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Abstract For more than a century lattice random walks have been employed ubiqui-
tously, both as a theoretical laboratory to develop intuition ofmore complex stochastic
processes and as a tool to interpret a vast array of empirical observations. Recent
advances in lattice random walk theory in bounded and heterogeneous environments
have opened up opportunities to cope with the finely resolved spatio-temporal na-
ture of modern movement data. We review such advances and their formalisms to
represent analytically the walker spatio-temporal dynamics in arbitrary dimensions
and geometries. As new findings, we derive the exact spatio-temporal representation
of biased walks in a periodic hexagon, we use the discrete Feynman-Kac equation to
describe a walker’s interaction with a radiation boundary, and we unearth a disorder
indifference phenomenon. To demonstrate the power of the formalism we uncover
the appearance of multiple first-passage peaks with biased walkers in a periodic
hexagon, we display the dependence of the first-transmission probability on the
proximity transfer efficiency between two resetting walkers in a one-dimensional pe-
riodic lattice, we present an example of spatial disorder in a two-dimensional square
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lattice that strongly affects the splitting probabilities to either of two targets, and we
study the first-reaction dynamics in an unbounded one-dimensional lattice.

1 Introduction

The dynamics of reaction-diffusion processes in heterogeneous space is a topic with
vast applicability from transport processes in physical and chemical systems [5]
to animal ecology and disease spread [53]. While the literature encompasses both
continuous and discrete variable descriptions, we focus here on the latter providing an
overview of the discrete space-time formalism. Such formalism is the lattice random
walk (LRW) whose history (see e.g. [85] for an historical account of probability
theory) dates back to the early works by de Moivre [19] and Laplace [57] and to
seminal contributions, during the last century, by Smoluchowski [86], Polya [71],
Chandrasekhar [11], Kac [44], Feller [27], Erdös [23], Sparre Andersen [79] and
Spitzer [80], with more recent monographs by Weiss [89] and Hughes [41].

The studies of LRWdynamics in spatially heterogeneous space can be traced back
to the work by Montroll in the 60’s to study trapping reactions in photosynthetic
units [67, 69, 68]. Since then a large literature on the transport properties of random
walks both in continuous and discrete time emerged [50, 20, 74, 51, 21, 82, 36, 70,
42, 13], but it mainly focused on translationally invariant 13 systems. Interest for
theoretical studies in non-periodic bounded domains have surfaced more recently
(see e.g. [72, 6, 63]). Part of the more recent surge of interest stems from the
technological progress in various types of sensors and instruments that allow to
record with unprecedented resolution and quality the spatio-temporal dynamics of
physical particles and biological organisms as well as of the environment where
motion occurs.

These advances demand the development of models that account in an explicit
manner, rather than simply averaging over the disorder, for how random movement
is affected by the presence of spatial heterogeneities. Very recently a series of
exact analytic studies on the dynamics of (Markov) LRWs in arbitrary dimensions
[29, 75, 16, 61, 33, 76] have opened up this possibility. Here we review this recent
literature, what knowledge gaps it has filled and what it has accomplished. We also
present some new findings and we point to open problems where LRW can provide
some useful contribution.

1.1 The missing links

While mathematical convenience has often favoured studies of diffusive transport
processes with continuous space description—no need for spatial discretisation—the
benefit of discrete space models is that the dynamics of many relevant quantities can
now be found in closed form. This benefit is especially relevant in dimensions greater
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than one where finding the spatio-temporal dependence of the diffusion equation,
except in very symmetric geometries, requires the numerical solution of complicated
boundary value problems. In addition, when time is discrete, that is when dealing
with LRWs, the inversion to time of closed form expressions of generating functions
offers a computational advantage when compared to a numerical Laplace inversion
to continuous time.

Given these advantages, one may wonder why LRWs have not been employed
more extensively to study first-passage processes in heterogeneous space. The an-
swer to this question lies in the multiple technical challenges, our missing links,
that needed to be overcome, starting from the analytic knowledge of the LRW
spatio-temporal dependence of the occupation probability %(n, C). In unbounded
hypercubic lattices the exact solution of the LRW Master equation, the so-called
propagator or Green’s function, for nearest-neighbour jumps can be easily found for
each Fourier component

(
5̂ (:8) =

∑+∞
=8=−∞ e

8:8=8 5 (=8)
)
and as a generating function(

5̃ (I) = ∑∞
C=0 5 (C)IC

)
, namely in the form ˜̂

%n0 (k, I) where n0 is the site at which
the probability is localised at time C = 0. The same could not be said, instead, about
finite lattices of arbitrary dimensions for which exact propagators have been known
only for periodic domains [66]. In Sec. 2 we present the development that led to the
exact spatio-temporal dependence of %n0 (n, C) in hypercubic lattices with arbitrary
boundaries, i.e. absorbing, periodic, reflecting and mixed absorbing/reflecting.

Knowledge of the propagators has allowed us to study in closed form the LRW
dynamics in the presence of spatial disorder [17, 76]. For the latter, and to make
a distinction with the dynamics in the presence of reactive sites, we have used the
name inert spatial heterogeneities to indicate that the LRW occupation probability
is conserved over time. Such heterogeneities consist e.g. of permeable and reflecting
barriers, regions with different diffusivities, local biases as well as long-range con-
nections. We show this advance in Sec. 2.1. A special type of inert heterogeneity,
that affects the movement dynamics globally, occurs when a LRW jumps with some
probability from anywhere on the lattice to a specific site. This dynamics represent
the so-called resetting LRW in discrete space and discrete time, originally introduced
in the literature for Brownian walks in ref. [25]. The form of the resetting discrete
Master equation, derived and solved in ref. [16], is presented in Sec. 2.2. Use and
extension of the above approach to other geometries has also been possible, one such
important endeavour has been the exact derivation of the LRW dynamics in finite
periodic and reflecting hexagonal and honeycomb domains in ref. [61]. in Sec. 2.3
we report on these latter findings, but we also extend them and find the propagator
when an hexagonal LRW is subject to global biases.

In Sec. 3 we present the formal approach [33] that allows us to determine the
splitting probabilities when the environment contains multiple partially or fully
absorbing targets. As studies of radiation boundary conditions for LRWs have been
very limited, we have dedicated Sec. 4 to introduce the formalism and show the link to
the discrete Feynman-Kac equation [46, 47, 15], which allows to analyse functionals
of random processes. In Sec. 5 we cover four topics and we do so by applying the
formal theories presented in the preceding sections. We study the dynamics of the
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first-passage probability with a single target on a periodic hexagonal geometry, the
splitting probabilities to two targets in a heterogeneous 23 reflecting square lattice,
the transmission probability between two resetting LRWs in a 13 periodic domain,
and the first-reaction probability in a 13 unbounded domain. The analytical nature
of the formalism is exploited in discovering an interesting disorder indifference
phenomenon in Sec. 6. While for a semi-bounded 13 domain a disorder indifference
phenomenon has already been presented in the literature [33], here we show another
example, which occurs in a 23 domain. Finally, in the concluding Sec. 7, we point
to research areas where our formalism could be further exploited as well as to areas
where LRWs can provide fruitful approaches.

2 Dynamics in bounded hypercubic lattices

The first step in identifying the missing links has been to devise a hierarchical
procedure that exploits the analytic solution in a lower dimension to build the solution
in a higher one [29]. Such procedure, which involves a symmetrisation step in
the presence of global biases [75], has allowed to find the exact spatio-temporal
solution of the nearest-neighbour LRW Master equation in hypercubic lattices of 3
dimensions, namely

% (n, C + 1) =
(
1 − 1

3

3∑
8=1

@8

)
% (n, C) +

3∑
8=1

{
@8
23
(1 − 68)% (n − e8 , C)

+ @8
23
(1 + 68)% (n + e8 , C)

}
, (1)

where e8 is the 8-th basis vector and where, at each time step, −1 ≤ 68 ≤ 1 represents
the bias along the 8-th axis, andwith 0 < @8 ≤ 1 for all 8 yielding 0 ≤ 1−3−1

∑3
8=1 @8 <

1 the probability of not moving. Given that the @8’s are proportional to the diffusion
constant along each direction in the continuous space-time limit of Eq. (1), we refer
to them as the LRW diffusivities.

In bounded space, once the type of domains along each axis are given, the
propagator of Eq. (1) are given by [29]

%
($)
n0 (n, C)=

, (W1 )∑
:1=| (W1 )

· · ·
, (W3 )∑
:3=| (W3 )

3∏
9=1

ℎ
(W 9 )
: 9
(= 9 , =0 9 )


1 +

B
(W1)
:1

3
+· · ·+

B
(W3)
:3

3


C

, (2)

where the superscript W, accounting along each axis for domains that are periodic
(W = ?), absorbing (W = 0), reflecting (W = A) or a mixture of reflecting on one
side and absorbing on the other (W = <), specifies the spatial and temporal de-
pendence. While we refer the reader to refs. [29, 75] for the explicit expressions
for ℎ (W): (=, =0), B

(W)
: , l(W), and , (W), we plot in Fig. 1 an illustrative example,
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Fig. 1: Occupation probability and its marginals (top and
side panels) at time C = 200 of a biased LRW with
@1 = @2 = 0.8 and 61 = 62 = 0.1, starting at n0 = (21, 21) ,
in a square domain of size # = 31 with reflecting and
periodic boundaries along, respectively, the horizontal and
vertical axis. With the definitions 5 = (1 − 6)/(1 + 6) and
f = (1 − 62)−1/2, the temporal dependence in Eq. (2) is
given by B (?): = @ cos(2c:/# ) + 8@6 sin(2c:/# ) − @
for the periodic axis, while for the reflective axis we
have B (A )0 = 0 or B (A ): = @ cos(c:8/# )/f − @ when
: > 0. For the spatial dependence in the reflective case
we have ℎ (?): (=, =0) = exp[2c8: (= − =0)/# ]/# , while
ℎ (A )0 (=, =0) = 5 =−1 (1 − 5 )/(1 − 5 # ) and ℎ (A ): (=, =0) =
# −1 5 (=−=0−1)/26 (=)6 (=0)/[f − cos(c:/# ) ] with
6 (<) =

√
5 sin(c:</# ) − sin[c: (< − 1)/# ] when

: > 0. The finite series for the :8 indices start with l = 0
and terminates at, = # − 1 = 30.

that of a LRW in a square domain periodic and reflecting along two orthogonal
directions, globally biased towards the bottom left corner. At intermediate times the
occupation probability, %n0 (n, C), displays some non-monotonicity in space along
the horizontal axis due to reflection, while a non-zero probability appearing close to
the top boundary indicates the presence of the periodic boundary conditions along
the vertical axis. At step C = 200 we observe the peak of the probability at coordi-
nates (13,13), which is 16 lattice sites away from the starting location in the South
West direction. To explain this observation we calculate the ensemble average, in-
dicated with the symbol

〈〉
, using the unbounded propagator and obtain the mean

displacement
〈
=8

〉
=

∑
n =8%(n, C) = =08 −68@8C/2. To determine the time dependent

mean position of the probability we simply subtract the initial position along each
axis and we have

∑
8

〈(=8 − =08 )〉 = −(61@1 + 62@2)C/2, which is exactly -16 for
the parameters used in Fig. 1. An analogous calculation for the mean square dis-
placement (MSD) extracted from the unbounded propagator along each axis gives〈(
=8 −

〈
=8

〉)2 = @8C (1 − 628 @8/2) /2, whose square root gives a distance of around
9 for the parameters of Fig. 1. With the square domain of width 31 and the mode
centred at (13, 13) at time C = 200, it becomes clear why the effects of the bound-
aries start to be conspicuous at such time scale, and are particularly visible along
the horizontal axis because of the probability accumulation due to the reflecting
boundary.

Differently from the corresponding cases for random walks in continuous time
as well as Brownian walks, one may notice that Eq. (2) is not the product of 13
propagators, which ultimately has made identifying the exact spatio-temporal solu-
tion of the Master equation challenging. Another notable characteristic of Eq. (1)
and its solution is that the dynamics include the chance at each time step of staying
at a site with some arbitrary probability. In the mathematics literature a symmetric
nearest-neighbour LRW that stay put with probability 1/2 and moves in all allowed
directions with probability 1/(23) is called a lazy random walk [40, 65, 55]. In our
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Eqs. (1) and (2), we obtain such kind of transition probability by setting 68 = 0 and
@8 = 1/2. This implies that our formalism generalises the lazy LRW, allowing to
describe its occupation probability when the chance of not moving at each time step
can be chosen arbitrarily along each direction, a practical convenient aspect since it
avoids the so-called parity issues [45] that affect the spatio-temporal dependence of
the LRW occupation probability dynamics when @8 = 1. From now on we refer more
broadly to a lazy LRW whenever a walker at each time step has a non-zero chance
of staying.

2.1 Inert heterogeneities

In the presence of" inert spatial heterogeneities the transition probabilities between
any two sites can be modified, leading to the Master equation [76]

P(n, C + 1) =
∑
m

Gn,m P(m, C)

+
"∑
:=1

(
Xn,u: − Xn,{:

) [
_{: ,u:P(u: , C) −_u: ,{:P({: , C)

]
, (3)

where Xm,n is a Kronecker delta and Gn,m is a compact notation for the tensor

𝒖 𝒖

𝒖𝒔

𝒖𝒓

𝒖 𝒗

𝑨𝒗,𝒖 − 𝜆𝒗 ,𝒖

𝑨𝒖 ,𝒗 − 𝜆𝒖 ,𝒗

𝑨𝒔,𝒗 − 𝜆𝒔 ,𝒗

𝑨𝒓 ,𝒖 − 𝜆𝒓 ,𝒖

𝑨𝒖 ,𝒖
+∑

𝒘 𝜆𝒘 ,𝒖

𝑨𝒗,𝒗
+∑

𝒘 𝜆𝒘 ,𝒗

Fig. 2: Schematic representation of the transition probabilities after the introduction of spatial
heterogeneities or disorder between a pair of sites subject to the constraints _| ,u ≤ G|,u for
all neighbouring sites | with a (modified) heterogeneous connection in the direction u to |, and
0 ≤ Gu ,u +

∑
| _| ,u to ensure that the heterogeneous transition probabilities are positive. The

left panel shows that the probability of hopping from site u to { is given by G{,u . When _{ ,u
is positive, the probability of jumping from u to { decreases, while the probability of staying put
increases. When _{ ,u is negative, the opposite effect occurs with a decrease in the probability of
staying, while increasing the jump probability fromu to {. The parameter _u ,{ affects the transition
probability from { to u and the probability of remaining at { in an equivalent manner. On the right
panel we show three specific modifications: the introduction of a reflecting barrier (top), of a sticky
site (middle), and of a long-range connection (bottom).

representing the transition probabilities between any pair of sites, e.g. Eq. (1) if the
lattice is unbounded, or Eq. (1) together with the appropriate boundary constraints
if the domain is finite. The role of the right elements inside the summation can
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be evinced by looking at Fig. 2 where we illustrate how the transition probabilities
between pairs of lattice sites are being modified whenever the _ parameters are
non-zero.

By generalising the so-called Montroll’s defect technique for reactive sites to the
case of inert heterogeneities [76], we have obtained the exact propagator generating
function of Eq. (3) as

P̃n0 (n, I) = %̃n0 (n, I) − 1 +
��N(n, n0)����N�� , (4)

where %̃n0 (n, I) is the propagator generating function of the defect free problem,
while

��N�� and ��N(n, n0)�� are determinants with matrices built from the defect-free
propagator dynamics and the heterogeneity properties as follows:

N8, 9 = _{8 ,u8 %̃〈u 9−{ 9〉 (u8 , I) − _u8 ,{8 %̃〈u 9−{ 9〉 ({8 , I) − I
−1X8, 9 , (5)

N(n, n0)8, 9 = N8, 9 − %̃〈u 9−{ 9〉 (n, I)
[
_{8 ,u8 %̃n0 (u8 , I) − _u8 ,{8 %̃n0 ({8 , I)

]
, (6)

where %̃ 〈u−{〉 (n, I) = %̃u (n, I) − %̃{ (n, I) represents the difference between defect-
free propagators evaluated at pairs of sites.

𝑡 = 50 𝑡 = 100 𝑡 = 200

Fig. 3: Spatial dependence of the propagator Pn0 (n, C) at different times for a diffusive LRW
starting from n0 = (11, 12) in a square disordered lattice of size # = 20 indicated in the left panel.
The diffusivity along each axis is set to @8 = 0.2. The inert spatial heterogeneities are as follows:
arrows indicate a local bias, solid and dotted lines are, respectively, fully reflecting or permeable
barriers, while shaded areas represent sticky sites. The permeable barriers are constructed such that
80% of the time they reflect the walkers allowing the walker to pass through the remaining 20%
of the time, the sticky sites results in a reduction of movement by a factor of 0.2, finally, the local
biases are constructed to reduce the sojourning probability by 20%whilst increasing the probability
of moving in the indicated biased direction by the equivalent probability. The blue marked diamond
at coordinates (8,18) and (19,3) represent target sites used later in Sec. 3.

We consider a disordered lattice represented in the left panel of Fig. 3, and through
a straightforward numerical I-inversion [2, 1] of Eq. (4), we plot Pn0 (n, C) at times
C = 50, 100 and 200 in the right panels of Fig. 3. It is evident that the local biases and
the sticky sites force the occupation probability to deviate quite considerably from a
uniform probability even at relatively early times.
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In some instances, when the number of spatial heterogeneities is large, we have
devised a technique that avoids to calculate the determinants in Eq. (4). This aspect
is particularly convenient to study LRW dynamics in a space with multiple domains.
For want of space we refer the reader to the publication [17] for further details. That
mathematical technique has also allowed us to clarify themicroscopic limiting proce-
dure to obtain the so-called leather or Tanner boundary condition [83] in continuous
space, something relevant to study transport processes in porous materials.

2.2 Resetting dynamics

When a LRW is subject to resetting to a given site n2 , its dynamics is as follows:
at each time step it either resets to n2 with a given probability A (0 ≤ A ≤ 1), or
performs its underlying Markov walk with the complementary probability 1− A. The
Master equation of the occupation probability of such a process, A&n0 (n, C) (the left
subscript A expresses the fact that the LRW is subject to resetting), can be written
[16] in terms of the LRW dynamics in the absence of resetting. The renewal form of
the Master equation is given by

A&n0 (n, C) = A
C−1∑
C′=0
(1 − A)C′&n2 (n, C ′) + (1 − A)C&n0 (n, C) . (7)

The structure of Eq. (7) is advantageous as it connects directly the resetting prop-
agator A&n0 (n, C) to the reset-free propagator &n0 (n, C), thus allowing to express
various quantities of the resetting dynamics in terms of the reset-free propagator.

In I-domain, one may write Eq. (7) as

A &̃n0 (n, I) =
AI

1 − I &̃n2 (n, (1 − A)I) + &̃n0 (n, (1 − A)I) . (8)

The form of Eq. (8) is particularly useful to determine the steady-state probability in
the presence of resetting. In the limit C → ∞, using the final value theorem for the
I-transform, we obtain the steady-state probability A&ss (n) as

A&
ss (n) ≡ lim

I→1
[(1 − I) A &̃n0 (n, I)] = A &̃n2 (n, (1 − A)) , (9)

which indicates, as expected, that the steady-state probability depends on the resetting
site n2 and is independent of the initial site n0. For an unbiased 13 LRW with
diffusivity @ in unbounded domain subject to resetting at site =2 , the steady-state
probability obtained using Eq. (9) is given by

A&
ss (=) =

√
jA − 1√
jA + 1

exp
{
−|= − =2 | ln

(
jA +

√
j2A − 1

)}
, (10)
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where jA ≡ 1+ A/(@(1− A)) ≥ 1 is a renormalized parameter dependent only on the
LRW diffusivity and the resetting probability.

We emphasise that Eqs. (7), (8), and (9) hold for any reset-free propagator and
its generating function, and can thus be employed in arbitrary dimensions with
arbitrary boundary conditions, e.g. for any choice of W in Eq. (2), or with any spatial
heterogeneity as dictated by Eq. (4), as well as with arbitrary geometries, an example
of which is presented in the next subsection.

2.3 Hexagonal and honeycomb domains

It is well-known that it is not only the dimensionality of the lattice but its coordination
number, that is the number of nearest neighbours of each site, which affects the
movement paths [91]. This is exemplified in finite lattices where the combination of
the shape or outer boundaries of the spatial domain and the coordination number have
critical implications on the LRW dynamics. An important non-hypercubic lattice is
the six neighbour hexagonal lattice employed in models ranging from the movement
of mobile phone users [3] through to the formation of territories in scent-marking
organisms [31, 32, 30, 37, 77]. In this section we introduce the periodic propagators
for bounded hexagonal lattices and describe the wealth of quantities that can be
obtained from them.

Fig. 4: Schematic representation of the hexago-
nal lattice and the LRW movement steps. The =8
unit vectors of the Her’s coordinate system are
shown next to the sites, while permissible move-
ment directions between lattice sites are shown
with the arrows emerging from the centre. The three
outer numbers indicate the increase, decrease or no
change of the =8 coordinate along the specified di-
rection. Themagnitude of the transition probability
along each direction, (@/6) , is modified when ei-
ther of the three biases is non-zero, namely by the
multiplicative factor 1 ± 68 . For clarity, we omit
arrows depicting the option of staying on lattice
sites, which is given by 1 − @, and we also do not
display the modifications that occur when periodic
or reflecting boundaries are present.

When considering hexagonal geometries, the non-orthogonality of the lattice sites
makes it convenient to use the so-called Her’s three-axis coordinate system [39, 38],
where each coordinate is given by three linearly dependent integer coordinates
(=1, =2, =3) such that =1 + =2 + =3 = 0 as displayed in Fig. 4.

Since the coordinates are linearly dependent, we require only two of them to
uniquely describe a coordinate. In unbounded space, the Master equation governing
the evolution of the occupation probability, &H (=1, =2, C) (the superscriptH stands
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for hexagonal), is

&H (=1, =2,C + 1) = @6
[
(1 + 61)&H (=1 + 1, =2, C) + (1 − 61)&H (=1 − 1, =2, C)

+ (1 + 62)&H (=1, =2 + 1, C) + (1 − 62)&H (=1, =2 − 1, C)
+ (1 + 63)&H (=1 + 1, =2 − 1, C) + (1 − 63)&H (=1 − 1, =2 + 1, C)

]
+ (1 − @)&H (=1, =2, C),

(11)

where −1 ≤ 68 ≤ 1, 8 ∈ {1, 2, 3} governs the independent bias along the three
movement directions as shown in Fig. 4. Following standard procedures [41], we
obtain the unbounded propagator

&̃Hn0 (=1, =2, I) =
1
(2c)2

∫ c

−c

∫ c

−c

e8 [ (n−n0) ·k ]

1 − I`(:1, :2) d:1d:2, (12)

where k = (:1, :2)ᵀ (the symbol ᵀ indicating the transpose operation), n − n0 =
(=1 − =01 , =2 − =02 ) and

`(:1, :2) = 1 − @ + @3
[
cos(:1) + cos(:2) + cos(:1 − :2)

− 861 sin(:1) − 862 sin(:2) − 863 sin(:1 − :2)
]
, (13)

is the so-called structure or characteristic function [69, 54], or discrete Fourier
transform of the step probabilities. The quantity &̃Hn0 (=1, =2, I) reduces to known
results [68] when @ = 1 and 68 = 0, 8 ∈ {1, 2, 3}. We note here that in the other
limit viz. 68 = ±1, 8 ∈ {1, 2, 3}, the walker is confined to three choices of movement
direction. One can obtain a fully ballistic walker by solving a slightly modified
Master equation whereby individual @8 values are assigned to each unit vector such
that (@1 + @2 + @3)/3 = @. For example, in this case by setting 61 = 1, @2 = @3 = 0
one obtains ballistic motion along the (−1, 0, +1) direction.

In order to find the exact dynamics in finite hexagonal domains, wemake use of the
so-calledmethod of images, a technique exploited extensively for LRW in hypercubic
lattices. For the technique to be applied to hexagonal domains, a generalisation to
non-orthogonal coordinate systems is necessary. In doing so for periodic hexagonal
domains, as a result of the zig-zag nature of the boundaries there are two unique
image sets, which we refer to as the left and right shift (see Figs. 2 and 8 in
ref. [61] for pictorial representations). As the two image sets create two unique
periodic propagators with differing transport statistics, we denote them below with
the superscripts ℓ and r, respectively.

In applying the generalised method of images we take a finite hexagon with a
circumradius of size ', containingΩ = 3'2+3'+1 lattice sites, and we construct the
periodic propagator via [61] %̃H (?)n0 (=1, =2, I) =

∑∞
<1=−∞

∑∞
<2=−∞ &̃

H
n0 (=1 + =̂

[8 ]
1 , =2 +

=̂ [8 ]2 , I) with the [8] shift using
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=̂ [ℓ ]1
=̂ [ℓ ]2

]
=

[ (2' + 1)<1 − '<2
−(' + 1)<1 + (2' + 1)<2

]
;

[
=̂ [r]1
=̂ [r]2

]
=

[−'<1 + (2' + 1)<2
−(' + 1)<1 − '<2

]
. (14)

Using (14), we find the periodic propagator in closed form as

%H
(?) [8 ]

n0 (=1, =2, C) = 1Ω +
1
Ω

'−1∑
A=0

3A+2∑
B=0

{
e8[ (n−n0) ·k [8 ]]

[
`

(
: [8 ]1 (A, B), :

[8 ]
2 (A, B)

)] C

+ e−8[ (n−n0) ·k [8 ]]
[
`

(
−: [8 ]1 (A, B),−:

[8 ]
2 (A, B)

)] C }
,

(15)
where : [r]1 (A, B) = :

[ℓ ]
2 (A, B) = 2cΩ−1 ['(B + 1) + B − A] and :

[r]
2 (A, B) = :

[ℓ ]
1 (A, B)

= 2cΩ−1 ['(2− B + 3A) + A + 1]. Equation (15) reduces to Eq. (12) of ref. [61] in the
absence of any bias. Note that using Eq. (15) the LRWpropagator in a finite hexagons
with reflecting boundaries can also be found by using the general framework for
spatial heterogeneities presented in Sec. 2.1. To do that one needs to insert 6' + 3
pairs of defective sites (3 pairs when the site is a corner site, and 2 pairs otherwise)
to ensure that a walker cannot jump to periodically-linked hexagonal boundary sites
on other side of the lattice. Such an approach was used for the unbiased case and can
be found in ref. [61].

The creation of the hexagonal periodic image set (Eq. 14) has also opened up
the ability to represent, entirely analytically, random motion in six-sided hexagonal
geometry. We note in fact that Eq. (15) is valid with any normalised structure-
function, and the inclusion of internal states [90, 73] into the randomwalk allows the
analytic representation of the three-neighbour, non-Bravais honeycomb lattice [61],
which finds use in transport processes over carbon structures such as graphite [7]
and single-walled carbon nanotubes [14, 4]. We omit the details here, but we point
the interested reader once again to ref. [61].

3 First passage processes to multiple targets

The LRW renewal equation, first introduced by Erdös, Feller and Pollard [24], and
used extensively since (see e.g. [72, 6, 63]), has a fundamental role in first-passage
processes since it allows to link the generating functions of the occupation probability
with the first-passage probability to reach the target site n from the initial site n0:

�̃n0→n (I) =
%̃n0 (n, I)
%̃n (n, I)

. (16)

Generalisations of relation (16) tomultiple targets have appeared, e.g. [59, 12, 29],
but the proposed relations have been constructed in terms of the solution of an
algebraic set of coupled probability equations. In [74] Rubin and Weiss developed
a LRW formalism to compute the number of visits to an arbitrary set of lattice sites
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in unbounded or periodic domains. The generalisation of that method to arbitrary
geometry, devised in ref. [33], has led recently to the sought-after general theory of
first-passage processes to a set of multiple (partially) absorbing targets.

With a set of targets at coordinates m8 (8 = 1, ..., ") and absorbing probability
1 =

(
dm1 , dm2 , ..., dm"

)
with (0 < d8 ≤ 1), the multi-target theory allows to

determine first-passage probabilities to any of the absorbing sites as well as the so-
called splitting probabilities to reach only one, that is the probability to reach target 9
and none of the remaining ones, �̃n0→(m 9 |m1;...;m 9−1;m 9+1;...;m" ) (1, I). That quantity
is given in terms of individual first-passage and first-return probability as follows

�̃n0→(m 9 |m1;...;m 9−1;m 9+1;...;m" ) (1, I) =
|F( 9) (1, I) |
|F(1, I) | , (17)

where the " × " matrix F(1, I) has diagonal components equal to F:,: (1, I) =
1 + 1−dm:

dm:

[
1 − Rm: (I)

]
, with R̃m: (I) the generating function of the (first-)return

probability to site m: , and the off-diagonal terms F 9 ,: (1, I) = �̃m:→m 9 (I). The
matrix F( 9) (1, I) is the same as F(1, I), but with the 9-th column replaced by
G(I) = (

�̃n0→m1 (I), �̃n0→m2 (I), . . . , �̃n0→m" (I)
)ᵀ.

If one were interested in the first-passage over a given subset of the " targets,
given the mutually exclusive nature of the first-passage and first-return trajectories,
it suffices to sum Eq. (17) over the appropriate 9 elements. When the interest instead
lies in knowing the first-passage probability to any of the " targets it is trivial to
show that the multi-linearity of the determinant allows to write the first-passage
probability to any of the targets as

�̃n0→(m1;...;m" ) (1, I) = 1 −
|F(1, I) |
|F(1, I) | , (18)

where F8, 9 (1, I) = F8, 9 (1, I) − G8 (I).
Using Eq. (18) the mean first-passage, or mean first-absorption time when d < 1,

to any of the " targets can be conveniently obtained by standard procedure, namely
)n0→(m1;...;m" ) = (d/dI) �̃n0→(m1;...;m" ) (1, I)

���
I=1

. The resulting expression is
given by

)n0→(m1;...;m" ) =
|T0 |

|T1 | − |T| . (19)

The " × " elements of the matrix T are constructed by calculating individual
mean first-passage and first-return quantities, namely, T8,8 = − 1−dm8

dm8
'm8 for the

diagonal terms, with 'm8 the mean return time to m8 , and the off-diagonal terms
T8, 9 = )m 9→m8 , with the mean first-passage time from m 9 to m8 . The other matrices,
T0 and T1, are constructed as follows: T08, 9 = T8, 9 − )n0→m8 and T18, 9 = T8, 9 − 1.

As a transmission event of a token of information, e.g. the passing of a pathogen or
an internal degree of freedom, or its limiting case an encounter event when d = 1, is
exactly equivalent to a first-absorption event at any of the locations where two LRW
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may meet [50], an important achievement of Eq. (18) is that it allows to compute
the time dependence of the probability of encounter and transmission [33]. The
necessary ingredients consist of the joint time-dependent occupation probability in
the 23-dimensional space for the two independentwalkers thatmove in 3 dimensions,
which are now available in hypercubic lattices for simple [29] and biased walks [75]
with resetting dynamics [16, 18] as well as in triangular and hexagonal lattices [61].
Using the knowledge of the joint propagators, the evaluation of mean first-passage
times between lattice points and mean return times is also possible, leading to the
evaluation of the mean transmission or mean encounter time via Eq. (19).

4 Dynamics in the presence of radiation boundaries

The so-called radiation boundary condition, introduced in LRW theory by Weiss
[89], consists of a lattice site at which a walker may be reflected with probability [
and absorbed with probability 1 − [. If we consider for simplicity a 13 unbounded
LRW, described by Eq. (1) in the absence of any bias, starting to the right of the
origin and such that a radiation boundary is present at the origin, the boundary
constraint imposes the following flux condition [49]:

�+ (0, C) = [�− (0, C), (20)

where the + and − superscripts indicate the flux in and out of the origin, respectively,
while the total flux is given by � (0, C) = �+ (0, C) − �− (0, C). If we take a nearest-
neighbour 13 LRW, with lattice points = = 0, 1, ..., the fluxes in and out of the
origin are, �+ (0, C) = @%(0, C)/2 and �− (0, C) = @%(1, C)/2. These relations lead to
the discrete version of the so-called radiation (also referred to as Robin or Fourier)
boundary condition

� (0, C) = @([ − 1)
2[

%(0, C), (21)

which is a generalisation to the case of lazy LRWs. For [ = 1 we recover from Eq.
(21) the reflecting boundary condition, whereas for [ = 0 we have the absorbing
boundary condition.

To find the first-reaction (or first-absorption) probability when the LRW Master
equation is supplemented by the boundary condition (21), we need to formulate the
dynamics in terms of the number of times, SC , the LRW visits the origin [43, 28,
35, 34]. UsingNC as the stochastic variable that represents the location of the LRW,
with N0 ≠ 0, we define SC =

∑C
8=1 XN8 ,0 and write a Master equation describing the

joint probability of NC and SC , Λ(=, B, C) = P[NC = =,SC = B], as

Λ(=, B, C + 1) =
[ @
2
Λ(= − 1, B, C) + @

2
Λ(= + 1, B, C) + (1 − @)Λ(=, B, C)

]
(1 − X=,0)

+
[ @
2
Λ(= − 1, B − 1, C) + @

2
Λ(= + 1, B − 1, C) + (1 − @)Λ(=, B − 1, C)

]
X=,0. (22)
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Taking the generating function of Eq. (22) with respect to B, i.e.
∑∞
B=0 [

BΛ(=, B, C) =
% ([) (=, C), we find

% ([) (=, C + 1) =
[ @
2
% ([) (= − 1, C) + @

2
% ([) (= + 1, C) + (1 − @)% ([) (=, C)

]
(1 − X=,0)

+ [
[ @
2
% ([) (= − 1, C) + @

2
% ([) (= + 1, C) + (1 − @)% ([) (=, C)

]
X=,0

= [X=,0
[ @
2
% ([) (= − 1, C) + @

2
% ([) (= + 1, C) + (1 − @)% ([) (=, C)

]
, (23)

which is the discrete time Feynman-Kac equation [46, 47, 15] for the functional that
indicates the number of visit to the origin. Through a simple rearrangement of the
terms on the right hand side of the first equal sign, one realises that we have written
the Master equation of a lazy symmetric unbounded LRWwith a partially absorbing
defect at = = 0 with absorption probability d = 1 − [.

Since Λ(=, B, C) = 〈
XNC ,= XSC ,B

〉
, we have that the [-transform is % ([) (=, C) =∑∞

B=0 [
BΛ(=, B, C) = 〈

XNC ,= [
SC 〉 , which leads to

% ([) (=, C) =
∞∑
B=0

[B
(
P[NC = =,SC < B + 1] − P[NC = =,SC < B]

)
. (24)

As P[NC = =,SC < 0] = 0, we may write

% ([) (=, C) =
∞∑
B=1
P[NC = =,SC < B] ([B−1 − [B) =

∞∑
B=0
P[NC = =,SC ≤ B] (1 − [)[B .

(25)
Identifying (1 − [)[B as the probability distribution of a geometrically distributed
random variable, B̂, i.e. P[B̂ = B] = 〈XB̂,B〉 = (1 − [)[B , we obtain

% ([) (=, C) =
〈 ∞∑
B=0
P[NC = =,SC ≤ B]XB̂,B

〉
= P[NC = =,SC ≤ B̂] . (26)

Thus, % ([) (=, C), the solution of the Feynman-Kac equation (23), represents the LRW
occupation probability at =, whilst having not visited the origin more times than a
geometrically distributed random variable, B̂, with mean [/(1 − [).

Now, we return to the radiation boundary. Consider a random walker that visits
the origin < times without being absorbed, but being reflected at each visit, then the
probability of this is simply [<, [ being the reflection probability. As the number
of visits to the origin is a random variable, SC , we must average over all possible
realisations of SC . The probability for the random walker to be located at the lattice
point = at time C, whilst having not been absorbed by the radiation boundary, is〈
XNC ,= [

SC 〉, which is simply the solution to Eq. (23), with a reflecting boundary
condition at the origin. Thus we have established that the radiation boundary can be
formulated in terms of a reflected random walk that is absorbed once the number
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of visits to the origin exceed a geometrically distributed random variable with mean
[/(1 − [).

AsSC is a monotonically non-decreasing process, the event {SC > B̂} is equivalent
to {C > T }, where T is the time of reaction (absorption), therefore

T = min {C > 0 : SC > B̂} , (27)

from which one obtains

% ([) (=, C) = P [NC = =, C < T] . (28)

One is then able to study the first-reaction time probability, F ([)=0→0 (C) = P[T =
C |N0 = =0], for a random walker in the presence of a radiation boundary. Due to
the connection between the radiation boundary and discrete Feynman-Kac equation
explained above, we solve Eq. (23), with a reflecting boundary at the origin and the
localized initial condition at =0, using the defect technique. The resulting probability
is the propagator of Eq. (1) for a 13 unbiased walker that satisfy the boundary
condition (21).

Then marginalisation over = leads to the survival probability, P[C < T], which
then gives the first-reaction probability as

F̃ ([)=0→0 (I) =
%̃=0 (0, I) + %̃−=0 (0, I)

[
1−[ + 2%̃0 (0, I)

, (29)

where %̃=0 (=, I) is the generating function of the lazy 13 symmetric unbounded
propagator [29], i.e.

%̃=0 (=, I) =

(
1
V (I) +

√
1

V2 (I) − 1
)−|=−=0 |

[1 − I(1 − @)]
√
1 − V2 (I)

, (30)

where V(I) = I@/[1 − I(1 − @)] (see Sec. 5 for the time dependence of F ([)=0→0 (C))

5 Dynamics of first-passage, first-encounter and first-reaction
processes

To show the general applicability of the multi-target formalism described in Sec. 3,
we use it to plot the time dependence probability of various target hitting processes,
namely a first-passage to a single target in a hexagonal domain, a first-passage to
either of two targets in a disordered lattice, and a first-transmission between two
resetting walkers in a periodic domain. We also exploit the formalism introduced in
Sec. 4 to display the dynamics of first-reaction to a single target in a 13 unbounded
domain. We present these four examples in the four panels of Fig. 5.
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The top left panel displays a very rich first-passage dynamics with multimodal
shapes, a feature rarely observed with Markov LRW, but present in non-Markov
[87] and quantum walks [56]. This top left panel represents the first passage of
a biased periodic hexagonal LRW from the origin to a target located towards the
bottom right of the domain for different bias values. As the level of bias towards
the target increases we see that the mode of �Hn0→n (C) increases in magnitude and
move towards shorter times. With high bias, exemplified by the case with 68 = 0.8,
the initial peak is followed by a region of near zero probability, corresponding to the
timescale at which the walkers travelling towards the target are likely to have passed
it and the walkers who originally wandered in the opposite direction have yet to reach
the target. In general we observe that higher biases lead to sustained oscillations at
intermediate times in �Hn0→n (C), with troughs corresponding to timescales in which
heavily biased trajectories are away from the target. Oscillations are also sustained
for longer times for larger domain sizes as the chance of missing the target increases
with the circumradius '. Eventually, once the indirect trajectories dominate the
dynamics, the oscillations dampen and �Hn0 (n, C) drops to zero, as shown in the inset
of the top left panel.

In the top right panel, we plot the the first passage and time-dependent split-
ting probabilities to either of the targets with the environment and initial condition
shown in the left-most panel of Fig. 2 where the two targets, are indicated using blue
diamonds. Due to the local biases, the walker starting at n0 = (11, 12) is carried
quickly to the target n1 = (8, 18) resulting in an increase of the splitting probability
�n0→(n1 |n2) (C) at earlier times. The local biases instead do not facilitate the move-
ment towards the target at n2 = (19, 3), which is reached mainly diffusively from n0.
The reflecting barriers also act to confine the walker temporarily nearby n1 further
increasing the likelihood of absorption at n1, while much of the heterogeneities
present do not assist in reaching n2, and the walker must explore a much larger pro-
portion of the domain before reaching n2, which results in a mode at a later time for
�n0→(n2 |n1) (C). Beyond the delay in the mode of the splitting probabilities, another
interesting feature is that the trajectories that contribute to the first-passage probabil-
ity to either of the targets is mostly made up of trajectories that reach n1, as one may
evince by the small difference in the curves of �n0→(n1 |n2) (C) and �n0→(n1;n2) (C).
More quantitatively, one has that the relative ratio between the integrated splitting
probabilities, i.e.

∑∞
C=0 �n0→(n1 |n2) (C) ≈ 0.74 and

∑∞
C=0 �n0→(n2 |n1) (C) ≈ 0.26. Given

that in the absence of any heterogeneities, the proportion of trajectories that reach
either n1 or n2 from n0 is more evenly split, these findings suggest empirical ap-
proaches to favour the selection of certain targets versus others based on the type
and strength of spatial disorder that one may introduce in a given spatial domain.

In the bottom panels we show the first-transmission probability between two
resettingLRWs (left) and the first-reaction probability at a lattice site for an individual
LRW (right). In the left panel we show the effects of the co-location or proximity
transfer efficiency, d, on the first-transmission probability (at any of the sites). The
transport limited regime,which corresponds to the case d = 1, is simply the encounter
probability. It displays the highest mode and at the earliest time. The reaction limited
is particularly evident when d = 0.1, for which the curve remains essentially constant
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Fig. 5: Top left panel: First passage time from the origin to a single target at (=1, =2, =3) =
(7, −2, −5) in a left shift periodic hexagon with ' = 14 for different bias strength 6with 68 = 6 and
diffusivity @ = 0.9. The solid lines is obtained by numerically inverting Eq. (16) and making use of
Eq. (15), while the crossedmarkers are results from 106 stochastic simulations. Inset shows the same
information plotted up to C = 3000 on a semilog scale. Top right panel: First-passage probabilities to
either of two targets as well as their splitting probabilities for the 23 LRWmoving in the disordered
domain shown in the left panel of Fig. 3. The LRW parameters are the same as those in that panel,
and the targets, indicated in blue, are located, respectively, at n1 = (8, 18) and n2 = (19, 3) .
The splitting probability to reach n1 is the curve with the higher mode. The propagator in the
disordered space, shown in Eq. (4), is used in Eqs. (17) and (18) to plot, respectively, the splitting
probabilities or the first-passage probability to either target. Bottom left panel: First-transmission
probability for two independent resetting 13 LRWwithout bias in a periodic lattice of size # = 21
(1 ≤ = ≤ 21). The joint propagator for the two resetting walkers used in Eq. (18) is obtained by
taking the generating function of the product of 13 time-dependent resetting propagators through
Eq. (7). The first and the second walker starts from their corresponding resetting sites set at =21 = 8
and =22 = 14, respectively. The diffusivities and resetting probabilities of the walkers are taken to
be @1 = @2 = 0.8 and A1 = A2 = 0.4, respectively. The walkers can interact with probability d when
they simultaneously occupy a site = in the 13 domain, which corresponds to a partially absorbing
site m8 = (8, 8) , where 8 ∈ [1, " = 21] in the 23 domain. Bottom right panel: First-reaction
probability, F ([)=0→0 (C) , for a radiation boundary at the origin, for varying reaction probabilities
d = 1− [, for =0 = 5 and @ = 0.5. The case d = 1 or [ = 0 corresponds to the fully absorbing case
in the flux and boundary condition, respectively, Eqs. (20) and (21), transforming the first-reaction
probability into a first-passage probability. The expression for F̃ ([)=0→0 (I) can be found in Eq. (29).

after the mode, with the flat profile lasting longer the smaller is d. Given that the
system is finite eventually a fast decay to zero characterises all of the curves for
any d > 0. In the right panel, we present the first-reaction probability, F ([)=0→0 (C), for



18 Luca Giuggioli, Seeralan Sarvaharman, Debraj Das, Daniel Marris and Toby Kay

different reactivity, d, at the origin. One can clearly see that, as the reactivity gets
reduced, the mode shifts to longer times as more and more visits to the origin are
necessary before the walker reacts. The widening of the shape of the probability and
the appearance of longer tails is also a result of the need for multiple return to the
origin before a reaction takes place.

6 Disorder indifference phenomena

When a LRW moves on a disordered lattice, the type and location of the spatial
heterogeneities heavily affect the spatio-temporal dependence of the walker’s occu-
pation probability. But in some cases, certain quantities, surprisingly, are not affected
at all by the disorder. We have uncovered two such examples and we report them
below.

The first example is the mean first-passage time from site =0 to site = in a semi-
bounded 13 domain in presence of a symmetric permeable barrier at lattice site D
in between = and =0. To be more precise consider a left reflecting barrier between
site = = 0 and site = = 1, then take the LRW initial position at =0 ≥ 1, and to the
right of =0 we place the barrier at D and further to the right we have the site =, that is
1 ≤ =0 < D < =. In this arrangement, while the time-dependence of the first-passage
probability from =0 to = does depend on the location D and the permeability of the
barrier, which is proportional to the _ parameter in Sec. 2.1, the mean first-passage
time is independent of both. This surprising effect, reported in ref. [76], which was
shown to appear even in the presence of a global bias, is lost when the barrier
permeability is made asymmetric. An analogous effect was also shown for Brownian
walks [48].

The second disorder indifference phenomenon we have observed manifests when
one is interested in counting the number of visits or more generally the number of
detectable visits. By detectable it is meant that there is a parameter governing the
probability that the visit is accounted for. To define the problem more precisely, we
consider the number of detectable visits that occurs at the set of sites ({ before being
absorbed at any of the set of sites (0. Let the set (0 = r1, · · · , r"0 be the destination
points where the process terminates, i.e. the targets, and let ({ = r"0+1, · · · , r"0+"{

be the set of sites or points of interest where one is interested in counting the number
of detections. We refer to sites in (0 as the destination sites and sites in ({ as the
visitation sites. The sets (0 and ({ are mutually exclusive and the set of defects is
given by ( = (0 ∪ ({ with the total number of defects being |( | = "0 + "{ = " .
Note that each site has its own independent probability of, respectively, detectability
and absorption, that is we have 1 = (d1, · · · , d" ) with d8 for 1 ≤ 8 ≤ "0 being
the partial absorption probability at site r8 , while d 9 for "0 + 1 ≤ 9 ≤ " being
the detection probability of a visit at site r 9 . With this set-up, by generalising the
formalism shown in [74], it is possible to show that the generating function of the
probability of (detected) visits at the sites of interest is given by
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+n0 (x, (, 1) = 1 −
��C (31) − C (1) �� − ��C (32) − C (2) ����C (31) �� − ��C (32) �� , (31)

where

C (31)8, 9 =

{
d 9)r 9→r8 (1 − X8, 9 ) + (d 9 − 1)'r8X8, 9 , 1 ≤ 9 ≤ "0,
d 9 (1 − G 9 ))r 9→r8 (1 − X8, 9 ) +

[
d 9 (1 − G 9 ) − 1

]
'r8X8, 9 , "0 + 1 ≤ 9 ≤ ",

(32)

C (32)8, 9 = C (31)8, 9 −
{
d 9 , 1 ≤ 9 ≤ "0,
d 9 (1 − G 9 ), "0 + 1 ≤ 9 ≤ ", (33)

C (1)8, 9 =
{
d 9)n0→r8 , 1 ≤ 9 ≤ "0,
0, "0 + 1 ≤ 9 ≤ ", (34)

C (2)8, 9 =
{
d 9 ()n0→r8 − 1) 1 ≤ 9 ≤ "0,
0, "0 + 1 ≤ 9 ≤ ", (35)

with the notation +n0 (x, (, 1) =
∑
:1 · · ·

∑
:"{

+n0 (:1, · · · , :"{ , (, 1)G:1 · · · G:"{

representing the multi-dimensional generating function over the visits :1, · · · , :"{

to the sites r1, · · · , r"{ .

Fig. 6: The probability of the number of visits at site r before being absorbed at n in the presence
of a sticky site s. Left most panel shows a schematic of the spatial arrangement. We use a periodic
hexagonal propagator of circumradius ' = 13, yielding a total of 547 sites, a LRW diffusivity of
@ = 1, and perfect detection at site r , i.e. dr = 1.0. The sticky heterogeneity is constructed such
that the movement probability at the site is @s = @ (1−_) . Centre panel, probability of : number of
visits, when dn = 1.0, for different values of _. The marks, indicating 106 simulations, all collapse
onto the the analytic curve obtained by numerically inverting Eq. (31). Right most panel shows how
the probability of : visits depends on the reaction probability at the target site, i.e. dn .

From Eqs. (32-35) it is easy to realise that +n0 (x, (, 1) depends upon mean first-
passage times and mean return times between the initial condition and the defective
sites as well as between the defective sites, both the lattice of interest (visitation
sites) and the absorbing lattice sites (terminating sites). When the lattice contains
inert spatial heterogeneities, the disorder is expected to affect +n0 (x, (, 1) through
the mean first-passage and mean return times dependence on the locations and
strengths of such heterogeneities in Eqs. (32-35).
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It turns out that when the disorder is due to sticky sites, +n0 (x, (, 1) as well as
+n0 (k, (, 1), that is the probability of the number of : visits before being absorbed
at any of the reactive sites, is independent of the numbers, strength and location of
such heterogeneities. We show this indifference phenomenon in the simpler scenario
of one sticky site at coordinate s, one visitation site at r and one absorbing site
at n in a periodic hexagonal domain. In Fig. 6 we plot +n0 (:, n, r, dn, dr ), that is
the probability of : visits before being absorbed at r as a function of : for different
choice of the heterogeneous parameter _ and absorption probability dn and detection
probability dr . The left most panel of Fig. 6 shows the geometrical arrangement of
the problem. In the centre most panel we show that for different properties of the
sticky site, all of the simulations collapse onto the analytic prediction, while the
right most panel shows how the :-dependent probability changes as one reduces the
reaction probability dn of the target site n. This latter dependence is expected since
a decrease in dn maintains the walkers in the system for a longer period of time,
which in turn allows for increased number visits to the site r.

While surprising at first, the disorder indifference phenomenon shown in the
central panel of Fig. 6, has an intuitive explanation. It is the result of the isotropic
nature of the sticky heterogeneity, which slows down the walker in a symmetric
fashion, that is in an equal manner irrespective of the direction with which it moves
away from the heterogeneous site. In other words, the sticky site acts to slow down
all trajectories in all directions, lengthening their time before being absorbed even
though their actual spatial path remains unchanged. Hence, the fraction of trajectories
that visit r :-times before being absorbed at n also remains unchanged.

Given that the distribution is independent of the sticky heterogeneity, it is expected
that the mean is also independent of the heterogeneity, i.e.

Vn0 (n, r , dn, dr ) =
dr
'r

[
)n0→n + )n→r − )n0→r + 'n

(
1
dn
− 1

)]
. (36)

Using the exact expressions for the mean first-passage time)u→{ and themean return
time 'n when sticky heterogeneities are present (see Eqs. (8) and (9) in ref. [76]) one
can show that indeed Vn0 (n, r , dn, dr ) is independent of the location and strength
of the isotropic sticky site.

7 Open problems and future directions

While we have included a few new findings, we have focused on presenting a series
of quantitative tools that have recently appeared in the LRW literature and that we
believe could be exploited in many scenarios both to explore theoretical questions,
but also to understand empirical observations.

Many areas in probability and combinatorics could benefit from these advances.
For example the analysis of mixing time [60] and cut-off phenomena [22] in finite
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domains may find convenient to use the analytical expressions of the propagators
and provide more rigorous bounds on known time scales.

The generality of the approach to study the dynamics on disordered lattice could
also be exploited to study the dynamics of LRWs on networks [62]. By adding,
cutting or modifying the link strengths of regular lattices, we may build an arbitrary
network. Starting from a lattice of which a propagator generating function is known,
it would thus be possible to determine analytically the LRW propagator on the
network by employing the formalism for inert spatial heterogeneities of Sec. 2.1.

There exist classical problems with Brownian walks that account for diffusion in
some representative force field, e.g. a quadratic potential or the so-called V-potential.
With the exception of ref. [45] there has not beenmany attempts in the LRW literature
to study these type of problems, but it would be beneficial to add them to the arsenal
of tools in LRW theory.

While our theory can be easily applied to study interacting LRWs for dilute sys-
tems, in light of the already existing link between many-particle stochastic systems
and quantum many-body dynamics, there are potential avenues to look at some
fundamental collective phenomeena with some new techniques. On example is the
classic asymmetric exclusion process on a 13 line [81] for which the exclusion inter-
action can be formulated by inserting reflecting barriers in the higher dimensional
space spanned by the walkers.

We have discussed so far Markov problems, but there are plenty of movement
processes for which the non-Markov nature of the process cannot be neglected [88,
8, 52]. While the amount of Markov literature would dwarf the non-Markov one if
compared, there is great interest in developing a formalism for non-Markov LRWs.
The majority of the work on the latter has been computational, while advances on the
analytical front has been scarce, but see refs. [78, 10, 26, 9, 64] for some exceptions.
An important open problem in this area is that of the first-passage statistics with
correlated LRWs. Analytic results have appeared for the full first passage probability
in unbounded domains [58] and for periodically bounded domains only in terms of
the mean first-passage time [84]. Analysis with reflective domains or multiple targets
and the dynamics of the first-passage probability are instead missing.

We conclude by thanking the book editors for the opportunity to write about
the topic and with the hope that this short review will help raise awareness of the
strengths and possibilities when one study transport processes using LRWs.
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