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HYPERBOLIZATION OF AFFINE LIE ALGEBRAS

KAIWEN SUN, HAOWU WANG, AND BRANDON WILLIAMS

Abstract. In 1983, Feingold and Frenkel posed a question about possible relations between affine
Lie algebras, hyperbolic Kac–Moody algebras and Siegel modular forms. In this paper we give an
automorphic answer to this question and its generalization. We classify hyperbolic Borcherds–Kac–
Moody superalgebras whose super-denominators define reflective automorphic products of singular
weight on lattices of type 2U ⊕ L. As a consequence, we prove that there are exactly 81 affine
Lie algebras ĝ which have nice extensions to hyperbolic BKM superalgebras for which the leading
Fourier–Jacobi coefficients of super-denominators coincide with the denominators of ĝ. We find that
69 of them appear in Schellekens’ list of semi-simple V1 structures of holomorphic CFT of central
charge 24, while 8 of them correspond to the N = 1 structures of holomorphic SCFT of central
charge 12 composed of 24 chiral fermions. The last 4 cases are related to exceptional modular
invariants from nontrivial automorphisms of fusion algebras. This clarifies the relationship of affine
Lie algebras, vertex algebras and hyperbolic BKM superalgebras at the level of modular forms.
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1. Introduction

Affine Lie algebras are the simplest class of infinite dimensional Kac–Moody Lie algebras, and
they have numerous connections with other areas of mathematics and theoretical physics. The next
simplest class of Kac–Moody algebras after the affine algebras are the hyperbolic Lie algebras. In
1983, as an extension of the affine Lie algebra of type A1, Feingold and Frenkel [33] investigated
the hyperbolic Kac–Moody algebra with Cartan matrix




2 −2 0
−2 2 −1
0 −1 2




and found a connection with the Igusa cusp form [65] of weight 35 on Sp2(Z). This suggests
exploring more general relationships between hyperbolic Kac–Moody Lie algebras and modular
forms of several variables.

In 1988, Borcherds [3] introduced generalized Kac–Moody algebras, which are now usually called
Borcherds–Kac–Moody or simply BKM algebras. These infinite-dimensional Lie algebras are also
defined in terms of Chevalley–Serre generators and relations that are encoded in a generalized
Cartan matrix, and they differ from Kac–Moody algebra mainly by allowing the diagonal entries
of the Cartan matrix to be non-positive. In other words, simple roots are allowed to be imaginary,
whereas simple roots in a Kac–Moody algebra are always real. The best-known example of a
BKM algebra is the monster Lie algebra. In 1992, Borcherds [6] constructed this algebra as the
BRST cohomology related to the monster vertex algebra [4, 35] by means of the no-ghost theorem
from string theory. By considering the action of the monster group on the denominator identity
of the monster Lie algebra, Borcherds proved the celebrated monstrous moonshine conjecture.
Furthermore, he observed that the denominator functions of some BKM algebras are modular
forms on orthogonal groups of signature (l, 2). In 1995 and 1998 Borcherds [7, 9] developed the
theory of singular theta lift to construct modular forms for arithmetic subgroups of O(l, 2) which
have infinite product expansions. These are called automorphic products, or Borcherds products,
and they are natural candidates for the denominator functions of BKM algebras. Similarly to affine
Lie algebras, BKM algebras and automorphic products also have many applications in physics. For
example, Harvey and Moore [58, 59] proposed that BKM algebras should play as the underlying
organizing structure of BPS states in string compactifications; in particular, the denominators of
BKM algebras might be generating functions for BPS states.

In 1996 Gritsenko and Nikulin [42] constructed an automorphic correction of the rank-three
hyperbolic Lie algebra considered previously by Feingold and Frenkel. More precisely, they extended
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this hyperbolic Lie algebra to a (hyperbolic) BKM algebra by adding infinitely many imaginary
simple roots, such that the denominator of the resulting BKM algebra is exactly the Igusa cusp
form of weight 35. Later, they constructed automorphic corrections of other hyperbolic Lie algebras
in a series of papers [46, 48, 47, 43, 51]. A common feature of these corrections is that the resulting
BKM algbera only has finitely many real simple roots, a Weyl chamber of finite volume and a
Weyl vector of negative norm. Moreover, its denominator usually defines a cuspidal automorphic
product on O(l, 2). These corrections extend affine Lie algebras in a nice way, but they have several
features that are not preferred from our perspective:

(1) for the automorphic correction G of an affine Lie algebra ĝ, the multiplicity of an imaginary
root of ĝ in G is strictly greater than its multiplicity in ĝ;

(2) the set of imaginary simple roots is very complicated, although the set of real simple roots
is easy to describe;

(3) the role of the vertex algebra is unclear.

In this paper we extend affine Lie algebras to (hyperbolic) BKM algebras in a different way.
Certain affine Kac–Moody algebras ĝ will be extended to BKM algebras Gg which have infinitely
many real simple roots and satisfy:

(a) for any root α of ĝ, the root multiplicities of α in ĝ and Gg are the same;
(b) the imaginary simple roots of Gg are negative integral multiples of the Weyl vector;
(c) the Lie algebras ĝ and Gg are closely related to some exceptional vertex algebras.

Our main results are about the classification and construction of such extensions, which are con-
nected with various types of modular forms. In the rest of the introduction, we will explain the
setup and state the main theorems.

1.1. Denominators of affine Lie algebras and Jacobi forms. Let g be a finite-dimensional
simple Lie algebra of rank r and let ∆+

g be a set of positive roots. The product side of the
denominator identity of the associated affine Lie algebra ĝ is the holomorphic function

ϑg(τ, z) = η(τ)r
∏

α∈∆+
g

ϑ(τ, 〈α, z〉)
η(τ)

,

where η and ϑ are the Dedekind eta function and the odd Jacobi theta function, respectively:

η(τ) = q
1
24

∞∏

n=1

(1− qn), τ ∈ H, q = e2πiτ ,

ϑ(τ, z) = −q
1
8 ζ−

1
2

∞∏

n=1

(1− qn−1ζ)(1− qnζ−1)(1− qn), z ∈ C, ζ = e2πiz.

The function ϑg has nice modular properties and is an example of a Jacobi form in the sense of
Eichler and Zagier [32]. Let L be an even positive definite lattice. A Jacobi form of integral weight
k and index L is a holomorphic function ϕ : H × (L⊗ C) → C that is modular under SL2(Z) and
doubly quasi-periodic, namely

ϕ

(
aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)k exp

(
iπt

c(z, z)

cτ + d

)
ϕ(τ, z), A =

(
a b
c d

)
∈ SL2(Z),

ϕ(τ, z + xτ + y) = exp
(
− iπt

(
(x, x)τ + 2(x, z)

))
ϕ(τ, z), x, y ∈ L,

and whose Fourier expansion satisfies a boundary condition. The function ϑg is a Jacobi form of
weight r/2 and index P∨

g (h
∨
g ) for some character, where P∨

g is the dual of the root lattice and h∨g is
the dual Coxeter number. Note that Jacobi forms defined by an expression similar to ϑg are called
theta blocks following Gritsenko–Skoruppa–Zagier [55].
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1.2. Automorphic products of singular weight. A modular form of integral weight k and
trivial character for an arithmetic subgroup Γ < O(l, 2) is a holomorphic function on the associated
type IV symmetric domain which satisfies

F (tZ) = t−kF (Z), t ∈ C×,

F (gZ) = F (Z), g ∈ Γ.

Let M be an even lattice of signature (l, 2). The input into Borcherds’ theta lift is a vector-valued
modular form of weight 1−l/2 with integral Fourier expansion for the Weil representation of SL2(Z)
attached to the discriminant form M ′/M , and the output is a meromorphic modular form for a
certain subgroup of O(M) which has an infinite product expansion at any 0-dimensional cusp and
whose divisors are linear combinations of hyperplanes.

Since the denominators of affine Lie algebras satisfy modularity, it is natural to focus on hyper-
bolic BKM algebras whose denominators are modular. Let G be a BKM algebra whose denominator
function defines the Fourier expansion of an O(l, 2)-modular form F at some 0-dimensional cusp.
Since F has an infinite product expansion, by Bruinier’s converse theorem [14, 15] one expects
that it can be constructed by the Borcherds lift. In the case, the roots and their multiplicities are
encoded in the Fourier expansion of the input. When F has singular weight, i.e. weight l/2−1, the
Fourier expansion is supported only on isotropic vectors, which often forces the imaginary simple
roots of G to be negative integral multiples of the Weyl vector. Moreover, it is conjectured in this
particular case that G can be constructed as the BRST cohomology related to some vertex algebra,
similarly to the monster algebra. This suggests focusing on BKM algebras whose denominators
are automorphic products of singular weight. The zeros of F that contain the cusp are actually
hyperplanes orthogonal to real roots of G, hence F is anti-invariant under the reflections through
these hyperplanes. It is natural to expect that F is anti-invariant under all reflections associated
with zeros of F . This has been proven by the last two named authors [115]. It follows that F is a
reflective modular form.

A non-constant modular form on Γ < O(M) is called reflective if it vanishes only on mirrors of
reflections fixing the lattice M . Reflective modular forms were introduced in 1998 by Borcherds
[7, 9] and Gritsenko–Nikulin [47], and their classification has been an active project for the past
thirty years (see [43, 1, 94, 25, 97, 81, 82, 23, 89, 104, 106, 107, 30, 110, 111]), because they have nice
applications to hyperbolic reflection groups [9, 11, 48, 44, 39], algebraic geometry [8, 12, 44, 82, 41]
and free algebras of modular forms [105, 114] in addition to infinite-dimensional Lie algebras.

1.3. Main results. BKM algebras whose denominator functions are reflective automorphic prod-
ucts of singular weight are exceptional. The main examples are the fake monster algebra [5] and
their twists by the Conway group Co0 [6, 93, 113]. There are conjecturally only finitely many
such algebras and constructing and classifying them is an open problem. Many partial results have
been proved towards such a classification [5, 6, 88, 1, 92, 93, 94, 97, 23, 113, 30]. In this paper we
contribute some new results in this direction.

Let U be an even unimodular lattice of signature (1, 1) and let L be an even, positive-definite
lattice. The input of the Borcherds lift on 2U ⊕ L can be identified with Jacobi forms of weight
0 and index L. We will identify affine Lie algebras, which naturally extends to BKM algebras
or superalgebras whose denominators or super-denominators are reflective Borcherds product of
singular weight on lattices of type 2U ⊕ L. The setting is inspired by the following result.

Theorem 1.1. Let F be a reflective Borcherds product of singular weight on 2U ⊕L whose Jacobi
form input has Fourier expansion

φ(τ, z) =
∑

n∈Z

∑

ℓ∈L′

f(n, ℓ)qnζℓ
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satisfying that f(0, ℓ) ≥ 0 for all ℓ ∈ L′. If L is the Leech lattice, then F is the denominator of
the fake monster algebra and φ is the full character of the Leech lattice vertex operator algebra.
Otherwise, the set

R = {ℓ ∈ L′ : ℓ 6= 0, f(0, ℓ) 6= 0}
determines a finite-dimensional semi-simple Lie algebra

g =

s⊕

j=1

gj,kj

with the same rank as L such that the identity

(1.1) C :=
dim g

24
− a =

h∨j
kj

holds for any 1 ≤ j ≤ s and such that the leading Fourier–Jacobi coefficient of F at the 1-
dimensional cusp determined by 2U coincides with the denominator of the associated affine Lie
algebra ĝ. For any 1 ≤ j ≤ s, gj is a simple ideal of g, kj is a positive integer indicating the level
of gj and h∨j is the dual Coxeter number of gj. The number a equals f(−1, 0), which has to be 0
or 1. When a = 0, kj > 1 for any 1 ≤ j ≤ s. The cases a = 0 and a = 1 are called symmetric and
anti-symmetric, respectively.

If the q0-term of φ has negative Fourier coefficients, then R determines a semi-simple Lie super-
algebra and the corresponding BKM superalgebra will have odd real roots. We will consider this
case in a separate paper.

If the Fourier expansion of F defines the (super)-denominator of a BKM (super)-algebra G, then
the (super)-denominator has the form

eρ
∏

α>0

(
1− e−α

)f(nm,ℓ)
,

where ρ is the Weyl vector of F , and where (n, ℓ,m) are coordinates of positive roots α ∈ U ⊕ L′

with n ∈ Z, m ∈ N, ℓ ∈ L′ and α2 = ℓ2 − 2nm. The above ĝ is embedded into G as the sum of
the root spaces associated with roots of type ±(n, ℓ, 0). In this way, G can be regarded as a graded
module over ĝ graded by m ∈ N. This leads us to define G as a hyperbolization of ĝ and F as a
hyperbolization of the denominator of ĝ. It turns out that there are only 81 affine Lie algebras with
a hyperbolization:

Theorem 1.2. There are 81 possibilities for the semi-simple Lie algebra g in Theorem 1.1 and
they fall into three categories:

(1) 69 make up Schellekens’ list of semi-simple V1 structures of holomorphic vertex operator
algebras of central charge 24;

(2) 8 are the N = 1 structures of holomorphic vertex operator superalgebras F24 of central
charge 12 composed of 24 fermions;

(3) The remaining 4 cases A1,16, A
2
1,8, A

4
1,4 and A2,9 possess an exceptional modular invariant

that comes from a nontrivial automorphism of the fusion algebra.

Case (1) is anti-symmetric, while Cases (2) and (3) are symmetric. Schellekens’ list [98] was
established using the solutions of Equation (1.1) with a = 1. Holomorphic vertex operator super-
algebras of central charge 12 were classified by Creutzig, Duncan and Riedler [20], and the N = 1
structures of F24 were determined in [57], corresponding to solutions of Equation (1.1) with a = 0
and C = 1. The exceptional modular invariants mentioned in (3) were discovered around the 1990s
by Moore and Seiberg [87], Verstegen [103] and Gannon [37]. The 4 exotic cases satisfy Equation
(1.1) with a = 0 and C < 1.

We now present hyperbolizations of these affine Lie algebras.
5



Theorem 1.3. For any g in Theorem 1.2 there exists a singular-weight reflective Borcherds product
Ψg on some lattice 2U ⊕ Lg whose leading Fourier–Jacobi coefficient equals the denominator of ĝ.
Moreover, the Jacobi form input φg can be expressed as a Z-linear combination of full characters
of the affine vertex operator algebra generated by ĝ.

The construction will be briefly summarized here. If g is in Schellekens’ list, Lg is the orbit
lattice in Höhn’s construction [63] of the holomorphic VOA of central charge 24 with V1 = g, and
φg is the full character of the VOA. If g is of symmetric type, Lg is the maximal even sublattice of
the coweight lattice of g. If g defines an N = 1 structure of F24, then the Jacobi form input can be
expressed in terms of characters of F24 as

φg = (χNS − χ
ÑS

− χR)/2.

Finally, we will explain the relation between Jacobi form inputs and exceptional modular invariants
for the remaining four g. The Jacobi form input for g = A1,16 can be written in terms of affine
characters as

φA1,16 = χ
A1,16

2, 1
9

+ χ
A1,16

14, 28
9

− χ
A1,16

8, 10
9

,

and we find that the difference between the simple current modular invariant and the exceptional
modular invariant [87] is given by |φA1,16 |2. Similar relations hold for the other three g. Note that
these Lg are chosen so that the resulting BKM superalgebra has root lattice U ⊕ L′

g.
Clearly, the Borcherds products Ψg in Theorem 1.3 are closely related to vertex algebras. We

therefore expect that the BRST cohomology related to these vertex algebras define the BKM
(super)-algebras with Ψg as the (super)-denominators. This type of realization has been achieved
in [5, 61, 19, 62, 84, 30, 57] under some technical assumptions for g from Schellekens’ list and the
N = 1 structure of F24. However, such a realization is completely open for g related to the four
exceptional modular invariants.

Affine Lie algebras, vertex algebras and BKM (super)-algebras are therefore closely connected
from the point of view of the attached modular forms. The connections are illustrated in Figure 1.

Affine Lie algebra Vertex algebra BKM superalgebra

Theta block Weight 0 Jacobi form Borcherds product

BRST

Lift

Denominator Character Denominator

Leading FJ coefficient

Hyperbolization

Character

Figure 1. Hyperbolization of affine Lie algebras
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1.4. Outline of the proof. The proof of Theorem 1.1 relies on some previous results. We know
from [115] that singular-weight reflective Borcherds products have only simple zeros and are anti-
invariant under reflections associated with their zeros. Therefore, the nonzero coefficients f(0, ℓ)
of the Jacobi form input have to be 1 if ℓ 6= 0, and f(0, 0) equals the rank of g by singular-weight.
The theorem follows by applying an argument used by the second named author [108, 105, 110] to
classify reflective modular forms. Theorem 1.1 further shows that the central charge of the affine
vertex operator algebra generated by ĝ is

cg =
24(C + a)

C + 1
.

In particular, cg = 24 if a = 1, and cg = 12 if a = 0 and C = 1. This motivates the three groupings
in Theorem 1.2.

To prove Theorem 1.2 we first solve equations of type (1.1). In the anti-symmetric case, Equation
(1.1) was first derived by Schellekens [98] in the context of conformal field theories. Schellekens
found 221 solutions to this equation and eliminated 152 of them to arrive at his list. We also have
the same extra solutions to eliminate, but we have to use a completely different approach. In the
symmetric case, there are 17 solutions to Equation (1.1) and we have to rule out 5 of them. In the
setting of Theorem 1.1, we can prove that L(C) is an integral lattice and that L is bounded by

Qg < L < Pg,

where Qg and Pg are the coroot lattice and coweight lattice of g, respectively. On one hand, for
every extraneous g, we will be able to find an even overlattice K of L for which there is no reflective
Borcherds product on 2U ⊕ K satisfying certain constraints. On the other hand, we prove that
if 2U ⊕ L has a singular-weight reflective Borcherds product then 2U ⊕ K has also a reflective
Borcherds product of the same type. Taken together, this allows us to rule out all 157 extraneous
solutions of Equation (1.1).

We will now sketch the proof of Theorem 1.3, beginning with the anti-symmetric case. Let V be a
holomorphic VOA of central charge 24 with semi-simple V1 = g. The full character χV of V is known
to be a Jacobi form of weight 0 and lattice index Qg with non-negative integral Fourier expansion
[117, 83, 69]. This immediately implies that the singular theta lift of χV , denoted B(χV ), defines a
holomorphic Borcherds product of singular weight on 2U⊕Qg. It remains to find an extension L of
Qg for which B(χV ) is reflective on 2U ⊕L. We recognize that L should be the Höhn’ orbit lattice
Lg. Höhn [63, 71, 2] proposed a construction of V as the simple current extension of the tensor
product of the lattice VOA VLg

and a certain VOA Wg of central charge 24 − rk(g) with trivial
weight-one subspace. This construction corresponds to the theta decomposition of χV as a Jacobi
form of index Lg. It is possible to prove directly that B(χV ) is reflective on 2U ⊕Lg by computing
the Fourier expansion of χV ; however, this is only feasible for certain specific g. We carry out the
calculation for g = B12,2, A2,2F4,6 and C4,10, in which case [Lg : Qg] ≤ 2.

To complete the proof for the remaining g, we relate B(χV ) to a twisted denominator of the fake
monster algebra. By [63, 71], there exists a conjugacy class [g] of the Conway group Co0 such that

Wg is isomorphic to the orbifold V ĝ
Λg
, where Λg is the coinvariant sublattice of the Leech lattice

Λ. Moreover, B(χV ) for distinct V define the same modular form on type IV symmetric domain
if V1 = g correspond to the same [g]. Combining this fact with our previous calculation of χV ,
we prove that B(χV ) is reflective if V1 corresponds to a class [g] whose order is distinct from its
level. The last two named authors [113] proved that the g-twisted denominator of the fake monster
algebra defines a reflective Borcherds product Φg of singular weight on U(ng) ⊕ U ⊕ Λg if g has
the same level and order ng, where Λg is the sublattice of Λ fixed by g. We identify B(χV ) with
the associated Φg and thus prove that B(χV ) is reflective if V1 corresponds to some [g] with the
equal level and order. As a by-product, we find that the BKM algebra constructed as the BRST
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cohomology related to V and the g-twist of the fake monster algebra are isomorphic if g has equal
order and level, but they are not isomorphic if the order and level of g are distinct.

Then we consider the symmetric case with C = 1. For any N = 1 structure of F24, we show that
there exists a Co0-conjugacy class [g] with level equal to its order such that the Borcherds product
B(φg) is the g-twisted denominator of the fake monster algebra. This is proven by identifying their
Jacobi form inputs, and relies on the construction of these g-twisted denominators as Gritsenko
(additive) lifts due to Dittmann and the second named author [24]. We then confirm that B(φg) is
a singular-weight reflective Borcherds product and that the BKM superalgebra constructed in [57]
as the BRST cohomology related to F24 is isomorphic to the g-twist of the fake monster algebra.

In the final case, we determine the Jacobi form inputs in terms of affine characters and prove
that their singular theta lifts are reflective by direct calculation.

1.5. Outline of the paper. In Section 2, we quickly introduce Jacobi forms, affine Kac–Moody
algebras, reflective modular forms, automorphic products and Borcherds–Kac–Moody algebras. We
also fix some notation that will be used frequently later on.

In Section 3 we define the hyperbolization of an affine Lie algebra and explain its motivation.
In Section 4 we present the proof of Theorem 1.1 and the solutions of Equation (1.1).
In Section 5 we state the full version of the main results.
In Section 6, we first introduce holomorphic VOA of central charge 24 and Höhn’s construction,

as well as their relations with twisted denominators of the fake monster algebra. We then construct
hyperbolizations of the affine Lie algebras on Schellekens’ list.

In Section 7, we begin by introducing holomorphic SVOA of central charge 12 and type F24,
and then construct hyperbolizations for the eight N = 1 structures of F24. As an application, we
construct many exceptional modular invariants by considering the conformal embedding from the
affine VOA generated by the N = 1 structure to F24 and considering an automorphism of the D12,1

fusion algebra.
In Section 8, we construct hyperbolizations of the remaining affine Lie algebras and explain their

connection with some exceptional modular invariants.
Combining Sections 6-8 completes the proof of Theorem 1.3.
In Section 9, we present a uniform construction of the 12 symmetric singular-weight reflective

Borcherds products as additive lifts.
In Section 10, we compute the Fourier expansions of these singular-weight reflective Borcherds

products at the 0-dimensional cusp determined by one copy of U .
Section 11 is devoted to the proof of the anti-symmetric case of Theorem 1.2.
Section 12 contains the proof of the symmetric case of Theorem 1.2.
In Section 13 we give an application of our main results. We use the pull-back to construct a

new infinite series of anti-symmetric Siegel paramodular forms of weight 3.
In Section 14 we raise some related questions and conjectures.
This article ends with several long tables.
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2. Preliminaries

In this section, we will first review Jacobi forms and denominator identities of affine Lie algebras.
We then define reflective modular forms on orthogonal groups O(n, 2) and review Borcherds’ theory
of automorphic products, as well as the denominator identities of Borcherds–Kac–Moody algebras.
This background is necessary to state and prove the main theorems.

2.1. Jacobi forms of lattice index. Let Z and N denote the sets of integers and non-negative
integers, respectively. Let L be an even integral positive-definite lattice with bilinear form (−,−)
and dual lattice

L′ = {v ∈ L⊗Q : (x, y) ∈ Z, for all y ∈ L}.
For any nonzero integer a, the lattice with abelian group L and bilinear form a(−,−) is denoted
by L(a). Let H be the complex upper half plane. The Dedekind eta function

η(τ) = q1/24
∞∏

j=1

(1− qj), q = e2πiτ , τ ∈ H

is a modular form of weight 1
2 on SL2(Z) with a multiplier system of order 24. We denote this

multiplier system by υη.

Definition 2.1. Let D be a positive integer, k ∈ 1
2Z and t ∈ 1

2N. A holomorphic function
ϕ : H× (L⊗C) → C is called a weakly holomorphic Jacobi form of weight k, index t and character
(or multiplier system) υDη for L if it satisfies

ϕ

(
aτ + b

cτ + d
,

z

cτ + d

)
= υDη (A)(cτ + d)k exp

(
iπt

c(z, z)

cτ + d

)
ϕ(τ, z),

ϕ(τ, z + xτ + y) = (−1)t
(
(x,x)+(y,y)

)
exp

(
− iπt

(
(x, x)τ + 2(x, z)

))
ϕ(τ, z),

for A =
(
a b
c d

)
∈ SL2(Z) and x, y ∈ L, and if its Fourier expansion takes the form

ϕ(τ, z) =
∑

−∞≪n∈Z−D
24

ℓ∈ 1
2
L′

f(n, ℓ)qnζℓ, ζℓ = e2πi(ℓ,z),

where n ≫ −∞ means that n is bounded from below. If f(n, ℓ) = 0 whenever n < 0, then ϕ is
called a weak Jacobi form. If f(n, ℓ) = 0 whenever 2nt− (ℓ, ℓ) < 0, then ϕ is called a holomorphic
Jacobi form.

We denote the vector spaces of weakly holomorphic, weak and holomorphic Jacobi forms of
weight k, index t and character υDη for L by

J !
k,L,t(υ

D
η ) ⊃ Jw

k,L,t(υ
D
η ) ⊃ Jk,L,t(υ

D
η ),

respectively. We simply write J !
k,L,t ⊃ Jw

k,L,t ⊃ Jk,L,t if the character is trivial. The spaces Jk,t of

classical Jacobi forms introduced by Eichler–Zagier [32] are simply Jk,A1,t for the lattice A1 = Z

with (x, x) = 2x2. If ϕ ∈ J !
k,L,t(υ

D
η ) is nonzero for some t > 0 then L(t) is necessarily an integral

lattice [18]. Jacobi forms of index t for L are also called Jacobi forms of (lattice) index L(t) and
we sometimes write

J !
k,L(t) = J !

k,L,t, Jw
k,L(t) = Jw

k,L,t, Jk,L(t) = Jk,L,t.

We will use the following Hecke operators to construct Jacobi forms later.
9



Proposition 2.2 (Proposition 3.1 in [18]). Let ϕ ∈ J !
k,L,t(υ

D
η ). Assume that k ∈ Z and D is an

even divisor of 24. If Q = 24/D is odd, we further assume that t ∈ Z. Then for any positive integer
m coprime to Q we have

ϕ|k,tT (Q)
− (m)(τ, z) = m−1

∑

ad=m, a>0
0≤b<d

akυDη (σa)ϕ

(
aτ + bQ

d
, az

)
∈ J !

k,L,mt(υ
Dx
η ),

where x, y ∈ Z such that mx+Qy = 1, and

σa =

(
dx+Qdxy −Qy

Qy a

)
∈ SL2(Z).

Moreover, the Fourier coefficients fm(−,−) of ϕ|k,tT (Q)
− (m) are linear combinations of the Fourier

coefficients f(−,−) of ϕ, i.e.

fm(n, ℓ) =
∑

a|(n,ℓ,m)

ak−1υDη (σa)f

(
nm

a2
,
ℓ

a

)
,

where a |(n, ℓ,m) means that a |nQ, a−1ℓ ∈ 1
2L

′ and a |m.

2.2. Affine Kac–Moody algebras and theta blocks. We review untwisted affine Kac–Moody
algebras following [66] and identify their denominators as important examples of Jacobi forms.

Let g be a simple Lie algebra of rank r with Cartan subalgebra h and root system ∆g. We fix a
set of simple roots {α1, ..., αr} ⊂ h∗ and denote the set of positive roots by ∆+

g and the highest root
by θ. Note that dim g = r+ |∆g|. The invariant symmetric bilinear form 〈−,−〉 on h∗ is normalized
such that long roots have (square) norm two; in particular, 〈θ, θ〉 = 2. We identify h with h∗ and
define the coroot of a root α as

α∨ = 2α/〈α,α〉.
The fundamental weights wi ∈ h∗ are defined by

〈wi, α
∨
i 〉 = δi,j, 1 ≤ i, j ≤ r,

where δi,j = 1 if i = j and 0 otherwise. The Weyl vector ρg is defined as

ρg =
1

2

∑

α∈∆+
g

α =

r∑

j=1

wj .

Let Qg be the rational lattice generated by the roots of g and let Q∨
g be the even integral lattice

generated by the coroots, or equivalently by the long roots of g. The weight lattice Pg, generated
by the fundamental weights, is the dual of the coroot lattice:

Pg = (Q∨
g )

′ = {x ∈ Qg ⊗Q : 〈x, α∨〉 ∈ Z, α ∈ ∆g} ⊃ Qg.

The coweight lattice P∨
g is the dual of the root lattice:

P∨
g = Q′

g = {x ∈ Qg ⊗Q : 〈x, α〉 ∈ Z, α ∈ ∆g} ⊃ Q∨
g .

The reflection associated with a root α is defined as

σα(x) = x− 〈x, α∨〉α, x ∈ Qg ⊗ R.

The reflections associated with simple roots generate the Weyl group Wg. The coroot of θ can be
written as an N-linear combination of the coroots of simple roots,

θ = θ∨ =

r∑

j=1

a∨j α
∨
j .

10



The integers a∨j are called comarks. The number

h∨g = 1 +

r∑

j=1

a∨j =
1

r

∑

α∈∆+
g

〈α,α〉

is the dual Coxeter number and it satisfies the identity
∑

α∈∆+
g

〈α, z〉2 = h∨g 〈z, z〉, z ∈ Qg ⊗ C.

The above identity implies that the rescaled lattice P∨
g (h

∨
g ) is integral.

The classification of irreducible root systems into types An for n ≥ 1, Bn for n ≥ 2, Cn for n ≥ 3,
Dn for n ≥ 4, and the exceptional systems E6, E7, E8, F4 and G2 is well-known. We use the same
symbol to stand for the corresponding root lattice with its normalized bilinear form. Some useful
data is summarized in Table 1 for convenience; for the coordinates of the fundamental weights and
the values of the comarks, see [13].

∆g An Bn Cn Dn E6 E7 E8 G2 F4

|∆g| n(n+ 1) 2n2 2n2 2n(n− 1) 72 126 240 12 48

h∨g n+ 1 2n− 1 n+ 1 2(n − 1) 12 18 30 4 9

Q∨
g An Dn nA1 Dn E6 E7 E8 A2 D4

P∨
g A′

n Zn D′
n(2) D′

n E′
6 E′

7 E8 A2 D4

Table 1. Data related to the irreducible root systems

The untwisted affine Kac–Moody algebra ĝ is an extension of g defined by

ĝ = C[t, t−1]⊗ g⊕CK ⊕ Cd,

where K is a central element and d is a derivative. The algebra ĝ is an infinite-dimensional Lie
algebra with affine Cartan subalgebra ĥ = h⊕ CK ⊕ Cd. We write ĥ∗ = h∗ ⊕ Cŵ0 ⊕ Cδ with

ŵ0(h⊕ Cd) = 0, ŵ0(K) = 1,

δ(h ⊕CK) = 0, δ(d) = 1.

We embed h∗ into ĥ∗ and define

α0 = δ − θ and α∨
0 = K − θ∨.

Then {α0, α1, · · · , αr} is a set of simple roots of ĝ and {α∨
0 , α

∨
1 , · · · , α∨

r } is the corresponding set of
coroots. Setting

ŵi = wi + a∨i ŵ0, 1 ≤ i ≤ r,

{ŵ0, ŵ1, · · · , ŵr} is a set of fundamental weights of ĝ. The Weyl vector of ĝ is defined by

ρ̂g = ρg + h∨g ŵ0 − (dim g/24)δ,

such that the norm of ρ̂g is zero; indeed, by the “strange formula” of Freudenthal–de Vries,

h∨g · dim g = 12〈ρg, ρg〉.
11



The integrable highest weight representations of ĝ are indexed by dominant integral weights, which
are elements of

P̂+ =
r∑

j=0

Nŵj + Cδ.

The level of λ =
∑r

j=0 xjŵj + cδ ∈ P̂+ is the integer

λ(K) = λ0 +
r∑

j=1

xja
∨
j .

The character of the irreducible highest weight module labeled by a weight λ ∈ P̂+ of level k is
given by the Weyl–Kac character formula,

(2.1) χĝ
λ =

∑
σ∈Wĝ

(−1)ℓ(σ)eσ(λ+ρĝ)

eρĝ
∏

α∈∆+
ĝ

(1− e−α)mult(α)
,

where Wĝ is the Weyl group of ĝ, a semi-direct product of Wg by a certain group of translations,

ℓ(σ) is the length of σ, ∆+
ĝ
is the set of positive roots of ĝ, and mult(α) is the multiplicity of α, i.e.

the dimension of the root space ĝα. When λ = 0, we have χĝ
λ = 1, which gives the Macdonald–Weyl

denominator identity :

(2.2) eρĝ
∏

α∈∆+
ĝ

(1− e−α)mult(α) =
∑

σ∈Wĝ

(−1)ℓ(σ)eσ(ρĝ).

The algebra ĝ has real roots (with norm > 0) and imaginary roots (with norm = 0). The set of
positive real roots is

∆+,re
ĝ

= {α+ nδ : 0 < n ∈ Z, α ∈ ∆g} ∪∆+
g .

The set of positive imaginary roots is

∆+,im
ĝ

= {nδ : 0 < n ∈ Z}.
Every real root has multiplicity one, but every imaginary root has multiplicity r.

Let (τ, z) ∈ H × h. By interpreting the formal variable eα as e2πiα(z−τd), the character χĝ
λ(τ, z)

defines a holomorphic function on H × Cr. The product side of the denominator identity can be
written as a theta block (introduced by Gritsenko–Skoruppa–Zagier [55])

(2.3) ϑg(τ, z) = η(τ)r
∏

α∈∆+
g

ϑ(τ, 〈α, z〉)
η(τ)

,

where the odd Jacobi theta function

ϑ(τ, z) =
∑

n∈Z

(−4

n

)
q

n2

8 ζ
n
2 = −q

1
8 ζ−

1
2

∞∏

n=1

(1− qn−1ζ)(1− qnζ−1)(1 − qn), z ∈ C, ζ = e2πiz

is the denominator of χĝ
λ for the A1 Lie algebra g. Note that ϑg is a holomorphic Jacobi form of

(singular) weight r/2 and lattice index P∨
g (h

∨
g ) with multiplier system υdim g

η . By [66], all characters

χĝ
λ of fixed level k form a vector-valued weakly holomorphic Jacobi form of weight 0 and lattice

index Q∨
g (k) which is invariant under the action of the Weyl group Wg on z. We refer to [66,

Theorem 13.8] for the precise transformation laws with respect to the generators of SL2(Z).
Let k be a positive integer. The irreducible ĝ-module Lĝ(k, 0) associated with kŵ0 has a canonical

structure as a simple rational vertex operator algebra. This is called the affine VOA generated by
ĝ at level k. Such VOAs are physically realized as the well-known Wess–Zumino–Witten (WZW)
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models, which are nonlinear sigma models describing mapping fields from Riemann surfaces to Lie
group manifolds. The central charge of Lĝ(k, 0) is

(2.4) cg =
k dim g

k + h∨g
.

The irreducible modules of Lĝ(k, 0) are the irreducible ĝ-modules Lĝ(k, λ) associated with level k

dominant integral weights kŵ0 + λ ∈ P̂+ for any λ ∈∑r
j=1Nwj that satisfies

〈λ, θ∨〉 =
r∑

j=1

a∨j λj ≤ k, where λ =

r∑

j=1

λjwj .

The conformal weight of Lĝ(k, λ) is

(2.5) hλ =
〈λ, λ+ 2ρg〉
2(k + h∨g )

.

The full character of Lĝ(k, λ) is actually χĝ
kŵ0+λ(τ, z) as defined above. When the root system of g

is Rr as in Table 1 and λ =
∑r

j=1 λjwj , we often write χĝ
kŵ0+λ as

(2.6) χ
Rr,k

λ1···λr,hλ
.

Notation 2.3. Let g = ⊕s
j=1gj be a semi-simple Lie algebra. We will often have to associate to

each simple ideal gj a positive integer kj called the level. In this case we indicate the levels by
writing g = ⊕s

j=1gj,kj . For simplicity we write

h∨j = h∨gj , Qj = Qgj , Q∨
j = Q∨

gj
, Pj = Pgj , P∨

j = P∨
gj
.

We further fix two lattices

Qg =
s⊕

j=1

Q∨
j (kj) and Pg =

s⊕

j=1

P∨
j (kj).

Let Vg denote the affine vertex operator algebra

s⊗

j=1

Lĝj (kj , 0).

Clearly, the denominator of ĝ is given by the theta block

(2.7) ϑg := ϑg1 ⊗ ϑg2 ⊗ · · · ⊗ ϑgs .

Remark 2.4. Some remarks on the denominator identities are in order:

(1) Gritsenko, Skoruppa and Zagier [55] found a direct proof of the denominator identity based
on their theory of theta blocks.

(2) The function ϑg(τ, z)/η(τ)
dim g equals the modular Jacobian of the generators of the ring of

weak Jacobi forms for Q∨
g invariant under Wg (see [104]).

(3) If a theta block defines a holomorphic Jacobi form of singular weight, then it has to be the
denominator of an affine Lie algebra ([109]). Therefore, there is an one-to-one correspon-
dence between affine Lie algebras and singular-weight theta blocks.
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2.3. Reflective modular forms on orthogonal groups. Let M be an even integral lattice of
signature (l, 2) with l ≥ 3. We choose one of the two connected components of

{Z ∈ M ⊗ C : (Z,Z) = 0, (Z, Z̄) < 0}

and label it A(M). The symmetric domain of type IV attached to M is

D(M) := A(M)/C× = {[Z] ∈ P(M ⊗ C) : Z ∈ A(M)}.

Let O+(M) denote the subgroup of O(M⊗R) which preserves M and A(M). Let Γ be a finite-index
subgroup of O+(M). The most important example of Γ will be the discriminant kernel

Õ
+
(M) = {g ∈ O+(M) : g(v) − v ∈ M, for all v ∈ M ′},

where M ′ is the dual lattice of M .

Definition 2.5. Let k ∈ Z and χ : Γ → C× be a character. A holomorphic function F : A(M) → C

is called a modular form of weight k and character χ on Γ if it satisfies

F (tZ) = t−kF (Z), for all t ∈ C×,

F (gZ) = χ(g)F (Z), for all g ∈ Γ.

Modular forms can be represented by their Fourier expansions. Let c be a primitive isotropic
vector of M and choose c′ ∈ M ′ satisfying (c, c′) = 1. Then Mc,c′ = M ∩c⊥∩ (c′)⊥ is an even lattice
of signature (l − 1, 1). Around the cusp c, one can identify the symmetric domain D(M) with a
tube domain Hc,c′, a connected component of

{Z = X + iY : X,Y ∈ Mc,c′ ⊗ R, (Y, Y ) < 0}.

This induces an action of O+(M) on Hc,c′ and an automorphy factor, which allows us to define

modular forms of half-integral weight. A modular form of trivial character on S̃O
+
(M) can be

expanded on Hc,c′ as

F (Z) =
∑

λ∈M ′

c,c′
, (λ,λ)≤0

c(λ)e2πi(λ,Z).

Modular forms F on general Γ have similar expansions with Mc,c′ replaced by a finite-index sub-
lattice. If F is nonzero, then either k = 0 in which case F is constant, or k ≥ l/2− 1. The smallest
possible positive weight l/2 − 1 is called the singular weight. When F has singular weight, its
Fourier coefficients c(λ) are zero whenever (λ, λ) 6= 0.

Let λ ∈ M ⊗Q be a vector of positive norm. The rational quadratic divisor associated with λ is

λ⊥ = {[Z] ∈ D(M) : (Z, λ) = 0}.

We define the associated reflection σλ ∈ O+(M ⊗Q) as

σλ(x) = x− 2(x, λ)

(λ, λ)
λ, x ∈ M ⊗Q.

The divisor λ⊥ is called reflective if σλ fixes M , i.e. σλ ∈ O+(M). If λ is a primitive vector in
M ′, then λ⊥ is reflective if and only if there exists a positive integer d such that (λ, λ) = 2/d and
dλ ∈ M . More precisely, the order of λ in M ′/M is either d, or d/2 in which case d/2 is necessarily
even. A non-constant (holomorphic) modular form on Γ is called reflective if its zero divisor is a
linear combination of reflective rational quadratic divisors.
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2.4. Borcherds products. Let M be an even lattice of signature (b+, b−) with discriminant form
DM := (M ′/M, q), where q(x) = (x, x)/2 is the induced quadratic form. Let Mp2(Z) be the
metaplectic group, which consists of pairs A = (A,φA), where A =

(
a b
c d

)
∈ SL2(Z) and φA is a

holomorphic square root of τ 7→ cτ + d on H, with the standard generators

T =
(
( 1 1
0 1 ) , 1

)
and S =

( (
0 −1
1 0

)
,
√
τ
)
.

The Weil representation ρM is the unitary representation of Mp2(Z) on the group ring C[DM ] =
span(ex : x ∈ DM ) defined by

ρM (T )ex = e(−q(x))ex and ρM (S)ex =
e(sign(M)/8)√

|DM |
∑

y∈DM

e((x, y))ey ,

where e(t) = e2πit for t ∈ C, and sign(M) = b+ − b− mod 8. The dual representation of ρM is the
complex conjugate of ρM ; moreover, ρ̄M = ρM(−1).

Let k ∈ 1
2Z. A holomorphic function f : H → C[DM ] is called a weakly holomorphic modular

form of weight k if f satisfies

φA(τ)
−2kf(A · τ) = ρM (A)f(τ), for all A ∈ Mp2(Z),

and if f is represented by a Fourier series of the form

(2.8) f(τ) =
∑

x∈DM

∑

n∈Z−q(x)
n≫−∞

cx(n)q
nex.

The finite sum cx(n)q
nex with n < 0 is called the principal part of f . If f is holomorphic at infinity,

i.e. its principal part is zero, then it is a holomorphic modular form. Note that k+ sign(M)/2 ∈ Z

if non-zero f exist, and that if sign(M) is even then ρM factors through a representation of SL2(Z).
We denote the spaces of weakly holomorphic and holomorphic modular forms of weight k for ρM
respectively by

M !
k(ρM ) ⊃ Mk(ρM ).

There is a natural homomorphism O(M) → O(DM ) with kernel Õ(M). We define an action of
O(DM ) on modular forms f =

∑
cx(n)q

nex by

σ(f) =
∑

cx(n)q
neσ(x), σ ∈ O(DM ).

We now assume that M has signature (l, 2) with l ≥ 3. Let f be a weakly holomorphic modular
form of weight 1− l/2 for ρM with integral principal part. The Borcherds singular theta lift [7, 9]
produces a meromorphic modular form B(f) of weight c0(0)/2 and some character (or multiplier
system) on

O+(M,f) = {σ ∈ O+(M) : σ(f) = f} ⊃ Õ
+
(M)

which has an infinite product expansion at any 0-dimensional cusp involving the Fourier coefficients
of f (see below). Moreover, the divisor of B(f) is a linear combination of rational quadratic divisors
λ⊥, each with multiplicity

∞∑

d=1

cdλ(−d2λ2/2),

where λ ∈ M ′ are primitive vectors of positive norm.
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There is an identification between modular forms for the Weil representation and Jacobi forms.
Let L be an even positive-definite lattice of rank rk(L). Then one has the isomorphism

M !
k− 1

2
rk(L)

(ρL)
∼−→ J !

k,L

f(τ) =
∑

γ∈L′/L

fγ(τ)eγ 7−→
∑

γ∈L′/L

fγ(τ)ΘL,γ(τ, z),
(2.9)

where ΘL,γ is the Jacobi theta function of L+ γ, defined as

ΘL,γ(τ, z) =
∑

ℓ∈L+γ

eπi(ℓ,ℓ)τ+2πi(ℓ,z), (τ, z) ∈ H× (L⊗ C).

This map can be extended to modular forms with characters and it induces an isomorphism between
holomorphic modular forms. It follows that a holomorphic Jacobi form of weight 1

2 rk(L) and index

L is a C-linear combination of ΘL,γ . We call 1
2 rk(L) the singular weight for Jacobi forms.

It will be convenient to represent Borcherds products in terms of Jacobi forms. Let φ ∈ J !
0,L,1

be a weakly holomorphic Jacobi form of trivial character with Fourier expansion

φ(τ, z) =
∑

n∈Z

∑

ℓ∈L′

f(n, ℓ)qnζℓ.

The terms f(n, ℓ)qnζℓ with 2n − (ℓ, ℓ) < 0 are called singular Fourier coefficients and they corre-
spond to the principal part of the preimage of φ under the above isomorphism.

Remark 2.6. The Fourier expansion of φ satisfies f(n, ℓ) = f(n,−ℓ) and f(n1, ℓ1) = f(n2, ℓ2) if
2n1 − (ℓ1, ℓ1) = 2n2 − (ℓ2, ℓ2) and if ℓ1 − ℓ2 ∈ L. Therefore, any singular Fourier coefficient of φ

already appears as a summand f(n, ℓ)qnζℓ where n ≤ δ̂L, ℓ ∈ L′ and 2n < (ℓ, ℓ), where δ̂L is the
largest integer less than δL/2 and

(2.10) δL := max
{
min{(y, y) : y ∈ L+ x} : x ∈ L′

}
.

Let U be a hyperbolic plane, i.e. an even unimodular lattice of signature (1, 1). We write

U = Ze+ Zf, where e2 = f2 = 0 and (e, f) = −1.

Let U1 = Ze1 + Zf1 be a second hyperbolic plane and define M = U1 ⊕ U ⊕ L. We fix coordinates
on the tube domain about U1 by writing

H(L) = {Z = τf + z+ ωe : τ, ω ∈ H, z ∈ L⊗ C, 2 Im(τ) Im(ω)− (z, z) > 0},
such that

−(α,Z) = nτ − (ℓ, z) +mω for α = ne+ ℓ+mf ∈ U ⊕ L′.

These coordinates are chosen such that the infinite expansions below match the denominators of
Borcherds–Kac–Moody algebras.

Notation 2.7. We write v = x1e1+xe+ℓ+yf+y1f1 ∈ U1⊕U⊕L′ in the coordinate (x1, x, ℓ, y, y1)
and α = xe+ ℓ+ yf ∈ U ⊕ L′ in the coordinate (x, ℓ, y). In particular, v2 = (ℓ, ℓ)− 2(xy + x1y1).

Theorem 2.8 ([41, Theorem 4.2]). Assume the above φ has integral singular Fourier coefficients.

Then the Borcherds theta lift of φ is a meromorphic modular form of weight f(0, 0)/2 on Õ
+
(M)

and it can be expanded on an open subset of the tube domain H(L) as

B(φ)(Z) = qAζ
~BξC

∏

n,m∈Z, ℓ∈L′

(n,ℓ,m)>0

(
1− qnζ−ℓξm

)f(nm,ℓ)
,
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where q = exp(2πiτ), ζℓ = exp(2πi(ℓ, z)), ξ = exp(2πiω), where the positivity condition (n, ℓ,m) >
0 means that either m > 0, or m = 0 and n > 0, or m = n = 0 and ℓ > 0, and where the Weyl

vector ρ = (−A, ~B,−C) of B(φ) is defined by

A =
1

24

∑

ℓ∈L′

f(0, ℓ), ~B =
1

2

∑

ℓ>0

f(0, ℓ)ℓ, C =
1

2 rk(L)

∑

ℓ∈L′

f(0, ℓ)(ℓ, ℓ).

The Fourier–Jacobi expansion of B(φ) on H(L) is

(2.11) B(φ)(Z) =

(
Θf(0,∗)(τ, z) · ξC

)
exp

(
−

∞∑

m=1

(
φ|0T (1)

− (m)
)
(τ, z) · ξm

)
,

where the leading Fourier–Jacobi coefficient is given by a generalized theta block

Θf(0,∗)(τ, z) = η(τ)f(0,0)
∏

ℓ>0

(
ϑ(τ, (ℓ, z))

η(τ)

)f(0,ℓ)

.

We also need the following additive lifts with characters to construct orthogonal modular forms.

Theorem 2.9 (Theorem 3.2 in [18]). Let D be an even divisor of 24, k ∈ N, t ∈ 1
2N. If Q = 24/D

is odd, we further assume that t ∈ N. Let ϕ ∈ Jk,L,t(υ
D
η ). Let Gk(τ) be the normalized Eisenstein

series of weight k on SL2(Z) whose Fourier coefficient at q is 1. Then the function

G(ϕ)(Z) = f(0, 0)Gk(τ) +
∑

0<m∈1+QZ

(
ϕ|k,tT (Q)

− (m)
)
(τ, z) · ξm/Q

is a (holomorphic) modular form of weight k and some character on Õ
+
(U1 ⊕ U ⊕ L(Qt)). The

form G(ϕ) is always invariant under the involution (ω, z, τ) 7→ (τ, z, ω).

For a given lattice M , we will often need to determine all holomorphic, reflective Borcherds
products and in some cases prove that no such products exist. To do this, we apply Borcherds’s
obstruction criterion [10] which states that a formal sum

∑

n<0

∑

x∈DM

cx(n)q
nex

occurs as the principal part of a weakly-holomorphic modular form of weight κ for ρM if and only
if the identity ∑

n<0

∑

x∈DM

cx(n)ax(−n) = 0

holds for every cusp form
∑

n>0

∑
x∈DM

ax(n)q
nex of weight 2 − κ for the dual representation

ρM(−1). We construct a basis of cusp forms for ρM(−1) following [116] and realize the problem of
computing holomorphic reflective products as the problem of enumerating integral lattice points in
a polyhedral cone defined by finitely many inequalities (non-negative order along reflective divisors)
and finitely many linear equations. The solution can be conveniently expressed by the notion of a
Hilbert basis, i.e. a minimal system of reflective products F1, ..., Fr such that every holomorphic
reflective product can be written in the form

F = Fn1
1 · ... · Fnr

r

with non-negative integers n1, ..., nr. Given the polyhedral cone, we used the software Normaliz
[16] to find a Hilbert basis.
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2.5. Borcherds–Kac–Moody superalgebras. Borcherds–Kac–Moody superalgebras are infinite
dimensional Lie superalgebras introduced by Borcherds [3] in 1988 which generalize affine Kac–
Moody algebras. They can be defined in terms of Chevalley–Serre generators and relations which
are encoded in a generalized Cartan matrix. The restrictions on the generalized Cartan matrix
are weaker; in particular, simple roots are allowed to have non-positive norm (i.e. they can be
imaginary roots). BKM superalgebras also have a character formula for highest-weight modules
and a denominator identity. We will review the denominator identity following [90] because it
contains valuable information about the roots, root multiplicities and the Weyl group.

Let G = G0⊕G1 be a BKM superalgebra with even and odd components G0 and G1, respectively.
If G1 is trivial, G is a BKM algebra. Let H be the generalized Cartan subalgebra of G. Let ∆+ be
the set of positive roots of G. We have the root space decomposition

G =
⊕

α∈∆+

Gα ⊕H⊕
⊕

α∈∆+

G−α.

For α ∈ ∆+, we define

mult0(α) = dim(Gα ∩ G0), mult1(α) = dim(Gα ∩ G1), mult(α) = dim(Gα),

and define the super-multiplicity s-mult(α) as

mult0(α)−mult1(α).

The sets of positive even roots and odd roots are respectively

∆+
0 = {α ∈ ∆+ : mult0(α) > 0} and ∆+

1 = {α ∈ ∆+ : mult1(α) > 0}.
Let I be a countable set indexing the simple roots αi and S be the subset of I indexing odd roots.
By expanding a root as α =

∑
i∈I kiαi, we define the height and even height of α respectively as

ht(α) =
∑

i∈I

ki and ht0(α) =
∑

i∈I\S

ki.

We further define two formal sums

T = eρ
∑

µ

(−1)ht(µ)e−µ, T ′ = eρ
∑

µ

(−1)ht0(µ)e−µ,

where ρ is the Weyl vector of G and the sums are taken over all sets µ of distinct pairwise orthogonal
imaginary simple roots. Let W be the Weyl group generated by reflections associated with real
simple roots. In this paper we assume that G has no odd real roots. Under this assumption, one
has the denominator identity

(2.12) eρ ·
∏

α∈∆+
0
(1− e−α)mult0(α)

∏
α∈∆+

1
(1 + e−α)mult1(α)

=
∑

σ∈W

det(σ)σ(T )

and the super-denominator identity

(2.13) eρ ·
∏

α∈∆+
0
(1− e−α)mult0(α)

∏
α∈∆+

1
(1− e−α)mult1(α)

=
∑

σ∈W

det(σ)σ(T ′).

An affine Kac–Moody algebra G is a BKM algebra with no imaginary simple roots. Therefore,
T = eρ, and we recover the denominator identity for affine Kac–Moody algebras.

Following Borcherds, we study BKM superalgebras that have a hyperbolic root lattice (i.e. its
signature is of type (l, 1)) and whose denominator or super-denominator is the Fourier expansion of
a holomorphic modular form F on O(l+1, 2) at some 0-dimensional cusp. The product side of the
denominator identity suggests that F can usually be constructed as a Borcherds product [14, 15],
in which case the roots and their multiplicities are encoded in a weakly holomorphic modular form
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for the Weil representation of SL2(Z). The real roots of G correspond to the zeros of F through
the cusp, so F is locally reflective. Usually, F is also globally reflective.

This is particularly interesting when F is of singular weight. In this case, imaginary simple roots
are easy to describe, and in many cases they are just the multiples of the Weyl vector. Moreover,
one can write the sum side of the denominator identity explicitly as in [9, 93, 94], and it is expected
that such a BKM superalgebra has a natural construction as the BRST cohomology of a suitable
vertex algebra. In this paper, we will classify this type of BKM superalgebra under some mild
conditions and work out the corresponding vertex algebras. Our classification is closely related to
the fake monster algebra and its twists, so we will review that theory as well.

In 1990 Borcherds [5] constructed the fake monster algebra G as the BRST cohomology related
to the Leech lattice VOA. The root lattice of the BKM algebra G is U ⊕ Λ, where Λ is the Leech
lattice. The Weyl vector is ρ = (−1, 0, 0) (see Notation 2.7) and the real roots are α ∈ U ⊕Λ with
α2 = 2. The real simple roots are characterized by the equality (ρ, α) = 1. The imaginary simple
roots are nρ for negative integers n, each with multiplicity 24. The denominator of G defines a
reflective Borcherds product Φ12 of singular weight on 2U ⊕ Λ whose input is the full character of
the Leech lattice VOA (see [7]). Let Co0 = O(Λ) be the Conway group. Borcherds [6] proved that
the denominator identity of G is a cohomological identity and that Co0 acts on G naturally. In
this way, he obtained a twisted denominator identity for each conjugacy class [g] of Co0 and proved
that it is the (untwisted) super-denominator identity of a BKM superalgebra, denoted Gg. The
root lattice of Gg is Lg = U ⊕ Λg, where

Λg = {v ∈ Λ : g(v) = v}

is the fixed-point sublattice. The real simple roots are the roots α of Lg satisfying

(ρ, α) = α2/2

and the imaginary simple roots are mρ with super-multiplicity
∑

k|(m,ng)
bk for all negative integers

m, where ng is the order of g and where bk describe the cycle shape
∏

bk 6=0 k
bk of g. The last

two named authors [113] proved that the twisted denominator function associated with g defines a
holomorphic Borcherds product (denoted Φg) of singular weight on U(Ng)⊕ U ⊕ Λg, where Ng is
the level of g, and that Φg is reflective on U(Ng)⊕ U ⊕ Λg if Ng = ng, confirming a conjecture of
Borcherds [7, §15, Example 3].

3. The hyperbolization of affine Kac–Moody algebras

It is well-known how to realize affine Kac–Moody algebras as extensions of semi-simple Lie alge-
bras. In this section, we introduce extensions of affine Kac–Moody algebras to BKM superalgebras
that we call their hyperbolizations.

Let L be an even positive-definite lattice of rank rk(L), let U and U1 be two hyperbolic planes,
and define M = U1⊕U⊕L. Let G be a BKM superalgebra with root lattice U ⊕L′ and generalized
Cartan subalgebra H with no odd real roots. We assume that the super-denominator of G is

given by the Fourier expansion of a Borcherds product F for Õ
+
(M) at the 0-dimensional cusp

determined by U1.

Every divisor λ⊥ of F lies in the Õ
+
(M)-orbit of the rational quadratic divisor associated with

some primitive vector α ∈ U ⊕ L′. If α⊥ appears in the divisor of F , then α is a real root. Since
we have assumed that G has no odd real roots, the divisor α⊥ is always a zero and therefore F is
holomorphic. Moreover, the associated reflection σα lies in the Weyl group of G. Therefore, σα fixes
the root lattice U⊕L′, so it also fixes M ′ = U1⊕U⊕L′, which implies that σα ∈ O+(M ′) = O+(M)
and finally that F is a reflective modular form.
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We denote by φ the Jacobi form input of F and write its expansion at ∞ as

φ(τ, z) =
∑

n∈Z, ℓ∈L′

f(n, ℓ)qnζℓ ∈ J !
0,L.

By Theorem 2.8, the product side of the denominator identity is (see Notation 2.7)

eρ
∏

α>0

(
1− e−α

)f(nm,ℓ)
, α = (n, ℓ,m) ∈ U ⊕ L′, ρ = (−A, ~B,−C).

In particular, if f(nm, ℓ) 6= 0 then α is a root of G and

mult0(α) −mult1(α) = f(nm, ℓ).

The weight of F is given by f(0, 0)/2. The root α is positive if and only if either m > 0, or m = 0
and n > 0, or m = n = 0 and ℓ > 0.

Let R+ be the set of positive roots of G of type (n, ℓ, 0). For any positive integer n, (n, 0, 0) is
an imaginary root in R+. All other roots in R+ are (even) real and have multiplicity f(0, ℓ). Since
the multiplicity of a real root is always 1 (see e.g. [90, Corollary 2.3.42]), we have f(0, ℓ) = 1.

Assume further that none of (n, 0, 0) is odd. Then the even roots (n, 0, 0) always have multiplicity
f(0, 0). Now consider the sum of root spaces

G0 :=
⊕

α∈R+

Gα ⊕H⊕
⊕

α∈R+

G−α.

If F is of singular weight, i.e. f(0, 0) = rk(L), then G0 defines an affine Kac–Moody algebra ĝ for
which g is a semi-simple Lie algebra whose positive roots are the roots of type (0, ℓ, 0) in R+ (here,
we can view K = δ = (1, 0, 0) and d = ŵ0 = (0, 0,−1)). The leading Fourier–Jacobi coefficient of
F at the 1-dimensional cusp determined by U1⊕U is a holomorphic Jacobi form of singular weight
given by the theta block

η(τ)rk(L)
∏

(0,ℓ,0)∈R+

ϑ(τ, (ℓ, z))

η(τ)
, z ∈ L⊗C,

which equals the denominator ϑg of ĝ. In particular, G is an extension of ĝ. For m > 0 we define
Gm to be the sum of root spaces associated with roots of type ±(∗, ∗,m). Then

G =
∞⊕

m=0

Gm

is a graded module over ĝ = G0. From this point of view, it is natural to regard G as a hyperbolization
of ĝ.

Motivated by the discussion above, we introduce the following definition.

Definition 3.1. Let ĝ be an affine Kac–Moody algebra. A BKM superalgebra G without odd real
roots is called a hyperbolization of ĝ if there exists an even positive-definite lattice L such that
the root lattice of G is U ⊕ L′ and the super-denominator of G defines a holomorphic Borcherds
product F of (singular) weight rk(L)/2 on 2U ⊕ L whose leading Fourier–Jacobi coefficient is the
denominator ϑg of ĝ. We also call F a hyperbolization of ϑg.

The notion of hyperbolization was first introduced by Gritsenko and the second named author
in [50, Theorem 1.2], [52, Section 6.3] and [53, Remark 3.11].

In this paper we will classify affine Kac–Moody algebras that admit hyperbolizations and con-
struct a hyperbolization for every such affine Kac–Moody algebra. Moreover, we express every
Jacobi form input φ as a Z-linear combination of full characters of an associated vertex operator
(super)algebra.
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4. Root systems associated with singular-weight reflective modular forms

In this section, we classify reflective automorphic products of singular weight on lattices of
type 2U ⊕ L whose Jacobi form inputs have non-negative q0-terms. Although Jacobi form inputs
that have negative coefficients in their q0-terms can lift to holomorphic Borcherds products, the
corresponding BKM superalgebras in these cases will have odd real roots.

By an argument similar to [108, Theorem 6.2] and [105, Lemma 4.5], we will show that any such
Borcherds product belongs to a root system satisfying certain strong restrictions. These restrictions
yield a finite list of root systems and a finite list of candidates for affine Kac–Moody algebras that
admit hyperbolizations.

Theorem 4.1. Let L be an even positive-definite lattice of rank rk(L) and let U be a hyperbolic

plane. Suppose there is a reflective Borcherds product F of singular weight on Õ
+
(2U ⊕ L) whose

Jacobi form input has non-negative q0-term. Then either (a) or (b) below holds:

(a) The lattice L is the Leech lattice, F is the denominator Φ12 of the fake monster algebra,
and the Jacobi form input is the full character of the Leech lattice VOA.

(b) There exists a semi-simple Lie algebra g = ⊕s
j=1gj,kj of rank rk(L) satisfying restrictions

(1) or (1′) and (2) and (3), where gj are simple Lie algebras and kj are positive integers for
1 ≤ j ≤ s. We refer to Notation 2.3 for the symbols below. Let λ ∈ U with λ2 = 2.
(1) If F vanishes on λ⊥, then

(4.1) C :=
dim g

24
− 1 =

h∨j
kj

, for 1 ≤ j ≤ s.

(1′) If F does not vanish on λ⊥, then

(4.2) C :=
dim g

24
=

h∨j
kj

and kj > 1, for 1 ≤ j ≤ s.

(2) The rescaled lattice L(C) is integral and L is bounded by

(4.3) Qg < L < Pg.

(3) The leading Fourier–Jacobi coefficient of F at the 1-dimensional cusp determined by
2U coincides with the denominator of the affine Kac–Moody algebra ĝ.

Let cg denote the central charge of the affine VOA generated by ĝ = ⊕s
j=1ĝj,kj . Then cg is always

24 in case (1) and in case (1′) we have

(4.4) cg =
24C

C + 1
.

We call case (1) (resp. (1′)) the anti-symmetric (resp. symmetric) case, since F is anti-invariant
(resp. invariant) under the involution (ω, z, τ) 7→ (τ, z, ω).

Proof. This is a more precise version of [110, Theorem 2.2] in the specific case of singular weight.
We provide a detailed proof here as it combines the proof of [110, Theorem 2.2] with some recent
results proved in [115], and because it explains the construction of the Lie algebra g.

Let φ ∈ J !
0,L be the Jacobi form input of F , and write its Fourier expansion as

φ(τ, z) =
∑

n∈Z, ℓ∈L′

f(n, ℓ)qnζℓ.
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By assumption, f(0, ℓ) are non-negative integers. Each vector v = (n, ℓ, 1) ∈ U ⊕L′ is primitive in
M := 2U ⊕ L and satisfies v2 = (ℓ, ℓ)− 2n. The multiplicity of v⊥ in the divisor of F is

∞∑

d=1

f(d2n, dℓ).

By [110, Lemma 2.1 and Equation (2.1)], the Fourier expansion of F begins with

φ(τ, z) = f(−1, 0)q−1 +
∑

ℓ∈L′

f(0, ℓ)ζℓ +O(q).

Since F is of singular weight, f(0, 0) = rk(L). We know from [115, Theorem 1.2] that a holomorphic
Borcherds product of singular weight has only simple zeros. Therefore, f(−1, 0) and f(0, ℓ) can
only be 0 or 1. By definition, f(−1, 0) = 1 in the anti-symmetric case and f(−1, 0) = 0 in the
symmetric case. We define

R = {ℓ ∈ L′\{0} : f(0, ℓ) = 1}.
By [41, Proposition 2.6], we have

|R|+ rk(L)

24
− f(−1, 0) =

1

2 rk(L)

∑

ℓ∈R

(ℓ, ℓ) =: C,(4.5)

∑

ℓ∈R

(ℓ, z)2 = 2C(z, z).(4.6)

If R is empty, then C = 0, f(−1, 0) = 1 and rk(L) = 24. In this case, [81, Proposition 3.2] shows
that M is isomorphic to the even unimodular lattice of signature (26, 2), which then forces L to be
the Leech lattice Λ and F to be the Borcherds form Φ12 (see [113, Theorem 3.5]). The Jacobi form
input of Φ12 is given by

ΘΛ,0(τ, z)/η
24(τ) = q−1 + 24 +O(q),

which equals the full character of the Leech lattice VOA.
Now assume that R is non-empty. Equation (4.6) implies that C > 0 and that L⊗Q is spanned

by R over Q. We will now show that R is a rescaled root system. Let ℓ1, ℓ2 ∈ R. Then −ℓ1 ∈ R
because f(0, ℓ) = f(0,−ℓ). For any integer a > 1, aℓ1 6∈ R, as otherwise (0, ℓ1, 1)

⊥ would have
multiplicity at least 2 in the divisor of F , contradicting the fact that all zeros of F are simple.
Since F is reflective, the reflection σ(0,0,ℓ1,1,0) fixes M (see Notation 2.7). From

σ(0,0,ℓ1,1,0)
(
(0, 0, ℓ2, 1, 0)

)
=
(
0, 0, σℓ1(ℓ2), 1 − 2(ℓ1, ℓ2)/(ℓ1, ℓ1), 0

)
=: λ ∈ M

we obtain

σℓ1(ℓ2) ∈ L′ and 2(ℓ1, ℓ2)/(ℓ1, ℓ1) ∈ Z.

We know from [110, Theorem 1.2] that F is anti-invariant under σ(0,0,ℓ1,1,0) and therefore vanishes

on λ⊥. Since (0, 0, σℓ1(ℓ2), 1, 0) is primitive in M ′, by the Eichler criterion (see e.g. [40, Proposition

3.3]) there exists g ∈ Õ
+
(M) such that g(λ) = (0, 0, σℓ1(ℓ2), 1, 0). Therefore, F also vanishes on

(0, 0, σℓ1(ℓ2), 1, 0)
⊥, from which it follows that f(0, σℓ1(ℓ2)) = 1 and that σℓ1(ℓ2) ∈ R. This proves

that R is a (rescaled) root system.
Now we can decompose R into rescaled irreducible root systems

R =

s⊕

j=1

Rj(aj),

where Rj are standard irreducible root systems and aj are rational numbers by which the (squared)

norms of the roots in Rj are rescaled. Since (0, 0, ℓ, 1, 0)⊥ is reflective for any ℓ ∈ R, there exists
a positive integer d such that ℓ2 = 2/d and dℓ ∈ L. It follows that aj = 1/kj for some positive
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integers kj . In the symmetric case, there are no 2-roots in R, so every kj is larger than 1. Let gj,kj
be the simple Lie algebra of type Rj with level kj. We see from (4.5) and (4.6) that the semi-simple
Lie algebra g = ⊕s

j=1gj,kj satisfies condition (1) or (1′) of the theorem.

By [108, Corollary 4.5], L(C) is an integral lattice. The set R = ⊕s
j=1Rj(1/kj) generates a

sublattice of L′ over Z, from which it follows that
s⊕

j=1

Qj(1/kj) < L′ and therefore L <

s⊕

j=1

P∨
j (kj).

The vectors ord(ℓ)ℓ for ℓ ∈ R generate a sublattice of L over Z, where ord(ℓ) is the order of ℓ in
L′/L. It is easy to check that this lattice contains the lattice generated by long roots of ⊕s

j=1Rj(kj),

and therefore ⊕s
j=1Q

∨
j (kj) < L. This proves claim (2).

Finally, let ∆+
j be the set of positive roots of Rj and let 〈−,−〉 be the normalized bilinear form

on Rj that was fixed in Section 2.2. For α ∈ ∆+
j , we have α/kj ∈ R ( L′ and

(α/kj , z) = kj〈α/kj , z〉 = 〈α, z〉.
Therefore, the leading Fourier–Jacobi coefficient of F is a Jacobi form of lattice index L(C) given
by

η(τ)rk(L)
∏

0<ℓ∈R

ϑ(τ, (ℓ, z))

η(τ)
=

s∏

j=1

(
η(τ)rk(gj)

∏

α∈∆+
j

ϑ(τ, 〈α, z〉)
η(τ)

)
,

which is actually the denominator of ĝ. Note that
s⊕

j=1

Q∨
j (h

∨
j ) < L(C) <

s⊕

j=1

P∨
j (h

∨
j ),

which matches the index L(C) of the above leading Fourier–Jacobi coefficient of F .
The last assertion follows from the central charge formula

cg =

s∑

j=1

kj dim gj

kj + h∨j
=

s∑

j=1

dim gj

1 + C
=

dim g

1 + C

and because dim g = 24(C + 1) in the anti-symmetric case and dim g = 24C in the symmetric
case. �

Remark 4.2. In the above theorem, when Rj is of type E8, F4 or G2, we have Q∨
j = P∨

j . Let J

denote the subset of such j. Then we have (see [110, Theorem 2.2 (4)])

L = K ⊕
⊕

j∈J

P∨
j (kj), where

⊕

j 6=J

Q∨
j (kj) < K <

⊕

j 6=J

P∨
j (kj).

Proposition 4.3. Equation (4.1) has 221 solutions, and they are listed in Table 4. Equation (4.2)
has 17 solutions, and they are listed in Table 5.

Proof. Equation (4.1) was first derived by Schellekens [98] in 1993 in the context of holomorphic
vertex operator algebras of central charge 24, and he determined the solutions that are listed in
Table 4. The solutions of Equation (4.2) can be found in a similar way. �

5. The classification of affine Lie algebras with hyperbolizations

In this section we state the main theorems and explain the ideas behind the proofs.
Our first main result is the classification of root systems associated with reflective Borcherds

products of singular weight on lattices of type 2U ⊕ L, which was introduced in Theorem 4.1.
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Theorem 5.1. Suppose 2U ⊕L has a reflective Borcherds product of singular weight whose Jacobi
form input has non-negative q0-term. Then the associated semi-simple Lie algebra g defined in
Theorem 4.1 is one of the 81 Lie algebras colored blue in Tables 4 and 5.

To prove this, we have to rule out most of the solutions of Equation (4.1) and Equation (4.2).
There are 238 root systems in Tables 4 and 5 altogether. A root system will be called extraneous
if it is not one of the 81 root systems described in Theorem 5.1; there are 152 extraneous root
systems of anti-symmetric type and 5 extraneous root systems of symmetric type.

Let g be a semi-simple Lie algebra associated with a singular-weight reflective Borcherds product
on 2U ⊕ L that is extraneous. By Theorem 4.1 (2), the underlying lattice L satisfies the bounds

Qg < L < Pg.

We will determine an explicit even overlattice K of L with the property that any singular-weight
reflective Borcherds product on 2U ⊕ L lifts to a reflective Borcherds product satisfying certain
conditions on 2U ⊕ K, but for which no such reflective products on 2U ⊕K exist. This leads to
a contradiction. The complete proof appears in Section 11 for anti-symmetric root systems and in
Section 12 for symmetric root systems.

The second main result is the construction of hyperbolizations for the 81 semi-simple Lie algebras
in the theorem above.

Theorem 5.2. For each semi-simple Lie algebra g in Theorem 4.1, there exists an even positive
definite lattice Lg with the same rank as g that satisfies the following conditions:

(1) There is a singular-weight reflective Borcherds product Ψg on 2U ⊕ Lg;
(2) The leading Fourier–Jacobi coefficient of Ψg at the 1-dimensional cusp determined by 2U

is the denominator of the affine Lie algbera ĝ;
(3) The Jacobi form input φg of Ψg is a Z-linear combination of full characters of the affine

vertex operator algebra generated by ĝ;
(4) The lattice generated by dρ and by those λ = (n, ℓ,m) ∈ U ⊕ L′

g for which Ψg vanishes on

λ⊥ is U ⊕ L′
g; that is, U ⊕ L′

g is the root lattice of the BKM (super)algebra with (super)-
denominator Ψg. Here, ρ is the Weyl vector of Ψg and d is the denominator of C as defined
in Theorem 4.1.

(5) When g is of symmetric type, the Borcherds product Ψg coincides with the Gritsenko (ad-
ditive) lift of the denominator of ĝ.

The above lattices Lg and Jacobi forms φg are constructed as follows.

(a) Let g be one of the 69 semi-simple Lie algebras of anti-symmetric type. In this case, g

appears as the semi-simple V1 structure of a holomorphic vertex operator algebra V of
central charge 24 in Schellekens’s list. Then Lg is the orbit lattice in Höhn’s construction
of V and φg is the unique full character of V .

(b) Let g be one of the 8 semi-simple Lie algebras of symmetric type with C = 1. In this case,
g appears as the N = 1 structure of a holomorphic vertex operator superalgebra of central
charge 12 composed of 24 chiral fermions. Then Lg is the maximal even sublattice of Pg,

and φg can be expressed as a Z-linear combination of the full NS-, ÑS- and R-characters of
the associated SVOA:

φg = (χNS − χ
ÑS

− χR)/2.

(c) Let g = A1,16, A
2
1,8, A

4
1,4 or A2,9. These semi-simple Lie algebras are of symmetric type with

C < 1. In these cases, the affine Lie algebras ĝ admit exceptional modular invariants coming
from a nontrivial automorphism of the fusion algebra. Then Lg = Pg, the expressions of
φg in terms of affine characters are given in Theorem 8.2, and the relationship between φg

and the exceptional modular invariants is explained in Remark 8.5.
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The proof of Theorem 5.2 is divided into four sections. In Sections 6-8 we prove parts (a), (b)
and (c) respectively. In Section 9 we prove property (5). The connections between our construction
and the twists of the fake monster algebra are also explained in Sections 6 and 7.

Our last main result is the complete classification of affine Lie algebras with hyperbolizations.
This is a direct consequence of Theorem 5.1 and Theorem 5.2.

Theorem 5.3. There are exactly 81 affine Kac–Moody algebras which have a hyperbolization in
the sense of Definition 3.1. The 81 algebras are colored blue in Tables 4 and 5.

Combining Theorem 5.1 and Theorem 5.2, we obtain the following constraint on the existence
of singular automorphic products:

Corollary 5.4. There are reflective Borcherds products of singular weight on lattices of type 2U⊕L
whose input has non-negative principal part if and only if

rk(L) ∈ {1, 2, 4, 6, 8, 10, 12, 16, 24}.

6. The antisymmetric case: holomorphic CFT of central charge 24

The 69 semi-simple Lie algebras g in the anti-symmetric case of Theorem 5.1 coincide with the
semi-simple V1 structures of holomorphic vertex operator algebras (VOA) of central charge 24 in
Schellekens’ list [98]. In 2017, Höhn [63] found a uniform construction of the holomorphic VOAs.
For each g, we will take Höhn’s orbit lattice Lg as the underlying lattice L and construct the
reflective Borcherds product of singular weight as the Borcherds lift of the full character of the
holomorphic VOA. We also explain the connection between these hyperbolizations and the twisted
denominators of the fake monster algebra.

6.1. Holomorphic CFTs of central charge 24 and Schellekens’ list. Let V be a holomorphic
vertex operator algebra of central charge 24. The weight-one subspace V1 has a natural Lie algebra
structure and by [98, 26], V1 is either trivial, abelian of dimension 24, or semi-simple. In the first
case it was conjectured in [35] that V is isomorphic to the monster VOA, which was proved under
some conditions in [29]. In the second case V is isomorphic to the Leech lattice VOA.

We focus on the third case where V1 is a semi-simple Lie algebra g. Let (−,−) be the unique
symmetric, non-degenerate, invariant bilinear form on V normalized such that (1,1) = −1, where 1
is the vacuum vector. The restriction of (−,−) to a simple ideal gj of g satisfies (−,−) = kj〈−,−〉
for some positive integer kj, where 〈−,−〉 is the normalized bilinear form of gj (see [98, 28]). We
indicate these integers by writing

g = g1,k1 ⊕ · · · ⊕ gs,ks.

Then the affine vertex operator algebra

Vg
∼= Lĝ1(k1, 0)⊗ · · · ⊗ Lĝs(ks, 0)

generated by V1 is a full vertex operator subalgebra of V . As a Vg-module, one can decompose V
into finitely many irreducible Vg-modules

(6.1) V =
⊕

λ1,...,λs

mλ1,...,λsLĝ1(k1, λ1)⊗ · · · ⊗ Lĝs(ks, λs),

where the sum runs over the dominant integral weights λj of gj that satisfy 〈λj, θ
∨
j 〉 ≤ kj, where

θj is the highest root of gj .
In 1993 Schellekens [98] established the equation (see Notation 2.3)

dim g

24
− 1 =

h∨j
kj

, for 1 ≤ j ≤ s
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and showed that it has exactly 221 solutions. By excluding 152 of them, Schellekens proved that
V1 is isomorphic to one of the 69 semi-simple Lie algebras in [98, Table 1] (named Schellekens’s
list) and further determined the induced decompositions (6.1). This result was reproved in [100]
using similar arguments and in [102] by means of the “very strange formula”.

Schellekens also conjectured that there exists a unique holomorphic VOA of central charge 24
with V1 = g for every g on his list. By the work of many authors over the past three decades,
this celebrated conjecture was finally proved (see [70, 73, 75, 76, 72, 91, 100] for the existence and
[27, 101, 72, 68, 74, 77, 78, 79] for the uniqueness). There are at least three uniform proofs of the
conjecture: the Leech lattice method of Höhn ([63, 71, 2]), the generalized deep hole method of
Möller–Scheithauer [86, 85], and the Niemeier lattice method of Höhn–Möller [60].

6.2. Höhn’s construction of holomorphic CFT of central charge 24. Our construction of
hyperbolizations relies heavily on Höhn’s argument, which is reviewed below.

Let Qg be the rescaled coroot lattice (see Notation 2.3). Then V contains the lattice VOA
associated with Qg denoted VQg

. If we let Wg = ComV (VQg
) be the commutant (or centralizer),

then the double commutant

ComV (Wg) = ComV (ComV (VQg
))

is a lattice VOA extending VQg
. Therefore, there exists an even positive definite lattice Lg ⊃ Qg

such that ComV (Wg) is isomorphic to the lattice VOA VLg
. It is well known that VLg

has group-like
fusion: all irreducible VLg

-modules are simple current modules. In this case, the set of all irreducible
modules R(VLg

) forms an abelian group with respect to the fusion product, and it also carries the
quadratic form q : R(VLg

) ∼= L′
g/Lg → Q/Z defined via

q(Vα+Lg
) = wt(Vα+Lg

) = (α,α)/2 mod Z,

where wt(−) denotes the conformal weight of the module. The full character of the irreducible
module labeled by α + Lg ∈ L′

g/Lg can be expressed in terms of the Jacobi theta function and
η-function:

(6.2) χVα+Lg
(τ, z) =

ΘLg,α(τ, z)

η(τ)rk(Lg)
, (τ, z) ∈ H× (Lg ⊗ C).

It is also known that Wg is strongly rational and also has group-like fusion (see e.g. [21, 80]).
The set R(Wg) of irreducible modules forms a quadratic space isomorphic to (R(VLg

),−q), where
the quadratic form is defined by reducing the conformal weight modulo Z. Therefore, V is a simple
current extension of Wg ⊗ VLg

, i.e. there is an isometry ι : L′
g/Lg → R(Wg) such that

V ∼=
⊕

α+Lg∈L′
g/Lg

Wι(α+Lg) ⊗ Vα+Lg
.

Note that VLg
has central charge rk(Lg) = rk(V1) = rk(g), that Wg has central charge 24 − rk(g),

and that the weight-one subspace of Wg is zero. Höhn computed the lattice Lg for each of the 69
semi-simple g and called it the orbit lattice of g.

Let h be the Cartan subalgebra of g. Recall that the full character of V , defined by

(6.3) χV (τ, z) = TrV (e
2πizqL0−1), q = e2πiτ , (τ, z) ∈ H× h,

is a weakly holomorphic Jacobi form of weight 0 and lattice index Qg (with trivial character on
SL2(Z)) (see e.g. [117, 83, 69]). The above construction implies that χV also defines a weakly
holomorphic Jacobi form of weight 0 and lattice index Lg. Moreover, the character decomposition

(6.4) χV (τ, z) =
∑

α+Lg∈L′
g/Lg

χVα+Lg
(τ, z) · χWι(α+Lg)

(τ)
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determines the theta decomposition of χV as a Jacobi form of lattice index Lg. In particular, the
vector-valued function

(6.5) fg(τ) :=
∑

α∈L′
g/Lg

η(τ)− rk(g) · χWι(α+Lg)
(τ)eα

is a weakly holomorphic modular form of weight − rk(g)/2 for the Weil representation ρLg
.

Höhn described Wg in an elegant way. Let Λ continue to be the Leech lattice and let

Λg := (Λg)⊥ = {x ∈ Λ : (x, y) = 0 for all y ∈ Λ satisfying g(y) = y}

be the coinvariant sublattice for g ∈ Co0 = O(Λ). Let ĝ ∈ Aut(VΛ) be a standard lift of g; that
is, ĝ is a lift of g to the Leech lattice VOA that acts trivially on Λg. Höhn [63] conjectured that

Wg is isomorphic to an orbifold VOA V ĝ
Λg

where [g] is one of 11 particular conjugacy classes [g] of

Co0 (see Tables 6 and 7). This would imply that V is isomorphic to a simple-current extension of

V ĝ
Λg

⊗VLg
. Lam [71] proved that the orbifold V ĝ

Λg
with Λg 6= {0} has group-like fusion and described

the corresponding quadratic form explicitly, and in this way was able to confirm Höhn’s conjecture.

The simple-current extension of V ĝ
Λg

⊗ VLg
depends on the double cosets

(6.6) O(Lg)\O(R(Wg),−q)/Aut(Wg).

By counting the numbers of the above double cosets denoted n(Lg), Betsumiya, Lam and Shimakura
[2] supplemented Höhn’s proof of the uniqueness of holomorphic VOAs of central charge 24 with
semi-simple V1.

We will now describe the 69 simple current extensions explicitly. The construction involves 11
distinct Co0-conjugacy classes [g], which are characterized by the property that the discriminant

form (R(V ĝ
Λg
),−q) of signature rk(Λg) mod 8 can be realized by an even positive definite lattice of

rank rk(Λg). The orbit lattices Lg lie in the 11 associated genera.

(1) Let [g] be one of the 8 conjugacy classes in Table 6. For each orbit lattice of genus [g],
the number of double cosets (6.6) is always 1, so the number of inequivalent simple-current
extensions equals to the number of classes in the genus. There are in total 58 classes
(including the Leech lattice) in the 8 genera, so the 8 conjugacy classes [g] induce 57
holomorphic VOAs of central charge 24 with semi-simple V1 = g.

(2) Let [g] be the conjugacy class of cycle shape 212. The associated (lattice) genus has 2 classes
D12(2) and E8(2)⊕D4(2) and the corresponding numbers of double cosets are respectively
6 and 3. Therefore, this [g] induces 9 simple-current extensions.

(3) Let [g] be the conjugacy class of cycle shape 2363. The associated (lattice) genus has a
unique class and the corresponding number of double cosets is 2. Therefore, this [g] induces
2 simple current extensions.

(4) Let [g] be the conjugacy class of cycle shape 22102. The associated (lattice) genus has a
unique class and the corresponding number of double cosets is 1. Therefore, this [g] induces
only 1 simple current extension.

The relevant data appear in Tables 6 and 7.

6.3. Constructing hyperbolizations.

Theorem 6.1. Let V be a holomorphic VOA of central charge 24 with semi-simple V1 = g. Let
Lg be Höhn’s orbit lattice of g and let χV be the full character of V . Then the theta lift B(χV ) is a
reflective Borcherds product of singular weight on 2U ⊕ Lg. Moreover, the leading Fourier–Jacobi
coefficient of B(χV ) coincides with the denominator of the affine Kac–Moody algebra ĝ.
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Proof. Let ∆g be the set of roots of g. By definition, the Fourier expansion of χV begins

χV (τ, z) = q−1 +
∑

α∈∆g

e2πi〈α,z〉 + rk(g) +O(q),

and all Fourier coefficients of χV are non-negative integers. It follows from Höhn’s construction that
χV is a weakly holomorphic Jacobi form of weight 0 and lattice index Lg. We conclude immediately
that B(χV ) is a holomorphic Borcherds product of singular weight on 2U ⊕Lg. It remains to show
that B(χV ) is reflective.

Suppose first that g comes from one of the conjugacy classes [g] in Table 6. Then the level and
order of g are the same (denoted ng as in Section 2.5). The orbit lattice Lg is determined by

U(ng)⊕ Λg ∼= U ⊕ Lg.

As mentioned at the end of Section 2.5, it was proved in [113, Theorem 6.5, Remark 6.14] that the
twisted denominator of the fake monster algebra associated with g defines a reflective Borcherds
product Φg of singular weight on U(ng) ⊕ U ⊕ Λg. Möller [84] calculated the characters of the

orbifold VOA V ĝ
Λg
, and by comparing Möller’s result and [113, Theorem 6.5], it was also proved

[113, Remark 6.13] that the input of Φg equals the full character of V ĝ
Λg

(up to a factor of η− rk(g))

as a vector-valued modular form. By Höhn’s construction, the input of Φg is actually fg as defined
in Equation (6.5). We can then use Equation (6.4) to see that B(χV ) = Φg; in particular, B(χV )
is reflective.

Otherwise, g comes from one of the conjugacy classes [g] in Table 7, the level of g is twice its
order, and the isomorphism U(ng) ⊕ Λg ∼= U ⊕ Lg does not hold. In fact, B(χV ) is not obviously
related to Φg in these cases. We will prove that B(χV ) is reflective by directly calculating the input
forms χV . By Höhn’s construction, it is sufficient to do this for any semi-simple g from a fixed [g],
because the input for any other semi-simple Lie algebra from [g] can be expressed as σ(fg) for some
σ ∈ O(L′

g/Lg). The proof by cases is given in Lemmas 6.8, 6.9 and 6.10 below. �

Remark 6.2. All products B(χV ) for V1 = g within a fixed conjugacy class [g] define the same
modular form on the type IV symmetric domain of dimension 2 + rk(g) up to automorphism. We
denote this modular form by Ψg. The different products B(χV ) can be viewed as the distinct
Fourier–Jacobi expansions of Ψg at different 1-dimensional cusps represented by a splitting of two
hyperbolic planes. Letting Dg denote the discriminant group of Lg, the automorphism group

Aut(V ĝ
Λg
) equals the subgroup of O(Dg) that fixes fg. If g is in Table 6, then

Aut(V ĝ
Λg
) = O(Dg),

and therefore Ψg is modular for the full orthogonal group. This property does not hold if g is in
Table 7.

Remark 6.3. By the proof of Theorem 6.1, Ψg = Φg for [g] in Table 6. The eight Φg were first
constructed by Borcherds [7, 9] and Scheithauer in [93, 95], but they only considered the Fourier
expansions at 0-dimensional cusps. Gritsenko [50] first calculated the 24 distinct Fourier–Jacobi
expansions of Φg for g of cycle shape 124 at the distinct 1-dimensional cusps, which correspond to
the 24 Niemeier lattices. The Fourier–Jacobi expansions of Φg for g of cycle shapes 1373 and 1454

were first determined in [52]. We also remark that Scheithauer [96] calculated Ψg at 0-dimensional
cusps for g of cycle shape 212.

Remark 6.4. Borcherds [5, 6] proved that the BRST cohomology related to the Leech lattice VOA
naturally defines the fake monster algebra. It is natural to expect that the BRST cohomology re-
lated to any holomorphic VOA of central charge 24 defines a BKM algebra whose denominator
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function is B(χV ). This type of construction has been realized for holomorphic vertex operator al-
gebras with V1 structures A

16
1,2, A

8
2,3, A

2
4,5, A6,7 and B12,2 by Creutzig, Höhn, Klauer and Scheithauer

[61, 19, 62]. A uniform construction for all vertex operator algebras was given by Driscoll-Spittler
in his thesis [30] under several technical assumptions. This (conditional) natural construction also
implies that B(χV ) is reflective on 2U ⊕ Lg.

Remark 6.5. Let Gg be the BKM algebra that arises as the BRST cohomology of a holomorphic
VOA with V1 = g. Let [g] be the Co0-conjugacy class corresponding to g. Clearly Gg depends only
on [g].

(1) When [g] is in Table 6, we have the two isomorphisms

U(ng)⊕ Λg ∼= U ⊕ Lg and U ⊕ Λg ∼= (U ⊕ L′
g)(ng),

since (Λg)′(ng) ∼= Λg. This induces the identifications

O
(
U1(ng)⊕ U ⊕ Λg

) ∼= O
(
U1(ng)⊕ (U ⊕ L′

g)(ng)
)

=O
(
U1 ⊕ U ⊕ L′

g

)
= O

(
U1 ⊕ U ⊕ Lg

)
.

(6.7)

It follows that the Fourier expansion of B(χV ) at U1 equals the Fourier expansion of Φg at
U1(ng). Recall that the latter is also identical to the denominator of the twist Gg of the
fake monster algebra by g (see Section 2.5). Therefore, the denominator of Gg is the same
as the denominator of Gg. The root lattice of Gg is always U ⊕Λg. From (6.7) we conclude
that the root lattice of Gg is U ⊕ L′

g, and moreover that the two BKM algebras Gg and Gg

are isomorphic.
(2) When [g] is in Table 7, Gg and Gg are not isomorphic because their root lattices are not

even isomorphic up to scaling. In addition, the Weyl vector of Gg lies in the root lattice,
but the Weyl vector of Gg does not lie in the root lattice (recall that C is half-integral and
the Weyl vector is of type (−C − 1, ∗,−C) in this case). For instance, when g has cycle
shape 212, the root lattices of Gg and Gg are respectively

U ⊕D′
12(1/2) and U ⊕D+

12(2).

In particular, we disagree with [62, Remark 3.11]: the denominator there is not a twisted
denominator function of the fake monster algebra. We conjecture that the denominator Φg

of Gg is given by the Fourier expansion of Ψg = B(χV ) at some other 0-dimensional cusp.

Remark 6.6. The Z-lattice generated by dρ and the λ = (n, ℓ,m) ∈ U ⊕ L′
g for which B(χV )

vanishes on λ⊥ is exactly the dual lattice U ⊕ L′
g. This follows from Remark 6.5 and a direct

calculation of zero divisors (see Lemmas 6.8, 6.9 and 6.10 below). Here, ρ is the Weyl vector of
B(χV ) and d = 1 or 2 if the corresponding [g] lies in Table 6 or Table 7, respectively.

Remark 6.7. Let [g] be a Co0-conjugacy class of level Ng and order ng. Let Mg be an even lattice

of signature (rk(Λg) + 2, 2) whose discriminant form is isomorphic to (R(V ĝ
Λg
),−q), as determined

by Lam [71]. Let Φg be the g-twisted denominator of the fake monster algebra as before, and
recall that Φg is a holomorphic Borcherds product of singular weight on U(Ng)⊕U ⊕Λg (see [113,
Theorem 6.5]). We have the following:

(1) If Ng = ng, then Mg
∼= U(Ng)⊕ U ⊕ Λg (see [71, Theorem 5.3]) and Φg is reflective on Mg

(see [113, Remark 6.14]).
(2) If Ng 6= ng, then Mg is not isomorphic to U(Ng) ⊕ U ⊕ Λg and Φg is not reflective on the

lattice U(Ng) ⊕ U ⊕ Λg. Motivated by Höhn’s construction and the discussions above, we

conjecture that the vector-valued characters of V ĝ
Λg

(divided by ηrk(Λ
g)) can be lifted to a

reflective Borcherds product of singular weight on Mg. Obviously, the theta lift defines a
holomorphic Borcherds product of singular weight on Mg. However, we have to compute
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the conformal weights to confirm that it is reflective. We further conjecture that the Fourier
expansion of this product at a certain 0-dimensional cusp recovers the g-twisted denominator
of the fake monster algebra. In other words, Φg defines a reflective Borcherds product on
Mg, i.e. Mg plays the role of the lattice M in [115, Theorem 1.4].

We can now complete the proof of Theorem 6.1. By (6.1), we can express χV as an N-linear
combination of characters of the affine VOA generated by V1 = g which have integral conformal
weight. Expressions of this type have been determined by Schellekens [98]. We will compute the
characters χV for V1 = B12,2, F4,6A2,2 and C4,10. In these cases, the index [Lg : Qg] is 1 or 2. To
determine the divisor of B(χV ), it suffices to compute the singular Fourier coefficients of χV , and
by Remark 2.6 it is enough to consider Fourier coefficients of the form

(6.8) f(n, ℓ)qnζℓ, n ≤ δ̂Lg
, ℓ ∈ Q′

g, 2n < (ℓ, ℓ).

Note that the above f(n, ℓ) are 0 or 1 because f(n, ℓ) ≥ 0 and B(χV ) has only simple zeros, hence
B(χV ) is reflective on 2U ⊕Lg as soon as we can show that for every nonzero Fourier coefficient of
form (6.8) there exists a positive integer t such that (ℓ, ℓ)− 2n = 2/t and tℓ ∈ Lg.

In the three lemmas below, we will express the Fourier expansion of χV in terms of Weyl orbits.
Suppose g = g1,k1 ⊕ g2,k2 , where g2,k2 may be zero, and let Wj be the Weyl group of gj. For a
dominant integral weight λj =

∑
i xiwi of gj, we define

Oλj ,nj
=

∑

ℓ∈Wj ·λj

e2πi〈ℓ,z〉, z ∈ Lg ⊗ C,

where nj = 〈λj , λj〉/kj . Recall (from Notation 2.3) that

Qg = Q∨
1 (k1)⊕Q∨

2 (k2), Q′
g = P1(1/k1)⊕ P2(1/k2)

and

Qg < Lg < L′
g < Q′

g.

When we view Oλj ,nj
as part of the Fourier series of χV , the vector ℓ ∈ Wj · λj ( Q′

g is identified
with ℓ/kj and its norm is (ℓ, ℓ) = kj〈ℓ/kj , ℓ/kj〉 = nj. Therefore, qn · Oλ1,n1 ⊗ Oλ2,n2 induces
reflective zeros if and only if there exists a positive integer t such that

n1 + n2 − 2n = 2/t and t(λ1/k1 + λ2/k2) ∈ Lg.

For simplicity, we set

Oλ1,λ2,n1+n2 = Oλ1,n1 ⊗Oλ2,n2 .

Lemma 6.8. When V1 = g is of type B12,2, the product B(χV ) is reflective on 2U ⊕D12(2).

Proof. χV can be expressed in terms of characters of the affine VOA generated by g (using the
notation of (2.6)) as

χV = χ
B12,2

0,0 + χ
B12,2

w1+w12,2
+ χ

B12,2

w10,3
+ χ

B12,2

w5,2
.

In this case, Qg = Lg = D12(2). Note that δL = 6 (see [62, Lemma 2.3]), so we only need to
calculate χV up to its q2-term. We first use SAGE to compute the Fourier coefficients of χB12,2 as
representations of the simple Lie algebra of type B12, and then we decompose those representations
into Weyl orbits as defined above. We find

χV = q−1 + (Ow2,1 +Ow1,
1
2
+ 12) +

∞∑

i=1

ciq
i,
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where

c1 =O2w2,4 +Ow1+w3,3 +Ow5,
5
2
+Ow1+w12,

5
2
+Ow1+w2,

5
2
+ 4Ow4,2

+ 12O2w1,2 + 12Ow3,
3
2
+ 12Ow12,

3
2
+ 44Ow2,1 + 90Ow1,

1
2
+ 300,

c2 =Ow10,5 +O2w1+w2,5 +Ow2+w4,5 +Ow9,
9
2
+O3w1,

9
2
+Ow2+w3,

9
2
+O2w1+w12,

9
2

+Ow3+w12,
9
2
+Ow1+w6,

9
2
+ 4Ow8,4 + 12O2w2,4 + 4Ow1+w5,4 + 12Ow7,

7
2

+ 12Ow2+w12,
7
2
+ 12Ow1+w4,

7
2
+ 32Ow6,3 + 44Ow1+w3,3 + 90Ow5,

5
2

+ 90Ow1+w12,
5
2
+ 90Ow1+w2,

5
2
+ 224Ow4,2 + 288O2w1 ,2

+ 520Ow12 ,
3
2
+ 520Ow3,

3
2
+ 1242Ow2,1 + 2535Ow1 ,

1
2
+ 5792.

The proof follows by verifying that every singular Weyl orbit is reflective. As an example, consider
the orbit q2 ·Ow9,9/2. We write w9 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0) as coordinates in the simple roots

as in [13]. Then 9/2− 2× 2 = 1/2 = 2/4 and 4 · (w9/2) = 2w9 ∈ D12(2), so q2 ·Ow9,9/2 determines
reflective divisors. �

Lemma 6.9. When V1 = g is of type A2,2F4,6, the product B(χV ) is reflective on 2U⊕D4(6)⊕A2(2).

Proof. We express χV as the linear combination
(
χ
F4,10

0000,0 + χ
F4,10

0004,2 + χ
F4,10

0030,3 + χ
F4,10

1100,2

)
⊗ χ

A2,2

00,0

+
(
χ
F4,10

0101, 26
15

+ χ
F4,10

1012, 41
15

)
⊗
(
χ
A2,2

10, 4
15

+ χ
A2,2

01, 4
15

)

+
(
χ
F4,10

0003, 7
5

+ χ
F4,10

0006, 17
5

+ χ
F4,10

0021, 12
5

+ χ
F4,10

2010, 12
5

)
⊗ χ

A2,2

11, 3
5

+
(
χ
F4,10

0102, 7
3

+ χ
F4,10

2000, 4
3

)
⊗
(
χ
A2,2

02, 2
3

+ χ
A2,2

20, 2
3

)
.

Note that

Qg = Lg = A2(2)⊕D4(6).

Since δL = 22/3, we only need to calculate χV up to its q3-term. We write

χV = q−1 +
(
O11,0000,1 +O00,1000,1 +O10,0000, 1

3
+O01,0000, 1

3
+O00,0001, 1

2
+ 6
)
+

∞∑

i=1

ciq
i

and list the singular Weyl orbits in ci for i ≤ 3. There are 17 orbits with norm > 2 in c1:

O22,0000,4, O03,0000,3, O30,0000,3, O00,0004, 8
3
, O02,2000, 8

3
, O20,2000, 8

3
,

O11,0003, 5
2
, O00,1100, 7

3
, O02,0100, 7

3
, O20,0100, 7

3
, O00,0012, 13

6
, O00,2001, 13

6
,

O01,0101, 13
6
, O02,1001, 13

6
, O10,0101, 13

6
, O11,0011, 13

6
, O20,1001, 13

6
.

There are 26 orbits with norm > 4 in c2:

O00,0030, 9
2
, O03,0003, 9

2
, O30,0003, 9

2
, O00,1004, 13

3
, O00,2100, 13

3
, O02,0102, 13

3
, O02,3000, 13

3
,

O20,0102, 13
3
, O20,3000, 13

3
, O22,1000, 13

3
, O00,0005, 25

6
, O00,0111, 25

6
, O00,3001, 25

6
, O01,1012, 25

6
,

O02,0110, 25
6
, O02,1003, 25

6
, O03,0011, 25

6
, O10,1012, 25

6
, O11,0021, 25

6
, O11,2010, 25

6
, O12,0101, 25

6
,

O20,0110, 25
6
, O20,1003, 25

6
, O21,0101, 25

6
, O22,0001, 25

6
, O30,0011, 25

6
.
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There are 41 orbits with norm > 6 in c3:

O11,0006,7, O14,0000,7, O41,0000,7, O00,2004, 20
3
, O02,4000, 20

3
, O04,2000, 20

3
, O20,4000, 20

3
,

O22,0004, 20
3
, O40,2000, 20

3
, O00,0104, 19

3
, O00,1200, 19

3
, O02,1102, 19

3
, O04,0100, 19

3
, O20,1102, 19

3
,

O22,1100, 19
3
, O40,0100, 19

3
, O00,0031, 37

6
, O00,1005, 37

6
, O00,2012, 37

6
, O01,0112, 37

6
, O01,2101, 37

6
,

O02,1110, 37
6
, O02,2003, 37

6
, O03,0021, 37

6
, O03,2010, 37

6
, O04,1001, 37

6
, O10,0112, 37

6
, O10,2101, 37

6
,

O11,0014, 37
6
, O11,1021, 37

6
, O12,1012, 37

6
, O13,0101, 37

6
, O20,1110, 37

6
, O20,2003, 37

6
, O21,1012, 37

6
,

O22,0012, 37
6
, O22,2001, 37

6
, O30,0021, 37

6
, O30,2010, 37

6
, O31,0101, 37

6
, O40,1001, 37

6
.

We verify that each of these orbits is reflective by direct computation. �

Lemma 6.10. When V1 = g is of type C4,10, the product B(χV ) is reflective on 2U ⊕D4(10).

Proof. We have the expression

χV =
∑

1

(
χ
C4,10

0000,0 + χ
C4,10

0024,4 + χ
C4,10

0040,2 + χ
C4,10

0044,6 + χ
C4,10

00,10,0,8 + χ
C4,10

0260,5

+ χ
C4,10

0321,3 + χ
C4,10

0323,5 + χ
C4,10

0500,2 + χ
C4,10

0800,4 + χ
C4,10

1051,4 + χ
C4,10

1430,4

+ χ
C4,10

1431,5 + χ
C4,10

2242,6 + χ
C4,10

3031,3 + χ
C4,10

4140,4

)
+ 2χ

C4,10

2222,4,

where the glue vector 1 exchanges the affine Dynkin labels ŵ0, ŵ1, ŵ2, ŵ3, ŵ4 and ŵ4, ŵ3, ŵ2, ŵ1, ŵ0

(such that e.g. χ
C4,10

0000,0 becomes χ
C4,10

000,10,10 and χ
C4,10

0024,4 becomes χ
C4,10

2004,3; see (2.6) and the explanations

there). In this case, we have

Qg = Z4(20) and Lg = D′
4(20)

∼= D4(10).

Since δL = 10, we only need to calculate χV up to its q4-term. We write

χV = q−1 +
(
O2000, 1

5
+O0100, 1

10
+ 4
)
+

∞∑

i=1

ciq
i

and find that c1 equals

O0500, 5
2
+O0040, 12

5
+O4002, 12

5
+O4020, 11

5
+O0121, 21

10
+O1310, 21

10
+O2102, 21

10

+O4101, 21
10

+ 2O0202,2 + 2O4200,2 + 2O1012, 19
10

+ 2O2120, 19
10

+ 2O5010, 19
10

+ 2O0003, 9
5

+4O0220, 9
5
+ 2O2201, 9

5
+ 4O6000, 9

5
+ 5O0301, 17

10
+ 5O1030, 17

10
+ 5O2300, 17

10
+ 5O3011, 17

10

+10O0400, 8
5
+ 10O1111, 3

2
+ 10O3110, 3

2
+ 12O0021, 7

5
+ 17O2002, 7

5
+ 12O4001, 7

5

+20O0102, 13
10

+ 20O1210, 13
10

+ 20O4100, 13
10

+ 32O2020, 6
5
+ 38O0120, 11

10
+ 38O2101, 11

10

+46O02011 + 56O22001 + 69O0300, 9
10

+ 69O1011, 9
10

+ 69O3010, 9
10

+ 101O0002, 4
5

+101O4000, 4
5
+ 120O1110, 7

10
+ 168O0020, 3

5
+ 148O2001, 3

5
+ 205O0101, 1

2
+ 205O2100, 1

2

+280O0200, 2
5
+ 340O1010, 3

10
+ 418O0001, 1

5
+ 456O2000, 1

5
+ 558O0100, 1

10
+ 748.

There are 10 orbits with norm > 4 in c2:

O10,000,5, O2004, 21
5
, O4220, 21

5
, O0104, 41

10
, O0321, 41

10
,

O2302, 41
10
, O3031, 41

10
, O4301, 41

10
, O5030, 41

10
, O8100, 41

10
.
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There are 11 orbits with norm > 6 in c3:

O0800, 32
5
, O0024, 31

5
, O6202, 31

5
, O0105, 61

10
, O10,100, 61

10
, O1051, 61

10
,

O1430, 61
10
, O3411, 61

10
, O4140, 61

10
, O5013, 61

10
, O7012, 61

10
.

There are 16 orbits with norm > 8 in c4:

O0260, 41
5
, O2800, 41

5
, O8220, 41

5
, O0323, 81

10
, O0900, 81

10
, O1070, 81

10
, O1431, 81

10
, O2304, 81

10
,

O3033, 81
10
, O3412, 81

10
, O4141, 81

10
, O5411, 81

10
, O6140, 81

10
, O7013, 81

10
, O8301, 81

10
, O9030, 81

10
.

To finish the proof, we verify that the required condition on the orders of vectors in the singular
Weyl orbits is satisfied. We will work out q1 · O4002,12/5 as an example. The associated dominant
weight is

λ = 4w1 + 2w4 = (6, 2, 2, 2)

in coordinates as in [13]. The corresponding vector in L′
g = D4(1/20) is λ/20, which has norm

20× (12/100) = 12/5, and we have 12/5− 2× 1 = 2/5. The order of λ/20 modulo Qg = Z4(20) is
10, but its order modulo Lg = D′

4(20) is 5. Hence the induced zero divisor is reflective on 2U ⊕ Lg

although it is not reflective on 2U ⊕Qg. �

7. The symmetric case: holomorphic SCFTs of central charge 12

In this section, we construct hyperbolizations of affine Kac–Moody algebras ĝ for the eight g

of symmetric type with C = 1 in Theorem 5.1. These semi-simple g first appeared in [24], where
Dittmann and the second named author proved that the additive lifts of the denominators of these ĝ
are reflective Borcherds products of singular weight on the maximal even sublattices of the (integral)
lattices Pg. Shortly after [24] appeared on arXiv, Harrison, Paquette, Persson and Volpato [57]
described these g as the N = 1 structures of holomorphic SCFT F24 of central charge 12, and gave a
natural construction of a certain BKM superalgebra (denoted Gg) as the BRST cohomology related
to F24 with a fixed N = 1 structure under some technical assumptions. They also determined the
super-denominators of these BKM superalgebras.

We will prove that these super-denominators are actually the reflective Borcherds products of
singular weight constructed in [24]. We will also describe the connection between these BKM super-
algebras and the twists of the fake monster algebra, which resolves some open questions proposed
in [57]. Additionally, we express the inputs of these Borcherds products as Z-linear combinations
of the full characters of the affine VOAs generated by g, and construct some exceptional modular
invariants of ĝ as an application.

7.1. Holomorphic SCFTs of central charge 12 composed of 24 chiral fermions. Holo-
morphic vertex operator superalgebras (SVOA) of central charge 12 were classified by Creutzig,
Duncan and Riedler [20], and they fall into three types: the Conway SCFT V f♮ with trivial weight-
1/2 subspace, the theory V fE8 of 8 chiral bosons and 8 chiral fermions, and the theory F24 of 24
chiral fermions. The hyperbolizations of affine Kac–Moody algebras are related to F24. We review
the theory of F24 following [57].

F24 is constructed from the lattice VOA associated with the D12 lattice

D12 =
{
(x1, x2, ..., x12) ∈ Z12 : x1 + x2 + ...+ x12 ∈ 2Z

}
.

The lattice VOA VD12 has 4 irreducible modules labeled by the 4 cosets of D′
12/D12,

0, v = (1, 0, .., 0), s =
(1
2
, ...,

1

2
,
1

2

)
and c =

(1
2
, ...,

1

2
,−1

2

)
.
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The four modules V0, Vv, Vs and Vc have conformal weights 0, 1/2, 3/2 and 3/2, respectively. Their
full characters can be expressed as the quotients of Jacobi theta functions by η12:

χ∗(τ, z) =
ΘD12,∗(τ, z)

η(τ)12
, ∗ = 0, v, s, c, z ∈ D12 ⊗ C.

The sum V0 ⊕ Vv is the Z2-graded superspace of F24 (i.e. the NS sector in 2d SCFTs). Let (−1)F

be the canonical involution, such that

(−1)F |V0 = I and (−1)F |Vv = −I.

The SVOA F24 has a unique irreducible (−1)F -stable canonically twisted module which is given
by Vs ⊕ Vc (i.e. the R sector in 2d SCFTs). The weight-1/2 subspace W1/2 of F24 has a natural
semi-simple Lie algebra structure, which in physics is called the N = 1 superconformal structure.
We denote this Lie algebra by g and its Cartan subalgebra by h. For z ∈ h, the full characters of
F24 are defined by

χNS

(
τ, z
)
= TrNS

(
qL0−

1
2 e2πiz

)
, χ

ÑS

(
τ, z
)
= TrNS

(
qL0−

1
2 e2πiz(−1)F

)
,

χR(τ, z) = TrR
(
qL0−

1
2 e2πiz

)
, χ

R̃
(τ, z) = TrR

(
qL0−

1
2 e2πiz(−1)F

)
.

The restriction of the unique normalized invariant bilinear form of F24 to a simple ideal gj of g
satisfies (−,−) = kj〈−,−〉, where 〈−,−〉 is the standard bilinear form of gj as before (see [57]).
We indicate these integers by writing

g = g1,k1 ⊕ · · · ⊕ gs,ks.

The semi-simple Lie algebra g is of dimension 24. There are exactly eight distinct possibilities for
g and they are characterized by the identity (see Notation 2.3)

1 =
dim g

24
=

h∨j
kj

, 1 ≤ j ≤ s.

The affine VOA Vg generated by W1/2 = g is a full sub-VOA of F24. Let ∆+
g denote the set of

positive roots of g. We have the following embedding of integral lattices

ιg : Pg :=

s⊕

j=1

P∨
j (h

∨
j ) →֒ Z12, z 7→ ιg(z) = {〈z, α〉}α∈∆+

g
,

which induces an embedding of the maximal even sublattice Lg of Pg into D12. From the conformal
embedding Vg →֒ F24 we deduce that the full characters of F24 with W1/2 = g can be expressed as

χNS(τ, z) = χ0(τ, ιg(z)) + χv(τ, ιg(z)),

χ
ÑS

(τ, z) = χ0(τ, ιg(z))− χv(τ, ιg(z)),

χR(τ, z) = χs(τ, ιg(z)) + χc(τ, ιg(z)),

χR̃(τ, z) = χs(τ, ιg(z))− χc(τ, ιg(z)) ≡ 0,

where the last equality follows from the fact that ι(Lg) →֒ D10. It is easy to check that, up to
scaling,

φg(τ, z) =
1

2

(
χNS(τ, z)− χ

ÑS
(τ, z)− χR(τ, z)

)

= χv(τ, ιg(z))− χc(τ, ιg(z))

= rk(g) +
∑

α∈∆+
g

(
e2πi〈α,z〉 + e−2πi〈α,z〉

)
+O(q)

(7.1)
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is the unique non-trivial C-linear combination of the full characters of F24 that is modular under
SL2(Z). In particular, φg(τ, z) is a weak Jacobi form of weight 0 and lattice index Lg (with trivial
character on SL2(Z)). It was proved in [57] under some assumptions that Fourier coefficients of φg

determine the roots and root multiplicities of the BKM superalgebra Gg, realized naturally as the
BRST cohomology related to F24 with W1/2 = g. More precisely, the root (n, ℓ,m) ∈ U ⊕ L′

g has
multiplicity ag(nm, ℓ) as an even root and has multiplicity bg(nm, ℓ) as an odd root, where

1

2

(
χNS(τ, z)− χ

ÑS
(τ, z)

)
= χv(τ, ιg(z)) =

∑

n,ℓ

ag(n, ℓ)q
nζℓ,

1

2
χR(τ, z) = χc(τ, ιg(z)) =

∑

n,ℓ

bg(n, ℓ)q
nζℓ.

7.2. Construction of hyperbolizations. In this subsection we prove the following theorem.

Theorem 7.1. Let g be one of the N = 1 structures of F24. Then the theta lift B(φg) is a reflective
Borcherds product of singular weight on 2U ⊕ Lg. Moreover, the leading Fourier–Jacobi coefficient
of B(φg) coincides with the denominator of the affine Kac–Moody algebra ĝ.

Proof. We will use (7.1) and Lemma 7.4 below to conclude that φg has integral Fourier coefficients
and non-negative singular Fourier coefficients. Therefore, the theta lift of φg is a holomorphic
Borcherds product of singular weight on 2U ⊕ Lg. We see from the q0-term of φg that the leading
Fourier–Jacobi coefficient is given by the denominator ϑg of ĝ. It remains to prove that B(φg) is

reflective. This can be verified by calculating the Fourier expansions of φg up to the qδ̂L-term for
L = Lg, where δL is defined in Remark 2.6. As we mentioned at the beginning of this section, this
also follows from Lemma 7.3 and [24, Theorems 5.1 and 6.1]. �

Lemma 7.2. Let z = (z1, z2, ..., z12) ∈ C12. We set

φ∗(τ, z) = η(τ)−12
12∏

j=1

ϑ∗(τ, zj), ∗ = 00, 01, 10, 11,

where ϑ11(τ, u) := ϑ(τ, u) and

ϑ00(τ, u) =

∞∏

n=1

(1− qn)(1 + qn−1/2ζ)(1 + qn−1/2ζ−1),

ϑ01(τ, u) =

∞∏

n=1

(1− qn)(1 − qn−1/2ζ)(1− qn−1/2ζ−1),

ϑ10(τ, u) = q1/8(ζ1/2 + ζ−1/2)
∞∏

n=1

(1− qn)(1 + qnζ)(1 + qnζ−1),

here u ∈ C and ζ = e2πiu. Then the following identities hold:

χ0 = (φ00 + φ01)/2, χv = (φ00 − φ01)/2, χs = (φ10 + φ11)/2, χc = (φ10 − φ11)/2,

φ11(2τ, 2z)

φ11(τ, z)
= φ10(τ, z),

φ11(τ/2, z)

φ11(τ, z)
= φ01(τ, z),

φ11(τ/2 + 1/2, z)

φ11(τ, z)
= −φ00(τ, z).

In particular, we have (see Proposition 2.2)

φD12(τ, z) :=
1

2

(
φ00(τ, z) − φ01(τ, z) − φ10(τ, z)

)
= −φ11|0T (1)

− (2)(τ, z)

φ11(τ, z)
.
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Proof. The formulas for χ∗ can be established by considering (χ∗) as a vector-valued Jacobi form
for the dual Weil representation ρD12

. The other formulas follow from the definition. �

By restricting the above identities along the embedding ιg : Lg →֒ D12, we obtain the following
lemma:

Lemma 7.3. The image ιg(Lg) is a sublattice of D12−rk(g)/2 ( D12. By considering the quasi-
pullback we can express the denominator of ĝ as

ϑg(τ, z) =
1

(2πi)rk(g)/2

(( rk(g)/2∏

j=1

∂z12−rk(g)/2+j

)
φ11(τ, z)

)
(τ, ιg(z)).

The full characters of F24 can be expressed as

χNS(τ, z) = φ00(τ, ιg(z)) = −ϑg(τ/2 + 1/2, z)

ϑg(τ, z)
,

χ
ÑS

(τ, z) = φ01(τ, ιg(z)) =
ϑg(τ/2, z)

ϑg(τ, z)
,

χR(τ, z) = φ10(τ, ιg(z)) = 2rk(g)/2
ϑg(2τ, 2z)

ϑg(τ, z)
.

The input form has the representation

φg(τ, z) = φD12(τ, ιg(z)) = −
ϑg|rk(g)/2T (1)

− (2)(τ, z)

ϑg(τ, z)
.

We can now prove directly that the BKM superalgebra Gg has no odd real roots.

Lemma 7.4. The function χc(τ, ιg(z)) = O(q) is holomorphic at infinity, that is, its nonzero

Fourier coefficients f(n, ℓ)qnζℓ satisfy that 2n ≥ (ℓ, ℓ).

Proof. This can be read off of the Fourier expansion of χc(τ, ιg(z)) up to their qδ̂L-terms, since the
analogue of Remark 2.6 holds. The numbers δL for L = Lg are listed in Table 8. This claim can
also be proved by a generalization of [54, Lemma 6.3]: if φ(τ, z) is a holomorphic Jacobi form of
lattice index L which can be constructed as a theta block then φ(2τ, 2z)/φ(τ, z) is holomorphic at
infinity. The claim then follows from Lemma 7.3. �

Let us now explain the connection between B(φg) and the twisted denominators of the fake
monster algebra. This is similar to Höhn’s observation in the anti-symmetric case.

Theorem 7.5. Let g be one of the N = 1 structures of F24. Then there exists a unique Co0-
conjugacy class [g] of the same order and level ng (see Table 8) satisfying the following properties:

(1) The lattice Lg is characterized by the isomorphism

U ⊕ Lg
∼= U(ng)⊕ (Λg)′(ng).

(2) Recall from Section 2.5 that the g-twisted denominator of the fake monster algebra is the
Fourier expansion of a reflective Borcherds product Φg of singular weight on U1(ng)⊕U⊕Λg

at the 0-dimensional cusp related to U1, and that the input form that lifts to Φg is given by

the vector-valued characters of the orbifold VOA V ĝ
Λg
. The Fourier expansion of B(φg) at

U1 equals the Fourier expansion of Φg at U1(ng) after making the identifications

O
(
U1(ng)⊕ U ⊕ Λg

)
= O

(
U1(1/ng)⊕ U ⊕ (Λg)′

)

= O
(
U1 ⊕ U(ng)⊕ (Λg)′(ng)

) ∼= O
(
U1 ⊕ U ⊕ Lg

)
.
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(3) The BKM superalgebra Gg, i.e. the BRST cohomology related to F24 with N = 1 structure
g, is isomorphic to the BKM superalgebra Gg obtained as the twist of the fake monster
algebra by g.

(4) The Z-lattice generated by the Weyl vector ρ and the vectors λ = (n, ℓ,m) ∈ U ⊕ L′
g for

which B(φg) vanishes on λ⊥, i.e. the root lattice of Gg, is exactly U ⊕ L′
g. Recall that the

root lattice of Gg is U ⊕ Λg. The two lattices are related by

(U ⊕ L′
g)(ng) ∼= U ⊕ Λg.

Proof. This follows from Theorem 7.1 and its proof and from [24, Theorem 6.1, Proposition 6.3]. �

Remark 7.6. For each g, the lattice Lg is the unique class in the corresponding genus. The
Borcherds product B(φg) = Φg is modular under the full orthogonal group O+(2U ⊕ Lg).

Remark 7.7. In 2000 Scheithauer [92] found a natural realization of the fake monster superalgebra
(introduced by Borcherds [6]) as the BRST cohomology related to the holomorphic SCFT V fE8 .
This BKM superalgbera has no real roots and its denominator (not its super-denominator!) is
given by the Fourier expansion of B(φg) = Φg at U1(2) for g = A8

1,2 and g with cycle shape 1−8216,
where we view B(φg) as a modular form on U1(2) ⊕ U ⊕ E8

∼= U1 ⊕ U ⊕ D8. By [113, Theorem
5.9] we can express the input as a pair of Jacobi forms (φ1, φ2), where φj is a weakly holomorphic
Jacobi form of weight 0 and lattice index E8 with trivial character on Γ0(2/j) for j = 1, 2. Let
z ∈ E8 ⊗ C. Note that χ

R̃
= 0. The other full characters of V fE8 have the expressions

χNS(τ, z) =
ΘE8,0(τ, z)

η(τ)8

4∏

j=1

ϑ00(τ, 0)

η(τ)
,

χ
ÑS

(τ, z) =
ΘE8,0(τ, z)

η(τ)8

4∏

j=1

ϑ01(τ, 0)

η(τ)
,

χR(τ, z) =
ΘE8,0(τ, z)

η(τ)8

4∏

j=1

ϑ10(τ, 0)

η(τ)
.

The input forms can be expressed as linear combinations of the characters:

φ1(τ, z) =
(
χNS − χ

ÑS

)
(τ, z) =

∑

n∈N,ℓ∈E8

c1(n, ℓ)q
nζℓ,

φ2(τ, z) =
(
χNS − χ

ÑS
− χR

)
(τ, z) = 0,

The denominator of the fake monster superalgebra can be written in the form

∏

0<α=(n,ℓ,m)∈U⊕E8

(
1− e−α

1 + e−α

)c1(nm,ℓ)/2

.

Remark 7.8. The Conway SCFT V f♮ was constructed by Duncan [31] in 2007. Harrison, Pa-
quette and Volpato [56] proved in 2019 that the BRST cohomology related to V f♮ defines a BKM
superalgebra with no real roots. Note that the denominator of this superalgebra is the Fourier
expansion of a Borcherds product of weight 0 on U1(2) ⊕ U at the 0-dimensional cusp determined
by U1(2), whose input can be expressed as a pair (φ1, φ2) with

φ1(τ) = (χNS − χ
ÑS

)(τ),

φ2(τ) = (χNS − χ
ÑS

− χR + χR̃)(τ) = −48,
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and where the characters of V f♮ are given by

χNS(τ) =
η(τ)48

η(τ/2)24η(2τ)24
− 24, χ

ÑS
(τ) =

η(τ/2)24

η(τ)24
+ 24,

χR(τ) = 212
η(2τ)24

η(τ)24
+ 24, χ

R̃
(τ) = −24.

Let [g] be the Co0-conjugacy class of cycle shape 1−24224. The g-twisted denominator of the fake
monster algebra is identical to the Fourier expansion of the above Borcherds product at the other
1-dimensional cusp determined by U through the identification

O(U ⊕ U1(2)) = O(U ⊕ U1(1/2)) = O(U(2) ⊕ U1).

Inspired by the two remarks above, we hope to systematically study the connection between
vertex algebras and reflective Borcherds products of singular weight on lattices of type U(N)⊕U⊕L
in the near future.

7.3. Exceptional modular invariants. The 2D rational CFT consists of both holomorphic and
anti-holomorphic parts, which together can yield SL2(Z) modular invariants. The classification of
modular invariants of affine Kac–Moody algebras was an interesting and vast topic particularly in
the 1980s and 90s. We will reveal some new connections to the theory of Borcherds products here
and in the next section.

Let us first recall some basics about modular invariants. Clearly, the CFT torus partition function∑ |χi|2, i.e. the summation of the norm-squares of the characters of all primaries, is a diagonal
modular invariant. However there can exist other, non-diagonal modular invariants. In general, a
SL2(Z) modular invariant of a 2D rational CFT can be written as a sesquilinear combination of
characters

Z =
∑

Mabχaχb, Mab ∈ N.

Two major approaches to constructing modular invariants are the conformal embedding and simple
currents extension, see e.g. the textbook [22, Chapter 17]. Modular invariants that cannot be
obtained from simple currents are often called exceptional. For example, A1,k is known to have
three exceptional modular invariants at levels k = 10, 16, 28, respectively called E6, E7, E8 modu-
lar invariants. Exceptional modular invariants are rare and can be constructed by either special
conformal embeddings or via nontrivial automorphisms of fusion algebras. The full classification of
modular invariants for simple affine Lie algebras of all levels has been achieved for A1 [17, 67] and
A2 [36], see some recent progress in [38].

We can construct many exceptional modular invariants by means of the conformal embedding

Vg →֒ F24

and the automorphism χv ↔ χc of the D12,1 fusion algebra. First we have the diagonal modular
invariant of D12, i.e.

ZD12 = |χ0|2 + |χv|2 + |χs|2 + |χc|2.
The diagonal modular invariant of F24 with W1/2 = g is given by

ZF24 =
1

2

(
|χNS|2 + |χ

ÑS
|2 + |χR|2 + |χR̃|

2
)

= |χ0(τ, ιg(z))|2 + |χv(τ, ιg(z))|2 + |χs(τ, ιg(z))|2 + |χc(τ, ιg(z))|2.
(7.2)

By letting the automorphism χv ↔ χc act on the holomorphic part, we obtain an exceptional
modular invariant of Vg,

(7.3) Zexc
F24

= |χ0(τ, ιg(z))|2 + |χs(τ, ιg(z))|2 + χv(τ, ιg(z))χc(τ, ιg(z)) + χc(τ, ιg(z))χv(τ, ιg(z)).
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The following relation is immediate:

(7.4) ZF24 − Zexc
F24

= |φg|2.

In order to write out the exceptional modular invariants (7.3) explicitly, it is enough to express
the full characters of F24 as Z-linear combinations of full characters of the affine VOA Vg. We have
calculated these expressions by cases and have found that the full character χR is always given as
follows (see (2.6) for the notation):

(7.5) χR = 2rk(g)/2
s⊗

j=1

χ
gj,kj
ρj ,3/2

,

where ρj is the Weyl vector of gj . Note that if we write φg as a Z-linear combination of characters
of Vg then there is a unique negative term, and it is given by

φg,− = s

s⊗

j=1

χ
gj,kj
ρj ,3/2

.

We will see that

χR 6= 2φg,−

if and only if g is of type A4,5 or A3
2,3, in which cases there are certain imaginary roots that are

simultaneously even and odd. Note that the q-order of χR is always 1.
The expressions of χNS and χ

ÑS
for the eight N = 1 structures are given below.

Case A8
1,2: The affine VOA of type A1,2 has nonzero conformal weights 3

16 and 1
2 associated with

the weights w1 and 2w1, respectively. The (formal) fermionization of A1,2 is well-known to be

χ
A1,2

NS = χ
A1,2

0,0 + χ
A1,2

2, 1
2

, χ
A1,2

ÑS
= χ

A1,2

0,0 − χ
A1,2

2, 1
2

, χ
A1,2

R =
√
2χ

A1,2

1, 3
16

,

This theory describes three 2D chiral fermions. For the holomorphic SVOA of type A8
1,2, the

fermionic characters are naturally given by

χNS =
⊗

χ
A1,2

NS , χ
ÑS

=
⊗

χ
A1,2

ÑS
, χR =

⊗
χ
A1,2

R .

where the tensor products take over all eight copies of A1,2. We remark that (7.3) for A8
1,2 gives

exactly the exceptional modular invariant found in [37, Equation (5.12b)].

Case A3
2,3 : We use the well-known conformal embedding A2,3 ⊂ D4,1. Denote

φ0 = χ
A2,3

00,0 + χ
A2,3

03,1 + χ
A2,3

30,1 , φ1 = χ
A2,3

11, 1
2

.

As an SVOA, the fermionization of A2,3 has the fermionic characters

χ
A2,3

NS = φ0 + φ1, χ
A2,3

ÑS
= φ0 − φ1, χ

A2,3

R = 2φ1.

Therefore, for the holomorphic SVOA A3
2,3, we have the fermionic characters

χNS =
⊗

χ
A2,3

NS , χ
ÑS

=
⊗

χ
A2,3

ÑS
, χR =

⊗
χ
A2,3

R .

where the tensor products run over the three copies of A2,3.
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Case A4,5: Several modular invariants of A4,5 were found in [99, Appendix B]. The one related
to the conformal embedding A4,5 ⊂ D12,1 is actually the fermionic modular invariant. Let us denote

φ0 =
∑

1

χ
A4,5

0000,0, φ1 =
∑

1

χ
A4,5

0102,1, φ2 =
∑

1

χ
A4,5

1001, 1
2

,

φ3 =
∑

1

χ
A4,5

0021, 6
5

, φ4 =
∑

1

χ
A4,5

0110, 4
5

, φ5 = χ
A4,5

1111, 3
2

.

Here the glue vector 1 describes Z5 permutation on the affine Dynkin labels, i.e., ŵi → ŵi−1 for
1 ≤ i ≤ 4 and ŵ0 → ŵ4. For the holomorphic SVOA, we find that the fermionic characters can be
expressed as

χNS = φ0 + φ1 + φ2 + φ5, χ
ÑS

= φ0 + φ1 − φ2 − φ5, χR = 4φ5.

The modular invariant (7.2) is exactly the (B.6) modular invariant in [99]. The exceptional modular
invariant (7.3) coincides with the (B.5) modular invariant in [99]. Moreover, the summation

ZF24 + |φg|2 = |φ0 + φ1|2 + 2|φ2|2 + 10|φ5|2

gives the (B.3) modular invariant in [99] (compare (7.4)). Let us comment on the extra modular
invariants. The simple current extended modular invariant was given in [99, Equation (B.2)] as

Z(B.2) =

4∑

i=0

|φi|2 + 5|φ5|2.

In addition, a different exceptional modular invariant was given in [99, Equation (B.4)] as

Z(B.4) = |φ0|2 + |φ1|2 + |φ3|2 + |φ4|2 + 4|φ5|2 + (φ2φ̄5 + c.c.).

These two modular invariants are related by

Z(B.2) − Z(B.4) = |φg|2.
(Compare (7.4).)

Case A3,4A
3
1,2: In this case we use the conformal embedding A3,4 ⊂ B7,1. We find that the

fermionic characters can be expressed as

χNS =
(∑

1

(
χ
A3,4

000,∗ + χ
A3,4

101,∗

))
⊗
⊗(

χ
A1,2

0,0 + χ
A1,2

2, 1
2

)
,

χ
ÑS

=
( ∑

1,even

(
χ
A3,4

000,∗ + χ
A3,4

101,∗

)
−
∑

1,odd

(
χ
A3,4

000,∗ + χ
A3,4

101,∗

))
⊗
⊗(

χ
A1,2

0,0 − χ
A1,2

2, 1
2

)
.

The tensor products run over the 3 copies of A1,2. The glue vector 1 describes the Z4 permutation
on the affine Dynkin labels, i.e., ŵi → ŵi−1 and ŵ0 → ŵ3. The subscript even means the summation
is taken over all primaries generated by the simple current 1 with integral conformal weights, while
odd means all those generated by the simple current 1 with half-integral conformal weights.

Case B2,3G2,4: Consider the decomposition D5,1 ×D7,1 ⊂ D12,1 and the conformal embeddings
B2,3 ⊂ D5,1 and G2,4 ⊂ D7,1. We find the following formulas for the fermionic characters:

χNS =
(∑

even

χB2,3 +
∑

odd

χB2,3

)
⊗
(∑

even

χG2,4 +
∑

odd

χG2,4

)
,

χ
ÑS

=
(∑

even

χB2,3 −
∑

odd

χB2,3

)
⊗
(∑

even

χG2,4 −
∑

odd

χG2,4

)
.

Here even means the summation is taken over all primaries with integral conformal weights, while
odd means all those with half-integral conformal weights. For both B2,3 and G2,4, the even part
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contains two primaries with conformal weights 0 and 1, while the odd part contains two primaries
with conformal weights 1/2 and 3/2.

Case B2,3A2,3A
2
1,2: We use the conformal embeddings from the previous cases and find

χNS =
(∑

even

χB2,3 +
∑

odd

χB2,3

)
⊗
(
χ
A2,3

00,0 + χ
A2,3

03,1 + χ
A2,3

30,1 + χ
A2,3

11, 1
2

)
⊗
⊗(

χ
A1,2

0,0 + χ
A1,2

2, 1
2

)
,

χ
ÑS

=
(∑

even

χB2,3 −
∑

odd

χB2,3

)
⊗
(
χ
A2,3

00,0 + χ
A2,3

03,1 + χ
A2,3

30,1 − χ
A2,3

11, 1
2

)
⊗
⊗(

χ
A1,2

0,0 − χ
A1,2

2, 1
2

)
.

Here even and odd are defined as in the case of B2,3G2,4.

Case B3,5A1,2: We use the conformal embedding B3,5 ⊂ B10,1 and find

χNS =
(∑

even

χB3,5 +
∑

odd

χB3,5

)
⊗
(
χ
A1,2

0,0 + χ
A1,2

2, 1
2

)
,

χ
ÑS

=
(∑

even

χB3,5 −
∑

odd

χB3,5

)
⊗
(
χ
A1,2

0,0 − χ
A1,2

2, 1
2

)
.

Here the even part of B3,5 contains four primaries with conformal weights 0, 1, 2, 2, while the odd
part contains four primaries with conformal weights 1/2, 3/2, 3/2, 5/2.

Case C3,4A1,2: This case is very similar to B3,5A1,2. We find

χNS =
(∑

even

χC3,4 +
∑

odd

χC3,4

)
⊗
(
χ
A1,2

0,0 + χ
A1,2

2, 1
2

)
,

χ
ÑS

=
(∑

even

χC3,4 −
∑

odd

χC3,4

)
⊗
(
χ
A1,2

0,0 − χ
A1,2

2, 1
2

)
.

Here the even part of C3,4 contains four primaries with conformal weights 0, 1, 2, 3, while the odd
part contains four primaries with conformal weights 1/2, 3/2, 3/2, 5/2.

8. The symmetric case: four exotic CFTs

In this section, we construct hyperbolizations of affine Kac–Moody algebras ĝ for the remaining
4 semi-simple Lie algebras g of symmetric type with C < 1 in Theorem 5.1. The data for these 4
cases is given in Table 2. Note that in these cases the lattices Pg (see Notation 2.3) are even.

g A1,16 A2
1,8 A4

1,4 A2,9

Pg A1(4) 2A1(2) 4A1 A2(3)

C 1
8

1
4

1
2

1
3

cg
8
3

24
5 8 6

Table 2. The 4 exotic cases related to exceptional modular invariants.

The 4 exceptional g correspond to 4 exotic 2D CFTs that already made appearances in the physics
literature around three decades ago. The common feature of these 4 exotic 2D CFTs is that they
possess certain exceptional modular invariants that come from the nontrivial automorphisms of
the fusion algebra of the simple current modular invariants. This accidental phenomenon was first
found by Moore and Seiberg for A1,16 and A2,9 [87], later by Verstegen for A2

1,8 [103] and finally
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by Gannon for A4
1,4 [37]. Our new observation here is that the two stories are actually deeply

connected; that is, both the existence of reflective Borcherds products of singular weight and the
existence of exceptional modular invariants come from the same identities among the characters of
the affine Kac–Moody algebras.

Let ∆+
g be the set of positive roots of g. Note that dim g/C = 24. Similarly to the previous

section, we work with the lattice embedding

ιg : Pg →֒ D12, z 7→ ιg(z) = {1/C copies of 〈z, α〉}α∈∆+
g
,

such that the following identity holds:

(z, z) = (ιg(z), ιg(z)) =
1

C

∑

α∈∆+
g

〈α, z〉2.

Theorem 8.1. For each g in Table 2, we define the pullback

φg(τ, z) := C · φD12(τ, ιg(z)),

where φD12 is defined in Lemma 7.2. Then the theta lift B(φg) is a reflective Borcherds product
of singular weight on 2U ⊕Pg. Morover, the leading Fourier–Jacobi coefficient of B(φg) coincides
with the denominator of ĝ.

Proof. By definition, we find that

φg(τ, z) = rk(g) +
∑

α∈∆+
g

(
e2πi〈α,z〉 + e−2πi〈α,z〉

)
+O(q)

and this is a weak Jacobi form of weight 0 and lattice index Pg. It is easy to check that δL = 2
for these four cases. From Remark 2.6, it follows that all singular Fourier coefficients of φg(τ, z)
appear in the q0-term given above. Therefore, the theta lift is reflective and of singular weight, and
its leading Fourier–Jacobi coefficient has the desired form. �

The next theorem expresses the inputs of the Borcherds products as Z-linear combinations of
the full characters of the affine VOA generated by ĝ.

Theorem 8.2. The following identities hold:

φA1,16 = χ
A1,16

2, 1
9

+ χ
A1,16

14, 28
9

− χ
A1,16

8, 10
9

,

φA2
1,8

=
(
χ
A1,8

0,0 + χ
A1,8

8,2

)
⊗
(
χ
A1,8

2, 1
5

+ χ
A1,8

6, 6
5

)
+
(
χ
A1,8

2, 1
5

+ χ
A1,8

6, 6
5

)
⊗
(
χ
A1,8

0,0 + χ
A1,8

8,2

)
− 2χ

A1,8

4, 3
5

⊗ χ
A1,8

4, 3
5

,

φA2,9 = χ
A2,9

11, 1
4

+ χ
A2,9

17, 9
4

+ χ
A2,9

71, 9
4

− χ
A2,9

33, 5
4

,

φA4
1,4

=
∑

cyclic

(
χ
A1,4

0,0 + χ
A1,4

4,1

)
⊗
(
χ
A1,4

0,0 + χ
A1,4

4,1

)
⊗
(
χ
A1,4

0,0 + χ
A1,4

4,1

)
⊗ χ

A1,4

2, 1
3

− 4
⊗

χ
A1,4

2, 1
3

,

where the sum contains 4 terms by permutation. By taking z = 0 we obtain the identities among
unflavored characters given by

φg(τ, 0) = dim g.

Proof. First one proves that the Z-linear combinations of affine characters above define Jacobi
forms by checking their transformations under the action of the generators of SL2(Z). To prove the
identities, it is enough to check that their q0-terms match, since a weak Jacobi form of weight −12
and lattice index Pg has to be zero (see e.g. [104]). �
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The embedding ιg for g = A2,9 induces an embedding A2(3) →֒ 3A2. By considering the cor-
responding pullback we obtain an identity between affine characters of type A2 at levels 3 and
9: (

χ
A2,3

00,0 + χ
A2,3

03,1 + χ
A2,3

30,1

)2
χ
A2,3

11, 1
2

−
(
χ
A2,3

11, 1
2

)3
= χ

A2,9

11, 1
4

+ χ
A2,9

17, 9
4

+ χ
A2,9

71, 9
4

− χ
A2,9

33, 5
4

.

Both sides of this identity reduce to the constant 8 if we set z ∈ A2 ⊗ C equal to 0. Similarly, by
considering the embedding

A1,16 → A2
1,8 → A4

1,4 → A8
1,2,

A1(4) →֒ 2A1(2) →֒ 4A1 →֒ D8,

we obtain identities between affine characters of type A1 at levels 2, 4, 8 and 16:

χ
A1,16

2, 1
9

+ χ
A1,16

14, 28
9

− χ
A1,16

8, 10
9

=
(
χ
A1,8

0,0 + χ
A1,8

8,2

)(
χ
A1,8

2, 1
5

+ χ
A1,8

6, 6
5

)
−
(
χ
A1,8

4, 3
5

)2

=
(
χ
A1,4

0,0 + χ
A1,4

4,1

)3
χ
A1,4

2, 1
3

−
(
χ
A1,4

2, 1
3

)4

=
(
χ
A1,2

0,0

)7
χ
A1,2

2, 1
2

+ 7
(
χ
A1,2

0,0

)5(
χ
A1,2

2, 1
2

)3
+ 7
(
χ
A1,2

0,0

)3(
χ
A1,2

2, 1
2

)5
+ χ

A1,2

0,0

(
χ
A1,2

2, 1
2

)7−
(
χ
A1,2

1, 3
16

)8
.

All four expressions reduce to the constant 3 if we set z ∈ A1 ⊗ C equal to 0.

Remark 8.3. The Z-lattice generated by those λ = (n, ℓ,m) ∈ U ⊕P′
g for which B(φg) vanishes

on λ⊥ is exactly U ⊕P′
g.

Remark 8.4. The Borcherds product B(φg) for g = A1,16 was first constructed by Gritsenko and
Nikulin [47, §1.4] in 1998. They showed that this product equals a certain even theta constant when
viewed as a Siegel paramodular form of genus 2 and level 4. They also studied the corresponding
BKM superalgebra [47, Section 5.1].

Remark 8.5. As we mentioned at the beginning of this section, the inputs φg are related to
exceptional modular invariants.

(1) For A1,16, there exist the D8 modular invariant [87, Equation (5.8)] by simple current
extension and the E7 exceptional modular invariant [87, Equation (5.11)]. They satisfy the
identity

ZD10 − ZE7 = |φA1,16 |2

(2) For A2,9, there exist the D9 modular invariant [87, Equation (5.12)] by simple current
extension and the E ′

9 exceptional modular invariant [87, Equation (5.14)]. They are related
by the identity

ZD9 − ZE ′

9
= |φA2,9 |2.

(3) For A2
1,8, there exist the 2D6 modular invariant by simple current extension for each A1,8

[87, Equation (5.8)] and the exceptional modular invariant [103, Equation (4.1a)].
(4) For A4

1,4, there exist the 4D4 modular invariant by simple current extension for each A1,4

[87, Equation (5.8)] and the exceptional modular invariant [37, Equation (5.12a)].
(5) In cases (3)-(4), the difference of the simple current modular invariant and the exceptional

modular invariant is given by
∑

j |φg,j |2 for a suitable finite decomposition φg =
∑

j φg,j .

Remark 8.6. Theorem 8.2 relates the Borcherds products of Theorem 8.1 to vertex algebras.
However, we do not know whether they are super-denominators of BKM superalgebras that can be
constructed as BRST cohomology related to vertex algebras.
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9. The 12 symmetric cases: the construction as additive lifts

Some Borcherds products are known to have constructions as additive lifts. Since additive lifts
are always invariant under the involution (ω, z, τ) → (τ, z, ω), we cannot hope to express anti-
symmetric Borcherds products as additive lifts. In this section, we will give a uniform construction
of the 12 symmetric Borcherds products as additive lifts. The inputs into the additive lift turn out
to be the denominators of the associated affine Kac–Moody algebras ĝ.

Recall that for each g in Table 8 or Table 2 we have constructed a reflective Borcherds product
B(φg) of singular weight on 2U ⊕ Lg in the previous two sections, where Lg is the maximal even
sublattice of Pg. The product B(φg) has a Fourier–Jacobi expansion of the form

B(φg)(ω, z, τ) = ϑg(τ, z) · e2πiCω · exp
(
−

∞∑

m=1

(
φg|0T (1)

− (m)
)
(τ, z) · e2πimω

)
.

When g is not of type A1,16, the weight of ϑg is integral, so we can define the additive lift of ϑg

following Theorem 2.9:

G(ϑg)(ω, z, τ) =
∑

0<m∈1+ 1
C
Z

(
ϑg| 1

2
rk(g)T

( 1
C
)

− (m)
)
(τ, z) · e2πimCω

When g = A1,16, we have ϑg(τ, z) = ϑ(τ, z). In this case, we use Gritsenko’s “trivial lifting” of ϑ,
defined in [47, Theorem 1.11] to be

G(ϑ)(ω, z, τ) =
∞∑

m=1

(−4

m

)
ϑ(τ,mz) · e2πim2ω/8.

Theorem 9.1. Let g be one of the semi-simple Lie algebras in Table 8 or Table 2. Then we have

B(φg) = G(ϑg).

Proof. The identity follows from Koecher’s principle if we can show that the divisor of the additive
lift contains the divisor of the Borcherds product. The 8 cases with C = 1 were proved in [24,
Theorem 5.1], and a much simpler proof can be found in [112, Corollary 4.5]. In particular, the
identities for g = A8

1,2 and A3
2,3 were first established by Gritsenko in [49, Theorems 3.2, 4.2].

The case g = A1,16 was proved in [47, Example 2.3], the case g = A4
1,4 was proved in [49, Theorem

5.1], and the case g = A2,9 was proved in [55, Theorem 13.5 (2)]. The remaining case g = A2
1,8

can be proved in a similar way; we will give a sketch. Here we have Lg = 2A1(2) and the number
δL defined in Remark 2.6 is 2. Therefore, all of the singular Fourier coefficients of φg already
appear in its q0-term. By an argument analogous to [53, Remark 3.4, Lemma 3.5], G(ϑg)/B(φg) is
holomorphic and therefore constant. �

Compare the first two Fourier–Jacobi coefficients of the Borcherds products and additive lifts,

B(φg) = ϑg(τ, z) · ζC − ϑg(τ, z)φg(τ, z) · ζC+1 +O(ζC+2),

G(ϑg) = ϑg(τ, z) · ζC +
(
ϑg| 1

2
rk(g)T

( 1
C
)

− (1/C + 1)
)
(τ, z) · ζC+1 +O(ζC+2),

where for g = A1,16 we define
(
ϑ| 1

2
T
(8)
− (9)

)
(τ, z) = −ϑ(τ, 3z).

This implies the following uniform expression.
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Corollary 9.2. Let g be one of the semi-simple Lie algebras in Table 8 or Table 2. Then the input
can be expressed as

φg(τ, z) = −

(
ϑg| 1

2
rk(g)T

( 1
C
)

− (1/C + 1)
)
(τ, z)

ϑg(τ, z)
.

Remark 9.3. This corollary shows that in the symmetric cases the input, which was originally
constructed as a Z-linear combination of characters of some vertex algebra, can be read off of the
denominator of ĝ. There is no expression of this kind in the anti-symmetric cases.

Remark 9.4. Recall from Corollary 4.3 that Equation (4.2) have 17 solutions. The 12 solutions
of Equation (4.2) that correspond to symmetric cases with hyperbolizations are characterized by
1/C being integral. This is related to the expression of the input φg as a Z-linear combination of
characters of the affine VOA generated by ĝ. This expression contains a unique term with negative
coefficients, namely

s ·
s⊕

j=1

χ
gj,kj
kjρj/h∨

j
.

The condition that 1/C is integral guarantees that the dominant integral weight kjρj/h
∨
j is well-

defined. The equality dim g/24 = C = h∨j /kj implies that the first nonzero Fourier coefficient in

the above character is q1. We do not have a conceptual explanation for this. A similar phenomenon
for exceptional modular invariants has been observed by Schellekens and Yankielowicz [99, p.100].

10. Fourier expansions of singular-weight reflective Borcherds products

In this section we will work out the Fourier expansions of singular-weight reflective Borcherds
products as in [9, Example 13.7], [93, Section 9] and [25, Section 5].

Let F be a reflective Borcherds product of singular weight on U1 ⊕ U ⊕ L and set K = U ⊕ L.
Assume that the input as a Jacobi form,

φ(τ, z) =
∑

n∈Z

∑

ℓ∈L′

f(n, ℓ)qnζℓ,

has only non-negative singular Fourier coefficients. We will consider the Fourier expansion of
F at the 0-dimensional cusp related to U1. Let W be the Weyl group, i.e. the subgroup of
O(U ⊕ L) generated by reflections associated with vectors (n, ℓ,m) ∈ U ⊕ L′ for which 2n < ℓ2

and f(nm, ℓ) > 0. We fix a Weyl chamber C of F and denote its closure by C. Let ρ be the
corresponding Weyl vector.

We will view F as a function on the associated tube domain. This is anti-invariant under the
Weyl group W , i.e.

F (σ(Z)) = det(σ)F (Z), for all σ ∈ W.

It is known that W acts simply transitively on the Weyl chambers of the negative cone of K ⊗ R.
Therefore, the Fourier expansion of F has the form

F (Z) =
∑

σ∈W

det(σ)
∑

λ∈K ′, λ+ρ∈C
(λ,C)<0

c(λ)e
(
σ(λ+ ρ), Z

)
,

where e(t) = e2πit as before. Since F has singular weight, c(λ) = 0 whenever (λ+ρ, λ+ρ) 6= 0. Note
that (λ, C) < 0 and ρ ∈ C together imply that (λ, ρ) ≤ 0. But on the other hand, if (λ+ρ, λ+ρ) = 0,
then we have

2(λ, ρ) = (λ+ ρ, λ+ ρ)− (λ, λ) − (ρ, ρ) = −λ2
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and

(λ, ρ) = (λ, λ+ ρ)− (λ, λ) ≤ −λ2,

since (λ, λ+ ρ) ≤ 0. Since −λ2/2 ≤ −λ2, λ2 ≤ 0 and therefore (λ, ρ) ≥ 0, so in this case (λ, ρ) = 0.
Write λ and ρ in coordinates as (x1, x2, ..., xl, x0) ∈ Rl,1 and (y1, y2, ..., yr, y0) ∈ Rl,1 respectively,

such that

x21 + x22 + ...+ x2r − x20 = (λ, λ) ≤ 0,

y21 + y22 + ...+ y2r − y20 = (ρ, ρ) = 0,

x1y1 + x2y2 + ...+ xryr − x0y0 = (λ, ρ) = 0.

By the Cauchy–Schwarz inequality, we have

x20y
2
0 =

( r∑

j=1

xjyj

)2
≤

r∑

j=1

x2j

r∑

j=1

y2j ≤ x20y
2
0,

from which it follows that λ = cρ ∈ K ′ for some c ∈ Q. Note that (v, C) < 0 for v ∈ C. Since
(λ, C) < 0 and ρ ∈ C, we find c ≥ 0.

Write λ = cρ =
∑

λj with λj ∈ K ′ and (λj , C) < 0, and suppose that these λj contribute to
c(λ) in the product expansion of F at U1. From (λj , ρ) ≤ 0 and

∑
(λj, ρ) = (cρ, ρ) = 0 we obtain

(λj , ρ) = 0.
If (λj , λj) ≤ 0, then a similar argument as before shows that λj is a positive rational multiple of

ρ. Otherwise, suppose (λj , λj) > 0 for some j. Then F vanishes on λ⊥
j and the reflection σλj

lies
in the Weyl group W . Since σλj

maps C to a new Weyl chamber, it maps ρ to the corresponding
new Weyl vector, i.e. σλj

(ρ) 6= ρ. It follows that (λj , ρ) 6= 0, leading to a contradiction. Therefore,
every λj is a positive rational multiple of ρ and λj ∈ K ′. If we choose a positive c ∈ Q such that
cρ is a primitive vector in K ′, then every λj is a positive integral multiple of cρ.

This gives us the following expression:

F (Z) =
∑

σ∈W

det(σ) e
(
(σ(ρ), Z)

) ∞∏

n=1

(
1− e

(
(σ(ncρ), Z)

))f(n2c2ρ2/2, ncρ)

=
∑

σ∈W

det(σ)σ

(
e
(
(ρ, Z)

) ∞∏

n=1

(
1− e

(
nc(ρ, Z)

))f(n2c2ρ2/2, ncρ)
)

=:
∑

σ∈W

det(σ)σ
(
∆F

(
(ρ, Z)

))
.

(10.1)

The value of f(n2c2ρ2/2, ncρ) depends only on the coset of ncρ in K ′/K, and

f(∗, ncρ) = f(∗,−ncρ) = f(∗,mcρ)

if (n+m)cρ ∈ K. Note that the function ∆F above is often an eta quotient.
We will now work out the expressions of type (10.1) for the singular-weight reflective Borcherds

products constructed in the previous sections. Let g = ⊕jgj,kj be one of the 81 semi-simple Lie
algebras with a hyperbolization. Let Ψg be the corresponding singular-weight reflective Borcherds
product on 2U ⊕ Lg. Using the notation of Theorem 2.8 and Theorem 4.1, the Weyl vector of Ψg

is a norm zero vector given by

(−C − 1, ρg, −C)

in the anti-symmetric cases, and by

(−C, ρg, −C)
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in the symmetric cases, where ρg is the normalized Weyl vector of g defined by

ρg =
∑

j

ρj/kj ,

where ρj is the Weyl vector of the simple Lie algebra gj. The function ∆F that appears in (10.1)
for Ψg can be described as follows.

(1) Let g be of anti-symmetric type. Then g corresponds to a Co0-conjugacy class denoted [g].
Let

∏
bk 6=0 k

bk be the cycle shape of g and define the associated eta quotient by

ηg(τ) :=
∏

k≥1

η(kτ)bk , η(τ) = q
1
24

∞∏

n=1

(1− qn).

Then

∆Ψg

(
(ρ, Z)

)
= ηg

(
(ρ, Z)

)
.

Here the number c in (10.1) is 1 if g has order equal to its level, and it is 2 otherwise.
(2) Let g be of symmetric type with C = 1. Then g also corresponds to a Co0-conjugacy class

denoted [g]. The number c in (10.1) is always 1, and

∆Ψg

(
(ρ, Z)

)
= ηg

(
(ρ, Z)

)
.

(3) Let g be of symmetric type with C < 1. In this case, g does not correspond to any
Co0-conjugacy class. However, we obtain a similar expression for ∆F as an eta quotient
associated to a (fake) cycle shape. More precisely,

∆Ψg

(
(ρ, Z)

)
= ηg

(
(ρ, Z)

)
,

where the (fake) cycle shapes of g are given in Table 3. The number c in (10.1) equals 1/C,
which also appears in Table 3.

g A1,16 A2
1,8 A4

1,4 A2,9

c 8 4 2 3

g 8−1162 4−284 2−448 3−193

Table 3. The (fake) cycle shapes of the 4 exceptional semi-simple Lie algebras

11. The classification of anti-symmetric root systems

In this section we prove Theorem 5.1 in the anti-symmetric cases.

Theorem 11.1. If 2U ⊕ L has an anti-symmetric reflective Borcherds product of singular weight
whose Jacobi form input has non-negative q0-term, then the associated semi-simple Lie algebra
g defined in Theorem 4.1 lies in Schellekens’ list of 69 semi-simple V1 structures of holomorphic
vertex operator algebras of central charge 24.
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11.1. The main argument. To explain the proof of Theorem 11.1, we begin by introducing a
useful concept.

Definition 11.2. An even positive definite lattice K is called a forbidden component if there is
no reflective Borcherds product of any weight on 2U ⊕K. By considering its symmetrization, we
find that K is forbidden if and only if there is no reflective Borcherds product of any weight that
is modular for the full orthogonal group O+(2U ⊕K).

Let F = B(f) be the potential Borcherds product in Theorem 11.1. By [110, Lemma 3.3], for
any even overlattice L1 of L, there exists an anti-symmetric reflective Borcherds product of some
weight on 2U ⊕ L1. Moreover, if there is a decomposition

2U ⊕ L1
∼= 2U ⊕ L2 ⊕ L3,

then the quasi-pullback will yield an anti-symmetric reflective Borcherds product on 2U ⊕ L2.

To rule out the existence of a singular, reflective, anti-symmetric Borcherds product on 2U ⊕L,
it is therefore sufficient to find an overlattice L1 of L that admits a direct sum decomposition
L1

∼= K ⊕ L0 with a forbidden component K.

Argument 11.3. To exclude the 152 extraneous root systems, we use the bounds

Qg < L < Pg

and the property that L(C) is integral to determine an even overlattice K = K1 ⊕ K2 of L that
contains a forbidden component K1.

(a) In many cases, the upper bound Pg is integral, and we can take K to be the maximal even
sublattice Pev

g of Pg or a certain even overlattice of Pev
g .

(b) When Pg is not integral, L is contained in a maximal even overlattice Q of the lower bound
Qg, and we usually find K as a suitable sublattice of Q.

We will use the following forbidden components:

Rank 2:

(1) 2A1(16); (2) 2A1(18); (3) 2A1(20); (4) A2(16); (5) A2(24);

Rank 3:

(6) A1 ⊕ 2A1(8); (7) 2A1(2)⊕A1(5); (8) A1(3)⊕ 2A1(9); (9) A1(3)⊕A2(5);
(10) A1 ⊕A2(6); (11) A1 ⊕A2(8); (12) A1(2)⊕A2(8); (13) A1 ⊕A2(12);
(14) A1(2) ⊕A2(12); (15) A′

3(24);

Rank 4:

(16) 2A1(6)⊕A2; (17) A1(2)⊕A3(3); (18) A1 ⊕A′
3(16);

(19) A1(7)⊕L1, where L1 is the rank three lattice with Gram matrix
(

4 4 6
4 14 0
6 0 14

)
. The lattice L1

is a maximal even overlattice of 3A1(7) with discriminant 56.

Rank 5:

(20) 3A1 ⊕ 2A1(5); (21) A1 ⊕ 2A1(2)⊕A2(4); (22) A1(3)⊕A2 ⊕A2(4);
(23) A1(3) ⊕A4; (24) A1(4) ⊕A4(2);

Rank 6:

(25) 2A1(3)⊕A2 ⊕A2(3); (26) A2 ⊕A2(2)⊕A2(4); (27) A1 ⊕A2 ⊕A′
3(8);

(28) A3 ⊕A′
3(16); (29) 2A1(2) ⊕A4; (30) 2A1 ⊕A4(2);

(31) A2(6) ⊕D4;
(32) A2 ⊕ L2, where L2 is a maximal even overlattice of A4(3) (such that discr(L2) = 45);
(33) 2L3 ⊕ L3(2), where L3 is the rank two lattice with Gram matrix ( 2 1

1 4 );
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Rank 7:

(34) 2A2 ⊕A′
3(8);

Rank 8:

(35) 4A2(3); (36) 2A2 ⊕A4; (37) A1 ⊕A′
3(8) ⊕D4;

(38) 3A1 ⊕A1(4)⊕D4; (39) 2A2(2) ⊕D4; (40) A4 ⊕D4;
(41) 2D4(3); (42) A1 ⊕A2(2)⊕D5; (43) A2(4) ⊕D6;
(44) A′

4(5) ⊕ L4, where L4 is the maximal even sublattice of Z⊕ Z3(5) of genus 22II5
3;

(45) D4⊕L5, where L5 is the rank four lattice with Gram matrix

( 2 0 1 −1
0 2 −1 −1
1 −1 6 0
−1 −1 0 6

)
of genus 2−2

II 52;

Rank 9:

(46) 3A1 ⊕ 3A2; (47) 2A1 ⊕A1(3) ⊕A2 ⊕D4; (48) A1 ⊕ 3A1(2) ⊕D5;

Rank 10:

(49) 2A1 ⊕ 2A2 ⊕D4; (50) 2A2 ⊕A2(2) ⊕D4; (51) 2A2(2)⊕D6; (52) A4 ⊕D6;
(53) 3A1(2)⊕D7; (54) A3 ⊕D7; (55) A2 ⊕D8(3);
(56) 3A2 ⊕ L7, where L7 is the maximal even sublattice of Z2 ⊕ Z2(3) in the genus 22II3

2;

Rank 11:

(57) 3A2 ⊕D5; (58) A1 ⊕A2(2)⊕ E8;

(59) D4⊕L6, where L6 is the rank seven lattice with Gram matrix




2 1 1 1 1 1 1
1 2 1 1 0 0 0
1 1 2 1 0 1 1
1 1 1 2 0 0 0
1 0 0 0 2 1 1
1 0 1 0 1 4 0
1 0 1 0 1 0 4


 of genus 2174

2
II;

Rank 12:

(60) D6 ⊕ E6; (61) 2A2 ⊕D8; (62) A4 ⊕D8; (63) A1 ⊕A3 ⊕ E8; (64) 3A1 ⊕D9;
(65) The maximum even sublattice of Z6 ⊕ 2A′

3(4) in the genus 2−2
II 44II;

Rank 13:

(66) 3A1 ⊕A2 ⊕ E8;

Rank 14:

(67) 2A2 ⊕A2(2)⊕ E8; (68) A2(2)⊕D4 ⊕ E8; (69) A1 ⊕D5 ⊕ E8; (70) E6 ⊕ E8;

(71) E8⊕L, where L is the rank six lattice with Gram matrix




2 −1 0 0 0 0
−1 2 −1 −1 −1 −1
0 −1 2 0 0 0
0 −1 0 4 2 2
0 −1 0 2 4 0
0 −1 0 2 0 4


 in the genus

2264
2
II;

(72) The maximal even sublattice of Z8 ⊕ 2A′
3(4);

Rank 16:

(73) A2(2) ⊕D6 ⊕E8; (74) A1 ⊕D7 ⊕ E8;

Rank 18:

(75) A2 ⊕ 2D4 ⊕ E8; (76) 2A1 ⊕D8 ⊕ E8; (77) A1 ⊕A1(2) ⊕ 2E8; (78) 2A1(2) ⊕ 2E8.

The forbidden components above can be verified using the algorithm described at the end of
Section 2.4 except for the following three cases, which would have been prohibitively time-consuming
to check directly due to the large lattice discriminant.

Lemma 11.4. The lattice 4A2(3) is a forbidden component.

Proof. We use the overlattice

2U ⊕ 4A2(3) ∼= 2U(9)⊕ 4A2 < U ⊕ U(9)⊕ E8
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and can verify quickly that there are no reflective Borcherds products on U ⊕ U(9) ⊕ E8. By
[110, Lemma 3.3], 2U ⊕ 4A2(3) has no anti-symmetric reflective Borcherds product of any weight.
Suppose that 2U ⊕ 4A2(3) has a symmetric reflective Borcherds product, and denote its input
as a vector-valued modular form by f . Since the components of its divisor must be of the form
v⊥ for primitive vectors v ∈ 2U ⊕ 4A′

2(1/3) with v2 = 2/3 or 2/9, the function η8f defines a
holomorphic vector-valued modular form of weight 0, so it is constant, i.e. an invariant of the
Weil representation ρ2U⊕4A2(3). This is impossible because the constant coefficient c(0, 0) of f and

therefore the coefficient of q1/3e0 of η8f is nonzero, which proves the lemma. �

Lemma 11.5. The lattice L4 ⊕A′
4(5) is a forbidden component.

Proof. There is a positive definite even lattice K of rank 4 such that

2U ⊕ L4 ⊕A′
4(5)

∼= U ⊕ U(10) ⊕K ⊕A′
4(5).

It follows from the bound of [23, Lemma 4.5 and Table 2] with N = 10 that there is no reflective
Borcherds product on 2U ⊕ L4 ⊕A′

4(5). �

Lemma 11.6. The lattice A2 ⊕D8(3) is a forbidden component.

Proof. Use the isometry

2U ⊕A2 ⊕D8(3) ∼= U ⊕ U(6)⊕ 2A2 ⊕ E′
6(3).

By [23, Lemma 4.5 and Table 2] with N = 6, there is no reflective Borcherds product of any weight
on 2U ⊕A2 ⊕D8(3). �

11.2. Excluding the extraneous root systems. In this subsection we rule out the 152 extrane-
ous anti-symmetric root systems using Argument 11.3 and the 78 forbidden components that were
listed above.

11.2.1. Rank 4. There are 3 extraneous root systems of rank 4:

(1) D4,36: C = 1/6, Pg = D4(18). Here,

L < D4(18) < A2(6) ⊕A2(12) < A1(3)⊕A1(9) ⊕A2(6) < A1 ⊕A1(3)⊕A2(6)

using the overlattices D4(3) < A2 ⊕ A2(2), A2(4) < A1 ⊕ A1(3) and A1(9) < A1. This
overlattice of L contains the forbidden component A1 ⊕A2(6) labelled (10).

(2) G2
2,24: C = 1/6, L = 2A2(24). This lattice contains the forbidden component A2(24)

labelled (5).
(3) B4,14: C = 1/2, Pg = 4A1(7). Then

L < 4A1(7) < A1(7)⊕ L1,

where L1 is a certain maximal even overlattice of 3A1(7). This is the forbidden component
of rank 4 labelled (19).

11.2.2. Rank 5. There are 6 extraneous root systems of rank 5.

(4) A1,48A2,72G2,96: C = 1/24, Pg = A1(12) ⊕ A2(24) ⊕ A2(96). This lattice contains the
forbidden component A2(24) labelled (5).

(5) A3,96B2,72: C = 1/24, Pg = A′
3(96) ⊕ 2A1(36). Then

L < A′
3(96) ⊕ 2A1(36) < A1(12) ⊕ 2A1(24) ⊕ 2A1(36) < A1(3) ⊕ 2A1(9)⊕ 2A1(24)

using the rules A′
3(8) < A1⊕2A1(2) and A1(4) < A1. This overlattice contains the forbidden

component A1(3)⊕ 2A1(9) that we labelled (8).
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(6) A1,16B2,24G2,32: C = 1/8, Pg = A1(4) ⊕ 2A1(12) ⊕A2(32). Then

L < A1(4) ⊕ 2A1(12) ⊕A2(32) < A1 ⊕ 2A1(12) ⊕A2(8)

using the rules A1(4) < A1 and A2(4) < A2. This overlattice contains forbidden component
(11), i.e. A1 ⊕A2(8).

(7) A2
1,16C3,32: C = 1/8, Pg = 2A1(4)⊕A′

3(64). Then

L < 2A1(4) ⊕A′
3(64) < 2A1(4)⊕A1(8)⊕ 2A1(16)

using the overlattice A′
3(8) < A1 ⊕ 2A1(2). This contains forbidden component (1), i.e.

2A1(16).
(8) A2

1,16B3,40: C = 1/8, Pg = 2A1(4)⊕ 3A1(20). Then

L < 2A1(4) ⊕ 3A1(20).

This overlattice contains forbidden component (3), i.e. 2A1(20).
(9) A1,16A4,40: C = 1/8, Pg = A1(4) ⊕A′

4(40). Then

L < A1(4) ⊕A′
4(40) < A1(4)⊕A4(8) < A1(4) ⊕A4(2)

using the overlattice A′
4(5) < A4 and A4(4) < A4. This case is ruled out because the

overlattice contains forbidden component (24), i.e. A1(4) ⊕A4(2).

11.2.3. Rank 6. There are 22 extraneous root systems of rank 6.

(10) A4
1,24G2,48: C = 1/12, Pg = 4A1(6)⊕A2(48). Then

L < 4A1(6) ⊕A2(48) < 4A1(6)⊕A2

using the overlattices A2(4) < A2 and A2(3) < A2. This case can be excluded because the
overlattice contains forbidden component (16), i.e. 2A1(6)⊕A2.

(11) A2
1,24B

2
2,36: C = 1/12, Pg = 2A1(6) ⊕ 4A1(18). Then

L < 2A1(6) ⊕ 4A1(18).

This overlattice contains forbidden component (2), i.e. 2A1(18).
(12) A2

2,36B2,36: C = 1/12, Pg = 2A2(12) ⊕ 2A1(18). Then

L < 2A2(12) ⊕ 2A1(18).

This overlattice contains forbidden component (2), i.e. 2A1(18).
(13) A1,24A2,36A3,48: C = 1/12, Pg = A1(6)⊕A2(12)⊕A′

3(48). Then

L < A1(6) ⊕A2(12) ⊕A′
3(48) < 4A1(6) ⊕A2(12) < 4A1(6) ⊕A2,

using the overlattices A′
3(8) < 3A1, A2(4) < A2 and A2(3) < A2. This overlattice contains

forbidden component (16), i.e. 2A1(6)⊕A2.
(14) A2

1,12A2,18G2,24: C = 1/6, Pg = 2A1(3)⊕A2(6)⊕A2(24). Then

L < 2A1(3)⊕A2(6)⊕A2(24).

This overlattice contains forbidden component (5), i.e. A2(24).
(15) A1,12A3,24B2,18: C = 1/6, Pg = A1(3)⊕A′

3(24) ⊕ 2A1(9). Then

L < A1(3) ⊕A′
3(24) ⊕ 2A1(9).

This overlattice contains the forbidden component (8), i.e. A1(3)⊕ 2A1(9).
(16) A2,18B

2
2,18: C = 1/6, Pg = A2(6) ⊕ 4A1(9). Then

L < A2(6) ⊕ 4A1(9) < A1 ⊕ 3A1(9)⊕A2(6).

This overlattice contains forbidden component (10), i.e. A1 ⊕A2(6).
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(17) A3
1,8C3,16: C = 1/4, Pg = 3A1(2) ⊕A′

3(32). Then

L < 3A1(2) ⊕A′
3(32) < 3A1(2)⊕A1(4)⊕ 2A1(8) < A1 ⊕ 3A1(2) ⊕ 2A1(8)

using A′
3(8) < A1 ⊕ 2A1(2). This overlattice contains forbidden component (6), i.e. A1 ⊕

2A1(8).
(18) A2

1,8B2,12G2,16: C = 1/4, Pg = 2A1(2)⊕ 2A1(6)⊕A2(16). Then

L < 2A1(2)⊕ 2A1(6) ⊕A2(16).

This overlattice contains forbidden component (4), i.e. A2(16).
(19) A3

1,8B3,20: C = 1/4, Pg = 3A1(2) ⊕ 3A1(10). Then

L < 3A1(2)⊕ 3A1(10) < 3A1(2)⊕ 2A1(5)⊕A1(10)

using 2A1(2) < 2A1. This overlattice contains forbidden component (7), i.e. 2A1(2)⊕A1(5).
(20) A2

3,16: C = 1/4, Pg = 2A′
3(16). Then

L < 2A′
3(16) < A3 ⊕A′

3(16)

using the rule A′
3(16) < A3. The overlattice A3 ⊕A′

3(16) is forbidden component (28).
(21) A2

1,8A4,20: C = 1/4, Pg = 2A1(2)⊕A′
4(20). Then

L < 2A1(2)⊕A′
4(20) < 2A1(2) ⊕A4(4) < 2A1(2)⊕A4

using the rule A′
4(5) < A4. The overlattice 2A1(2)⊕A4 is forbidden component (29).

(22) A2
2,12G2,16: C = 1/4, Pg = 2A2(4) ⊕A2(16). Then

L < 2A2(4) ⊕A2(16).

This overlattice contains forbidden component (4), i.e. A2(16).
(23) B3

2,12: C = 1/4, Pg = 6A1(6). Then

L < 6A1(6) < 3A1(6) ⊕A1(2) ⊕A2

using the rule 3A1(6) < A1(2) ⊕ A2. This overlattice contains forbidden component (16),
i.e. 2A1(6) ⊕A2.

(24) A2,9B2,9G2,12: C = 1/3, Pg = A2(3)⊕ Z2(9)⊕A2(12). Since L is an even sublattice of Pg,

L < A2(3)⊕ 2A1(9) ⊕A2(12) < A1(3) ⊕ 3A1(9)⊕A2(3)

using A2(4) < A1 ⊕A1(3). This overlattice contains forbidden component (8), i.e. A1(3)⊕
2A1(9).

(25) A1,6A2,9C3,12: C = 1/3, Pg = Z(3)⊕A2(3) ⊕A′
3(24). Since L is an even sublattice of Pg,

L < A1(6)⊕A2(3)⊕A′
3(24).

This overlattice contains forbidden component (15), i.e. A′
3(24).

(26) A2,9A4,15: C = 1/3, Pg = A2(3) ⊕A′
4(15). Then

L < A2(3)⊕A′
4(15) < A2 ⊕A4(3) < A2 ⊕ L2,

where L2 is a maximal overlattice of A4(3), using A2(3) < A2 and A′
4(5) < A4. This

overlattice contains forbidden component (32), i.e. A2 ⊕ L2.
(27) A1,6A2,9B3,15: C = 1/3, Pg = Z(3) ⊕ A2(3) ⊕ Z3(15). The maximal even sublattice of

Z(3)⊕ Z3(15) is an index two sublattice in A′
4(15), and it is contained in A4(3). Since L is

even, we have

L < A2(3) ⊕A4(3) < A2 ⊕ L2

as in the previous case. This overlattice is forbidden component (32).
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(28) A1,6A3,12G2,12: C = 1/3, Pg = Z(3)⊕A′
3(12) ⊕A2(12). Using the rule A′

3(4) < Z⊕ 2A1,

Pg < A2(12) ⊕ Z2(3) ⊕ 2A1(3).

Since L is an even sublattice of Pg, we have

L < 4A1(3) ⊕A2(12) < A1(3)⊕A1 ⊕A2(2) ⊕A2(12)

using 3A1(3) < A1 ⊕A2(2). This overlattice contains forbidden component (13), i.e. A1 ⊕
A2(12).

(29) A2,6G
2
2,8: C = 1/2, Pg = A2(2) ⊕ 2A2(8). Then

L < A2(2) ⊕ 2A2(8) < A1(2)⊕A1(6) ⊕A2(2) ⊕A2(8)

using A2(4) < A1⊕A1(3). This overlattice contains forbidden component (12), i.e. A1(2)⊕
A2(8).

(30) A3,8B3,10: C = 1/2, Pg = A′
3(8)⊕ 3A1(5). Then

L < A′
3(8) ⊕ 3A1(5) < A1 ⊕ 2A1(2)⊕ 3A1(5)

using A′
3(8) < A1⊕2A1(2). This overlattice contains forbidden component (7), i.e. 2A1(2)⊕

A1(5).
(31) A3,8C3,8: C = 1/2, Pg = A′

3(8)⊕A′
3(16). Then

L < A′
3(8) ⊕A′

3(16) < A1 ⊕ 2A1(2)⊕A′
3(16)

using the rule A′
3(8) < A1 ⊕ 2A1(2). This overlattice contains forbidden component (18),

i.e. A1 ⊕A′
3(16).

11.2.4. Rank 7. There are 5 extraneous root systems of rank 7.

(32) A3
1,48A

2
2,72: C = 1/24, Pg = 3A1(12) ⊕ 2A2(24). Then

L < 3A1(12) ⊕ 2A2(24).

This overlattice contains forbidden component (5), i.e. A2(24).
(33) A5

1,48B2,72: C = 1/24, Pg = 5A1(12) ⊕ 2A1(36). Then

L < 5A1(12) ⊕ 2A1(36) < 5A1(3)⊕ 2A1(9),

using A1(4N) < A1(N). This overlattice contains forbidden component (8), i.e. A1(3) ⊕
2A1(9).

(34) A1,16A
3
2,24: C = 1/8, Pg = A1(4) ⊕ 3A2(8). Then

L < A1(4)⊕ 3A2(8) < A1 ⊕ 3A2(8).

This overlattice contains forbidden component (11), i.e. A1 ⊕A2(8).
(35) A3

1,16A2,24B2,24: C = 1/8, Pg = 3A1(4)⊕A2(8) ⊕ 2A1(12). Then

L < 3A1(4)⊕A2(8) ⊕ 2A1(12) < 3A1 ⊕ 2A1(12) ⊕A2(8).

This overlattice contains forbidden component (11), i.e. A1 ⊕A2(8).
(36) A4

1,16A3,32: C = 1/8, Pg = 4A1(4)⊕A′
3(32). Then

L < 4A1(4)⊕A′
3(32) < 5A1(4)⊕ 2A1(8) < 5A1 ⊕ 2A1(8)

using A′
3(8) < A1⊕2A1(2) and A1(4) < A1. This overlattice contains forbidden component

(6), i.e. A1 ⊕ 2A1(8).
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11.2.5. Rank 8. There are 38 extraneous root systems of rank 8.

(37) A6
1,24A2,36: C = 1/12, Pg = 6A1(6) ⊕A2(12). Then

L < 6A1(6) ⊕A2(12) < 6A1(6)⊕A2

using A2(4) < A2 and A2(3) < A2. This overlattice contains forbidden component (16), i.e.
2A1(6)⊕A2.

(38) A6
1,12B2,18: C = 1/6, Pg = 6A1(3)⊕ 2A1(9). Then

L < 6A1(3) ⊕ 2A1(9).

This overlattice contains forbidden component (8), i.e. A1(3) ⊕ 2A1(9).
(39) A4

1,12A
2
2,18: C = 1/6, Pg = 4A1(3)⊕ 2A2(6). By the rule 4A1(3) < 4A1 we obtain

L < 4A1(3)⊕ 2A2(6) < 4A1 ⊕ 2A2(6).

This overlattice contains forbidden component (10), i.e. A1 ⊕A2(6).
(40) A2

1,8A
3
2,12: C = 1/4, Pg = 2A1(2)⊕ 3A2(4). Then

L < 2A1(2)⊕ 3A2(4) < 2A1(2)⊕A2(4)⊕A2 ⊕A1 ⊕A1(3)

using A2(4) < A1 ⊕ A1(3) < A2. This overlattice contains forbidden component (22), i.e.
A1(3) ⊕A2 ⊕A2(4).

(41) A5
1,8A3,16: C = 1/4, Pg = 5A1(2)⊕A′

3(16). Then

L < 5A1(2) ⊕A′
3(16) < 3A1(2)⊕ 2A1 ⊕A′

3(16)

using 2A1(2) < 2A1. This overlattice contains forbidden component (18), i.e. A1 ⊕A′
3(16).

(42) A4
1,8A2,12B2,12: C = 1/4, Pg = 4A1(2) ⊕A2(4)⊕ 2A1(6). Then

L < 4A1(2) ⊕A2(4) ⊕ 2A1(6) < 2A1 ⊕ 2A1(2) ⊕A2(4) ⊕ 2A1(6)

using 2A1(2) < 2A1. This overlatice contains forbidden component (21), i.e. A1⊕ 2A1(2)⊕
A2(4).

(43) A6
1,6G2,12: C = 1/3, Pg = Z6(3)⊕A2(12). Since L is an even sublattice of Pg, we have

L < D6(3) ⊕A2(12) < 2A1 ⊕ 2A2 ⊕A2(12)

using D6(3) < 2A1 ⊕ 2A2. This overlattice contains forbidden component (13), i.e. A1 ⊕
A2(12).

(44) A2
1,6A

2
2,9B2,9: C = 1/3, Pg = Z2(3) ⊕ 2A2(3) ⊕ Z2(9). The maximal even sublattice of

Z2(3) ⊕ Z2(9) is the rescaling by 3 of a lattice in the genus 22II3
2, and it is contained in

2A2(3). Therefore, L < 4A2(3). This case is excluded because it is forbidden component
(35).

(45) A4
1,6B

2
2,9: C = 1/3, Pg = Z4(3)⊕ Z4(9). The maximal even sublattice of Pg(1/3) is

2A2(3) ⊕M4(3),

where M4 is a maximal even overlattice of Z2 ⊕ Z2(3) (such that M4 has discriminant 36)
with M4 < 2A2. Therefore we have

L < 2A2(3)⊕M4(3) < 4A2(3).

This overlattice is forbidden component (35).
(46) A3

1,6A2,9A3,12: C = 1/3, Pg = Z3(3) ⊕A2(3)⊕A′
3(12). Using the rule A′

3(4) < Z⊕ 2A1,

Pg < A2(3) ⊕ 2A1(3)⊕ Z4(3).

Since L is an even sublattice of Pg, we have

L < A2(3)⊕ 2A1(3)⊕D4(3) < A2(3)⊕ 2A1(3) ⊕A2 ⊕A2(2)
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usingD4(3) < A2⊕A2(2). This overlattice contains forbidden component (25), i.e. 2A1(3)⊕
A2 ⊕A2(3).

(47) A4
2,9: C = 1/3, Pg = 4A2(3). Then

L < 4A2(3).

This overlattice is the forbidden component (35).
(48) A2

1,4A
2
3,8: C = 1/2, Pg = 2A1 ⊕ 2A′

3(8). Then

L < 2A1 ⊕ 2A′
3(8) < A′

3(8)⊕ 5A1 < A′
3(8)⊕D4 ⊕A1

using A′
3(8) < 3A1 and 4A1 < D4. This overlattice is the forbidden component (37).

(49) A4
1,4A4,10: C = 1/2, Pg = 4A1 ⊕A′

4(10). Using A′
4(5) < A4 we have

L < 4A1 ⊕A′
4(10) < 4A1 ⊕A4(2)

This overlattice contains forbidden component (30), i.e. 2A1 ⊕A4(2).
(50) A1,4A2,6A3,8B2,6: C = 1/2, Pg = A1 ⊕A2(2) ⊕A′

3(8) ⊕ 2A1(3). Then

L < A1 ⊕A2(2)⊕A′
3(8)⊕ 2A1(3) < A′

3(8) ⊕A2 ⊕ 3A1

using A1(3) ⊕ A2(2) < 3A1 and A1 ⊕ A1(3) < A2. This overlattice contains forbidden
component (27), i.e. A1 ⊕A2 ⊕A′

3(8).
(51) A5

1,4B3,10: C = 1/2, Pg = 5A1 ⊕ 3A1(5). Then

L < 5A1 ⊕ 3A1(5).

This overlattice contains forbidden component (20), i.e. 3A1 ⊕ 2A1(5).
(52) A2

2,6B
2
2,6: C = 1/2, Pg = 2A2(2) ⊕ 4A1(3). Then

L < 2A2(2)⊕ 4A1(3) < 2A2(2) ⊕D4

using the rule 4A1(3) < D4. This overlattice is forbidden component (39).
(53) A2

1,4A
2
2,6G2,8: C = 1/2, Pg = 2A1 ⊕ 2A2(2) ⊕A2(8). Then

L < 2A1 ⊕ 2A2(2)⊕A2(8).

This overlattice contains forbidden component (11), i.e. A1 ⊕A2(8).
(54) A4

1,4B2,6G2,8: C = 1/2, Pg = 4A1 ⊕ 2A1(3) ⊕A2(8). Then

L < 4A1 ⊕ 2A1(3)⊕A2(8).

This overlattice contains forbidden component (11), i.e. A1 ⊕A2(8).
(55) A5

1,4C3,8: C = 1/2, Pg = 5A1 ⊕A′
3(16). Then

L < 5A1 ⊕A′
3(16).

This overlattice contains forbidden component (28), i.e. A1 ⊕A′
3(16).

(56) A2
1,4B

3
2,6: C = 1/2, Pg = 2A1 ⊕ 6A1(3). Then

L < 2A1 ⊕ 6A1(3) < 4A1 ⊕ 2A2(2) < D4 ⊕ 2A2(2)

using 3A1(3) < A1 ⊕A2(2) and 4A1 < D4. This overlattice is forbidden component (39).
(57) A4

1,3G
2
2,6: C = 2/3, L = K ⊕ 2A2(6) with 4A1(3) < K < Z4(3/2). Then

Z4(4) < K(2/3) < Z4.

Since K(2/3) is integral and K = K(2/3)(3/2) is even, K(2/3) is the 2-scaling of an even
lattice. Therefore, K(2/3) < D4(2). Using the overlattice D4(3) < D4 we then have

L < 2A2(6)⊕D4(3) < 2A2(6) ⊕D4

This overlattice contains forbidden component (31), i.e. A2(6)⊕D4.
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(58) A4
1,3D4,9: C = 2/3, Pg = Z4(3/2) ⊕ D4(9/2) and Qg = 4A1(3) ⊕ D4(9). Then L(2/3) is

integral and
4A1(2) ⊕D4(6) < L(2/3) < Z4 ⊕D4(3).

We see from L = L(2/3)(3/2) that L(2/3) is the 2-scaling of an even lattice. Therefore,
L(1/3) is an even lattice bounded by

4A1 ⊕D4(3) < L(1/3) < D4(1/2) ⊕D4(3/2) ∼= D′
4 ⊕D′

4(3).

It follows that L(1/3) < D4 ⊕D4(3). Then

L < D4(3) ⊕D4(9) < A2(3) ⊕A2(6) ⊕D4,

using D4(3) < A2 ⊕ A2(2) < D4. This overlattice contains forbidden component (31), i.e.
A2(6) ⊕D4.

(59) A1,2A4,5C3,4: C = 1, Pg = Z⊕A′
4(5)⊕A′

3(8). Since L is an even sublattice of Pg,

L < A1(2)⊕A′
4(5)⊕A′

3(8) < A1 ⊕ 3A1(2)⊕A4,

where used A′
4(5) < A4 and A′

3(8) < A1 ⊕ 2A1(2). This overlattice contains forbidden
component (29), i.e. 2A1(2) ⊕A4.

(60) A4
1,2B4,7: C = 1, Pg = Z4 ⊕ Z4(7). Since L is even, it is contained in the maximal even

sublattice of Pg:
L < 3L3 ⊕ L3(2)

where L3 is Z2 with Gram matrix ( 2 1
1 4 ). This overlattice contains forbidden component

(33), i.e. 2L3 ⊕ L3(2).
(61) B2

2,3D4,6: C = 1, Pg = Z4(3) ⊕ D4(3). Since L is an even sublattice of Pg, we have

L < 2D4(3). This overlattice is forbidden component (41).
(62) A1,2B2,3B3,5G2,4: C = 1, Pg = Z⊕ Z2(3) ⊕ Z3(5) ⊕ A2(4). Since L is even, it is contained

in the maximal even sublattice

Q⊕A2(4)⊕A2(5)

of Pg, where Q has genus [22]63
15−1 and discriminant 60. Therefore,

L < Q⊕A2(4)⊕A2(5) < Q⊕A1 ⊕A1(3)⊕A2(5)

using A2(4) < A1 ⊕A1(3). This overlattice contains forbidden component (9), i.e. A1(3)⊕
A2(5).

(63) A1,2A4,5B3,5: C = 1, Pg = Z⊕ A′
4(5) ⊕ Z3(5). Let L4 denote the maximal even sublattice

of Z⊕ Z3(5). The overlattice L4 ⊕A′
4(5) of L is forbidden component (44).

(64) A2
1,2B

2
3,5: C = 1, Pg = Z2⊕Z6(5). The maximal even sublattice of Pg is L4⊕A′

4(5), which

is forbidden component (44) and is an even overlattice of L.
(65) A1,2B2,3C3,4G2,4: C = 1, Pg = Z ⊕ Z2(3) ⊕A′

3(8) ⊕A2(4). Since L is even, it is contained
in the maximal even sublattice

L < Q⊕A2(4) ⊕A′
3(8)

of Pg, where Q has genus [41]73
2. Then

L < A1 ⊕ 2A1(2) ⊕A2(4) ⊕Q

using the rule A′
3(8) < A1 ⊕ 2A1(2). This overlattice contains forbidden component (21),

i.e. A1 ⊕ 2A1(2)⊕A2(4).
(66) A2

1,2G
3
2,4: C = 1, Pg = Z2 ⊕ 3A2(4). Since L is an even sublattice of Pg, we have

L < 2A1 ⊕ 3A2(4) < 3A1 ⊕A1(3)⊕A2 ⊕A2(4)

using A2(4) < A1 ⊕ A1(3) < A2. This overlattice contains forbidden component (22), i.e.
A1(3) ⊕A2 ⊕A2(4).
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(67) A2
1,2C

2
3,4: C = 1, Pg = Z2 ⊕ 2A′

3(8). The maximal even sublattice of Pg is 2A1 ⊕ 2A′
3(8).

Then

L < 2A1 ⊕ 2A′
3(8) < A′

3(8)⊕ 5A1 < A′
3(8)⊕D4 ⊕A1

using A′
3(8) < 3A1 and 4A1 < D4. The overlattice A1⊕A′

3(8)⊕D4 is forbidden component
(37).

(68) A2
1,2B3,5C3,4: C = 1, Pg = Z2 ⊕ Z3(5) ⊕ A′

3(8). Since L is even, it is contained in the

maximal even sublattice A′
3(8) ⊕Q of Pg, where Q has genus [41]15

3. Then

L < A1(2)⊕A′
3(8) ⊕A4 < A1 ⊕ 3A1(2) ⊕A4

using Q < A1(2) ⊕ A4 and A′
3(8) < A1 ⊕ 2A1(2). This overlattice contains forbidden

component (29), i.e. 2A1(2) ⊕A4.
(69) B2

2,3G
2
2,4: C = 1, Pg = Z4(3)⊕ 2A2(4). Since L is an even sublattice of Pg, we have

L < D4(3)⊕ 2A2(4) < D4 ⊕ 2A2(2)

using 2A2(2) < 2A2 and D4(3) < D4. The overlattice D4 ⊕ 2A2(2) is forbidden component
(39).

(70) A4,5B2,3G2,4: C = 1, Pg = A′
4(5) ⊕ Z2(3)⊕A2(4). Since L is an even sublattice of Pg and

A′
4(5) < A4 we have

L < A′
4(5)⊕ 2A1(3) ⊕A2(4) < A4 ⊕ 2A1(3) ⊕A2(4).

This overlattice contains forbidden component (23), i.e. A1(3)⊕A4.
(71) A4

1,2C4,5: C = 1, Pg = Z4 ⊕D4(5). Since L is even,

L < D4 ⊕D4(5) < D4 ⊕ L5,

where L5 is an even overlattice of D4(5) of genus 2−2
II 52. This overlattice is forbidden

component (45).
(72) A2

1,2D4,6G2,4: C = 1, Pg = Z2 ⊕D4(3) ⊕A2(4). Since L is even,

L < 2A1 ⊕D4(3)⊕A2(4) < 2A1 ⊕A2 ⊕A2(2)⊕A2(4)

using D4(3) < A2 ⊕ A2(2). This overlattice contains forbidden component (26), i.e. A2 ⊕
A2(2) ⊕A2(4).

(73) C2
3,3G2,3: C = 4/3, L = A2(3)⊕K with 6A1(3) < K < 2A′

3(6). Then

6A1 < K(1/3) < 2A′
3(2).

Since K is even and K(4/3) is integral, K(1/3) is even. It follows that K(1/3) = 6A1, and
thus

L < A2(3) ⊕ 6A1(3) < A2(3) ⊕A1 ⊕A2(2)⊕ 3A1(3) < A2(2) ⊕ 2A1(3)⊕A2 ⊕A2(3)

using 3A1(3) < A1 ⊕ A2(2) and A1 ⊕ A1(3) < A2. This overlattice contains forbidden
component (25), i.e. 2A1(3) ⊕A2 ⊕A2(3).

(74) G4
2,3: C = 4/3, L = 4A2(3) is forbidden component (35).

11.2.6. Rank 9. There is only 1 extraneous root system of rank 9.

(75) A9
1,16: C = 1/8, Pg = 9A1(4). Then

L < 9A1(4) < 4A1 ⊕A1(4)⊕D4.

This overlattice contains forbidden component (38), i.e. 3A1 ⊕A1(4)⊕D4.
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11.2.7. Rank 10. There are 24 extraneous root systems of rank 10.

(76) A10
1,8: C = 1/4, Pg = 10A1(2). Then

L < 10A1(2) < 3A1(2) ⊕D7.

This overlattice is forbidden component (53).
(77) A8

1,6A2,9: C = 1/3, Pg = Z8(3) ⊕A2(3). Since L is even, we have

L < D8(3) ⊕A2(3) < D8(3) ⊕A2.

The overlattice D8(3) ⊕A2 is forbidden component (55).
(78) A4

1,4A
3
2,6: C = 1/2, Pg = 4A1 ⊕ 3A2(2). Using 4A1 < D4 we obtain

L < 4A1 ⊕ 3A2(2) < 3A2(2) ⊕D4

This overlattice contains forbidden component (39), i.e. 2A2(2) ⊕D4.
(79) A7

1,4A3,8: C = 1/2, Pg = 7A1 ⊕A′
3(8). Then

L < 7A1 ⊕A′
3(8) < 3A1 ⊕D4 ⊕A′

3(8).

This overlattice contains forbidden component (37), i.e. A1 ⊕A′
3(8)⊕D4.

(80) A6
1,4A2,6B2,6: C = 1/2, Pg = 6A1 ⊕A2(2) ⊕ 2A1(3). Then

L < 6A1 ⊕A2(2)⊕ 2A1(3) < D4 ⊕ 2A2 ⊕A2(2)

using the rules 4A1 < D4 and A1 ⊕ A1(3) < A2. The overlattice D4 ⊕ 2A2 ⊕ A2(2) is
forbidden component (50).

(81) A4
2,4B2,4: C = 3/4, Pg = 4A′

2(4) ⊕ 2A1(2), Qg = 4A2(4)⊕ 2A1(4). Then

2A1 ⊕ 4A2 < L(1/4) < Z2 ⊕ 4A′
2.

Since L(3/4) is integral and L is even, L(1/4) is integral. It follows that L(1/4) < Z2 ⊕E8,
and therefore that L < 2A1(2) ⊕ E8(4). Note that

2U ⊕ 2A1(2)⊕ E8(4) ∼= 2U ⊕ 10A1(2)

and

10A1(2) < 4A1(2)⊕ 6A1 < 4A1(2)⊕D4 ⊕ 2A1 < 3A1(2)⊕D5 ⊕ 2A1

using 2A1(2) < 2A1 and 4A1 < D4 and D4 ⊕ A1(2) < D5. This overlattice contains
forbidden component (48), i.e. A1 ⊕ 3A1(2)⊕D5.

(82) A1,2A
3
2,3B3,5: C = 1, Pg = Z⊕ 3A2⊕Z3(5). Since L is even, it is contained in the maximal

even sublattice Q of Pg, where Q is an index two sublattice of A4 in the genus 22II5
3.

Therefore we have

L < Q⊕ 3A2 < A4 ⊕ 3A2.

This overlattice contains forbidden component (36), i.e. 2A2 ⊕A4.
(83) A3

1,2A2,3B2,3C3,4: C = 1, Pg = Z3 ⊕ A2 ⊕ Z2(3) ⊕ A′
3(8). The maximal even sublattice of

Z3 ⊕ Z2(3) is A1(2) ⊕ 2A2. Since L is an even sublattice of Pg, we have

L < A1(2)⊕ 3A2 ⊕A′
3(8).

This overlattice contains forbidden component (34), i.e. 2A2 ⊕A′
3(8).

(84) A1,2A3,4B
3
2,3: C = 1, we have

Pg = Z⊕A′
3(4) ⊕ Z6(3) < Z4 ⊕ 2A1 ⊕ 2A2

using the rules A′
3(4) < Z⊕ 2A1 and Z3(3) < Z⊕A2. Therefore, L < D4 ⊕ 2A1⊕ 2A2. The

overlattice D4 ⊕ 2A1 ⊕ 2A2 is forbidden component (49).
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(85) A4
1,2A2,3G

2
2,4: C = 1, Pg = Z4 ⊕A2 ⊕ 2A2(4). Since L is even, we have

L < D4 ⊕A2 ⊕ 2A2(4) < A2 ⊕ 2A2(2)⊕D4

using 2A2(2) < 2A2. This overlattice contains forbidden component (39), i.e. 2A2(2)⊕D4.
(86) A2

1,2A2,3B
2
2,3G2,4: C = 1, Pg = Z2 ⊕ A2 ⊕ Z4(3) ⊕ A2(4). The maximal even sublattice of

Pg is 2A1(3) ⊕ 3A2 ⊕ A2(4), and it is an even overlattice of L. This overlattice contains
forbidden component (22), i.e. A1(3)⊕A2 ⊕A2(4).

(87) A3
2,3A4,5: C = 1, Pg = 3A2 ⊕A′

4(5). Then

L < 3A2 ⊕A′
4(5) < 3A2 ⊕A4.

This overlattice contains forbidden component (36), i.e. 2A2 ⊕A4.
(88) A2

1,2A2,3A4,5B2,3: C = 1, Pg = Z2 ⊕ A2 ⊕ A′
4(5) ⊕ Z2(3). The maximal even sublattice of

Pg decomposes as Q⊕A2 ⊕A′
4(5), where Q has genus 22II3

2. Since L is even, we have

L < Q⊕A2 ⊕A′
4(5) < 3A2 ⊕A4,

using Q < 2A2 and A′
4(5) < A4. This overlattice contains forbidden component (36), i.e.

2A2 ⊕A4.
(89) A1,2A

3
2,3C3,4: C = 1, Pg = Z⊕ 3A2 ⊕A′

3(8). Since L is even,

L < A1(2)⊕ 3A2 ⊕A′
3(8).

This overlattice contains forbidden component (34), i.e. A′
3(8)⊕ 2A2.

(90) A3
2,3B2,3G2,4: C = 1, Pg = 3A2 ⊕ Z2(3) ⊕A2(4). Since L is even, we have

L < 2A1(3)⊕ 3A2 ⊕A2(4).

This overlattice contains forbidden component (22), i.e. A1(3)⊕A2 ⊕A2(4).
(91) A4

1,2A2,3D4,6: C = 1, Pg = Z4 ⊕A2 ⊕D3. Since L is even and D4(3) < A2 ⊕A2(2) we have

L < A2 ⊕D4 ⊕D4(3) < 2A2 ⊕A2(2)⊕D4

The overlattice 2A2 ⊕A2(2)⊕D4 is forbidden component (50).
(92) A4

1,2A3,4C3,4: C = 1, Pg = Z4 ⊕ A′
3(4) ⊕ A′

3(8). The maximal even sublattice of Pg is

2A1(2)⊕D5 ⊕A′
3(8). Since L is even,

L < 2A1(2) ⊕D5 ⊕A′
3(8) < A1 ⊕ 4A1(2)⊕D5

using the rule A′
3(8) < A1 ⊕ 2A1(2). This overlattice contains forbidden component (48),

i.e. A1 ⊕ 3A1(2)⊕D5.
(93) A3

1,2A3,4A4,5: C = 1, we have

Pg = Z3 ⊕A′
3(4)⊕A′

4(5) < Z4 ⊕ 2A1 ⊕A′
4(5)

using A′
3(4) < Z⊕ 2A1. Since L is even,

L < D4 ⊕ 2A1 ⊕A′
4(5) < D4 ⊕ 2A1 ⊕A4.

This overlattice contains forbidden component (40), i.e. A4 ⊕D4.
(94) A2,3A

2
3,4B2,3: C = 1, Pg = A2 ⊕ 2A′

3(4) ⊕ Z2(3). The maximal even sublattice of Pg

decomposes as A1(2)⊕A3(3)⊕Q, where Q has genus [43]5. The overlattice A1(2)⊕A3(3)⊕Q
of L contains forbidden component (17), i.e. A1(2)⊕A3(3).

(95) A2,3B
4
2,3: C = 1, Pg = A2 ⊕ Z8(3). Since L is even, we have

L < A2 ⊕D8(3).

This overlattice is forbidden component (55).
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(96) A4
1,2A3,4B3,5: C = 1, Pg = Z4 ⊕ A′

3(4) ⊕ Z3(5). The maximal even sublattice of Pg splits

as A4 ⊕Q, where Q is a sublattice of D6 with genus [22]64
252 and discriminant 1600. Then

L < A4 ⊕Q < A4 ⊕D6.

The overlattice A4 ⊕D6 is forbidden component (52).
(97) A1,2A

2
2,3A3,4G2,4: C = 1, Pg = Z ⊕ 2A2 ⊕ A′

3(4) ⊕ A2(4). The maximal even sublattice of
Pg is 2A2 ⊕A2(4) ⊕D4(2). Therefore,

L < 2A2 ⊕A2(4)⊕D4(2) < 4A1 ⊕ 3A2,

using A2(4) < A2 and D4(2) < 4A1. This overlattice contains forbidden component (46),
i.e. 3A1 ⊕ 3A2.

(98) A3
1,2A2,3B2,3B3,5: C = 1, Pg = Z3 ⊕ A2 ⊕ Z2(3) ⊕ Z3(5). The maximal even sublattice of

Pg splits as 2A2 ⊕Q where Q has genus 22II3
−153. Therefore,

L < 2A2 ⊕Q < 3A2 ⊕A4

since Q < A2 ⊕A4. This overlattice contains forbidden component (36), i.e. 2A2 ⊕A4.
(99) A3

1,2A3,4B2,3G2,4: C = 1, Pg = Z3 ⊕ A′
3(4) ⊕ Z2(3) ⊕ A2(4). The maximal even sublattice

of Pg is A2 ⊕ 2A2(4)⊕D4. Therefore,

L < A2 ⊕ 2A2(4)⊕D4 < 2A1 ⊕ 2A1(3) ⊕A2 ⊕D4

using A2(4) < A1 ⊕ A1(3). This overlattice contains forbidden component (47), i.e. 2A1 ⊕
A1(3) ⊕A2 ⊕D4.

11.2.8. Rank 12. There are 21 extraneous root systems of rank 12.

(100) A6
1,2A

2
2,3G2,4: C = 1, Pg = Z6 ⊕ 2A2 ⊕A2(4). Since L is even,

L < 2A2 ⊕A2(4)⊕D6.

This overlattice contains forbidden component (43), i.e. A2(4)⊕D6.
(101) A9

1,2B3,5: C = 1, Pg = Z9 ⊕ Z3(5). The maximal even sublattice of Pg is A′
4(5) ⊕ D8.

Therefore,

L < A′
4(5) ⊕D8 < A4 ⊕D8.

The overlattice A4 ⊕D8 is forbidden component (62).
(102) A3

1,2A
3
2,3A3,4: C = 1, Pg = Z3 ⊕ 3A2 ⊕A′

3(4). The maximal even sublattice of Pg splits as

Q⊕ 3A2, where Q is an index two sublattice of 2A1 ⊕D4 in the genus 2264
2. Therefore,

L < Q⊕ 3A2 < 2A1 ⊕ 3A2 ⊕D4.

This overlattice contains forbidden component (49), i.e. 2A1 ⊕ 2A2 ⊕D4.
(103) A5

1,2A2,3A3,4B2,3: C = 1, Pg = Z5 ⊕ A2 ⊕ A′
3(4) ⊕ Z2(3). The maximal even sublattice of

Pg is 2A2 ⊕ A2(4) ⊕D6. This is an even overlattice of L containing forbidden component
(43), i.e. A2(4)⊕D6.

(104) A8
1,2B2,3G2,4: C = 1, Pg = Z8 ⊕ Z2(3) ⊕ A2(4). The maximal even sublattice of Pg is

2A2 ⊕ A2(4) ⊕D6. This is an even overlattice of L containing forbidden component (43),
i.e. A2(4)⊕D6.

(105) A6
1,2A

2
3,4: C = 1, Pg = Z6 ⊕ 2A′

3(4). The maximal even sublattice of Pg is a sublattice of

A1 ⊕D4 ⊕ L6, where L6 is a rank seven lattice in the genus 2174
2
II. Therefore,

L < A1 ⊕D4 ⊕ L6.

This overlattice contains forbidden component (59), i.e. L6 ⊕D4.
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(106) A2
1,2A

4
2,3B2,3: C = 1, Pg = Z2⊕4A2⊕Z2(3). The maximal even sublattice of Pg is 4A2⊕L7,

where L7 has genus 2
2
II3

2. The overlattice 4A2⊕L7 of L contains forbidden component (56),
i.e. 3A2 ⊕ L7.

(107) A8
1,2A4,5: C = 1, Pg = Z8 ⊕ A′

4(5). The maximal even sublattice of Pg is A′
4(5) ⊕ D8.

Therefore,

L < A′
4(5) ⊕D8 < A4 ⊕D8.

The overlattice A4 ⊕D8 is forbidden component (62).
(108) A4

1,2A
2
2,3B

2
2,3: C = 1, Pg = Z4 ⊕ 2A2 ⊕ Z4(3). The maximal even sublattice of Pg is

4A2 ⊕ L7, where L7 has genus 22II3
2 as before. The overlattice 4A2 ⊕ L7 of L contains

forbidden component (56), i.e. 3A2 ⊕ L7.
(109) A9

1,2C3,4: C = 1, Pg = Z9 ⊕A′
3(8). Since L is even,

L < A′
3(8)⊕D9 < 3A1 ⊕D9,

using the rule A′
3(8) < 3A1. The overlattice D9 ⊕ 3A1 is forbidden component (64).

(110) A6
1,2B

3
2,3: C = 1, Pg = Z6 ⊕ Z6(3). The maximal even sublattice of Pg is 4A2 ⊕ L7, where

L7 is the maximal even sublattice of Z2 ⊕ Z2(3) as before. The overlattice 4A2 ⊕ L7 of L
contains forbidden component (56), i.e. 3A2 ⊕ L7.

(111) A2
3,2G

3
2,2: C = 2, L = 3A2(2) ⊕ K with 2A3(2) < K < 2A′

3(2). Then K < Z2(1/2) ⊕ Z4.

Thus K < Z6 and further K < D6. Therefore, L < 3A2(2)⊕D6. This overlattice contains
forbidden component (51), i.e. 2A2(2)⊕D6.

(112) A3
1,1C3,2D4,3G2,2: C = 2, L = A2(2)⊕K with

3A1 ⊕ 3A1(2)⊕D4(3) < K < Z3(1/2) ⊕A′
3(4)⊕D′

4(3).

Then K is contained in a maximal even overlattice of 3A1 ⊕ 3A1(2)⊕D4(3) in the genus of
A1⊕A1(2)⊕E8. Therefore, L is contained in a lattice in the genus of A1⊕A1(2)⊕A2(2)⊕E8

which contains forbidden component (58), i.e. A1 ⊕A2(2)⊕ E8.
(113) A3

1,1C3,2G
3
2,2: C = 2, L = 3A2(2)⊕K with

3A1 ⊕ 3A1(2) < K < Z3(1/2) ⊕A′
3(4).

Then K is contained in a maximal even overlattice of 3A1⊕3A1(2) in the genus of A1⊕D5.
Therefore, L is contained in a lattice in the genus of A1 ⊕ D5 ⊕ 3A2(2) which contains
forbidden component (42), i.e. A1 ⊕A2(2) ⊕D5.

(114) A3
1,1C

3
3,2: C = 2, Qg = 3A1 ⊕ 9A1(2). Then L is contained in a maximal even overlattice of

3A1 ⊕ 9A1(2) in the genus of A1 ⊕A3 ⊕ E8 which is forbidden component (63).
(115) A2

3,2D4,3G2,2: C = 2, L = A2(2) ⊕K with 2A3(2) ⊕D4(3) < K. Then K is contained in

a maximal even overlattice of 2A3(2) ⊕ D4(3) in the genus of 2A1 ⊕ E8. Therefore, L is
contained in a lattice in the genus of 2A1⊕A2(2)⊕E8 which contains forbidden component
(58), i.e. A1 ⊕A2(2)⊕ E8.

(116) A2
3,2C

2
3,2: C = 2,

2A3(2)⊕ 6A1(2) < L < 2A′
3(2)⊕ 2A′

3(4).

We see from the upper bound that L < Z2(1/2)⊕Z4⊕2A′
3(4). Therefore, L < Z6⊕2A′

3(4).
The maximal even sublattice of Z6 ⊕ 2A′

3(4) is forbidden component (65).
(117) A3

1,1A5,3G
2
2,2: C = 2, L = 2A2(2)⊕K with

3A1 ⊕A5(3) < K.

Then K is contained in a maximal even overlattice of 3A1⊕A5(3) in the genus of 2A2⊕D4.
Therefore, L is contained in a lattice in the genus of 2A2 ⊕ D4 ⊕ 2A2(2) which contains
forbidden component (39), i.e. 2A2(2)⊕D4.
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(118) A4
1,1A3,2D5,4: C = 2, Qg = 4A1 ⊕ A3(2) ⊕D5(4) < L. Then L is contained in a maximal

even overlattice of 4A1 ⊕ A3(2) ⊕D5(4) in the genus of A1 ⊕ A3 ⊕ E8 which is forbidden
component (63).

(119) A2
2,1D4,2F4,3: C = 3, L = D4(3)⊕K with

2A2 ⊕D4(2) < K < 2A′
2 ⊕D4.

Thus K < 2A2 ⊕D4. Using the rule D4(3) < A2 ⊕A2(2), we have

L < 2A2 ⊕D4 ⊕D4(3) < 3A2 ⊕D4 ⊕A2(2).

This overlattice contains forbidden component (50), i.e. D4 ⊕ 2A2 ⊕A2(2).
(120) C2

3,1E6,3: C = 4, L is bounded by

6A1 ⊕E6(3) < L < 2A′
3(2)⊕ E′

6(3).

Therefore, L is contained in a maximal even overlattice of 6A1 ⊕ E6(3) in the genus of
D6 ⊕ E6, which is forbidden component (60).

11.2.9. Rank 14. There are 10 extraneous root systems of rank 14.

(121) A8
1,2A

3
2,3: C = 1, Pg = Z8 ⊕ 3A2. Since L is even, we have

L < 3A2 ⊕D8.

This overlattice contains forbidden component (61), i.e. 2A2 ⊕D8.
(122) A11

1,2A3,4: C = 1, Pg = Z11 ⊕ A′
3(4). The maximal even sublattice of Pg is L8 ⊕ E8, where

L8 has genus 2264
2
II. The overlattice L8 ⊕ E8 of L is forbidden component (71).

(123) A10
1,2A2,3B2,3: C = 1, Pg = Z10 ⊕ A2 ⊕ Z2(3). The maximal even sublattice of Pg is

A2 ⊕E8 ⊕ L7, where L7 has genus 22II3
2 as before. Then

L < A2 ⊕ E8 ⊕ L7 < 3A2 ⊕ E8 < E6 ⊕ E8

using L7 < 2A2 and 3A2 < E6. The overlattice E6 ⊕E8 of L is forbidden component (70).
(124) A5

2,2B
2
2,2: C = 3/2, L is bounded by

5A2(2)⊕ 4A1(2) < L < 5A′
2(2)⊕ 4A1.

The projection K of L to the first component 5A′
2(2) is even and integral, because L itself

is even and 4A1 is even. Therefore, L < K ⊕ 4A1, where K is an even sublattice of 5A′
2(2)

containing 5A2(2). Then K is contained in the maximal even overlattice A2⊕E8 of 5A2(2).
Therefore,

L < A2 ⊕ 4A1 ⊕ E8.

This overlattice contains forbidden component (66), i.e. 3A1 ⊕A2 ⊕ E8.
(125) A5

1,1A3,2C
2
3,2: C = 2, L is bounded by

5A1 ⊕A3(2)⊕ 6A1(2) < L < Z5(1/2) ⊕A′
3(2) ⊕ 2A′

3(4).

We see from the upper bound that L < Z6(1/2) ⊕ Z2 ⊕ 2A′
3(4). Then L is contained in

a maximal integral lattice of Z6(1/2) ⊕ Z2 ⊕ 2A′
3(4) which is in the genus of Z8 ⊕ 2A′

3(4).
Since L is even, it is contained in the maximal even sublattice of that, which is forbidden
component (72).

(126) A9
1,1D5,4: C = 2, Qg = 9A1⊕D5(4) < L. Then L is contained in a maximal even overlattice

of 9A1 ⊕D5(4), in the genus of A1 ⊕D5 ⊕ E8. This is forbidden component (69).
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(127) A5
1,1A3,2G

3
2,2: C = 2, L = 3A2(2)⊕K with

5A1 ⊕A3(2) < K < Z5(1/2) ⊕A′
3(2).

The maximal even overlattice of 5A1 ⊕A3(2) is E8. Using 2A2(2) < 2A2, we have

L < E8 ⊕ 3A2(2) < E8 ⊕ 2A2 ⊕A2(2)

This overlattice is forbidden component (67).
(128) A5

1,1A3,2D4,3G2,2: C = 2, L = A2(2) ⊕ K with 5A1 ⊕ A3(2) ⊕ D4(3) < K. The maximal
even overlattice of 5A1 ⊕A3(2) ⊕D4(3) is in the genus of E8 ⊕D4. Therefore,

L < A2(2)⊕ E8 ⊕D4.

This overlattice contains forbidden component (68), i.e. E8 ⊕D4 ⊕A2(2).
(129) A2

1,1A
3
3,2C3,2: C = 2, Qg = 2A1 ⊕ 3A3(2) ⊕ 3A1(2) < L. Therefore, L is contained in

a maximal even overlattice of 2A1 ⊕ 3A3(2) ⊕ 3A1(2) in the genus A1 ⊕ D5 ⊕ E8. This
overlattice is forbidden component (69).

(130) A3
2,1B

2
2,1F4,3: C = 3, L = D4(3) ⊕K with 3A2 ⊕ 4A1 < K. The maximal even overlattice

of 3A2 ⊕ 4A1 is E6 ⊕D4. Therefore,

L < E6 ⊕D4 ⊕D4(3) < E6 ⊕ 2D4 < E6 ⊕ E8

using the rules D4(3) < D4 and 2D4 < E8. The overlattice E8 ⊕ E6 of L is forbidden
component (70).

11.2.10. Rank 16. There are 5 extraneous root systems of rank 16.

(131) A10
1,1C

2
3,2: C = 2, L is bounded by

10A1 ⊕ 6A1(2) < L < Z10(1/2) ⊕ 2A′
3(4).

Then L is contained in a maximal integral sublattice of Z10(1/2)⊕2A′
3(4) which is of genus

Z10 ⊕ 2A′
3(4). Therefore, L is contained in the maximal even sublattice of that, which is in

the genus of 2A3 ⊕D7 and contains forbidden component (54), i.e A3 ⊕D7.
(132) A10

1,1G
3
2,2: C = 2, L = 3A2(2) ⊕K with 10A1 < K. Any maximal even overlattice of 10A1

is in the genus of E8 ⊕ 2A1. Therefore,

L < E8 ⊕ 2A1 ⊕ 3A2(2).

This overlattice contains forbidden component (58), i.e. A1 ⊕A2(2)⊕ E8.
(133) A7

1,1A
2
3,2C3,2: C = 2, Qg = 7A1 ⊕ 2A3(2)⊕ 3A1(2). Then L is contained in a maximal even

overlattice of Qg which lies in the genus of A1 ⊕ D7 ⊕ E8. This overlattice is forbidden
component (74).

(134) A10
1,1D4,3G2,2: C = 2, L = A2(2)⊕K with 10A1⊕D4(3) < K. The maximal even overlattices

of 10A1 ⊕D4(3) are all in the genus of E8 ⊕D6. Therefore,

L < E8 ⊕D6 ⊕A2(2).

This is forbidden component (73).
(135) A3,1A7,2G

3
2,1: C = 4, L = 3A2 ⊕K with A3 ⊕ A7(2) < K. The maximal even overlattices

of A3 ⊕A7(2) are all in the genus of 2A1 ⊕ E8. Therefore,

L < 2A1 ⊕ 3A2 ⊕ E8 < 2A1 ⊕ E6 ⊕ E8.

This overlattice contains forbidden component (70), i.e. E8 ⊕ E6.
63



11.2.11. Rank 18. There are 7 extraneous root systems of rank 18.

(136) A9
1,1A

3
3,2: C = 2, Qg = 9A1 ⊕ 3A3(2), and Qg < L. The maximal even overlattice of Pg is

in the genus 2A1 ⊕ 2E8. Then L is contained in a certain lattice K in the genus 2A1 ⊕ 2E8.
Since there is a unique (up to powers) reflective Borcherds product on

2U ⊕K ∼= 2U ⊕ 2A1 ⊕ 2E8

and this product has weight 42, we have L 6= K. Note that discr(Qg) = 224, and therefore
discr(L) = 2a with an integer a. Therefore, L is contained in an index-two sublattice of K,
which is either in the genus of 2E8 ⊕ 2A1(2) or in the genus of E8 ⊕D8 ⊕ 2A1. These two
lattices are respectively forbidden components (78) and (76), so neither case can occur.

(137) A12
1,1A3,2C3,2: C = 2, Qg = 12A1⊕A3(2)⊕3A1(2). Since Qg < L, the lattice L is contained

in a maximal even overlattice of Qg which lies in the genus of A1 ⊕ A1(2) ⊕ 2E8. This
overlattice is forbidden component (77).

(138) A5
2,1D

2
4,2: C = 3, Qg = 5A2 ⊕ 2D4(2), Pg = 5A′

2 ⊕ 2D4, and Qg < L < Pg. The maximal
even overlattices of Qg lie in the genus of A2⊕2E8. Since L is contained in a certain lattice
K of this genus and also in Pg, it follows that L is contained in an index 4 sublattice of K
in the genus of A2 ⊕ 2D4 ⊕E8. This overlattice is forbidden component (75).

(139) A2,1B
6
2,1D4,2: C = 3, Pg = A′

2 ⊕ Z12 ⊕D4. Since L is an even sublattice of Pg, we obtain

L < A2 ⊕D12 ⊕D4.

Note that

2U ⊕A2 ⊕D12 ⊕D4
∼= 2U ⊕A2 ⊕ 2D4 ⊕ E8.

This case can then be excluded using forbidden component (75), i.e. A2 ⊕ 2D4 ⊕ E8.
(140) A3,1C

5
3,1: C = 4, Qg = A3 ⊕ 15A1, and Qg < L. Then L is contained in a maximal even

overlattice of Qg which lies in the genus of A1 ⊕A1(2)⊕ 2E8. This overlattice is forbidden
component (77).

(141) A3,1C3,1G
6
2,1: C = 4, L = 6A2 ⊕K with A3 ⊕ 3A1 < K. The maximal even overlattice of

A3 ⊕ 3A1 is D5 ⊕A1. Therefore,

L < D5 ⊕A1 ⊕ 6A2.

This overlattice contains forbidden component (57), i.e. D5 ⊕ 3A2.
(142) A3,1C

3
3,1G

3
2,1: C = 4, L = 3A2 ⊕K with A3 ⊕ 9A1 < K. The maximal even overlattices of

A3 ⊕ 9A1 are all in the genus of E8 ⊕A3 ⊕A1. Therefore,

L < E8 ⊕A3 ⊕A1 ⊕ 3A2 < E8 ⊕E6 ⊕A3 ⊕A1.

This overlattice contains forbidden component (70), i.e. E8 ⊕ E6.

11.2.12. Rank larger than 18. There are 10 extraneous root systems of rank greater than 18, but
they cannot admit reflective Borcherds products of singular weight by [115, Theorem 1.5].

12. The classification of symmetric reflective modular forms

In this section we prove the symmetric cases of Theorem 5.1:

Theorem 12.1. If 2U ⊕ L has a symmetric reflective Borcherds product of singular weight whose
Jacobi form input has non-negative q0-term, then the associated semi-simple Lie algebra g defined
in Theorem 4.1 satisfies 1/C ∈ Z.

The Lie algebras g as above are listed in Tables 8 and 2.
To prove the theorem we need the following generalization of [110, Lemma 3.3].
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Lemma 12.2. Let U ⊕K ⊕L be an even lattice of signature (l, 2) with l ≥ 3 and set M = U ⊕K.
Suppose that M ⊕ L has a reflective Borcherds product which vanishes on some λ⊥ with λ ∈ M ′.
Let L1 be an even overlattice of L. Then M ⊕L1 also has a reflective Borcherds product vanishing
on λ⊥.

Proof. Let f be the input of the Borcherds product on M ⊕ L as a vector-valued modular form.
Recall that the principal part of f was described in [110, Lemma 2.1]. Note that

M ⊕ L < M ⊕ L1 < M ′ ⊕ L′
1 < M ′ ⊕ L′.

By applying the arrow operator of [14, Lemma 5.6] to f , we obtain a weakly holomorphic modular
form of weight 1− l/2 for the Weil representation ρM⊕L1 that is given by

f | ↑M⊕M1
M⊕L =

∑

γ∈(M ′⊕L′

1)/(M⊕L1)

∑

n∈Z−γ2/2

∑

x∈(γ+M⊕L1)/(M⊕L)

c(x, n)qneγ ,

where c(x, n) are the coefficients of qnex in the Fourier expansion of f . We will write

f | ↑M⊕M1
M⊕L =

∑

γ∈(M ′⊕L′

1)/(M⊕L1)

c′(γ, n)qneγ .

It is not hard to see that the nonzero coefficients of f | ↑M⊕M1
M⊕L are reflective (similarly to the

proof of [110, Lemma 3.3]); it is less obvious that f | ↑M⊕M1
M⊕L is not identically zero. Suppose without

loss of generality that λ is primitive in M ′, and write λ2 = 2/d where d ∈ N. We have two cases to
consider.

(a) If the order of λ in the discriminant group of M ⊕ L is ord(λ) = d, then we know by [110,
Section 2.1 and Lemma 3.3] that c(λ,−1/d) > 0 and thus

c′(λ,−1/d) =
∑

x∈(λ+M⊕L1)/(M⊕L)
ord(x)=d

c(x,−1/d) ≥ c(λ,−1/d) > 0,

because every c(x,−1/d) is non-negative.
(b) If ord(λ) 6= d, then ord(λ) = d/2 and d/2 is even. In this case,

c(2λ,−4/d) + c(λ,−1/d) > 0

and therefore

c′(2λ,−4/d) + c′(λ,−1/d) =
∑

x∈(λ+M⊕L1)/(M⊕L)
ord(x)=d

c(x,−1/d)

+
∑

y∈(λ+M⊕L1)/(M⊕L)
ord(y)=d/2

(
c(2y,−4/d) + c(y,−1/d)

)

≥ c(2λ,−4/d) + c(λ,−1/d) > 0,

because c(x,−1/d) ≥ 0 and c(2y,−4/d) + c(y,−1/d) ≥ 0.

In particular, B(f | ↑M⊕M1
M⊕L ) is a reflective Borcherds product on M ⊕ L1 that vanishes on λ⊥.

Note that the coefficients of q−1e0 in the Fourier expansions of f and f | ↑M⊕M1
M⊕L are the same, so

B(f | ↑M⊕M1
M⊕L ) remains symmetric if B(f) was. �

Proof of Theorem 12.1. To prove the theorem we have to rule out the 5 extraneous semi-simple g

of symmetric type with non-integral 1/C. We do this by cases.
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(1) A2,4B2,4: The lattice L is bounded by

A2(4)⊕ 2A1(4) < L < A′
2(4) ⊕ 2A1(2).

Since L is even, we conclude

A2(4)⊕ 2A1(4) < L < A2(4) ⊕ 2A1(2).

It follows that L = A2(4)⊕2A1(4) or A2(4)⊕2A1(2). By a direct calculation, we can prove
that 2U ⊕ A2(4) ⊕ 2A1(2) has no symmetric reflective Borcherds product of any weight.
Lemma 12.2 then shows that 2U ⊕ L has no symmetric reflective Borcherds products.

(2) A2,2D4,4: The lattice L is bounded by

A2(2)⊕D4(4) < L < A′
2(2) ⊕D4(2),

and further by
A2(2)⊕D4(4) < L < A2(2) ⊕D4(2).

Since both L and L(3/2) are integral, L(1/2) is also integral. Since

A2 ⊕D4(2) < L(1/2) < A2 ⊕D4,

L(1/2) can only be A2 ⊕D4(2), A2 ⊕ 4A1 or A2 ⊕D4, and therefore L = A2(2) ⊕D4(4),
A2(2)⊕4A1(2) or A2(2)⊕D4(2). We were able to check by a direct calculation that there are
no symmetric reflective Borcherds products of singular weight on 2U ⊕ L in the latter two
cases; in the first case, the discriminant was prohibitively large and we needed a more subtle
argument. Let v2 be a 2-root of D4 and write K for the lattice generated by D4 and v2/2,
such that K(4) is an even lattice of discriminant 44 = 256. We were able to compute that
there are no symmetric reflective Borcherds products of any weights on 2U ⊕A2(2)⊕K(4).
By Lemma 12.2, there are also no symmetric reflective Borcherds products of any weight
on 2U ⊕A2(2) ⊕D4(4).

(3) A2
2,2B

2
2,2: The lattice L is bounded by

2A2(2)⊕ 4A1(2) < L < 2A′
2(2)⊕ 4A1.

Since both L and L(3/2) are integral, L(1/2) is also integral. From

2A2 ⊕ 4A1 < L(1/2) < 2A′
2 ⊕ Z4,

and the integrality of L(1/2), it follows that

2A2 ⊕ 4A1 < L(1/2) < 2A2 ⊕ Z4.

This forces L(1/2) to be one of 2A2⊕4A1, A2⊕2A1⊕Z2, 2A2⊕D4 or 2A2⊕Z4. Therefore,
L = 2A2(2) ⊕ 4A1(2), 2A2(2) ⊕ 2A1(2) ⊕ 2A1, 2A2(2) ⊕ D4(2) or 2A2(2) ⊕ 4A1. Here,
2A2(2) ⊕ D4 was the forbidden component (39) - there is no reflective Borcherds product
(symmetric or anti-symmetric) of any weight on 2U ⊕ 2A2(2) ⊕ D4. Since L is of type
2A2(2)⊕K and K < D4, we can use Lemma 12.2 to conclude that 2U⊕L has no symmetric
reflective Borcherds products of any weight.

(4) A4,2C4,2: The lattice L is bounded by

A4(2)⊕ 4A1(2) < L < A′
4(2) ⊕D4(2).

Since L is even, we have

A4(2)⊕ 4A1(2) < L < A4(2) ⊕D4(2).

It follows that L = A4(2) ⊕ 4A1(2) or A4(2) ⊕D4(2). By direct calculation, we were able
to verify that there are no reflective Borcherds products of any weight on 2U ⊕A4(2)⊕D4.
Lemma 12.2 then shows that 2U ⊕ L also has no symmetric reflective Borcherds products
of any weight.
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(5) A6,2B4,2: The lattice L is bounded by

A6(2)⊕D4(2) < L < A′
6(2)⊕ 4A1.

Since L is even, we have

A6(2)⊕D4(2) < L < A6(2)⊕ 4A1.

It follows that L = A6(2) ⊕D4(2) or A6(2) ⊕ 4A1. By direct calculation, we were able to
verify that there are no symmetric reflective Borcherds products of any weight on 2U⊕A6(2).
Using the pullback from 2U ⊕ L to 2U ⊕A6(2), this rules out the root system A6,2B4,2.

�

13. Application: anti-symmetric paramodular forms of weight 3

The restrictions of reflective Borcherds products of singular weight on appropriate lattices yield
anti-symmetric Siegel paramodular forms of degree 2 and weight 3.

Siegel paramodular forms of degree two and level t are holomorphic functions on the genus-two
Siegel upper half space

H2 = {Z = ( τ z
z ω ) ∈ M(2,C) : ImZ > 0}

which are modular under the level t paramodular group

Γt =




∗ t∗ ∗ ∗
∗ ∗ ∗ ∗/t
∗ t∗ ∗ ∗
t∗ t∗ t∗ ∗


 ∩ Sp2(Q), all ∗ ∈ Z.

These can be realized as modular forms on orthogonal groups of the lattice 2U ⊕A1(t) of signature

(3, 2). More precisely, modular forms on Õ
+
(2U ⊕A1(t)) correspond exactly to Siegel paramodular

forms that are modular under the normal extension

Γ+
t = Γt ∪ ΓtVt, Vt =

1√
t




0 t 0 0
−1 0 0 0
0 0 0 1
0 0 −t 0


 .

Let χt : Γ
+
t → {±1} be the unique nontrivial character with kernel Γt. Then Mk(Γt) is decomposed

into the direct sum of plus and minus Vt-eigenspaces, that is,

Mk(Γt) = Mk(Γ
+
t )⊕Mk(Γ

+
t , χt).

Moreover, symmetric modular forms of weight k on Õ
+
(2U ⊕ A1(t)) correspond to Mk(Γ

+
t , χ

k
t ).

Therefore, we call Siegel paramodular forms inMk(Γ
+
t , χ

k
t ) symmetric and Siegel paramodular forms

in Mk(Γ
+
t , χ

k+1
t ) anti-symmetric. For a paramodular eigenform, the distinction between symmetry

and anti-symmetry is exactly the sign in the functional equation of the associated L-function.
Anti-symmetric Siegel paramodular forms of weight 3 have applications to birational geometry.

Let t be squarefree. By [45, Proposition 1.5], the modular variety

A+
t = Γ+

t \H2

is isomorphic to the moduli space of polarized K3 surfaces with a polarisation of type 〈2t〉⊕ 2E8(−1).
[45, Theorem 1.5] further yields that if t is prime then the above modular variety is actually the
moduli space of Kummer surfaces associated to (1, t)-polarised abelian surfaces. We know from [34]
that the geometric genus of the variety A+

t is given by

h3,0
(
A+

t

)
= dimC S3(Γ

+
t ).
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Recently, Ibukiyama [64] found a dimension formula for S3(Γ
+
t ) for squarefree t. In particular,

he proved [64, Proposition 6.1] that dimC S3(Γ
+
t ) > 0 for prime t if and only if t > 163 and

t 6= 179, 181, 191, 193, 199, 211, 229, 241. In particular the moduli space A+
t always has positive

geometric genus if t > 241 is prime.
In this section we construct a large infinite family of anti-symmetric Siegel paramodular forms

of weight 3 that seems to be new.
Recall that there are exactly two semi-simple Lie algebras g of rank 6 with integral C in

Schellekens’ list. Let z ∈ C. For any nonzero v ∈ Lg with ϑg(τ, vz) 6= 0, the pullback of the
corresponding singular-weight reflective Borcherds product B(χV ) along the embedding

2U ⊕ Zv →֒ 2U ⊕ Lg

defines a nonzero anti-symmetric paramodular form of weight 3 and level v2/2. The case g = A6,7

was considered in [52, Theorem 2.1]. Here we use the other Lie algebra, g = A1,2D5,8. In this case,
the orbit lattice is

Lg = A1(2) ⊕D′
5(8).

By restricting to vectors in Lg we obtain the following theorem.

Theorem 13.1. For a = (a1, a2, a3, a4, a5, a6) ∈ Z6, the theta block

Θa =ϑa1ϑa2ϑa3ϑa4ϑa5ϑa1+a2ϑa1+a2+a3ϑa1+a2+a3+a4ϑa2+a3ϑa2+a3+a4ϑa3+a4

ϑa1+a2+a3+a5ϑa2+a3+a5ϑa3+a5ϑa1+2a2+2a3+a4+a5ϑa1+a2+2a3+a4+a5

ϑa1+a2+a3+a4+a5ϑa2+2a3+a4+a5ϑa2+a3+a4+a5ϑa3+a4+a5ϑ2a6/η
15

= q2(· · · ) ∈ J3,N(a)

(13.1)

of type 21−ϑ
15−η is a holomorphic Jacobi form of weight 3 and index N(a) for A1, where

ϑb(τ, z) := ϑ(τ, bz), b ∈ Z,

and the index N(a) is half the sum of squares of the subscripts in ϑ∗. If this theta block is not
identically zero, then there exists an anti-symmetric Siegel paramodular form Fa of weight 3 and
level N(a) with trivial character whose leading Fourier–Jacobi coefficient is exactly Θa. Moreover,
if N(a) is squarefree then Fa is a cusp form.

In squarefree levels t < 300, Theorem 13.1 produces 64 anti-symmetric paramodular forms of
weight 3 that are listed in Table 9. Using [52, Tables 1-3] and Table 9, we obtain a basis of S3(Γ

+
t )

consisting of Borcherds products for the prime levels

t =167, 173, 197, 223, 227, 239, 251, 257, 263, 269, 271, 277, 283, 293.

Note that Ibukiyama [64] also showed that dimC S3(Γ
+
t ) = 1 for t = 233, 281; however, the

corresponding paramodular forms cannot be obtained from the two infinite series [52, Theorem 2.2]
and Theorem 13.1.

Anti-symmetric Siegel paramodular forms of weight 2 and trivial character are very interesting
due to their role in the paramodular conjecture. Unfortunately, there is no semi-simple V1 structure
g of rank 4 with integral C, so the above method does not work. However, there does exist a
unique semi-simple V1 structure g of rank 4 with non-integral C. In particular, we can use a similar
argument to construct anti-symmetric Siegel paramodular forms of weight 2 with a character of
order 2 by considering the pullbacks of B(χV ) where V1 = g = C4,10.

14. Remarks, questions and conjectures

In this section we raise some questions and conjectures that are related to our work in this paper.
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14.1. Uniqueness of hyperbolizations. We have proved that there are exactly 81 affine Kac–
Moody algebras ĝ which have hyperbolizations. For each of these algebras, we have constructed a
natural hyperbolization with underlying lattice Lg.

Question 14.1. Does every affine Lie algebra have a unique hyperbolization? More concretely, let
g be one of the 81 affine Lie algebras with a hyperbolization, and suppose that L is an even positive-
definite lattice for which there is a singular-weight reflective Borcherds product F on 2U ⊕L whose
associated semi-simple Lie algebra is g.

(a) Is the lattice L uniquely determined?
(b) Is the modular form F uniquely determined?

Note in (b) that a single function can have interpretations as a modular form on O+(2U ⊕ L)
for different lattices L.

Recall that the lattice L must satisfy the bounds Qg < L < Pg. When g is of symmetric type,
there are examples for which the lattice L is not unique:

(1) g = A1,16: In this case, Qg = A1(16) and Pg = A1(4). Then L has only two possibilities:
A1(16) and A1(4). We verify by direct calculation that both 2U ⊕A1(16) and 2U ⊕A1(4)
have unique reflective Borcherds products of singular weight; however, the two products are
expansions of the same modular form.

(2) g = A4
1,4: We have constructed a reflective Borcherds product of singular weight on 2U⊕Lg

for Lg = 4A1. This product can also be viewed as a reflective Borcherds product on
2U ⊕D4(2).

(3) g = A2
1,8: the singular Borcherds product we constructed can be defined on 2U ⊕L for both

L = Lg = 2A1(2) and L = 2A1(4).
(4) g = A8

1,2: besides Lg = D8, we can also take any of L = 2D4,D
′
8(2), or E8(2).

(5) g = A3
2,3: besides Lg = 3A2, we can also take L = E′

6(3).

When g = B2,3G2,4, we have Qg = 2A1(3) ⊕ A2(4) and Pg = Z2(3) ⊕ A2(4). Since L is even,
it is contained in the maximal even sublattice of Pg, which coincides with Qg. Therefore, L =
2A1(3)⊕A2(4) = Lg. It follows that L is unique.

Regarding the question above, we propose the following conjecture.

Conjecture 14.2. The singular Borcherds product F is always unique as functions on symmetric
domains. For any semi-simple g of anti-symmetric type, the lattice L is unique, i.e. L = Lg.
Furthermore, the hyperbolization of g is unique.

Some cases of this conjecture can be proved easily, but in general it appears difficult to check.
For example, [106, Theorem 4.7] implies the uniqueness of L and F for the 23 semi-simple g of
rank 24. When g = E8,2B8,1, we have Qg = E8(2) ⊕ D8 and Pg = E8(2) ⊕ Z8, which uniquely
determines L = E8(2)⊕D8. The uniqueness of F follows from [110, Lemma 3.2].

We proved in Section 6 that the 69 singular Borcherds products on 2U ⊕ Lg for anti-symmetric
g come from only 11 different modular forms. The above conjecture would therefore imply the
following classification.

Conjecture 14.3. There are exactly 23 distinct modular forms that can be realized as reflective
Borcherds products of singular weight on a lattice of type 2U ⊕ L whose input forms have non-
negative principal parts.

14.2. Other questions and conjectures. We have the following conjecture related to Remark
6.7.

Conjecture 14.4. Let [g] be a Co0-conjugacy class such that Λg is nonzero. Let Mg be an even lat-

tice of signature (rk(Λg)+2, 2) whose discriminant form is isomorphic to (R(V ĝ
Λg
),−q) as introduced
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by Lam [71]. Then the multiplicative theta lift of the (vector-valued) characters of V ĝ
Λg

(divided by

ηrk(Λ
g)) is a reflective Borcherds product of singular weight on Mg. Moreover, the Fourier expansion

of this product at a certain 0-dimensional cusp is the g-twisted denominator of the fake monster
algebra.

As we mentioned in Section 6, this conjecture was proved in [113] whenever g has level equal to
its order. However, the proof is indirect.

Remarks 7.7 and 7.8 lead us to ask the following questions:

Question 14.5. Let [g] be a Co0-conjugacy class whose level ng is equal to its order. By [113],
the g-twisted denominator of the fake monster algebra is the Fourier expansion of a singular-weight
reflective Borcherds product Φg for O+(U1(ng)⊕U ⊕Λg) at the 0-dimensional cusp determined by
U1(ng). The function Φg can also be viewed as a singular-weight reflective Borcherds product on

U1 ⊕U(ng)⊕ (Λg)′(ng), and we can consider its Fourier expansion there at the 0-dimensional cusp

determined by U(ng). When (Λg)′(ng) 6= Λg, this Fourier expansion may define the denominator
of a new BKM superalgebra, denoted G′

g, which is different from the g-twist of the fake monster
algebra. Is G′

g related to a vertex algebra? If so, can we express its input Jacobi form

φd(τ, z) ∈ J !
0,(Λg)′(ng)

(Γ0(ng/d)), d|ng

in terms of characters of the vertex algebra? Does G′
g have a natural construction by the BRST

cohomology? Note that the corresponding vertex algebra is V fE8 when g has cycle shape 1−8216

and it is the Conway SCFT V f♮ when g has cycle shape 1−24224.

We have the following question concerning Section 8.

Question 14.6. Let Gg denote the BKM superalgebra corresponding to any of the four affine Lie
algebras possessing exceptional modular invariants. Can we realize Gg as the BRST cohomology
related to a vertex algebra? Our expression of the Jacobi form input in terms of affine characters
may be a hint towards finding such a desirable vertex algebra.
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C g

1/24 A3
1,48A

2
2,72

1/24 A5
1,48B2,72

1/24 A1,48A2,72G2,96

1/24 A3,96B2,72

1/12 A6
1,24A2,36

1/12 A4
1,24G2,48

1/12 A2
1,24B

2
2,36

1/12 A2
2,36B2,36

1/12 A1,24A2,36A3,48

1/8 A1,16B2,24G2,32

1/8 A1,16A
3
2,24

1/8 A2
1,16C3,32

1/8 A3
1,16A2,24B2,24

1/8 A9
1,16

1/8 A4
1,16A3,32

1/8 A2
1,16B3,40

1/8 A1,16A4,40

1/6 A2
1,12A2,18G2,24

1/6 A6
1,12B2,18

1/6 A4
1,12A

2
2,18

1/6 D4,36

1/6 G2
2,24

1/6 A1,12A3,24B2,18

1/6 A2,18B
2
2,18

1/4 A3
1,8C3,16

1/4 A10
1,8

1/4 A2
1,8A

3
2,12

1/4 A5
1,8A3,16

1/4 A2
1,8B2,12G2,16

1/4 A3
1,8B3,20

1/4 A2
3,16

1/4 A2
1,8A4,20

1/4 A4
1,8A2,12B2,12

1/4 A2
2,12G2,16

1/4 B3
2,12

1/3 A2,9B2,9G2,12

1/3 A8
1,6A2,9

1/3 A1,6A2,9C3,12

1/3 A2,9A4,15

1/3 A1,6A2,9B3,15

1/3 A6
1,6G2,12

C g

1/3 A2
1,6A

2
2,9B2,9

1/3 A4
1,6B

2
2,9

1/3 A3
1,6A2,9A3,12

1/3 A4
2,9

1/3 A1,6A3,12G2,12

1/2 A2,6G
2
2,8

1/2 A2
1,4A

2
3,8

1/2 A4
1,4A

3
2,6

1/2 A4
1,4A4,10

1/2 A1,4A2,6A3,8B2,6

1/2 A7
1,4A3,8

1/2 C4,10

1/2 A5
1,4B3,10

1/2 A2
2,6B

2
2,6

1/2 A3,8B3,10

1/2 A6
1,4A2,6B2,6

1/2 A2
1,4A

2
2,6G2,8

1/2 B4,14

1/2 A12
1,4

1/2 A4
1,4B2,6G2,8

1/2 A2,6D4,12

1/2 A5
1,4C3,8

1/2 A2
1,4B

3
2,6

1/2 A3,8C3,8

2/3 A4
1,3G

2
2,6

2/3 A4
1,3D4,9

3/4 A4
2,4B2,4

1 A1,2A
3
2,3B3,5

1 A3
1,2A2,3B2,3C3,4

1 A1,2A3,4B
3
2,3

1 A1,2A4,5C3,4

1 A6,7

1 A4
1,2A2,3G

2
2,4

1 A4
1,2B4,7

1 A16
1,2

1 A1,2A5,6B2,3

1 A1,2D5,8

1 A6
1,2A

2
2,3G2,4

1 A2
1,2A2,3B

2
2,3G2,4

1 A9
1,2B3,5

1 B2
2,3D4,6

C g

1 A1,2B2,3B3,5G2,4

1 A3
2,3A4,5

1 A1,2A4,5B3,5

1 A2
1,2A2,3A4,5B2,3

1 A2
1,2B

2
3,5

1 A1,2B2,3C3,4G2,4

1 A3
1,2A

3
2,3A3,4

1 A1,2A
3
3,4

1 A8
1,2A

3
2,3

1 A6
2,3

1 A11
1,2A3,4

1 A5
1,2A2,3A3,4B2,3

1 A8
1,2B2,3G2,4

1 A1,2A
3
2,3C3,4

1 A3
2,3B2,3G2,4

1 A4
1,2A2,3D4,6

1 A4
1,2A3,4C3,4

1 A3
1,2A3,4A4,5

1 A2
1,2G

3
2,4

1 A2
1,2C

2
3,4

1 A6
1,2A

2
3,4

1 A2,3A
2
3,4B2,3

1 A2
1,2A

4
2,3B2,3

1 A2
1,2B3,5C3,4

1 A8
1,2A4,5

1 A2
4,5

1 A4
1,2A

2
2,3B

2
2,3

1 A2,3B
4
2,3

1 B2
2,3G

2
2,4

1 A9
1,2C3,4

1 A4
1,2A3,4B3,5

1 A4,5B2,3G2,4

1 A1,2A
2
2,3A3,4G2,4

1 A4
1,2C4,5

1 A3
1,2A2,3B2,3B3,5

1 A10
1,2A2,3B2,3

1 A3
1,2A3,4B2,3G2,4

1 A2
1,2D4,6G2,4

1 A6
1,2B

3
2,3

4/3 C2
3,3G2,3

4/3 G4
2,3

Table 4. The 221 solutions of Equation (4.1) in the order of increasing C. Those
allowing hyperbolization are colored blue (continued on next page).
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C g

3/2 A5
2,2B

2
2,2

3/2 A4
2,2D4,4

3/2 B6
2,2

3/2 A2,2F4,6

2 A2
1,1C3,2D5,4

2 A10
1,1C

2
3,2

2 A5
1,1A3,2C

2
3,2

2 A9
1,1D5,4

2 A2
3,2G

3
2,2

2 A14
1,1A

2
3,2

2 A10
1,1G

3
2,2

2 A19
1,1A3,2

2 A5
1,1A3,2G

3
2,2

2 A3
1,1A5,3D4,3

2 A9
1,1A

3
3,2

2 A24
1,1

2 A3
1,1C3,2D4,3G2,2

2 A7
1,1A

2
3,2C3,2

2 A3
1,1A7,4

2 A2
1,1D6,5

2 A5
1,1A3,2D4,3G2,2

2 A3
1,1C3,2G

3
2,2

2 A3
1,1C

3
3,2

2 A2
3,2D4,3G2,2

2 A4
1,1A

4
3,2

2 A17
1,1C3,2

2 A1,1C5,3G2,2

2 A2
3,2C

2
3,2

2 A2
1,1A

3
3,2C3,2

2 A3
1,1A5,3G

2
2,2

2 A12
1,1A3,2C3,2

2 A10
1,1D4,3G2,2

2 A4
1,1A3,2D5,4

C g

5/2 A2
4,2C4,2

5/2 B4
3,2

3 A2
2,1A8,3

3 A2,1B2,1E6,4

3 A5
2,1D

2
4,2

3 A2
2,1B

8
2,1

3 A7
2,1B

4
2,1

3 A6
2,1B

2
2,1D4,2

3 A12
2,1

3 A2
2,1D4,2F4,3

3 A3
2,1B

2
2,1F4,3

3 B4
2,1D

2
4,2

3 A2
2,1A

2
5,2B2,1

3 A2,1B
6
2,1D4,2

7/2 B3
4,2

4 A3,1C7,2

4 A5
3,1D5,2

4 A3,1C
5
3,1

4 A2
3,1D

2
5,2

4 A3,1A7,2C
2
3,1

4 C2
3,1E6,3

4 A8
3,1

4 A3,1C3,1G
6
2,1

4 A3,1A7,2G
3
2,1

4 A3,1D7,3G2,1

4 A3,1C
3
3,1G

3
2,1

4 E6,3G
3
2,1

9/2 A8,2F4,2

5 A4,1B
4
3,1C4,1

5 A6
4,1

5 A3
4,1C

2
4,1

5 A4,1A9,2B3,1

5 C4
4,1

C g

5 B2
3,1C4,1D6,2

11/2 B2
6,2

6 D6
4,1

6 A5,1C5,1E6,2

6 A5,1E7,3

6 A4
5,1D4,1

7 B2
4,1D8,2

7 B4,1C
2
6,1

7 A4
6,1

7 A6,1B
4
4,1

8 A7,1D9,2

8 A2
7,1D

2
5,1

9 C8,1F
2
4,1

9 B5,1E7,2F4,1

9 A3
8,1

10 D4
6,1

10 A2
9,1D6,1

11 B6,1C10,1

23/2 B12,2

12 E4
6,1

12 A11,1D7,1E6,1

13 A2
12,1

14 D3
8,1

15 B8,1E8,2

16 A15,1D9,1

18 D10,1E
2
7,1

18 A17,1E7,1

22 D2
12,1

25 A24,1

30 E3
8,1

30 D16,1E8,1

46 D24,1

Table 4. (continued).
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C g

1/8 A1,16

1/4 A2
1,8

1/3 A2,9

1/2 A4
1,4

3/4 A2,4B2,4

1 A8
1,2

C g

1 A3
2,3

1 A4,5

1 A3,4A
3
1,2

1 B2,3G2,4

1 B2,3A2,3A
2
1,2

1 B3,5A1,2

C g

1 C3,4A1,2

3/2 A2,2D4,4

3/2 A2
2,2B

2
2,2

5/2 A4,2C4,2

7/2 A6,2B4,2

Table 5. The 17 solutions of Equation (4.2) in the order of increasing C. Those
allowing hyperbolization are colored blue.

g genus g C

124 II24,0(1)

D24,1 46

D16,1E8,1 30

E3
8,1 30

A24,1 25

D2
12,1 22

A17,1E7,1 18

D10,1E
2
7,1 18

A15,1D9,1 16

D3
8,1 14

A2
12,1 13

A11,1D7,1E6,1 12

E4
6,1 12

A2
9,1D6,1 10

A3
8,1 9

A2
7,1D

2
5,1 8

A4
6,1 7

A4
5,1D4,1 6

D6
4,1 6

A6
4,1 5

A8
3,1 4

A12
2,1 3

A24
1,1 2

C24 1

1828 II16,0(2
+10
II )

E8,2B8,1 15

C10,1B6,1 11

C8,1F
2
4,1 9

E7,2B5,1F4,1 9

D9,2A7,1 8

D8,2B
2
4,1 7

g genus g C

1828 II16,0(2
+10
II )

C2
6,1B4,1 7

E6,2C5,1A5,1 6

A9,2A4,1B3,1 5

D6,2C4,1B
2
3,1 5

C4
4,1 5

A7,2C
2
3,1A3,1 4

D2
5,2A

2
3,1 4

A2
5,2B2,1A

2
2,1 3

D2
4,2B

4
2,1 3

A4
3,2A

4
1,1 2

A16
1,2 1

1636 II12,0(3
−8)

E7,3A5,1 6

D7,3A3,1G2,1 4

E6,3G
3
2,1 4

A8,3A
2
2,1 3

A5,3D4,3A
3
1,1 2

A6
2,3 1

142244 II10,0(2
+2
2 4+6

II )

C7,2A3,1 4

E6,4B2,1A2,1 3

A7,4A
3
1,1 2

D5,4C3,2A
2
1,1 2

A3
3,4A1,2 1

1454 II8,0(5
+6)

D6,5A
2
1,1 2

A2
4,5 1

12223262 II8,0(2
+6
II 3−6)

C5,3G2,2A1,1 2

A5,6B2,3A1,2 1

1373 II6,0(7
−5) A6,7 1

12214182 II6,0(2
+1
5 4+1

1 8+4
II ) D5,8A1,2 1

Table 6. Höhn’s construction: the 8 conjugacy classes with the same order and level.
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g genus Lg n(Lg) g C

212 II12,0(2
−10
II 4−2

II )

D12(2) 6

B12,2 23/2
B2

6,2 11/2
B3

4,2 7/2
B4

3,2 5/2
B6

2,2 3/2
A12

1,4 1/2

E8(2)⊕D4(2) 3
A8,2F4,2 9/2
C4,2A

2
4,2 5/2

D4,4A
4
2,2 3/2

2363 II6,0(2
+4
II 4−2

II 3+5) D4(6) ⊕A2(2) 2
F4,6A2,2 1/2
D4,12A2,6 1/2

22102 II4,0(2
−2
II 4−2

II 5+4) D4(10) 1 C4,10 1/2

Table 7. Höhn’s construction: the 3 conjugacy classes with distinct order and level.

g g genus of Lg Lg δLg

1−155 A4,5 II4,0(5
+3) A′

4(5) 2

1−22352101 A1,2B3,5 II4,0(2
+2
II 5+3) L1 4

1−2234182 A1,2C3,4 II4,0(2
−1
3 4+1

1 8−2
II ) A1(2) ⊕A′

3(8) 7/2

1−2223241121 B2,3G2,4 II4,0(2
+2
6 4−2

II 3−3) 2A1(3)⊕A2(4) 17/3

1−339 A3
2,3 II6,0(3

−3) 3A2 2

1−42644 A3
1,2A3,4 II6,0(2

+2
6 4−2

II ) L2 2

1−4253461 A2
1,2A2,3B2,3 II6,0(2

+2
II 3−3) L3 8/3

1−8216 A8
1,2 II8,0(2

+2
II ) D8 2

Table 8. The hyperbolizations related to F24

L1 =

(
4 2 2 2
2 6 1 1
2 1 6 1
2 1 1 6

)
L2 =




2 0 1 1 1 0
0 2 1 1 1 0
1 1 4 2 2 3
1 1 2 4 0 1
1 1 2 0 4 1
0 0 3 1 1 4


 L3 =




4 2 0 0 −2 0
2 4 0 0 −1 0
0 0 2 −1 0 0
0 0 −1 2 0 0
−2 −1 0 0 2 1
0 0 0 0 1 4



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N(a) a = (a1, ..., a6) Theta block · η15

122 (1, 1, 1, 1, 1, 1) 152534435267

138 (−7, 1, 1, 1, 1, 3) 1524344352627

158 (−8, 1, 1, 1, 1, 1) 1425344253678

167 (−8, 1, 1, 1, 2, 1) 14253343526278

170 (−7, 1, 1, 1, 1, 5) 152434435267(10)

173 (−8, 1, 1, 1, 2, 2) 14243344526278

174 (−8, 1, 1, 1, 1, 3) 14243442536278

183 (−8, 1, 1, 1, 2, 3) 14243343526378

186 (−9, 2, 1, 1, 1, 1) 14243343536279

197 (−8, 1, 1, 1, 2, 4) 142433435262782

202 (−9, 1, 1, 1, 1, 1) 142434425262789

202 (−9, 2, 1, 1, 1, 3) 14233343536379

206 (−9, 1, 2, 1, 1, 1) 14233344536789

206 (−8, 1, 1, 1, 1, 5) 1424344253678(10)

213 (−9, 1, 1, 1, 2, 2) 132433445262789

215 (−8, 1, 1, 1, 2, 5) 14243343526278(10)

218 (−9, 1, 1, 1, 1, 3) 142334425263789

218 (−9, 1, 1, 2, 2, 1) 132533425367289

218 (−7, 1, 1, 1, 1, 7) 152434435267(14)

222 (−9, 1, 1, 1, 3, 1) 1424334252627289

222 (−9, 1, 2, 1, 1, 3) 142233445362789

223 (−9, 1, 1, 1, 2, 3) 132433435263789

230 (−10, 2, 1, 1, 1, 1) 13253243526378(10)

237 (−9, 1, 1, 1, 2, 4) 1324334352627829

237 (−8, 1, 1, 1, 2, 6) 14243343526278(12)

238 (−9, 1, 1, 1, 3, 3) 1423334252637289

239 (−10, 2, 1, 1, 2, 1) 132433435262728(10)

246 (−10, 2, 1, 1, 1, 3) 13243243526478(10)

254 (−10, 1, 1, 1, 1, 1) 142433425267289(10)

254 (−9, 1, 2, 1, 1, 5) 14223344536789(10)

254 (−8, 1, 1, 1, 1, 7) 1424344253678(14)

255 (−10, 1, 1, 1, 2, 1) 132433435262789(10)

Table 9. The 64 antisymmetric paramodular cusp forms of weight 3 and squarefree
level < 300 constructed from Theorem 13.1 (continued on the next page).
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N(a) a = (a1, ..., a6) Theta block · η15

255 (−10, 2, 1, 1, 2, 3) 132333435263728(10)

262 (−10, 1, 1, 2, 2, 1) 12253343563789(10)

263 (−10, 1, 2, 1, 2, 1) 132432435362789(10)

263 (−8, 1, 1, 1, 2, 7) 14243343526278(14)

266 (−10, 1, 1, 1, 3, 1) 132433425367289(10)

266 (−10, 1, 2, 1, 1, 3) 132234435263729(10)

266 (−8,−3, 4, 1, 1, 1) 142332425363728(11)

269 (−10, 1, 2, 1, 2, 2) 132332445362789(10)

269 (−10, 2, 1, 1, 2, 4) 1323334352627282(10)

271 (−10, 1, 1, 1, 2, 3) 132333435263789(10)

277 (−9, 1, 1, 1, 2, 6) 132433435262789(12)

278 (−10, 1, 1, 2, 2, 3) 12243343564789(10)

278 (−10, 2, 1, 1, 1, 5) 13243243526378(10)2

282 (−10, 1, 1, 1, 3, 3) 1323334253627289(10)

282 (−9,−2, 3, 1, 1, 1) 1324334252627289(11)

282 (−9, 2, 1, 1, 1, 7) 14233343536279(14)

282 (−8,−3, 4, 1, 1, 3) 142232425364728(11)

282 (−7, 1, 1, 1, 1, 9) 152434435267(18)

285 (−10, 1, 1, 2, 3, 2) 1323334352627829(10)

286 (−9,−2, 4, 1, 1, 1) 132333425363789(11)

287 (−10, 1, 1, 1, 4, 1) 1424324256272829(10)

287 (−10, 2, 1, 1, 2, 5) 132333435262728(10)2

287 (−9,−2, 3, 1, 2, 1) 1225324352627289(11)

293 (−10, 1, 1, 1, 4, 2) 1423324356272829(10)

293 (−10, 1, 2, 1, 2, 4) 1323324353627829(10)

293 (−9,−2, 3, 1, 2, 2) 1224324452627289(11)

293 (−8, 1, 1, 1, 2, 8) 14243343526278(16)

295 (−10, 1, 1, 2, 3, 3) 1323334252637829(10)

298 (−10, 1, 2, 1, 1, 5) 132234435262729(10)2

298 (−9,−2, 3, 1, 1, 3) 1323334252637289(11)

298 (−9,−2, 3, 2, 2, 1) 122434453627829(11)

298 (−9, 1, 1, 1, 1, 7) 142334425262789(14)

Table 10. (continued).
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[18] F. Cléry and V. Gritsenko. Modular forms of orthogonal type and Jacobi theta-series. Abh. Math. Semin. Univ.

Hambg., 83(2):187–217, 2013.
[19] Thomas Creutzig, Alexander Klauer, and Nils R. Scheithauer. Natural constructions of some generalized Kac-

Moody algebras as bosonic strings. Commun. Number Theory Phys., 1(3):453–477, 2007.
[20] Thomas Creutzig, John F. R. Duncan, and Wolfgang Riedler. Self-dual vertex operator superalgebras and

superconformal field theory. J. Phys. A, 51(3):034001, 29, 2018.
[21] Thomas Creutzig, Shashank Kanade, and Robert McRae. Gluing vertex algebras. Adv. Math., 396:Paper No.

108174, 72, 2022.
[22] Philippe Di Francesco, Pierre Mathieu, and David Sénéchal. Conformal field theory. Graduate Texts in Con-
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[100] Jethro van Ekeren, Sven Möller, and Nils R. Scheithauer. Construction and classification of holomorphic vertex

operator algebras. J. Reine Angew. Math., 759:61–99, 2020.
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