically describe a resummation
over all worldsheet topologies. From this perspective their dual two dimensional gravity
models can be thought of as proper, UV complete worldsheet CFTs. On the other hand, as
we already emphasised, an interesting open problem is to describe strings propagating on
target space wormhole backgrounds. This necessitates two different notions of topological
expansion [20]. A construction involving simple matrix quantum mechanics models that
appears to achieve this was proposed in [13] which was extended and generalised to higher
dimensional examples in [14, 15]. This construction crucially involves non-trivial represen-
tations of the gauge group of the microscopic model9, a fact that will also play an important
role in the present work.

We organise this paper as follows. We begin with a description of the worldsheet and
target space actions of the relevant string theories in two dimensions in section 2. We study

7The complete model should be appropriately gauged since it governs the dynamics of combinations of
D-branes. From the perspective of only the D0 −D0 branes, it may appear effectively ungauged as there
exist additional bifundamental strings/fields that connect them with a stack of D1/FZZT branes. When
these bifundamentals are integrated out in the path integral, they activate additional (non-singlet) degrees
of freedom of the D0−D0 subsystem [24, 25].

8The discreteness of the spectrum is of course lost in the double scaling limit which is reflected in the
forgetting of the tails of the potential that complete the unstable region. The resulting instability is indeed
necessary for recovering a continuous worldsheet and a description of scattering processes in asymptotically
flat spacetimes.

9Non trivial representations were important in the analysis of MQM models of non-trivial backgrounds
of Liouville string theory involving condensates of long strings [23–25, 44, 59, 60], that are related to the
coset black hole, as we alluded to above.
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the most general tachyon-free, static solutions to the target space equations of motion in
section 3. Then, we describe the thermodynamics of these solutions and demonstrate the
phase transition between the asymptotically AdS2 disconnected and connected saddles, in
section 4. In the same section, we show that this result generalises to the asymptotically flat
case by gluing asymptotically flat charged near-extremal black holes to both the connected
and disconnected saddles. This gluing respects the necessary junction conditions without
the need for any new insertions of stress-energy on the gluing surfaces due to the AdS2
nature of the near horizon region. In section 5, we describe some proposals for an exact
coset description of global AdS2 with a cylinder topology supported by a U(1) flux. In
section 6.1 we analyse the microscopic Type 0A MQM model and its non-singlet versions
that are likely to describe the solutions of our concern. Then in section 6.2, we describe
the conjectured relationship between the Type IIA string theory in two dimensions and a
supersymmetric MQM model of the Marinari-Parisi type. We lay emphasis on a version
of the model that should be relevant for the description of near extremal black holes and
wormholes. We conclude with a summary and some open questions in section 7.

2 Worldsheet and Target space actions

Various low energy effective actions of two-dimensional string theory descend from Liouville
string theory with varying amount of supersymmetry10. The bosonic c = 1 Liouville string
gives rise to a bosonic effective action. The ĉ = 1 super-Liouville string with N = 1

supersymmetry comes in two basic flavours, namely Type 0A and Type 0B [21], which
result in corresponding low energy theories.

Finally one can also study super-Liouville theory with extended N = 2 supersymmetry
as yet another variant. The N = 2 super-Liouville theory though, is quite different from its
N = 0, 1 counterparts. A major distinction is the nonrenormalization of the cosmological
constant operator/background charge Q = 1/b and the consequent disappearance of the
c = 1 barrier, meaning that one can use the N = 2 super-Liouville theory as an “internal
SCFT” in more general d > 2 superstring theory settings. Moreover in the context of two
dimensional superstrings, the time direction is involved both in the N = 2 algebra as well
as in the Liouville interaction on the worldsheet [27, 28]. This also makes the target space
interpretation of this theory much more involved.

Since the construction of N = 2 super-Liouville theory is substantially more compli-
cated, we review here only the N = 1 case and refer the reader to [29] and references within.
In section 2.2, we review the bosonic part of the low energy effective actions, focusing in
the Type 0A/IIA theories11.

2.1 Worldsheet actions for N = 1 theories

We begin with the worldsheet description of the N = 1 super-Liouville theory coupled to a
matter superfield X. The action contains the pure super-Liouville action governed by the

10The most complete review of the various versions of Liouville theory and their dual MQM models is [29].
11The low energy effective action of Type 0A for zero tachyon, has the same form as the bosonic part of

the low energy effective action of two dimensional type IIA string theory [30, 68].
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superfield Φ in addition to the action governing the matter field X. Written in superspace,
the total action is given by [21]:

S = SM [X] + SL [Φ]

=
1

4π

∫
d2zd2θDXDX̄ +

1

4π

∫
d2zd2θ

[
DΦD̄Φ+ 2iµ0e

bΦ
]
. (2.1)

We write the superspace decomposition of the superfields as

Φ = ϕ̃+ iθψ + iθ̄ψ̄ + iθθ̄F and X = x+ iθχ+ iθ̄χ̄+ iθθ̄G . (2.2)

Here, ϕ̃ is the Liouville field and ψ is its superpartner whereas x is the matter boson with
the superpartner χ. The auxiliary fields F and G complete the superspace expansions.
The superspace is spanned by the Grassmann coordinates θ, θ̄ whereas z, z̄ parametrise the
bosonic string worldsheet coordinates. The super-covariant derivatives D are defined as:

D =
∂

∂θ
+ θ∂z, D̄ =

∂

∂θ̄
+ θ̄∂̄z̄, and {D,D} = 2∂z,

{
D̄, D̄

}
= 2∂̄z̄. (2.3)

The super-Liouville worldsheet theory is an N = 1 superconformal field theory with central
charge

ĉL = 1 + 2Q2 with Q = b+ 1/b . (2.4)

For the linear dilaton background, the central charge for the Liouville sector is fixed by
b = 1 which implies that ĉL = 9. This in turn ensures that the matter theory with ĉM = 1

results in the necessary total central charge to cancel the Weyl anomaly [21].
In general, a consistent worldsheet theory (ensuring locality of the OPE and modular

invariance of the torus partition function) needs an appropriate GSO projection that retains
only an appropriate subset of vertex operators. The type 0 string theories that we are
interested in admit a non-chiral (−1)F GSO projection. Upon such a projection, there are
no (R−NS) or (NS −R) sectors in the closed string and hence the target space fields are
purely bosonic. The allowed sectors are then

(NS−, NS−)⊕ (NS+, NS+)⊕ (R+, R−)⊕ (R−, R+) , (type 0A) ,

(NS−, NS−)⊕ (NS+, NS+)⊕ (R+, R+)⊕ (R−, R−) , (type 0B) , (2.5)

where the ± refer to worldsheet fermion parity.
While the worldsheet theory (2.1) contains superfields with worldsheet fermions, the

resulting target space fields are purely bosonic upon projection. In two dimensions, there
are no transverse string oscillations12 and therefore, the only physical state in the NS-
NS-sector is the (massless) tachyon. The RR sector, on the other hand, has two vector
(one-form) fields A± in the Type-0A theory, and a scalar C in the Type-0B theory13.

12Except for some special discrete states [82], at special values of momenta, corresponding to non-
normalisable deformations.

13In this case there is also a pair of two-forms C±
2 , but these do not give rise to a propagating field theory

degree of freedom.
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2.2 Low energy effective actions

With the worldsheet theory behind us, we now move on to the low energy effective actions
that describe the (target space) field theoretic degrees of freedom of (2.1).

2.2.1 Dilaton - Tachyon sectors in Type 0A/0B

The low energy effective actions, at leading order in α′, of Type 0A/0B Liouville string
theory contain a common Dilaton/Tachyon part

Sbos. =

∫
d2x

√
−Ge−2ϕ

(
R+ 4(∇ϕ)2 + c̃− (∇T )2 − V (T )

)
, (2.6)

with c̃ = 8/α′. The dilaton ϕ measures the string coupling and T is the closed string
tachyon referred to earlier. The tachyon potential is unstable near T = 0, admitting an
expansion V (T ) = − 2

α′T 2+O(T 3). While the precise form of the O(T 3) term is somewhat
ambiguous, the solutions of our interest in this paper have an exactly vanishing tachyon and
this ambiguity does not play any role. Upon analytically continuing the time coordinate
t→ iτ , the corresponding Euclidean effective action reads

SEbos. =

∫
d2x

√
Ge−2ϕ

(
−R− 4(∇ϕ)2 − c̃+ (∇T )2 + V (T )

)
. (2.7)

2.2.2 Type 0B action

As mentioned earlier, the 0B two-dimensional string has an additional RR scalar (axion)
field C in its low energy effective action. Its contribution to the action is [21, 37]

S0B
RR = −1

2

∫
d2x

√
−Ge−2T (∇C)2 , (2.8)

and enjoys a perturbative (axionic) shift symmetry. This symmetry is expected to be
violated by non-perturbative instanton effects in analogy with higher dimensional examples.

Restricting ourselves to solutions with a vanishing tachyon background T = 0 requires
us to also impose (∇C)2 = 0 in order to satisfy the tachyon equation of motion. The
resulting equations of motion of the theory coincide with those of the CGHS model [40] in
the presence of an (axionic) scalar

SCGHS+scalar =

∫
d2x

√
−Ge−2ϕ

(
R+ 4(∇ϕ)2 + c̃

)
− 1

2

∫
d2x

√
−G(∇C)2 . (2.9)

2.2.3 Type 0A action

In contrast to the 0B theory, the 0A two-dimensional string effective action contains two
one-form fields in the RR sector in addition to the bosonic theory (2.6). Their contribution
to the action is expressed in terms of two-form fluxes F± as

S0A
RR = −(2π)α′

4

∫
d2x

√
−G

[
e−2T (F−)2 + e2T (F+)2

]
. (2.10)

S-duality interchanges the two fluxes while T-duality relates the 0A theory with the 0B

theory. The tachyon tadpoles are opposite for each type of flux. For these reasons it is
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natural to think of F± as being electric and magnetic duals. The Euclidean action for 0A

is given by eqn.(2.7) together with

S0A,Eucl.
RR =

(2π)α′

4

∫
d2x

√
G
[
e−2T (F−)2 + e2T (F+)2

]
. (2.11)

where one also rotates each gauge field AL0 → ±iAE0 for consistency.
In this paper, our interest is in general Euclidean and Lorentzian solutions of the type-

0A string effective action, in the presence of a non-trivial dilaton and gauge field background.
In addition to the ambiguity in the form of the tachyon potential, analytic solutions with
non-trivial tachyon backgrounds are difficult to construct and therefore, we will restrict our
attention to vanishing tachyon backgrounds. Solutions with a trivial tachyon T = 0 are
consistent when the two fluxes (field strengths) are equal, so that the total tachyon tadpole
(linear term) is zero. Then, the gauge field low energy effective action can effectively be
replaced by

S0A
eff = −(2π)α′

2

∫
d2x

√
−GFµνFµν , (2.12)

keeping in mind that it descends from two gauge fields with equal flux.

2.2.4 The type IIA/trivial tachyon 0A effective action

The complete effective theory that we shall use in the rest, is given by the sum of (2.7) and
(2.12). Its Euclidean version is

SEeff. =

∫
d2x

√
Ge−2ϕ

(
−R− 4(∇ϕ)2 − c̃

)
+

(2π)α′

2

∫
d2x

√
GFµνFµν , (2.13)

where the Euclidean rotation of the gauge field is again implicit. This low energy effective
action, is not only the low energy effective action of Type 0A for zero tachyon, but also
the bosonic part of the low energy effective action of two dimensional type IIA string
theory [30, 68]. So any solutions we shall find in the rest can be also embedded in type IIA.
It can also be seen as an extension of the action of CGHS gravity by an additional U(1)

gauge field14. If the gauge field is integrated out, the resulting effective action can also be
thought of as that of the CGHS model with a deformed potential for the dilaton [31].

The equations of motion of the Euclidean type 0A effective action governed by (2.6)
and (2.13) are

0 = ∇µF
µν ,

0 = R+ 4∇2ϕ− 4(∇ϕ)2 + c̃ ,

0 = Gµν =
1

2
gµν(c̃+ 4∇2ϕ− 4(∇ϕ)2)− 2∇µ∇νϕ+

+ (2πα′)e2ϕ
(
Fµ

λFλν −
1

4
gµνF

λρFρλ

)
. (2.14)

These equations correspond to the string theory equations of motion (to leading order in
α′) that arise from the vanishing of the worldsheet beta functions.

14As we will show, the non trivial backgrounds with only radial dependence actually turn out to be
constant RR flux backgrounds of the respective string theories.
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3 Solutions

The most convenient ansatz to obtain an analytic form of general solutions with only a radial
dependence is of a Schwarzschild type [30, 32]. As we will show, this has the additional
advantage that the dilaton takes a linear form and the flux permeating the manifold is
simply a constant.15 The (Euclidean) Schwarzschild ansatz for the solutions is taken to be
the following:

ds2 =
dρ2

l(ρ)
+ l (ρ) dθ2 , (3.1)

ϕ (ρ, θ) = ϕ (ρ) (3.2)

Fµν = q (ρ) ϵµν , (3.3)

where ϵρθ = +1. In some of the solutions that we study, we will also take the coordinate θ to
be periodic with period β. It is straightforward to obtain the corresponding Lorentzian so-
lutions upon analytic continuation of θ = it. With this ansatz, the non-vanishing equations
of motion are

0 = ∇µF
µν

= ϵρνq′(ρ) , (3.4)

0 = R+ 4∇2ϕ− 4(∇ϕ)2 + c̃

= − l′′ + 4lϕ′′ + 4l′ϕ′ − 4l
(
ϕ′
)2

+ c̃ , (3.5)

0 = Gρρ

=
c̃

2l
+ 2

l′ϕ′ + lϕ′′

l
− 2(ϕ′)2 − 2ϕ′′ − l′ϕ′

l
− (πα′)e2ϕ

q2

l
, (3.6)

0 = Gθθ

=
c̃l

2
+ 2l(l′ϕ′ + lϕ′′)− 2l2(ϕ′)2 − ll′ϕ′ − (πα′)e2ϕlq2 , (3.7)

where we used the notation that ′ = d/dρ. We observe that the Maxwell equations (3.4)
imply that q(ρ) = q is a constant. The two Einstein equations are mutually consistent if

ϕ′′ = 0 ⇒ ϕ = ϕ0 + ϕ1ρ , (3.8)

where ϕ0, ϕ1 are integration constants. Thus, the dilaton is linear or constant in this gauge
and its equation of motion becomes

−l′′ + 4l′ϕ1 − 4lϕ21 + c̃ = 0 . (3.9)

The most general solution for the emblackening factor that solves this equation is

l(ρ) =
c̃

4ϕ21
+ e2ϕ1ρ+2ϕ0(c1 + ρc2) , (3.10)

15In appendix B, we discuss conformally flat and domain wall ansätze.
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where c1 and c2 are integration constants. Combining the dilaton equation (3.5) with
either of the Einstein equations (3.6) or (3.7) together with (3.8) yields another differential
equation for the emblackening factor

l′′ − 2l′ϕ1 − (2πα′)q2e2ϕ1ρ+2ϕ0 = 0 , (3.11)

which can be used to fix one of the integration constants in the above solution. To see this,
we first integrate this equation once to obtain16

d

dρ

(
e−2ϕ1ρ−2ϕ0 l′ − c3 − 2πα′q2ρ

)
= 0 or e−2ϕ1ρ−2ϕ0 l′ − 2πα′q2ρ = c3 . (3.12)

Integrating this again, we find

l (ρ) = c4 + e2ϕ1ρ+2ϕ0

(
c3
2ϕ21

+
πα′q2

ϕ1
ρ− πα′q2

2ϕ21

)
. (3.13)

This solution must necessarily be the same as (3.10). Therefore, we see that one of the
integration constants can be eliminated in that solution to find

l(ρ) =
c̃

4ϕ21
+ e2ϕ1ρ+2ϕ0

(
c1 +

πα′q2

ϕ1
ρ

)
. (3.14)

Demanding that the metric asymptotically approaches that of flat space is the same as
requiring l(ρ) → 1 as we approach the boundary. For positive (negative) ρ, we see that
a negative (positive) value of ϕ1 eliminates the contribution of the second term in the
emblackening factor in (3.14). This implies that

ϕ1 = ±
√
c̃

2
if the boundary is at ρ = ∓∞ . (3.15)

In what follows, we choose our boundary to be at ρ → −∞ for definiteness, which in turn
forces us to pick the positive sign for the solution of ϕ1 in (3.15). Since the Dilaton blows
up as ρ → +∞, in order for the solution to be regular, it must smoothly cap off at some
ρh. The simplest example of a pathological case is flat space with a linear dilaton (which
is a solution when c1 = 0 = q). The resulting blow-up of the dilaton as ρ → +∞ means
that the string coupling becomes infinite17. The dilaton may also blow up when c1 > 0. In
this case, the Ricci scalar R = −l′′(ρ) approaches negative infinity as ρ → ∞, resulting in
a naked curvature singularity.

On the other hand, when c1 < 0, the metric in eqn. (3.1) specified by (3.14) in
Lorentzian signature (t = iθ) generically describes a charged asymptotically flat black
hole with the inner and outer horizons given by the two zeros ρ±h of l(ρ) = 0 [30], [37]. This
is a two dimensional analogue of the Reissner-Nordstrom black hole in higher dimensions.
In Euclidean signature, it has the topology of a cigar, whose asymptotic region we take to

16This condition has appeared in the literature in the Lorentzian analysis of [30]. As we will see in sec.
4 (in eqn. (4.13)), it leads to a conserved quantity that is related to the regularised on-shell action.

17There is a well-known cure to this problem which is to turn the tachyon background on in such a way
that the strongly coupled region is “shielded”. See section 6.1 and the conclusions for more details on this.
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be at ρ→ −∞, that smoothly caps off at the location of the outer horizon ρ+h . In this case
it is physically natural to fix the integration constant for the linear dilaton, by fixing the
value of the Dilaton at the tip of the geometry. Therefore, we may parameterise it as

ϕ(ρ) = ϕtip +

√
c̃

2
(ρ− ρ+h ) , where ϕ0 = ϕtip −

√
c̃

2
ρ+h . (3.16)

Then, the emblackening factor can be expressed as

l(ρ) = 1 + e
√
c̃(ρ−ρ+h )+2ϕtip

(
c1 +

2πα′q2√
c̃

ρ

)
. (3.17)

This is the form that we will use in the rest of this article. The location of the tip (outer
horizon) is then found to be at

ρ+h = −
√
c̃
c1 + e−2ϕtip

2α′πq2
, (3.18)

while that of the inner horizon is found to be given in terms of the Lambert-W function
W (z) as

ρ−h = − c1
√
c̃

2α′πq2
+

1√
c̃
W

− c̃e
−2ϕtip−

c̃ exp(−2ϕtip)

2πα′q2

2πα′q2

 . (3.19)

Furthermore, we find that l(ρ) has a single minimum, at say ρ∗, where l′(ρ∗) = 0 and
l(ρ∗) ≤ 0. This tells us that

ρ+h ≤ ρ∗ = − 1√
c̃
− c1

√
c̃

2πα′q2
. (3.20)

Using (3.18), we also find that

q2 ≤ c̃e−2ϕtip

2πα′ . (3.21)

Saturation of this inequality results in an extremal limit for the black hole that we will
analyse in the next section.

The periodicity, β, of the thermal circle can also be fixed in terms of the other pa-
rameters of the solution if we demand that the solution caps off smoothly at the tip. In
particular, the temperature of the black hole is given by

T =
1

4π
|l′(ρ)|ρ+h =

c̃− 2πα′q2e2ϕtip

4π
√
c̃

. (3.22)

Using the Killing isometry with respect to ∂θ, the ADM mass MBH of the black hole
background can be found to be [41, 42]

MBH =
√
c̃e−2ϕtip . (3.23)

Similarly one can determine the charge of the background (see eqn. (4.7)) to be

Q = 2πα′q . (3.24)
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With the asymptotic region at ρ → −∞, taking the flux to be vanishing (q → 0) implies
that c1 = −e−2ϕtip as can be seen from demanding that the emblackening factor vanishes
at the horizon. The emblackening factor is then found to become

l(ρ) = 1− e
√
c̃(ρ−ρh) , (3.25)

which is precisely the metric for the uncharged two dimensional black hole [41]. Its mass
and (fixed) temperature acquire a simple form

Muncharged
BH =

√
c̃e−2ϕtip , T =

√
c̃

4π
=

1√
2α′

. (3.26)

The uncharged black hole is a string scale black hole, whose complete analysis requires an
exact worldsheet CFT description18. On the other hand, as we observe from eqn. (3.22),
the charged black hole can acquire a much larger size/radius for small enough temperatures
T , suppressing string corrections away from the tip. This is precicely the near extremal
limit.

3.1 The extremal limit

The extremal limit of the charged black hole described above is achieved by demanding
that the two zeroes of l(ρ) coincide resulting in a vanishing temperature. In this limit, we
find that l (ρh) = 0 = l′ (ρ) |ρ=ρh which implies

c̃ = 2πα′q2e2ϕh . (3.27)

Here, we labelled ϕtip as ϕh for reasons to be explained shortly. This expression gives the
maximum allowed value of flux q that supports an extremal background (for a given mass).
One observes then from (3.22) that the equality leads to an exactly zero temperature T .
Furthermore fixing the charge Q = 2πα′q (see eqns. (4.7) and (4.6) ), one finds the minimal
extremal black hole mass to be

Mext. =
Q

gs
√
2πα′

, gs = eϕh . (3.28)

In the near horizon region defined by
ρ− ρh
ρh

≪ 1 , (3.29)

the extremal black hole metric takes the form

ds2 ≃ c̃

2
(ρ− ρh)

2dθ2 +
2

c̃

dρ2

(ρ− ρh)2
, (3.30)

which can be mapped into Poincare AdS coordinates as

ds2 ≃ 2

c̃z2

(
dz2 +

c̃2

4
dθ2
)
. (3.31)

We notice that this exactly extremal metric does not cap off in the IR, but has an infinite
throat. Therefore, there is no actual tip in this geometry and hence the relabelling of ϕtip
as ϕh instead.

18For the bosonic string it is described by an SL(2, R)k/U(1) WZW coset model [41] and its dual sine-
Liouville theory [43, 44].
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3.2 The near-extremal limit

The most interesting physics of the charged black hole solutions emerges in the near-
extremal limit, when the near horizon metric is deformed (with respect to the extremal
case) in terms of an infinitesimal parameter δ that is related to the small temperature of
the black hole as we will soon find. This parameter is defined as

δ =
|ρ+h − ρ−h |

2ρ+h
≪ 1 . (3.32)

For notational simplicity, in what follows, we label the location of the exterior horizon ρ+h
by simply ρh. In terms of the above infinitesimal parameter, the near horizon region of the
near extremal geometry becomes

ds2 ≃

 c̃

2

(
(ρ− ρh)

2 − δ2ρ2h

)
dθ2 +

2

c̃

dρ2(
(ρ− ρh)

2 − δ2ρ2h

)
 , θ ∼ θ + β . (3.33)

We now define a new rescaled near-horizon coordinate ρ̃ in terms of δ as follows:

ρ̃ =
(ρ− ρh)

ρhδ
, l(ρ) ≃ c̃

2
ρ2hδ

2(ρ̃2 − 1) . (3.34)

We may then rewrite the near extremal near-horizon metric (3.33) using the above change
of variables as

ds2 =
2

c̃

(
dρ̃2

ρ̃2 − 1
+

(
c̃2ρ2hδ

2

4

)(
ρ̃2 − 1

)
dθ2
)

=
2

c̃

(
dρ̃2

ρ̃2 − 1
+
(
ρ̃2 − 1

)
dτ2
)
. (3.35)

In particular, we note that the metric is precisely that of Euclidean AdS2 (EAdS2) with
the topology of a disk when

θ =

(
c̃ρhδ

2

)
τ , τ ∼ τ + 4π ,

β

4π
=

(
c̃ρhδ

2

)
. (3.36)

This shows that the parameter δ relates the asymptotic compactification radius β = 2πR

with the near horizon temperature (or notion of time in Lorentzian signature). In the
metric (3.35), we “zoomed in” to the near horizon EAdS2 region. We may define its own
“asymptotic boundary” as the region where ρ̃ ≫ 1 and its deep IR as the region where
ρ̃ → 0. In this near extremal near horizon limit the Dilaton approaches a constant that is
the same as the value of the Dilaton at the tip

ϕ(ρ) = ϕtip +

√
c̃

2
ρh
ρ− ρh
ρh

→ ϕn.h. = ϕtip . (3.37)

While we defined these relations for the Euclidean solution, similar manipulations can be
performed for the Lorentzian solution as we alluded to above. We present some further
details in Appendix A and fig. 3.
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3.3 Constant dilaton AdS2 solutions

Another interesting class of solutions to the equations of motion (3.4)—(3.7) arise when
the dilaton is taken to be constant. Moreover, the flux q must be non-zero as can be seen
from the Einstein equations (3.6) and (3.7). In this case, when ϕ = ϕ0, the general solution
for the scale factor becomes19

l(ρ) =
c̃

2
ρ2 + l1ρ+ l0 , (3.38)

there l1, l0 are integration constants. Shifting the location of the origin of the ρ-axis, one
integration constant can always be fixed to take a specific value.

There are two important solutions with a constant dilaton. One is the EAdS2 with the
topology of a disk, for which

l(ρ) =
c̃

2
(ρ2 − ρ2h) , (3.39)

with the horizon located at ρh. This is precisely the near extremal near horizon geometry
in (3.35). Another important constant dilaton solution is the global EAdS2 wormhole with
two boundaries, for which

l(ρ) =
c̃

2
(ρ2 + ρ2h) . (3.40)

The extremal near horizon geometry in eqn. (3.30) can also be seen to be an exact solution
with a constant dilaton with

l1 = −c̃ρh and l0 =
c̃

2
ρ2h . (3.41)

We then observe that for large ρ, all these metrics coincide and approach the UV region
of AdS2. In Appendix A, we describe this UV region in the Rindler and global patches
and the resulting metrics of AdS2 in Lorentzian and Euclidean signature. We also refer the
reader to fig. 3.

3.4 Euclidean and Lorentzian (traversable) Wormholes

The simplest Euclidean wormhole solution that we found solving the low energy effective
equations of type 0A/IIA string theory, is the global EAdS2 with the topology of a cylinder
supported by a constant flux. Upon analytic continuation, this constitutes a Lorentzian
traversable wormhole, since one can send a signal across the two global AdS2 boundaries.
There is also a simple way to construct a Euclidean wormhole solution with two asymptot-
ically flat boundaries, by taking two copies of the Euclidean version of the (near) extremal
black hole solution to be glued together with the global EAdS2 solution. This is to be done
such that each of the two AdS boundaries of the global EAdS2 solution is glued to the near-
horizon region of the black hole solution, see fig. 1. The resulting Euclidean manifold has
the topology of a cylinder with two asymptotically flat regions. Its analytic continuation
into Lorentzian signature describes an asymptotically flat traversable wormhole without
horizons20.

19It is important to emphasize at this point that the solutions with a constant Dilaton are naturally
string scale solutions, since LAdS ∼

√
α′ is the natural scale that enters in the metric and determines the

asymptotic size of the manifold. We shall discuss the importance of this in section 3.4.
20This is similar to the solutions that have been studied in four dimensions [45, 46].
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To be more precise, the gluing can be performed for large values of the variable

ρ̃ =
ρ− ρh
ρhδ

≫ 1 , (3.42)

that describes the EAdS2 boundaries of the near horizon region of the near extremal black
hole (3.35). In order to glue the near extremal BH to global AdS2, we must ensure that
there is no discontinuity in the extrinsic curvature on the two sides of the gluing surface.
This is trivially true, since both the metric (3.35) and the wormhole/global EAdS2 that
takes the form

ds2worm. =
2

c̃

(
dρ̃2

ρ̃2 + 1
+
(
ρ̃2 + 1

)
dτ2
)
, (3.43)

describe a locally EAdS2 metric and can therefore be smoothly joined for large ρ̃. This is
true because the Israel junction conditions are trivially satisfied there21. A similar gluing
can be performed in the exactly extremal case given by the metric (3.30), as long as we
keep the Euclidean time coordinate θ non-compact (which is the exactly-zero temperature
case). The Dilaton is also trivially glued, since we found that in the near horizon limit of
the near extremal black hole, it reaches a constant value ϕn.h.. Finally, the flux is a non-zero
constant for all these solutions and can therefore also be glued smoothly.

Let us now discuss the physical properties of this asymptotically flat wormhole. Since
the flux q is constant and supports the wormhole, this means that we may understand
this configuration as being a bound state of two near extremal black holes with opposite
charge. Moreover, the dilaton value in the EAdS2 wormhole throat is the same as the
value of the dilaton for the EAdS2 disk i.e. ϕworm. = ϕn.h. = ϕtip, and this can still be
kept small. This means that the background is well defined semi-classically and quantum
corrections are suppressed. The scale factor shrinks as we approach the wormhole throat.
Its minimum size at ρ̃ = 0 is of string scale since it is given by Lmin = 2

√
α′. As we

alluded to before, this is the only concern with these string theoretic wormholes when using
the effective action. Since the radius of their throats are of string scale it is of paramount
importance to find an exact worldsheet or matrix model description for these manifolds,
to unambiguously assess their physical properties near the throat. In particular, one may
worry about the existence of string winding modes localised in the wormhole throat region,
that can potentially destabilise this configuration, or drive a phase transition between two
disconnected copies of Euclidean black holes (disk) and a connected (cylindrical) geometry
with two boundaries. In fact, we will show that such a transition exists even in the semi-
classical description (already at leading order in α′) of the effective action, in the next
section. Of course, string corrections may change this picture and shift the location of
the transition in parameter space and this constitutes a very interesting arena for further
explorations.

An issue similar to those concerning winding modes has also been encountered in string
theoretic uncharged black holes. In that case, there exists an SL(2, R)k/U(1) WZW coset
worldsheet description [41] and its dual sine-Liouville theory [43, 44], which can be used

21Notice the important fact that for the global wormhole EAdS2 we can choose the size of the compact-
ification of τ at will, so that we can always match the compactification radius of eqn. (3.35)
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to understand their properties. In section 4, we study the phase transition between two
disconnected copies of Euclidean black holes and the wormhole connecting them from the
perspective of the low energy effective action. In section 5, we define some appropriate WZW
coset models that describe the near horizon region of our near extremal charged black holes,
which can be used to extend this analysis to the string regime and in sections 6.1.2 and 6.2,
we motivate our proposals for the matrix quantum mechanics duals to these backgrounds
when embedded in Type 0A/IIA string theories respectively.

4 On-shell action and thermodynamics

In order to evaluate the partition function or the free energy of the system, at the semi-
classical level, it is necessary to determine the on-shell action corresponding to the back-
grounds of interest. Of course, appropriate boundary terms must be added to render the
variational problem well defined. Since the backgrounds we have discussed generically con-
tain a non-trivial flux, it is also of importance to carefully determine the ensemble to work
with. This is also closely related to the question of whether a given background can be con-
sidered to be of the “electric” or “magnetic” type [47, 48]. Interpreting the Euclidean circle θ
as the euclidean time direction, that may be analytically continued into a Lorentzian time,
we observe that the gauge field strength corresponds to an electric field with Fρθ = qϵρθ.
Since all the functions are only dependent on the radial direction ρ, this field strength arises
from an electric potential of the following form:

Aθ(ρ) = a0 + q(ρ− ρh) . (4.1)

Furthermore, in the presence of a horizon ρh, regularity of the one-form gauge field at the
horizon fixes a0 = 0

Aθ(ρ) = Φ(ρ) = q(ρ− ρh) , (4.2)

and the resulting electric potential vanishes at the horizon. This means that when an
asympotic cutoff/wall is placed at any ρc, the free energy/on-shell action will depend on the
difference of the electrostatic potential between the cutoff and the horizon22. In other words
it is natural to work in the grand canonical ensemble with respect to the electric charge.
Of course a change of ensemble is then achieved by performing a Legendre transform. We
will describe the appropriate boundary term that achieves this in what follows.

In the grand canonical/Gibbs ensemble, the basic relations of thermodynamics of use
are

Z ≃ e−S
E
on−shell = e−βFG and FG = E − TS −QΦ , (4.3)

where FG is the Gibbs grand canonical free energy, E =MADM is the energy (ADM mass),
Φ is the potential, Q is the charge and S is the entropy. The first law is then expressed by
the relations

dE = ΦdQ+ TdS and dFG = −SdT −QdΦ . (4.4)

22If we send the cutoff to −∞, the resulting divergence must be subtracted to only keep the finite piece
of the potential as we will later see.
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From the Gibbs free energy, the other thermodynamic quantities are determined via

E = FG − T
∂FG
∂T

∣∣∣∣
Φ

− Φ
∂FG
∂Φ

∣∣∣∣
T

,

S = − ∂FG
∂T

∣∣∣∣
Φ

,

Q =
∂FG
∂Φ

∣∣∣∣
T

. (4.5)

It will turn out to be useful to connect as many thermodynamic variables as possible with
bulk variables. In particular while gs = eϕtip and α′ are fixed parameters that the free energy
depends on, one should express q, c1, ρh in terms of the thermodynamic parameters. To
this end, let us first define the black hole mass. As mentioned before, it can be computed
using the symmetry of the solution under Euclidean time translations of θ [41, 42] , with
the result being fixed in terms of the string length and coupling

MBH =
√
c̃e−2ϕtip . (4.6)

While we have already determined the temperature in eqn. (3.22), coupling the system to
an external current allows us to compute the conserved charge Q in the following way:

Jµ = 2πα′∇νFνµ , Q =

∫
dρJθ = 2πα′Fρθ = 2πα′q . (4.7)

In the grand canonical Gibbs ensemble, where the electric field Aθ is fixed asymptoti-
cally, a well-posed variational problem is achieved by adding an appropriate boundary term
of the Gibbons-Hawking type

SG.H. = −2

∫
∂M

dθ
√
g̃e−2ϕK , (4.8)

where
√
g̃ is the induced metric on the boundary andK is the trace of the extrinsic curvature

with respect to the induced metric. Changing to the canonical ensemble with respect to
the charge Q amounts to adding a boundary term of the form

Sel.can. = −2πα′
∫
∂M

dθ
√
g̃ nµAνF

µν , (4.9)

so that the field strength tensor Fµν is fixed on the boundary, instead of the gauge field Aν
[47]. In what follows, we will continue to stick to the grand canonical ensemble.

The on-shell action of a single background is typically divergent. As we mentioned
before, this may be addressed by placing a radial target space cut-off at some large radial
distance, say ρb. This scheme is well defined for the asymptotically EAdS2 solutions where
the dilaton is constant and the various modes freeze at the asymptotic boundary. In the case
of an asymptotically flat running dilaton background, on the other hand, the asymptotic
value of the dilaton approaches −∞ and is not a constant. Therefore, it is physically
natural to use an alternative “dilaton subtraction scheme” [53], where a cutoff is now placed
for a large negative value for the dilaton as it approaches the boundary ϕb → −∞. The
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motivation behind this comes from the fact that the dilaton acts as a natural coordinate
label in such backgrounds. Moreover, in the solutions with the topology of a cigar, the
physical value for the dilaton is at the tip of the cigar (say ϕtip), where it takes a finite
value. Hence all physical answers should depend on this fixed finite value23. Finally, there
is further motivation for the physical validity of this scheme from the worldsheet string
theory perspective: the IR behaviour in target space at ϕ → −∞, corresponds to the UV
on the worldsheet, where it is natural to place a cutoff and renormalize the worldsheet
string theory. After a short description of a scheme-independent counterterm that cancels
the target space IR divergences, we will consider both schemes in what follows.

It was shown in [39] that it is convenient to add an additional boundary “counterterm”
of the form

Sc.t. = −γ
∫
∂M

dθ
√
g̃e−2ϕnµ∇µϕ , (4.10)

where nµ is the normal vector to the boundary that points outwards. The convenience of
this counterterm lies in the following two properties. First, it does not spoil the variational
problem. And second, it has the property that with a certain value for γ, that we will shortly
determine, the on-shell action is rendered finite for solutions that are asymptotically flat.
This gives rise to a desired renormalization procedure that leaves the bulk symmetries intact,
since the physical results should not depend on the radial cutoff. It is worth emphasising
that the asymptotic counterterm (4.10) that renormalises the canonical variables and cancels
the divergences of the on-shell action is unambiguous and evidently scheme independent
in its definition. More precisely, the requirement is that the counterterm diagonalize the
symplectic map between the physical phase space and the space of asymptotic solutions, and
that it preserve the Ward identities even on a finite cutoff. These are necessary conditions
and can be considered as the defining property counterterms more generally [50–52].

Assembling the various terms together, in the grand canonical Gibbs ensemble, we find
that the Euclidean on-shell action can be expressed solely in terms of boundary terms24

SEreg. = SEon−shell + SG.H. + Sc.t.

= β
√
g̃e−2ϕ ((4− γ)nµ∇µϕ− 2K)

∣∣∣∣
∂M

+ 2πα′β
√
g̃nµAνF

µν

∣∣∣∣
∂M

. (4.11)

4.1 Radial cut-off scheme

Using the fact that
√
g̃K = nµ∂µ

√
g̃ and nr = −1/

√
l, we find that equation (4.11) simplifies

to

SEreg. = βFG = βe−2ϕb

(
γ − 4

2

√
c̃ l(ρb) + l′(ρb)

)
− (2πα′)βq2(ρb − ρh)) , (4.12)

where we now placed an infrared cutoff at ρ = ρb and evaluated all the quantities there. In
the end we would like to take the cutoff to approach the boundary ρb → −∞.

23Notice that in the special gauge in which the dilaton is linear in the radial coordinate ρ, the two schemes
are trivially related, as we also explicitly observe.

24As mentioned earlier, changing to the canonical ensemble amounts to simply subtracting the last term
of (4.11).
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We now observe that the on-shell action and the resulting Gibbs free energy are ren-
dered finite for asymptotically flat backgrounds by tuning the coefficient of the boundary
counterterm of the form (4.10) to the value γ = 4. This can be seen by noting that in this
case,

SEreg. = βFG = βe−2ϕb l′(ρb)− (2πα′)βq2(ρb − ρh) , (4.13)

is finite owing to the conservation equation (3.12). In particular we find that within the
radial cutoff scheme the on-shell action for the black hole, defined by the emblackening
factor (3.17), takes the form

SBHreg. = βc1
√
c̃+

β2πα′q2(1 +
√
c̃ρh)√

c̃
= −β

√
c̃e−2ϕtip + β

2πα′q2√
c̃

, (4.14)

where in the second equality we used eqn. (3.18). Using this finite action, in the uncharged
case, we find a relation between the finite entropy and mass of the black hole25 that is
known from [41, 53]:

F unchargedBH = −
√
c̃e−2ϕtip , Muncharged

BH =
√
c̃e−2ϕtip , SunchargedBH = 8πe−2ϕtip . (4.15)

Furthermore, in the charged case, we find the following relations between thermodynamic
and bulk variables

MBH =
√
c̃e−2ϕtip , Φ = −qρh , Q = 2πα′q , TBH =

|c̃− 2πα′q2e2ϕtip |
4π

√
c̃

, (4.16)

that are consistent with equation (4.3) and the consequently derived thermodynamic rela-
tions.26 Equation (3.18) then expresses the integration constant c1 in terms of the mass of
the black hole background and an electrostatic energy from the flux

−
√
c̃c1 =MBH −QΦ . (4.17)

This means that there is a mass contribution exactly the same as in the uncharged back-
ground and an effective electrostatic energy contribution from the flux.27 These quantities
are related to bulk quantities evaluated at the tip/horizon of the cigar. Expressing the free
energy in terms of the temperature, one can finally determine the finite entropy of the black
hole

FG = −4πe−2ϕtipTBH , S = 4πe−2ϕtip , gs = eϕtip . (4.18)
25When the charge is zero, the temperature is fixed to be Tuncharged =

√
c̃/4π as can be seen from (3.22).

26While the counterterm (4.10) rendered the total on-shell action finite, the two individual terms in
the action (4.13) are still divergent when the cut-off is taken to the boundary. It is only their sum that
is rendered finite by the chosen counterterm. Therefore, in order to write the above equation, for Φ for
instance, we manually subtracted the cut-off contribution in comparison to (4.2). It would be interesting
(if possible) to find a scheme-independent counterterm for each of the terms individually.

27This is consistent with the interpretation given in [32]. As mentioned in the previous footnote, the
electrostatic potential is defined after a subtraction of an infinite linearly diverging contribution. This
contribution is not present in higher dimensions, since the radially dependent piece goes to zero at infinity.
This result could also be interpreted as having introduced non-normalisable sources for winding modes
W = exp(i

∮
dθAθ) of the gauge field around the thermal circle. This is also consistent with the presence

of similar winding modes in the matrix model side, see for example eqn. (6.1).
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Let us now discuss the thermodynamics of the asymptotically AdS backgrounds. In this
case the counterterm (4.10) does not render the on-shell action finite, and we must perform
holographic renormalisation. Since we would like to ultimately view these backgrounds as
the near horizon limit of the asymptotically flat backgrounds, we will not present a detailed
exposition here and resort to a simple cutoff regularisation - the cutoff is defined by ρb where
we glue the AdS2 geometries to produce the complete asymptotically flat background as
can be seen in fig. 1.

In the case of EAdS2 with a disk topology and a constant dilaton profile ϕdisk we find
the following regularised action

SEAdS2
reg.disk = βdiske

−2ϕdisk c̃ρb − (2πα′)βdiskq
2(ρb − ρh) , (4.19)

where βdisk = 1/T = 2π is the inverse physical temperature for the disk and

βb =
√
ldisk(ρb)βdisk (4.20)

is the temperature at the cutoff boundary.
For the wormhole EAdS2 with the topology of a cylinder28, we find two boundary

contributions that add up to

SEAdS2
reg.cyl. = 2βworm.e

−2ϕworm. c̃ρb − 2(2πα′)βworm.q
2ρb . (4.21)

While each individual on-shell action is ambiguous, differences between two manifolds with
the same boundary conditions for the fields are perfectly well defined. The natural difference
that we would like to consider is that between two disconnected EAdS2 disks and the EAdS2
wormhole with two boundaries. This difference is also the same as the difference between
the corresponding asymptotically flat backgrounds, see fig. 1. To compare them, we must
use the same βb on the regulating surface and therefore,√

ldisk(ρb)βdisk =
√
lworm(ρb)βworm , (4.22)

where l (ρ) is the emblackening factor for the corresponding solution. To leading order in
1/ρb, this sets βdisk = βworm. = β. The difference between the on-shell actions can then be
found to be

2SEdisk − SEworm. = 2(2πα′)βq2ρh = −2βQΦ , (4.23)

where we used eqn. (4.16) to express ρh in terms of the potential Φ. The behaviour of
this difference shows that the wormhole contribution dominates as long as QΦ < 0, while
the factorised contribution dominates for QΦ > 0. This also has the interpretation that
the wormhole is dominant when the difference in the effective electrostatic energy becomes
negative and a bound object (connected geometry) can form.

As another interesting remark, in the case of EAdS2 arising as a near horizon geometry
of an exactly extremal black hole (3.35), we find that the UV divergences between the

28to compare this to the disk topology, we must choose the same value for the constant dilaton in both
cases ϕworm. = ϕdisk
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Figure 1. The phase transition between a factorised geometry of two Euclidean near extremal
black holes (left figure) and that of a Euclidean wormhole. The near horizon region for the near
extremal black holes is that of EAdS2 with the topology of a disk (red part of the left geometry).
The region near the wormhole throat is that of global EAdS2 with the topology of a cylinder (green
part of the geometry on the right). The asymptotic behaviour of the background fields on both
geometries is exactly the same and they are set to have the same periodicity/temperature. The
transition depends on the difference of the effective electrostatic mass between the two backgrounds
Estatic = QΦ. When it is negative the bound wormhole background is dominant.

gravitational and electric contributions precisely cancel to yield a finite result for the free
energy

F extremalEAdS2
= (2πα′)q2ρh = −QΦ . (4.24)

We view the finiteness of this expression as another indication for why the (near) extremal
EAdS2 can be thought of as the near horizon part of an extended geometry with an asymp-
totically flat region. For the same value of constant dilaton the EAdS2 wormhole has zero
free energy Fworm.EAdS2

= 0 and our previous discussion about the phase transition between
the connected and disconnected geometries still applies even at exact extremality, since the
phase transition is not dependent or driven by the temperature, but from the electrostatic
potential29. The transition is of first order, since the first derivative of the free energy
with respect to Φ is discontinuous (we compare solutions with the same Q and change Φ).
This result is consistent with the phase coexistence of the two solutions and analogous to a
confining deconfining transition (dissociation of the wormhole). Due to the extremely low
temperature, it can perhaps be thought of as a “quantum phase transition” (see the review
article [83] and references within).

4.2 Dilaton subtraction scheme

We now finally compare the on-shell action of the asymptotically flat linear dilaton back-
grounds obtained from the radial cut-off scheme with what we would obtain from the dilaton
subtraction scheme [53]. In this scheme, we find that the regulated on-shell action, at the
worldsheet UV cutoff ϕb, becomes

SED.S. = −β
(√

c̃(2e−2ϕb + c1) + 2πα′q2
(
ρh −

1√
c̃

))
− β(2πα′)

4q2√
c̃
(ϕb − ϕtip) , (4.25)

with

ρh = −
√
c̃
c1 + e−2ϕtip

2α′πq2
. (4.26)

29We are always assuming that we are at very low temperatures, so that the black hole is near extremal
and has an AdS2 near horizon region. Away from extremality our results cease to be valid and temperature
effects start being important.
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Upon subtracting the divergent term, we find a finite result

SED.S. = β

(
−
√
c̃e−2ϕtip +

2πα′q2√
c̃

)
+ β(2πα′)

4q2√
c̃
ϕtip . (4.27)

This result differs from the result in our previous scheme (4.14) by a finite term, the last
term in (4.27). It is of course expected that results from different schemes differ by finite
pieces. The qualitative result about the phase transition remains the same up to possible
logarithmic corrections in gs. But these corrections also compete with one-loop effects that
we can not determine with our classical analysis and are hence ambiguous at this point.
To study further quantum and α′ corrections, and the fate of the phase transition when
including such corrections, we must resort to more powerful worldsheet CFT or matrix
model constructions, to which we now turn.

5 WZW cosets for the near horizon AdS2 region

Since the size of the throat of the wormholes we constructed in the previous section are
of string scale, the semiclassical viability of these solutions may be called into question.
In particular there exist winding string modes that are wrapped around the S1 of the
wormhole throat, that become light enough and could potentially affect its semiclassical
description and the phase transition we found. In fact, this is a familiar problem from the
uncharged two-dimensional black hole. In that case, famously, there is an exact worldsheet
CFT described by the SL(2, R)k/U(1) WZW coset [41] with the topology of a cigar. Since
this coset theory is an exact CFT for a very specific radius close to the string scale (k =

9/4 , R2 = kα′), the geometric picture at leading order in α′ can similarly be called into
question. In that case, there is a duality relating the Euclidean coset model with sine-
Liouville theory due to Fateev, Zamolodchikov, Zamolodchikov (FZZ) [43, 44]. In particular,
sine-Liouville theory is defined on a cylinder and contains winding deformations. This led to
the construction of a Euclidean dual matrix model for the uncharged black hole [44]. It also
led to the recognition that the Euclidean matrix model can arise from the thermal partition
function of a dynamical MQM model in which non-singlets are effectively activated [24],
and to a microscopic understanding of the relation between long-strings and black holes [25]
(see section 6.1.2 for details regarding the Type 0A version of this construction).

It is then natural to ask whether the wormholes of the previous section, which require
the presence of gauge flux, have exact CFT descriptions in similar vein. This would promote
the string sized throat to a more reliable exact string background and potentially give
us clues about the dual matrix model and the role of winding modes on the wormhole
throat. While some preliminary efforts were made towards a coset description of the charged
asymptotically flat black hole background in N = 1 super-Liouville theory in the presence
of RR flux in [30], a definitive identification of the theory is still elusive, to the best of
our knowledge. We will restrict our attention to a coset description of the near-horizon
region of these black holes which is a EAdS2 geometry with disk topology and of the global
geometry with a cylinder topology.
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In the context of N = 2 super-Liouville theory, there is a fermionic generalisation of the
uncharged two dimensional black hole. This can be described by an SL(2, R)/U(1) Kazama-
Susuki model for which FZZ duality can be explicitly argued using mirror symmetry [54].
The argument involves the identification of a gauged linear sigma model that flows to the
supersymmetric coset in the IR. The dual of this gauged linear sigma model can then be
shown to flow to N = 2 super-Liouville theory, suggesting their equivalence. Furthermore,
there exist super-cosets that describe AdS2 in the case of type IIA non-critical string theory.
These were analysed in [30, 68, 72] and take the form of Osp(2|2)/SO(1, 1) × SO(2) or
Osp(1|2)/SO(2) quotients. They are also related to N = 2 super-Liouville theory from
which two dimensional Type IIA descends. This hints to a relation with the Marinari-Parisi
model [66, 67, 77] and in particular superconformal quantum mechanics with a logarithmic
superpotential that exhibits the same Osp(2|2) global symmetry [68].30. We review the
relevant type IIA MQM model in section 6.2.

We will now describe the simplest coset construction for charged (near) extremal black
holes without spacetime supersymmetry. Since the near horizon regions take the form of
EAdS2 with disk and cylinder topologies respectively, they can be described in terms of an
SL(2, R)/U(1) geometric coset. Of course, owing to the running dilaton which renormalises
the geometry of this coset, the actual target space geometry is different from the geometric
coset. Instead, strings propagate on the conformal coset, derived from the gauging proce-
dure of the WZW model31. This is always true when one considers symmetric gaugings or
deformations of the WZW model of the type

∫
d2zJJ̄ .

In asymmetric gaugings and deformations on the other hand, the left and right currents
J(z), J̄(z̄) come from different sectors of the theory.32 In this case, it was observed in [73–
75] that the geometric coset can be turned into an exact conformal coset but in the presence
of a background electric or magnetic field [78, 79]. The geometric reason behind this is that
AdS3 can be viewed as a Hopf fibration over an AdS2 base. The fiber couples to the one
form field and its size vanishes in a critical limit of its flux. This is precisely the case for
the AdS2 backgrounds of interest. They are indeed supported by a U(1) gauge field flux
and a constant dilaton. It was also observed that in the asymmetric coset construction, the
only renormalisation that is necessary in the AdS2 limit is the usual shift of the level of the
SL(2, R)k affine Lie algebra as k → k + 2.

More precisely, the class of asymmetric cosets that we are interested in is defined by

30Superconformal MQM models also descend from M2 branes. See [69] for a detailed review of various
cases. For example extended N = 4 superconformal quantum mechanics models that can describe AdS2

backgrounds of ten dimensional type IIA/IIB string theory have recently appeared in [70, 71].
31The gauging procedure can also be performed in the Lorentzian case using the same coset construc-

tion. The difference lies in the time-like or space-like choice of U(1) gauging. These gaugings can also be
interpreted as deformations of the geometries. In this context, the difference between the Lorentzian and
Euclidean cases lies in a choice of hyperbolic or elliptic type of deformation.

32The resulting cosets have been argued to arise as backgrounds in various versions of string theory
(heterotic, type II or type 0 [75]), in particular if they are tensored with an additional internal part
(coset × internal). Here we shall be agnostic about the elementary worldsheet string progenitor that led
to the string coset.
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the quotient
SL(2, R)k × U(1)L

U(1)
. (5.1)

This quotient implies that we gauge a U(1) current which is a linear combination of a right
moving component (which is in SL(2, R)) and a left moving component U(1)L. The free
parameter of the combination will be related to the charge to mass ratio of the resulting
black hole. In the absence of the additional U(1)L, we recover the symmetric gauging cor-
responding to the uncharged black hole. While in the charged black hole case, (5.1) results
in a three-dimensional background upon which an additional Kaluza-Klein mechanism is
necessary to arrive at a two-dimensional charged black hole.

In terms of group elements the gauging can be described by the identification

(g, xL, xR) ∼
(
eτ cosψσ3/

√
kgeτσ3/

√
k, xL + τ sinψ, xR

)
, (5.2)

where g ∈ SL(2, R) describes the group element of the WZW model at level k and xL/R
are left/right movers. ψ is the parameter (angle) that governs the linear combination of
SL(2, R)L and U(1)L that is gauged. The resulting sigma-model background is three di-
mensional and in order to obtain a two dimensional background we must take the U(1)L
radius to be small compared to the SL(2, R). This Kaluza-Klein reduction produces a gauge
field in two dimensions. Different patches/regions of SL(2, R) (or its universal cover) can
be considered to perform the coset construction. In Lorentzian signature, after asymmetric
gauging and dimensional reduction, these choices describe the various patches of the max-
imal analytic extension of a charged (Reissner-Nordstrom like) black hole, with a causal
structure that is very similar to the Lorentzian version of the solutions of the low energy
type IIA/0A effective action in section 3.33 In the limiting extremal case these choices
correspond to various patches of global AdS2.

Let us now consider the exterior patch of the (Lorentzian) black hole. In this case, the
SL(2, R) group element is parametrised by

gext = e(z+t)σ3/2eyσ1e(z−t)σ3/2 . (5.3)

After performing the asymmetric gauging and reducing to two dimensions one finds the
following background (in units where α′=1)

ds2 = k

(
dy2 − coth2 y

(coth2 y − p2)2
dt2
)
, y ≥ 0

At =

√
kp

p2 − coth2 y
,

ϕ = ϕ0 −
1

2
log(cosh2 y − p2 sinh2 y) . (5.4)

33Away from extremality, the coset background is not a solution of the low energy effective equations
of Type 0A but of another low energy effective action found in [42] that descends from heterotic string
theory. The difference lies in a different dilatonic coupling to the U(1) gauge field in the effective action.
In the AdS2 limit (ψ → π/2 in the formulae below), where the dilaton becomes constant, this difference
disappears.
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The parameter p is given by

p2 = tan2
ψ

2
with ψ ∈ [0, π/2] , (5.5)

and it governs the charge to mass ratio of the black hole. Upon rotating t = iθ, AL = iAE

and pL = −ipE , we obtain the corresponding Euclidean cigar background. When p = 1 we
recover the (near) extremal limit. In this case the background becomes (u = 2y)

ds2 = k
(
du2 − sinh2 udt2

)
, ρ ≥ 0

At =

√
k

2
(1− coshu) , ϕ = ϕ0 , (5.6)

and corresponds precisely to the (Lorentzian) charged AdS2 background of section 3.3,
upon the identification ρ = coshu. We observe that both the charge (and consequently the
flux) and the size of the manifold depend on a single parameter k (the level of SL(2, R)k).
This is of course only true when AdS2 is viewed as the near horizon limit of the (near)
extremal black hole34. Similarly, it is possible to obtain the global AdS2, if one were to start
with the universal cover of SL(2, R) instead, before performing the limiting asymmetric
gauging/deformation procedure. We refer the reader to [74, 75] for more details.

An interesting problem is to use supersymmetric or asymmetric WZW cosets to study
the torus partition function of the worldsheet CFT and the thermodynamics of the cigar
and wormhole backgrounds of section 3. This analysis can shed light on the fate of the
phase transition we found, and its possible interplay with a charged version of the black
hole string transition [76], when string and leading quantum effects are properly taken into
account.

6 The dual Matrix Quantum Mechanics models

6.1 The Type 0A Matrix Model

A derivation of the Matrix Model dual of Type 0A string theory requires an understanding
of the properties of boundary states and D-branes in the dual super-Liouville theory. It is
known [21] that there exists a stable D0 brane that sources the RR one-form. Non-trivial
tachyon dynamics are then described by an unstable system of D0 −D0 branes when the
(open string) tachyons are allowed to condense35.

Let us consider the dynamics of N + q D-branes and N anti-D-branes. The open string
tachyon T̃ then transforms in the bi-fundamental of U(N)×U(N +q). Upon condensation,
this would result in a background of q D-branes (or q units of flux). The corresponding

34Using the low energy effective action of type IIA/0A, we found more general solutions in section 3.3 for
which the charge/flux and radius of AdS2 are independent parameters.

35In fact, unstable D1 branes also exist. These would lead to matrix-vector models similar to [25], [24].
These models should be relevant for the description of more general backgrounds such as charged black
holes as we later explain in sec. 6.1.2.
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Figure 2. The form of the effective potential for the Type 0A string theory (q > 1/2). For large
y the inverted oscillator dominates, while for small y the barrier term ∼ 1/y2. The fermi sea is at
a distance µ below the V = 0 axis. We also depict the elementary fermion and hole excitations
of the fermi sea that can be (asymptotically) bosonised into a target space closed string tachyon
excitation.

type 0A MQM model is described by the action [21]36

S0A
MQM =

∫
dtTr

(
|DtT̃ |2 +

1

2α′ T̃
†T̃

)
. (6.2)

In rectangular (complex) matrix models, diagonalisation of T̃ is achieved by a bi-unitary
transformation U †T̃ V in terms of two unitary N × N and (N + q) × (N + q) matrices U
and V . As is known from the analysis of [80, 81], this leads to a Vandermonde factor in the
measure

N∏
i=1

dλiλ
1+2q
i

∏
i<j

(λ2i − λ2j )
2 = 2

N∏
i=1

dyiy
q
i

∏
i<j

(yi − yj)
2 , (6.3)

where in the second equality we used the natural set of variables yi = λ2i ≥ 0. Going to
the Hamiltonian picture, the fermionic wavefunction Ψ̃ =

∏
i y
q/2
i

∏
i<j(yi− yj)Ψ obeys the

following equation (on yi > 0)

N∑
i=1

(
−1

2

∂2

∂y2i
+
q2 − 1/4

2y2i
− 1

2α2
y2i

)
Ψ̃ = EΨ̃ where α2 = 2α′ . (6.4)

This Hamiltonian equation describes the physics of free fermions living on the positive real
line in an inverted harmonic oscillator potential deformed by a 1/y2 potential due to the
background flux37 q, see fig. 2. The (delta function normalised) eigenfunctions of the single

36Equivalently, we could also start with a tachyon T̃ that is in the bi-fundamental of U(N)× U(N) add
q-units of flux via the one dimensional analogue of a Chern-Simons type term

SC.S. = q

∫
dtTr(A− Ã) , (6.1)

where A and Ã are the non-dynamical gauge fields corresponding to each of the U(N) groups. In [38], the
general case with both options for the fluxes was considered.

37While the deformation still appears to exist even if q = 0 in the potential in (6.4), it can be checked
from a comparison between this scattering phase with that of an inverted harmonic oscillator that the
deformation is indeed only present when the flux is non-vanishing. In fact, the case when 0 ≤ q < 1/2 has
an instability near y ∼ 0 and needs special care. In this article, in all cases where non-vanishing flux is
considered, we implicitly take it to be such that q > 1/2 to avoid this subtlety.
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particle version of (6.4) are [56]

ψϵ(y) =
1√
2πy

e−i
π
4
(q+1)e−αϵπ/4

|Γ
(
1
2 + |q|

2 + iα ϵ2

)
|

Γ(1 + q)
Miαϵ/2 , q/2(iy

2) . (6.5)

Here, Mµ,ν(x) is a Whittaker function that is well behaved at zero rendering the eigenfunc-
tions regular at y ∼ 0. In fact, the one-particle S-matrix of this model can be computed from
the asymptotics of this wavefunction for large y and is a simple deformation of the S-matrix
for the inverted oscillator38. The result for the scattering phase (up to non-perturbative
contributions) is [56], [57]

eiΦ0A =
Γ
(
1
2 + |q|

2 − iαµ2 + iα ϵ2

)
Γ
(
1
2 + |q|

2 + iαµ2 − iα ϵ2

) . (6.6)

In this formula µ is the chemical potential and ϵ is the energy of the scattered particle. In
our conventions, if the chemical potential tends to positive infinity, the fermi sea becomes
empty. Whereas if the chemical potential is negative, it submerges the inverted harmonic
oscillator potential and if µ = 0, the Fermi sea is filled up to the tip of the inverted oscillator
potential. Of course, the interpretation of the Fermi sea requires a certain double-scaling
limit where the number of fermions is taken to be very large and their energy spacing
close to zero (and therefore, N → ∞ , ℏ → 0). In this limit, forgetting the potential tail
for large y and “zooming in” to the region y ∼ 0 has the consequence that the otherwise
discrete energy levels now appear continuous and that the very many fermions sit in a
dense continuous spectrum. The chemical potential can then be tuned to fill the sea to
one’s desire. The resulting Fermi sea serves as a reference ground state on top of which
scattering of excitations may be considered. In particular, in the double scaling limit, all
the physics is captured by the second quantised fermionic action [38]

S0A =

∫
dt

∫ ∞

0
dy ψ†(t, y)

(
i∂t ++

1

2

(
∂2

∂y2
− q2 − 1/4

y2
+

1

α2
y2
))

ψ(t, y) . (6.7)

The Fermi-sea vacuum and bosonic tachyon excitations are defined via

ψ(t, y) =

∫
dϵ eiϵt b̂ϵ ψϵ(y) , {b̂†ϵ′ , b̂ϵ} = δ(ϵ′ − ϵ) ,

b̂†ϵ|0⟩ = 0 , ϵ < −µ , b̂ϵ|0⟩ = 0 , ϵ > −µ , (6.8)

and the asymptotic bosonisation map

ib↔f : âϵ =

∫ ∞

−∞
dω b̂(ω − µ) b̂†(ω − ϵ− µ) . (6.9)

Typically, the chemical potential is taken to be such that the Fermi sea is placed lower
than V = 0, which is the tip of the inverted oscillator potential. This means that for low
energy excitations, the region y ≃ 0 is inaccessible as can be seen in fig. 2. In the string

38The Hamiltonian does not admit bound states for real flux q > 1/2.
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theory picture, this can be interpreted as closed strings scattering off the tachyon wall and
being unable to penetrate the strongly coupled region. The corresponding target space
background is a deformation of the linear dilaton, exponential tachyon background with
q-units of RR-flux, but its properties have not been studied in great detail so far in the
literature.

6.1.1 The limit of conformal quantum mechanics of free fermions

The chemical potential that we tune to fill the Fermi sea is proportional to the parameter µ0
that appears in the closed string worldsheet action (2.1). If the target space geometry is flat
and the dilaton background is linear, the closed string tachyon background cannot be trivial
in the absence of flux q. This is because the corresponding pure linear dilaton background
is singular (it contains a region of infinitely strong string coupling). What happens instead
is that the closed string tachyon condenses to have a profile T (ϕ) ∼ µ exp (ϕ), shielding the
pathological strongly coupled region. Therefore, one may interpret the vanishing chemical
potential limit in the matrix model side as corresponding to the closed string background
with a vanishing closed string tachyon profile. On the other hand, as we described above,
in the double-scaling limit, tuning the chemical potential to zero has the consequence that
we neglect the effects of the inverted harmonic oscillator potential in the matrix model (up
to non-perturbative effects).

In the presence of large non-vanishing flux q, the µ→ 0 regime allows us to neglect the
effect of the inverted oscillator potential. In this limit, the singlet Hamiltonian H governing
the dynamics of eigenvalues becomes one of the generators of an SL(2) algebra [35, 36]
together with

K =
1

2

N∑
i=1

y2i , D = − i

2

N∑
i=1

(
yi

∂

∂yi
+

∂

∂yi
yi

)
. (6.10)

It gives rise to a model of conformal quantum mechanics [35] of N free fermions evolving
with the Hamiltonian

HΨ̃ =
N∑
i=1

(
−1

2

∂2

∂y2i
+
q2 − 1/4

y2i

)
Ψ̃ = EΨ̃ . (6.11)

As is well known, the single particle version of this Hamiltonian does not admit a normalis-
able ground state [35]39, and therefore one can only consider scattering states (with positive
energy). Nevertheless, in the double scaling limit, the Fermi sea can still serve as a reference
(ground) state, provided that we take µ to be vanishing (or negative) so that only positive
energy excitations are retained. Of course the UV completion of this fermionic conformal
quantum mechanics model requires going beyond the strict double scaling limit, where the
non-universal features of the potential away from the y ∼ 0 region start to play a role.

Since the system at hand is that of free fermions in a potential, it is possible to compute
the finite temperature free energy of this model exactly [21], using the reflection amplitude.
In particular when µ→ 0, and q is large it is found to admit the following 1/q expansion

F = − 1

8πα
q2 log

q2

Λ4
+

1

48πα

[
1 + (2πTα)2

]
log

q2

Λ4
+ ... . (6.12)

39Not even a delta function normalisable zero energy state.
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Here, T is the temperature of the system, the first term is the classical piece whereas the
second is a one-loop contribution. It is evident that the classical answer does not contain
any contribution to the entropy because it has no temperature dependence. Therefore,
general consensus in the literature (see for example [58] and references therein) is that
singlet MQM models cannot describe black holes since their spectrum is too simple and
there is no classical entropic contribution in their double scaled free energy.

One of our primary interests in this article is the case of (near) extremal charged
black holes which are well defined even in the absense of a tachyon background. In order
to accommodate for black hole features, an enlarged model where the non-singlet sectors
remain active is necessary. This is in analogy with the bosonic MQM constructions of
[24, 25, 44, 59, 60]. We now turn to the description of such a model in Type 0A.

6.1.2 Non-singlets in the Type 0A Matrix model and black holes

There are at least two distinct ways to activate non-singlet states of the 0A MQM model.
One option is to consider the ungauged model where the original U(N)×U(N) symmetry40

becomes a global symmetry. The other possibility is to deform the model with additional bi-
fundamental fields that, when integrated out in the path integral, give rise to an interacting
fermion system that is very similar to the ungauged model, see [24, 60] for more details.
These are matrix-vector models and the bi-fundamental degrees of freedom can be thought
of as describing open strings between stacks of N D0 and Nf D1 branes (or N D0 and Nf

D1 branes)41. The Hamiltonian for such models is∑
i

(
−1

2

∂2

∂y2i
+
q2 − 1/4

y2i
− 1

4α′ y
2
i

)
+

1

2

∑
A

∑
i ̸=j

T̃Aij T̃
A
ji

(yi − yj)2

 Ψ̃ = EΨ̃ . (6.13)

Here, T̃Aij are appropriate U(N)×U(N) generators (A is the group index). In the case of the
bi-fundamental construction, they take the form of appropriate spin-operators constructed
out of bilinears of the bi-fundamental fields and one can also introduce another quadratic
term in the Hamiltonian corresponding to their mass (see [24] for more details). The
resulting thermal partition function takes the form of a unitary (or U(N) × U(N) for
the Type 0A case at hand) integral, with additional winding deformations of the form
exp

∑
n tnTrU

n + t−nTr(U
†)n + qTr logU . The winding parameters (tn) are related to the

masses of the bi-fundamental fields [24].
While we leave a detailed analysis for future work, we expect that it should still be

possible to compute the partition function of a non-singlet version of the 0A MQM model
using the techniques developed in [25]. It is worth noting the important fact that, in general,
non-singlets give rise to a non-zero classical entropy to the free energy upon coarse graining
over the Young diagrams that describe the various representations [25]. This can be seen
as a limit of continuous Young diagrams. This means that the non-singlets naturally evade
the primary problem that prevents the singlet model (6.12) from describing a black hole.

40Or the U(N)× U(N + q) symmetry.
41In general the models that arise from such a construction reduce to general versions of Spin-Calogero

models [62, 63] with enhanced affine Yangian types of symmetries [64, 65].
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Furthermore, it can be shown that the correct thermodynamics of the uncharged black hole
are recovered in the q = 0 bosonic MQM non-singlet model of [24, 25].

In fact, the non-singlet models (6.13) with the inverted oscillator potential and finite
flux q likely describe more general finite-temperature, charged black holes with non-trivial
tachyon backgrounds.42 However, we are allowed to take the simplifying limit of a trivial
tachyon which amounts to setting µ to zero, a limit that should be able to describe the
asymptotically flat charged black hole solutions of section 3. If we furthermore neglect
the inverted oscillator potential in the matrix model we are led to a non-singlet conformal
quantum mechanics model of interacting fermions that should be able to describe the AdS2
near horizon region of the near-extremal charged black hole solutions of section 3. In this
case the non-singlet models continue to exhibit the SL(2) symmetry of conformal quantum
mechanics, since the last term of (6.13) also scales as 1/y2 [61]. Moreover they seem natu-
rally suited to describe a simple version of the phenomenon of AdS2 fragmentation [19]—the
Spin-Calogero type of term between different eigenvalues in (6.13) can become attractive
and various sets of eigenvalues can condense at different ycluster. From the perspective of a
probe eigenvalue each such cluster will induce an effective 1/(y − ycluster)

2 potential.
Whether these non-singlet conformal quantum mechanics models have a well defined

ground state and what the near extremal limit and extremal bound mean from the MQM
perspective, are interesting questions that we leave for the future.

6.2 The type IIA Matrix model

In this section we describe the conjectured connection of two dimensional N = 2 Liouville
string theory with the Marinari-Parisi model [66, 67, 77] and its superconformal quantum
mechanics version obtained when the superpotential becomes logarithmic [68]. Since this
connection is not as well established as in the case of Type 0A, we keep the discussion brief
emphasising a few salient points. A more detailed review of the Marinari-Parisi model and
its connection to supersymmetric Calogero models can be found in appendix C and in [29].

The action of the (ungauged) Marinari-Parisi model is

S =

∫
dtdθ̄dθTr

[
1

2
D̄ΦDΦ+W0(Φ)

]
, (6.14)

where Φ is a Hermitian matrix valued superfield that can be expanded as

Φ =M + θ̄Ψ+ Ψ̄θ + θθ̄F , (6.15)

and where D = ∂θ̄ + θ∂t, D̄ = −∂θ − θ̄∂t are superspace derivatives. It is also possible to
consider a gauging of this model, with the derivatives being replaced by gauge-covariant
superderivatives. This truncates the model to its singlet sector, as we have seen to be the
case for the Type 0A MQM model, see appendix C for more details.

42As we noted in section 2.2.3, the most general charged black hole solutions of the Type 0A equations
of motion are expected to contain non-trivial tachyon profiles. However, it is hard to construct them
analytically and study their properties.

– 31 –



Let us now consider a cubic superpotential W0 =
1
2(gΦ− 1

3Φ
3) and expand around the

local unstable maximum Mmax of the bosonic potential (given by V (M) = (W ′
0)

2/2−W ′′
0 ).

We then find the action for the fluctuations (Y =M −Mmax)

S =

∫
dtTr

[
1

2
(DtY )2 + Ψ̄DtΨ+

1

2
g2Y 2

]
, (6.16)

that is a model of bosonic and fermionic adjoint matrices coupled via the gauge covariant
derivative (i.e. DtM = ∂tM − i[At , M ]). Let us emphasize here that since we expanded
around a local maximum, supersymmetry is broken. This is in fact a general feature of
performing the double scaling limit since we always expand around an unstable point of
the potential. This means that any target space supersymmetry if present will be obscure
from the matrix model side. Another important non-triviality of the Marinari-Parisi model
that distinguishes it from the MQM models dual to bosonic or N = 1 Liouville theory is
that, due to its supersymmetric nature, the Fermi level µ is not an independent parameter.
Instead, it is fixed by the form of the potential [66]. These and related issues render a
general connection with two dimensional N = 2 Liouville string theory somewhat obscure.
See appendix C and [29] for more details.

On the other hand, if we focus on Type IIA string theory on an AdS2 background
with flux, we have some further input from the fact that it can be described in terms of
a κ-symmetric Green Schwarz action on the Osp(1|2)/SO(2) coset [68]. Or, more cor-
rectly, on the Osp(2|2)/SO(1, 1) × SO(2) coset [72] as we mentioned in section 5. This
supersymmetry algebra can also be realised in the Marinari Parisi model, by choosing a
logarithmic superpotential W0 = q log Φ, giving rise to a V (λ) ∼ 1/λ2 potential for the
matrix eigenvalues as in the case of Type 0A conformal quantum mechanics. In particular,
the generators of the Osp(2|2) algebra are realised in terms of the supercharge operators
Q ,Q given explicitly in eqn. (C.4) together with the Hamiltonian H = 1

2{Q , Q} given in
eqn. (C.3) and the following set (P is the momentum conjugate to M) [68]:

D =
1

2
Tr(MP + PM) , K =

1

2
TrM2 , J =

1

2
Tr(ΨΨ) ,

S =
1

2
Tr(ΨM) , S =

1

2
Tr(ΨM) . (6.17)

The Osp(2|2) symmetry is hence realised as a global symmetry both in the WZW model
and the specific Marinari-Parisi model with W0 = q log Φ. In fact, upon restricting to the
gauge singlet sector, and diagonalising the supermatrices as in (C.5) we find an Osp(2|2) su-
perconformal quantum mechanics model with a superconformal spin-Calogero Hamiltonian
given by eqn. (C.9), with a potential V (λ) ∼ 1/λ2.

6.3 Different choices of time slicing in the conformal MQM models

There is a natural freedom in conformal quantum mechanics to choose different time slicings
as described in [35, 36, 61]. In particular, it has been argued that the Hamiltonians we found
in the previous section do not correspond to the time evolution generator in global AdS2,
but actually to a generator with a Killing horizon (and therefore that they cannot describe a
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traversable AdS2 wormhole). Therefore, describing time evolution in global AdS2 forces us
to use global coordinates (see appendix A for the various coordinate systems) and consider
the global evolution generator acting on the fermionic wavefunctions. For the singlet Type
0A model, this generator takes the form

L0Ψ̃ = (H +K)Ψ̃ =

N∑
i=1

(
−1

2

∂2

∂y2i
+
q2 − 1/4

y2i
+

1

2
y2i

)
Ψ̃ . (6.18)

This is a compact operator with discrete spectrum. Such an operator is not attainable in
the usual double scaling limit since we typically expand around a local maximum in that
limit, leading to an unstable Hamiltonian with continuous spectrum. To obtain such a
compact operator, further input based on the target space symmetries is needed. Yet, it is
not clear what the two AdS2 boundaries are mapped to, in this problem, since yi ≥ 0.43

Similarly, in the type IIA matrix model, a compact global evolution generator can be defined
as G = H + ω0J + ω2

0K [68], using the operators in eqn. (6.17).
We conclude that the issue of different time slicings in MQM models is of fundamental

importance. It is not very well understood and deserves further study.

7 Summary and future directions

In this article, we studied the most general static solutions of the low energy, leading order in
α′ target space effective action of Type IIA and Type 0A (with trivial closed string tachyon)
two dimensional string theories. These solutions include uncharged, charged (extremal
and non-extremal) black holes which are supported by a linear dilaton background and
a constant non-vanishing flux (which is of course vanishing in the uncharged case). In
addition to these, constant dilaton profiles together with constant RR flux also support an
AdS2 solution. The latter, in its global version, can be thought of as the simplest example
of a (Euclidean or Lorentzian) wormhole and has the topology of a Euclidean cylinder or
a Lorentzian strip. The Euclidean analytic continuation of its Rindler patch on the other
hand has the topology of a disk.

Our primary results in this paper are the following. We demonstrated that there exists a
phase transition between the constant dilaton, constant flux EAdS2 wormhole with cylinder
topology and two copies of EAdS2 with disk topology. The transition is driven by the
difference in the electrostatic energy of the two systems. When it is positive, we found that
the disconnected copies dominate the path integral whereas the wormhole dominates when it
is negative and a bound object can form. We then demonstrated how the two boundaries of
the said wormhole solution (which is asymptotically AdS2) can be glued to the near-horizon
geometries of two (near) extremal charged black holes to produce an asymptotically flat
Euclidean wormhole background in the theory, which now has a non-trivial (Z2 symmetric)
dilaton profile and a constant RR flux44. We showed that the resulting solution is smooth

43One might possibly invoke a 2 − 1 map to go back to the original eigenvalues using λ2
i = yi, see

section 6.1. Another possibility is to consider two copies of non-singlet Type 0A MQM and “entangle” their
representations as in the models of [13].

44Its Lorentzian version is a traversable wormhole with a “global” AdS2 geometry near its throat (one
has to attach to it two asymptotically flat regions on either of its sides).
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and satisfies junction conditions without the need for any additional stress-tensor at the
gluing regions. This extends the phase transition to the corresponding asymptotically flat
backgrounds.

Just as in the case of the black hole where the Euclidean geometry is of string scale
near the horizon, the throat of the wormholes of our interest is of string scale bringing their
validity in the effective theory into suspicion. The cure for the bosonic uncharged black
hole lies in its exact worldsheet CFT (WZW coset or Sine-Liouville [41, 44]) description.
In similar spirit, we provided evidence in section 5 that the global AdS2 wormhole with
a cylinder topology also has an exact worldsheet description in the form of certain WZW
cosets45. In the case of the uncharged black hole, the coset description is an exact CFT
only for a specific asymptotic radius of the cigar geometry, but for its dual Sine-Liouville
and matrix model descriptions it is a tunable parameter. We expect similar features for
the various descriptions of the charged black holes. It has long been argued that the singlet
sector of the D0-brane MQM model is insufficient to capture the degrees of freedom of
the bosonic black hole. Instead, non-singlet sectors (or additional degrees of freedom) are
expected to do the job [24–26, 44, 59, 60].

In analogy with the bosonic case, in sections 6.1 and 6.2, we showed that similar singlet
and non-singlet versions of the Type 0A and Type IIA MQM models can be introduced.
Depending on the case, the MQM models in their eigenvalue basis describe a quantum
mechanical system of free or interacting fermions, as seen from eqns. (6.4), (6.13) and C.9.

For the Type 0A case, the non-singlet model (6.13) likely describes charged black holes
with a non-trivial tachyon profile. In this case in order to turn off the tachyon background,
and zoom in to the near horizon region, a conformal quantum mechanics limit is war-
ranted. This corresponds to neglecting the inverted oscillator potential and setting the
chemical potential µ for the fermions to zero. In fact, one may have expected the matrix
model, even its singlet sector in the conformal quantum mechanics limit, to describe a
(non-supersymmetric) constant dilaton and constant flux background with an AdS2 geom-
etry (which has no classical entropy). This AdS2 region was previously shielded to be at
strong coupling and rendered inaccessible by the condensed, exponentially growing tachyon.
When we take the limit µ→ 0 and neglect the inverted harmonic oscillator potential, pos-
itive energy excitations of the fermions expose the AdS2 portion of the geometry which is
now described by the conformal quantum mechanics of N free fermions (6.11).46 The con-
stant dilaton and constant flux AdS2 solutions of section 3.3 have the desired feature that
their classical thermodynamic entropy is exactly zero only when the value of the dilaton is
very finely tuned.47 Nevertheless, it is unclear whether such a background is stable in the
presence of tachyon perturbations. It is very likely that the closed string tachyon on this

45We described both supersymmetric cosets that can be embedded in two dimensional Type IIA as well
as non supersymmetric asymmetric cosets that can play this role.

46In the double scaling limit, as we mentioned before, only scattering processes and a continuous density
of states can be described. Of course, prior to the double-scaling limit that simplifies the potential, the
original finite-N MQM system is stable and leads to a well defined microscopic quantum mechanical system
with a discrete spectrum. This is one way of embedding conformal quantum mechanics in a well defined
UV complete system.

47We thank Dionysios Anninos for a discussion on this issue.
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background is unstable.48 It will presumably condense to the endpoint of the instability
which is expected to be a linear dilaton background in flat space with flux in the pres-
ence of an exponential closed string tachyon background. This could then mean that the
singlet sector of Type 0A conformal quantum mechanics only describes an unstable AdS2
background (under closed string tachyon condensation).

The Type IIA MQM model on the other hand—based on the Marinari-Parisi model [66,
67, 77]—does not have a tuneable chemical potential parameter and even its double scaling
limit is far more subtle. Fortunately, however, Type IIA string theory on AdS2 admits an
exact supersymmetric Osp(2|2)/SO(1, 1)×SO(2) coset CFT description that we described
in section 5. The same Osp(2|2) global symmetry is also present in the Type IIA MQM
model [68] and lends further credibility to the proposal for the equivalence of the Type IIA
MQM model and the supercoset describing AdS2.

We are left with several interesting open questions as a result of our findings in this work.
The first of which is a reliable computation of the worldsheet partition function of global
AdS2 with a cylinder target space topology, corresponding to the string wormhole and a
comparison with the worldsheet factorised result on two Euclidean disks. It is then natural
to ask for an exact worldsheet CFT and matrix quantum mechanics description of the
asymptotically flat wormhole which has two copies of the charged black hole on either side
of its throat. Moreover, despite the resemblance of symmetries and properties of conformal
quantum mechanics to the AdS2 flux backgrounds, a second boundary (that is indeed
present in the global AdS2 solution) is not very transparent from the matrix model. This
question is also tied to the question of the notion of time in conformal quantum mechanics -
different time slicings have been argued to correspond to different Hamiltonians in conformal
MQM [35, 36, 61], see section 6.3. Another possibility to recover two distinct asymptotic
regions is to consider two copies of non-singlet MQM and “entangle” their representations
as in the models of [13]. It would be interesting to study this issue further to clarify the
matrix model description of the global AdS2 solution. Presumably the answer to some of
these questions lies in a more careful study of the non-singlet sector as alluded to above.
It is therefore of great interest and likely feasible to compute the partition function of the
non-singlet version of the 0A (or IIA) matrix model in the double scaling limit. We hope
to report on these questions in the future.
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A The geometry and topology of AdS2

The case of AdS spacetime in two dimensions is special since it can be thought of as
a geometry with two conformal boundaries. In particular global Lorentzian AdS2 has a
metric of the form

ds2 = L2

[
−(r2 + 1)dT 2 +

dr2

r2 + 1

]
, (A.1)

or in a conformally flat coordinate system

ds2 =
L2

sin2 σ

(
−dT 2 + dσ2

)
, 0 < σ < π , −∞ < T <∞ . (A.2)

It describes an infinite strip with two boundaries, see fig. 3. Its Euclidean version τ = −iT
also describes an infinite strip, which can be periodically identified τ ∼ τ + β to give rise
to a geometry with the topology of a cylinder with two boundaries.

There is another metric for AdS2 that covers only a portion of the spacetime

ds2 = L2

[
−(r2 − 1)dt2 +

dr2

r2 − 1

]
, (A.3)

where r = ±1 play the role of inner/outer horizons. This metric appears in general in the
near horizon region of near extremal black holes.

Another coordinate system for this metric is

ds2 = L2
[
− sinh2 ρdt2 + dρ2

]
, ρ ∈ [0,∞) . (A.4)

Interestingly, while this second metric covers only a part of the Lorentzian manifold, its
Euclidean continuation t = iτ describes the hyperbolic disk D2 (globally), with a metric
that can also be written as

ds2 =
L2

cos2 u

[
du2 + sin2 udτ2

]
, sinh ρ = tanu , u ∈ [0, π/2) . (A.5)

This is the two dimensional version of the higher dimensional global EAdSd+1 that generally
has the topology of a ball Bd+1. In two dimensions one can perform a conformal map from
the disk to the strip that describes the Euclidean version of eqn. (A.2). So both Euclidean
metrics can be argued to describe a form of global AdS2 (they are nevertheless topologically
and physically distinct, since they correspond to a different conformal compactification).
In fig. 3 one can see a depiction of the geometry and the two coordinate systems both in
Lorentzian and Euclidean signature.
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Figure 3. The geometry of AdS2. On the left side, we depict the global AdS2 that is a two
boundary strip. It can be compactified under τ = −iT ∼ τ + β. A different compactification is
provided from the conformal map of the strip to the disk, depicted on the right-hand side. The
analytic continuation of the disk covers only the red shaded part of the Lorentzian AdS2 geometry
(two “Rindler wedges”).

B Domain wall ansatze

To find Euclidean background solutions with a trivial tachyon, we can use the following
simplified ansätze:

ds2 = dr2 + f2 (r) dθ2 , (B.1)

ϕ (r, θ) = ϕ (r) (B.2)

Fµν = q (r) ϵµν , (B.3)

where ϵrθ = +1. As we shall observe, this ansätze has the advantage that the qualitative
physical properties of the Euclidean solutions become transparent, through the study of an
associated effective potential. Consistency with the Schwarzschild ansatze of the main text,
relates

l(ρ) = f2(r) ,
dρ√
l(ρ)

= dr . (B.4)
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The non-vanishing equations of motion are given by

0 = ∇µF
µν =

1
√
g
∂µ(

√
gFµν)

= ϵrν
(
fq′ − f ′q

f3

)
= ϵrν

1

f

d

dr

q

f
, (B.5)

0 = R+ 4∇2ϕ− 4(∇ϕ)2 + c̃

= − 2
f ′′

f
+ 4ϕ′′ + 4

f ′ϕ′

f
− 4

(
ϕ′
)2

+ c̃ , (B.6)

0 = Grr

=
c̃

2
+ 2

f ′ϕ′ + fϕ′′

f
− 2(ϕ′)2 − 2ϕ′′ − (πα′)e2ϕ

q2

f2
, (B.7)

0 = Gθθ

=
c̃f2

2
+ 2f(f ′ϕ′ + fϕ′′)− 2f2(ϕ′)2 − 2ff ′ϕ′ − (πα′)e2ϕq2 . (B.8)

The Maxwell equation is solved by q(r) = d1f(r). A simple special solution is recovered
when the Dilaton is constant ϕ = ϕ0. One then finds

f(r) = c1 cosh
√
c̃/2 r + c2 sinh

√
c̃/2 r , (B.9)

If we compactify θ ∼ θ + β, for c1 = 0 this describes EAdS2 with the topology of a disk,
while for c2 = 0 it describes EAdS2 with the topology of a cylinder - a two dimensional
Euclidean wormhole49. For θ not compactified this describes a two boundary strip that can
be analytically continued to the two boundary global AdS2 Lorentzian wormhole. In all
these cases AdS2 is supported by the bulk flux of the gauge field.

The two Einstein equations are also mutually consistent if f = bϕ′. The Dilaton
equation then becomes

−2
f ′′

f
+ 8

f ′

b
− 4

f2

b2
+ c̃ = 0 . (B.10)

We perform the substitution w(z) = f ′(r) , z = 2f2/b to find

wwz − w = −1

4
z +

c̃b

2
. (B.11)

This is Abel’s equation with known solution in parametric form.
The Einstein equation is

ϕ′′ = (ϕ′)2 +Ae2ϕ −B , A =
πd21α

′

2
, B =

c̃

4
. (B.12)

Upon the substitution w(ϕ) = (ϕr)
2 we find

wϕ − 2w − 2Ae2ϕ + 2B = 0 ⇒ w(ϕ) =

(
dϕ

dr

)2

= B + e2ϕ(2Aϕ+ C1) . (B.13)

49These solutions, were also found in [12], using a slightly different action, that coincides with the present
one for a constant Dilaton.
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This solution can be shown to be mutually consistent with the Dilaton equation and there-
fore can be used together with f = bϕ′ to completely determine the scale factor as well.

We can integrate eqn. (B.13) to find its solution in an integral form

r = C2 ±
∫

dϕ√
2Aϕe2ϕ + C1e2ϕ +B

. (B.14)

This formula is not very convenient to discuss the physical characteristics of the bulk solu-
tions. To this end we can start from eqn. (B.13) and bring it into the form(

dϕ

dr

)2

+ VE(ϕ) =
c̃

4
, VE(ϕ) = −e2ϕ(2Aϕ+ C1) , (B.15)

describing a particle moving in the effective (Euclidean potential) VE(ϕ) with energy c̃/4.
This effective potential encodes in a simple qualitative fashion all the physical characteristics
of the solutions.

B.1 Conformally flat ansatze

In this section we analyze a conformally flat ansatz:

ds2 = f2(u)
(
du2 + dθ2

)
, (B.16)

ϕ (u, θ) = ϕ (u) (B.17)

Fµν = q (u) ϵµν , (B.18)

where ϵuθ = +1. Consistency with the ansatz demands that f(u) = f(u(r)), is the same
function, but now depends on a different coordinate u. The relation can be found solving

dr

f(r)
= du . (B.19)

The non-vanishing equations of motion are given in this ansatze by

0 = ∇µF
µν

= ϵuθ
1

f2
d

du

(
q

f2

)
, (B.20)

0 = R+ 4∇2ϕ− 4(∇ϕ)2 + c̃

= − 2
f ′′f − (f ′)2

f4
+ 4

ϕ′′

f2
− 4

(ϕ′)2

f2
+ c̃ , (B.21)

0 = Guu

=
c̃f2

2
+ 2ϕ′′ − 2

(
ϕ′
)2 − 2ϕ′′ + 2

f ′ϕ′

f
− (πα′)e2ϕ

q2

f2
, (B.22)

0 = Gθθ

=
c̃f2

2
+ 2ϕ′′ − 2

(
ϕ′
)2 − 2

f ′ϕ′

f
− (πα′)e2ϕ

q2

f2
. (B.23)
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We observe that q(u) = d1f
2(u) from the Maxwell equation and Gθθ and Guu are the same

equation if

ϕ′′ = 2
f ′ϕ′

f
ϕ′ = bf2 . (B.24)

Using the solution of the Maxwell equation, the Einstein equation reads

0 =
c̃ϕ′

2b
− 2(ϕ′)2 + ϕ′′ − (πα′)e2ϕd21

ϕ′

b
. (B.25)

Its first integral is (C1 = −M)

ϕ′ = bf2 = e2ϕ
C1

b
+
πα′d21
b

ϕe2ϕ +
c̃

4b
. (B.26)

This can be solved to yield

u− C2 =

∫ ϕ

dz
b

e2zC1 + πα′d21ze
2z + c̃

4

, (B.27)

with C2 a second integration constant.
Near ϕ→ −∞, we find the asymptotic solution

ϕ(u) ≃ c̃

4b
(u− C2) . (B.28)

In the extremal limit, given by equations we find in the near horizon region (near ϕtip) that

1

−ϕ+ ϕtip
≃ c̃

2b
(u− C2) . (B.29)

This means that the scale factor approaches

f2 ≃ c̃

2(u− C2)2
, (B.30)

which gives rise to an asymptotic EAdS2 near horizon geometry

ds2n.h. ≃
c̃

2(u− C2)2
(du2 + dθ2) . (B.31)

The deep IR horizon is at u→ ∞ and the EAdS2 “boundary” of the near horizon region is
at u = C2. The flux q(u) = d1f

2(u) has the same behaviour as the scale factor.

C The Marinari-Parisi model

In this appendix we review some basic facts and issues regarding the supersymmetric
Marinari-Parisi (MP) model [77]. In particular [66] truncated the model onto its diago-
nal gauge singlet sector. Later on it was argued and shown in [67] that this is equivalent
to a gauged superspace version of the MP model which is naturally obtained from the
dynamics of D0-branes.
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The action of the (ungauged) Marinari-Parisi model is

S =

∫
dtdθ̄dθTr

[
1

2
D̄ΦDΦ+W0(Φ)

]
, (C.1)

where Φ is a Hermitian matrix valued superfield that can be expanded as

Φ =M + θ̄Ψ+ Ψ̄θ + θθ̄F , (C.2)

where D = ∂θ̄ + θ∂t, D̄ = −∂θ − θ̄∂t are superspace derivatives.
Its Hamiltonian is given by

H =
1

2
Tr

(
P 2 +

∂W0(M)

∂M∗
∂W0(M)

∂M

)
+
∑
ijkl

[Ψ∗
ji,Ψkl]

∂2W0(M)

∂M∗
ij∂Mkl

. (C.3)

We can also express the supercharges as

Q =
∑
ij

Ψ∗
ij

(
P ∗
ij − i

∂W0(M)

∂M∗
ij

)
,

Q =
∑
ij

Ψij

(
Pij + i

∂W0(M)

∂Mij

)
. (C.4)

The truncation to the singlet sector (gauged model) is equivalent to demanding that upon
a unitary rotation both Ψ and F are simultaneously diagonalised

(UΦU †)ii = λi + θ̄ψi + ψ†
i θ + θ̄θfi . (C.5)

The resulting truncated theory has a Hilbert space of states that corresponds to a consistent
subspace of the complete theory. The reduced Hilbert space is spanned by the states

f(λ)
∏
k

ψ†
mk

|0⟩ . (C.6)

Taking into account the Jacobian from the change of variables to eigenvalues, one finds the
eigenvalue form of the supercharges

Q =
∑
i

ψ†
i

(
−i ∂
∂λi

− i
∂W

∂λi

)
Q =

∑
i

ψi

(
−i ∂
∂λi

+ i
∂W

∂λi

)
, (C.7)

where W is an effective superpotential given by

W =W0 −
∑
i<j

log(λi − λj) . (C.8)

The supercharges in eqn. (C.7) are the same as in supersymmetric versions of the Calogero
model [87–90]. In fact the MP model in its eigenvalue basis is intimately related to the
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Calogero model. For example we can write down the eigenvalue HamiltonianH = 1
2{Q , Q

†}
that takes a spin-Calogero type of the form

H =

N∑
i=1

(
−1

2

∂2

∂λ2i
+ V (λi) + 2W ′′

0 (λi)ψ
†
iψi

)
+

1

2

∑
i ̸=j

1− κij
(λi − λj)2

, (C.9)

with
V (λ) =

1

2

(
W ′

0(λ)
)2 −W ′′

0 (λ) , κij = 1− (ψi − ψj)(ψ
†
i − ψ†

j) . (C.10)

The two body forces are such that particles repel each other. It is convenient to think
this particle system as endowed with an internal SU(2) quantum number: “spin-up and
spin-down”. Spin up particles behave as bosons, while those with spin-down as fermions.
In particular when κij = 1 there are no two body forces (fermionic particles), but Pauli’s
exclusion principle and the antisymmetric wavefunction lead to an effective repulsion. When
κij = −1, the particles behave as bosons, but they exhibit a two body repulsion due to the
non-vanishing two body force term in this case.

C.1 Double scaling limit and collective field theory

In order to connect a matrix model with a string theory, it is imperative to consider their
double scaling limit. An alternative approach is to develop an appropriate collective field
theory. An important non-triviality of the Marinari-Parisi model that distinguishes it from
the MQM models dual to bosonic or N = 1 Liouville theory, is that due to its supersym-
metric nature, the Fermi level µ is not an independent parameter, but fixed from the form
of the potential [66]. This affects a lot the way of performing the double scaling limit,
since we cannot freely tune it until the Fermi sea reaches an unstable local maximum of
the potential as in the bosonic and Type 0 MQM models.

A first type of double scaling limit for the MP model in the singlet sector was studied in
[66, 77]. For the particular case of a cubic superpotential: W0 =

1
2(gΦ− 1

3Φ
3), the bosonic

effective potential can be written as

V (λ) =
1

2

(
λ+

1

4
(λ2 − g)2

)
. (C.11)

This potential has two supersymmetric minima and one local maximum. Since we cannot
really tune the chemical potential, one idea is then to perform the double scaling limit
in a similar way as in the time independent matrix models. This usually means that one
should tune the coupling and focus near the edge of the eigenvalue distribution. Here it
corresponds to a singular limit for the norm of the ground state wavefunction of the MQM
system [66].

Another approach [67], is to start from the lowest local minimum and form the (per-
turbatively) supersymmetric ground state that contains only spin down states (fermions).
These can be shown to fill the Fermi sea up to an energy level that precicely corresponds
to the second higher local minimum. In order to reach criticality (the unstable local maxi-
mum) one can then fill the rest of the states with spin up particles (repulsive bosons). In
both cases the resulting double scaled ground state is not supersymmetric.
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We shall now briefly discuss the collective field description of the Marinari-Parisi
model [88]. Typically the collective fields yield the target space fields of the double scaled
theory. The collective field ansatz is in this case similar to that used in spin-Calogero
models

∂xφ(x, t) =
∑
i

δ(x− λi)

ψ(x, t) =
∑
i

δ(x− λi)ψi(t)

ψ̄(x, t) =
∑
i

δ(x− λi)ψ
†
i (t) . (C.12)

The collective Lagrangian was found to take the following complicated form

L =

∫
dx

[
1

2ϕ
φ̇2 − 1

2
ϕ(W ′)2 +

i

2

ψ†ψ̇ − ψ̇†ψ

ϕ
+
i

2

φ̇

ϕ

[
∂x

(
ψ†

ϕ

)
ψ − ψ†∂x

(
ψ

ϕ

)]
+
1

2

1

ϕ
[ψ†, ψ]∂xW

′
]
− 1

2

∫
dx

∫
dy[ψ†(x), ψ(y)]W;xy , (C.13)

with the definitions ∂xφ = ϕ, W ′ = δW
δφ(x) and finally W;xy = δ2W

δφ(x)δφ(y) . In order to
proceed, one expands the action around its classical (static) saddle point solution in order
to determine the low energy target space fields. For the problem at hand, one obtains
an interacting field theory with a massless boson and a massless Majorana fermion but
without spacetime supersymmetry (it can be shown that this theory can be rewritten as a
spontaneously broken supersymmetric theory where one chiral super field has a nontrivial
space dependent background).

All these fundamental difficulties show that the correspondence between the continuum
string theory and the double scaled supermatrix model or its collective field theory is quite
non trivial and not well established yet.
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