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Abstract

In this work we employ machine learning to understand structured mathematical data in-

volving finite groups and derive a theorem about necessary properties of generators of finite

simple groups. We create a database of all 2-generated subgroups of the symmetric group

on n-objects and conduct a classification of finite simple groups among them using shal-

low feed-forward neural networks. We show that this neural network classifier can decipher

the property of simplicity with varying accuracies depending on the features. Our neural

network model leads to a natural conjecture concerning the generators of a finite simple

group. We subsequently prove this conjecture. This new toy theorem comments on the

necessary properties of generators of finite simple groups. We show this explicitly for a class

of sporadic groups for which the result holds. Our work further makes the case for a machine

motivated study of algebraic structures in pure mathematics and highlights the possibility of

generating new conjectures and theorems in mathematics with the aid of machine learning.
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1 Introduction: Machine learning and symmetries

Machine learning is an increasingly ubiquitous tool for studying a wide range of problems from

self-driving cars and drug design to many electron systems in quantum chemistry and protein

folding in vivo. However, thus far machine learning has played a smaller rôle in developing pure

mathematics. Since the injection of machine learning into investigations of algebraic geometry in

the context of theoretical physics [1–8], there has been an explosion of activity to machine learn

various aspects of the topology and geometry of Calabi–Yau manifolds [9–20], algebra [21–24],

knot theory [25–30], combinatorics [31, 32], and number theory [33–35], etc. The present work

has a two-fold purpose. We investigate the following questions: (i) can one learn the structure

of mathematics and let artificial intelligence help the intuition of a mathematician along [36,

37]? (ii) how does one develop machine learning architectures that can identify structures

in mathematical datasets which are difficult to observe with the human eye? The aim is to

develop new machine driven methodologies and architectures that can study such synthetic

data, as opposed to real world data.

One fundamental algebraic structure to examine through the lens of machine learning is a

group. Groups provide a mathematical description of the symmetries of a system and are a

guiding principle in our descriptions of Nature. Noether’s theorems [38] establish that conserved

quantities arise from the symmetries of a theory. For example, the conservation of energy is the

consequence of the translational invariance of a system in time, the conservation of momentum

is the consequence of the translational invariance of a system in space, and the conservation

of angular momentum is the consequence of the invariance of a system under spatial rotations.
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Similarly, conserved currents in electromagnetism originate from the U(1) gauge symmetry of

quantum electrodynamics. The particles in the Standard Model are organized according to

how they transform, namely in representations of certain Lie groups associated to the gauge

symmetries. Identifying the underlying symmetries of a system and assessing their meaning is

of paramount importance in understanding the physics [39,40].

The analogous argument can be made for many machine learning endeavours. Knowledge of

the symmetries of a dataset, real world or otherwise, is central to identifying correlations within

the data. Indeed, making machine learning inferences using datasets is made more tractable

by incorporating known invariances of the dataset into the models ab initio. This could, for

instance, be accomplished by embedding the invariances into the architecture of a neural net-

work [41, 42], or in the kernel of a Gaussian process. This way, various seemingly disconnected

parts of the parameter space at play, albeit connected by these invariances, inform each other.

This has the practical advantage of reducing computational costs, improving generalisation, and

has led to many real world applications. The abiding principle is that a cat is a cat regardless

of how it is viewed and this equivalence should be in built where possible. These applications

exploit the relationship between model invariances and the dynamics of optimisation, leading

to improved generalisation.

Preliminary studies of machine learning the algebraic structure of groups and rings were

initiated for finite groups [21, 36] and for Lie groups [43]. For specific algebraic structures,

the reader is also referred to [13, 22–24, 31, 44, 45]. One key motivation of our present work

is to advance these investigations to a deeper level. With a view towards building a machine

driven detector of algebraic structures (and groups in particular), we ask if interpretable neural

networks can study different properties of a group. Such properties can range from the order

of a group (or group element), to more involved computations such as the invariant ring of a

group. In this work, we concern ourselves with finite simple groups.

In Section 2, we review some general results on finite simple groups, and describe the subclass

of groups we study in this paper, i.e., two generated subgroups of the symmetric group Sn with

examples. We also explain motivations behind our various representations for these groups,

and their limitations. In Section 3, we present our machine learning outcomes as well as a

proposition that we were able to extract from our the machine learning investigations. Finally,

we conclude with the discussion in Section 4. Appendices A.1 and A.2 describe details of the

datasets of groups we employ for our machine learning endeavours, while Appendix A.3 presents

the neural network architectures.
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2 Machine learning simplicity

Recall that a group is simple if it does not admit any non-trivial normal subgroups. Following

decades of effort, the finite simple groups are completely classified: they are cyclic groups of

prime order Zp, or alternating groups An with n > 4, or belong to one of 16 infinite families

of groups of Lie type (plus the related Tits group), or are one of 26 exceptional cases called

sporadic groups, the largest of which is the Fischer–Griess Monster, the source of Moonshine [46].

Indeed, the classification of the finite simple groups initially relied on computational technology

to establish the existence and uniqueness of certain sporadic groups.

In [21], relatively shallow neural networks as well as support vector machines were used to

distinguish simple groups from non-simple one to 99% accuracy without the AI knowing any-

thing about the usual techniques; this beckoned the question as to whether there is underlying

new mathematics and constituted a motivation for the present study. In particular, the Cayley

multiplication tables of all finite groups up to size 70 (there are 602) were taken. Next, random

permutations were performed on each (since Cayley tables are only defined up to permutations)

such that more permutations are included for the simple groups (since there are many more fi-

nite groups that are non-simple). This created a balanced database of 60 000 examples of 70×70

matrices (a group of size n would have all entries in {1, 2, . . . , n} and all tables are padded with

0 where necessary) labelled as “simple” or “non-simple”, with 50% each. Remarkably, when

flattened and represented as points in R702 , a support vector machine with Gaussian kernel was

able to separate them to 99% accuracy. This led to a proto-conjecture that in the space of finite

groups, the simple and non-simple groups are thus separated and can be so classified.

One shortcoming of using the Cayley table is that these grow as the square of the group

order and working in Rn2
limits the computational power. In the paper, we focus on building

a multi-layer perceptron model that can classify whether finite groups are simple using a much

more succinct representation. This gives a two-fold advantage: (i) it will allow the exploration

of more groups; and (ii) it will cross-check whether the simple/non-simple separation is truly

underlying some deep mathematics and not just an artifact of Cayley tables.

Now, in the literature there are some age old results regarding the simplicity of groups.

Burnside’s theorem, Sylow’s test, and detecting zeroes from the character table are notable

examples. Such classical results are helpful in assessing a small sample of possible finite simple

groups. One näıve algorithm that would determine simplicity of a group would list out all pos-

sible non-trivial subgroups of a given group and sequentially check if any of those are normal.

State of the art deterministic algorithms that test the simplicity of a finite group are computa-

tionally non-trivial even though they might incorporate known classical theorems about finite

simple groups.1

1One method is to compute the character table and spotting the positions of 0s. We grant that these are
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Non-deterministic algorithms are faster at establishing simplicity. In this paper, we provide

an example of a non-deterministic multi-layer perceptron classifier that works in polynomial

time in the size of the inputs.

Conjecture (Dixon 1969) [48]: Two randomly chosen elements of a finite simple group G

generate G with probability → 1 as |G| → ∞.

Noting that every finite group is a subgroup of the symmetric group Sn for some n and that

every simple group is 2-generated [49], Dixon’s conjecture motivates our study of 2-generated

subgroups of Sn, and consider criterion about their simplicity [48,50]. In the experiments, groups

were randomly generated by two permutations drawn at random from Sn. We use these as

generators of a finite group and query a neural network classifier with the question of simplicity

of the resulting group. We conduct a number of experiments with different representations. In

one set of experiments, we use the full permutation representation of both the generators (which

are required to be unequal to each other and identity). In the second set of experiments, we

only use traces and determinants of generators (as they are representation invariant quantities).

In a final experiment we only use the orders of the group elements and the order of the group

as features. This is motivated by Theorem 1, which says that finite simple groups can be

characterised by these integers. Further details about the experiments are in Appendix A.

3 Learning outcomes and a conjecture

3.1 Machine learning experiments

Experiment 1

Our first experiment takes, as input, a pair of matrices as elements of the symmetric group

Sn. We mark whether the group generated by the pair as simple or non-simple accordingly. All

results described here were generated via the cross-validation process described in Appendix A.2.

Figure 1 shows the individual average validation accuracies at the end of training for each portion

of dataset for n. Only a single data point is available for n = 8 (at 4.6%), due to computational

restrictions from such a large dataset.

In general, there seem to be two different patterns in the validation accuracies above: for

n = 5 and 6, the validation accuracy appears to increase in a roughly linear fashion with the

percent of the dataset given, ending between 85% to 95% accuracy. For n = 7, however —

and this effect is still visible with n = 8 to some extent — the validation accuracy jumps up

polynomial complexity [47], but our main motivation is to uncover new structures in simple groups using AI

rather than to find faster algorithms in their detection.
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Figure 1: Validation accuracy for varied amount of datasets for each n. Percentages are of the

total dataset, after balancing but before splitting to allow k-fold cross validation.

to 82% at only 5% of the full dataset. There is a slight decrease as the percent of dataset

increases for n = 7 from 60% to 80%; this is likely due to the variability in the final accuracy

for cross-validation runs at n = 7. We will discuss this further shortly.

Putting these patterns aside, the models appear to become highly accurate when given

greater portions of the dataset — finishing at 89%, 96%, and 96% validation accuracy for

n = 5, 6, and 7 respectively. Excluding an outlier in the final result for n = 7 gives an average

of 99% validation accuracy on the full dataset. Figure 2 displays the models’ loss and accuracy

on the training set during training, for each cross-validation run combined. The curves for n = 5

fit with the typically expected images; the other two sets merit further comments.

A particular effect discovered in the training runs for n = 6 is that the model appears to

take some time to “get off the ground” — i.e., some amount of training with slow progress is

required before learning can accelerate. This effect was equally visible in the validation loss and

accuracy. Multiple initializers were tried as replacements in an attempt to mitigate this effect,

but it did not improve. Once training accelerated, the models appeared to behave normally.

Because epochs count the number of times the entire dataset has been used for training,

there were also different requirements for each n in the number of epochs run for. For example,

n = 7 only required six epochs, which partially explains why the per-epoch variability is more

visible. Also present in n = 7 were occasional regressions during training, where one of the cross-

validation runs would suddenly increase in loss and decrease in both training and validation

accuracy. This consistently affected one or two cross-validation runs, entirely at random; even

though the individual datasets used for each cross-validation run were kept consistent across

repeated experimentation, the particular “failing” runs were not consistent. In the particular

case shown in Figure 2, the “failing” run finished with a heavy bias for negative results (i.e.,
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Figure 2: Loss and accuracy on training data while training on full datasets, for n ∈ {5, 6, 7}. Bold

curves give the average value at that epoch across all cross-validation runs.

indicating that a group is not simple). The class accuracies for that trial were 98% and 4%,

respectively. We were unable to identify a cause, though it happens to be simply to manu-

ally identify when training a model, given knowledge of the previous behavior. There were

insufficient data to determine whether this effect would occur at n = 8.
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Figure 3: Error in predictions of accuracy from simplicity (dashed) versus parity (solid) during

training for n = 5 (left) and n = 6 (right).

In order to gain further insights into understanding simplicity of finite groups, we now

describe further machine learning experiments we conducted using alternate features.
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Figure 4: A classifier predicts simplicity of a group based on orders and traces of group gen-

erators and the property of being Abelian. The plot shows a confusion plot where the class 0

stands for simple groups and 1 for nonsimple groups. Using a neural network model and 1000

training points, class accuracies were found to be ≈ 97% and 85%, respectively, on the training

set (left) and ≈ 97% and 86% on the test set (right). We use 1000 (top row) and 4000 (bottom

row) points for training.

Experiment 2

In this experiment we choose the features to be the traces and determinants of the two gener-

ators and the binary property of the group being Abelian. We used a multi-layer perceptron

model with three hidden layers with 1000, 500, and 200 nodes respectively, and logistic sigmoid

activation. We used an ADAM optimiser. The dataset of size ≈ 8500 was split into a training

set of sizes size 1000, 4000. The remaining data was used for validation in both cases. The

results are described in Figure 4.

Experiment 3

In this experiment we chose the features to be the orders of the group elements and the order

of the group. We used a multi-layer perceptron model with three hidden layers with 1000, 500,

and 200 nodes respectively, and logistic sigmoid activation. We used an ADAM optimiser. The
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Figure 5: A classifier predicts simplicity of a group based on orders of group elements and order

of the group. The plot shows a confusion plot where the class 0 stands for simple groups and 1

for nonsimple groups. Using a neural network model when using only 100 training points (top)

and 1000 training points (bottom), class accuracies on the test set were found to be ≈ 99%.

dataset of size ∼ 8500 was split into a training set of size 1000, and a test set of ∼ 7500. We

repeated the experiment using a smaller architecture with 10 times fewer nodes and a training

set of size 100. The results are described in Figure 5.

The second and third experiments were particularly illuminating in terms of choice of fea-

tures. The new features in these experiments were the traces and determinants of the generators

as opposed to the full generators; and some combination of two other features, the group order

and the property of being Abelian.

With these outcomes, it is interesting to consider a mathematical statement that might cap-

ture these experiments. We therefore consider necessary conditions on traces and determinants

of generators of finite simple groups; hinted by our machine learning outcomes above. This

manner of investigation has yielded different conjectures using an alternative approach [51].

3.2 A machine guided mathematical conjecture

In Experiments 1–3 of Section 3.1 we have built simple feed-forward multi-layer perceptron

models to predict the simplicity of a 2-generated group given merely the generators, or their
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properties. Our learning outcomes were modest with predictive accuracies ∼ 80%. In a tradi-

tional approach, one can conceive of a straightforward methodology for resolving the question

of the simplicity of the resulting group. This could be seen to involve two key steps, the first

of which is to freely generate a group from the two generators. Following this, one could list

all non-trivial subgroups of this group, and check for normal subgroups. Both these key steps

are computationally intensive. Therefore, it is impressive that a simple feed-forward multi-layer

perceptron model should address this question to any reasonable degree of accuracy. We now

ask the following question: can similar learning outcomes be attained using alternate represen-

tations for the generators? These could involve high level properties of the generators given a

representation — traces and determinants are examples of such properties. If a similar or better

learning outcome is obtained using such the above properties as alternate features, this is per-

haps indicative of an underlying mathematical relationship between such generator properties

and the property of simplicity. This indeed turns out to be the case: Figure 4 and Figure 5

show learning outcomes using different features. In this section, we present such a mathemat-

ical relationship as a conjecture motivated by the above learning outcome, for which we then

provide a proof. This AI-guided mathematical conjecture formulation is very much in the spirit

of [6, 37,51].

First, we recall a theorem for characterising finite simple groups [52]. Let us define the set

of orders of group elements as

π(G) := {Ord(g) : g ∈ G} . (1)

Theorem 1. A finite simple group G is completely characterised by the order of group elements

π(G) and the order (size) of the group G.

Theorem 1 implies that for G and H simple finite groups, G ≃ H iff |G| = |H| and

π(G) = π(H) (as sets). This is indicative that perhaps determinants of the generator could

play a crucial role in discovering a new mathematical relationship between the generators and

the property of simplicity. In fact, this also provides an alternate representation for our clas-

sification problem. Computing π(G) for a group 2-generated G requires further computation.

When our ML models are trained using these alternate features, it is not surprising that the

learning outcomes are nearly perfect. Figure 5 shows the learning outcome. However, this is at

additional computational cost, since generating such representations involves computing π(G)

and computing |G| requires.

Furthermore, we make an observation from studying our dataset. Before doing this, we

introduce a preliminary notion [53]. Let G be a subgroup of a symmetric group acting as

permutation of a set Ω, as is with the case with all groups we consider here. We recall the

standard definitions that for an element α ∈ Ω, the stabilizer Gα of α is the set of all group

elements that fix α. On the contrary, the set of all fixed points for a group element x ∈ G is

9



denoted CΩ(x). In short,

Gα := {x ∈ G : x(α) = α} ,

CΩ(x) := {α ∈ Ω : x(α) = α} . (2)

Then,

Definition 1. The fixed point ratio of x ∈ G, denoted by fpr(x) (which is of course implicitly

dependent upon Ω), is the proportion of points in Ω fixed by x, i.e.,

fpr(x) =
|CΩ(x)|
|Ω|

.

For our dataset of all the 2-generated subgroups of Sn up to n ≤ 10, we notice that whenever

a resulting group is simple, the number of fixed points of either of its two generators is never

n − 2 or n − 4 for n ≥ 5. Now, all our group elements are n × n permutation matrices (in

particular matrices with only 0 and 1) acting on {1, 2, . . . , n}. Hence, the number of fixed

points is counted by the number of 1s on the diagonal. Hence, this observation hints towards

the existence of a conjecture regarding traces (or equivalently, number of fixed points) and signs

of permutations.

Proposition 1. (conjectured from machine learning) Consider 2-generated subgroups H ⊂ Sn

(n ≥ 5) with distinct non-trivial generators in the permutation representation. That is, consider

σi=1,2( ̸= e) ∈ Sn as n× n permutation matrices. If H is a simple group, then

1. det(σi) = 1, and,

2. tr(σi) ∈ {1, 2, . . . , n} \ {n− 4, n− 2, n− 1, n}.

In particular, if tr(σi) = n − 4, then H = D2n ⊆ An ◁ Sn, n ≥ 5. That is H is the dihedral

group, and thus not simple.

We can prove this conjecture which is inspired from our machine learning experiments.

Proof. First, since H is a subgroup of Sn as represented by permutation matrices, the deter-

minant of all group elements is equal to ±1. Suppose, without loss of generality, det(σ1) =

−1. It is straightforward to check that the following defines a homomorphism from H to

(Z/(2Z),+mod 2).

ψ : H −→ {0, 1}

ψ(σ) =

 0, if det(σ) = 1 ,

1, if det(σ) = −1 .

10



By the first isomorphism theorem, H/ker(ψ) ≃ im(ψ), with ker(ψ) ◁ H. Clearly, ψ(e) = 0, and

ψ(σ1) = 1 (by assumption). Therefore, im(ψ) = {0, 1} = Z/(2Z). As such, ker(ψ) is an index

two subgroup of H, and therefore normal. Hence, H is not simple. Thus the determinant of

both σ1 should by 1. This proves the first part of the proposition.

To prove the second part, let’s assume H is simple. We begin by observing that tr(σi) ̸= n

since e is the only element that has trace n and σi ̸= e by assumption. Progressing further,

tr(σi) ̸= n − 1 as that would require a single 0 and 1s everywhere else on a diagonal, which is

a singular matrix. Finally, we in fact have that tr(σi) ̸= n− 2 since then det(σi) = −1, coming

from the

(
0 1

1 0

)
block.

Now consider the case of tr(σi) = n − 4 and det(σi) = 1. We will show that σ2i = e. If

this were to be the case, H would be a group generated by involutions. This would imply

that H is the dihedral group of order 2m, D2m (where for for m = 1, 2 they are, Z/(2Z) and

Z/(2Z)×Z/(2Z)). In any case, H would not simple (except for the trivial case of m = 1, which

we excluded by having n ≥ 5).

To finish the proof, it remains show that

P (n) := ((det(σ) = 1) ∧ (tr(σ) = n− 4) =⇒ σi = σT )

holds. We do this by induction. We can enumerate to see that P (4) holds. Now assume

P (n) holds. Let σ̂ ∈ An+1, so that det(σ̂) = 1 (by definition of the alternating group), and

tr(σ̂) = (n + 1) − 4. We must show that P (n + 1) holds by showing σ̂ = σ̂T . Note that each

σ̂ can be obtained from a σ with the introduction of a 1 in the diagonal at one of (n + 1)

possible positions (reflecting the fact that |An+1| = (n + 1) |An|). Note that this doesn’t alter

the determinant but increases the trace by 1. It therefore follows that σ̂ = σ̂T since σ = σT ,

establishing that P (n+ 1) holds, completing the proof.

The following corollary is a restatement of the above written in terms of fixed point ratios.

Corollary 1. Let H be a finite simple group with the generating set containing only two distinct

group elements in a permutation representation of degree n. Then, the fixed point ratio (fpr) of

any such generator cannot equal 2i/n, ∀i ∈ {0, 1, 2}.

11



Sporadic group generators trace {n− 2k}2k=0

M9 (1,4,9,8)(2,5,3,6),

(1,6,5,2)(3,7,9,8) 1, 1 5, 7, 8

M10 ( 1, 9, 6, 7, 5)( 2,10, 3, 8, 4),

( 1,10, 7, 8)( 2, 9, 4, 6) 0, 2 6,8,9

M11 ( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11),

(3,7,11,8)(4,10,5,6) 0, 3 7,9,10

M12 (1,2,3,4,5,6,7,8,9,10,11),

(3,7,11,8)(4,10,5,6),

(1,12)(2,11)(3,6)(4,8)(5,9)(7,10) 1, 4, 0 8,10,11

M21 ( 1, 4, 5, 9, 3)( 2, 8,10, 7, 6)

(12,15,16,20,14)(13,19,21,18,17),

( 1,21, 5,12,20)( 2,16, 3, 4,17)

( 6,18, 7,19,15)( 8,13, 9,14,11) 0, 3 17,19,20

M22 ( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11)

(12,13,14,15,16,17,18,19,20,21,22),

( 1, 4, 5, 9, 3)( 2, 8,10, 7, 6)

(12,15,16,20,14)(13,19,21,18,17),

( 1,21)( 2,10, 8, 6)( 3,13, 4,17)

( 5,19, 9,18)(11,22)(12,14,16,20) 1, 1, 1 18,20,21

M23 ( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,

13,14,15,16,17,18,19,20,21,22,23),

( 3,17,10, 7, 9)( 4,13,14,19, 5)

( 8,18,11,12,23)(15,20,22,21,16) 1, 1 19, 21,22

M24 ( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,

14,15,16,17,18,19,20,21,22,23),

( 3,17,10, 7, 9)( 4,13,14,19, 5)

( 8,18,11,12,23)(15,20,22,21,16),

( 1,24)( 2,23)( 3,12)( 4,16)

( 5,18)( 6,10)( 7,20)(8,14)

( 9,21)(11,17)(13,22)(15,19) 1, 4, 0 20, 22, 23

Table 1: Properties of Mathieu Group generators. All the generators are of positive signature and

the number of fixed points is never n− 2k, k ∈ {0, 1, 2}, ala proposition 1.
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4 Discussion

In this work, we demonstrate that standard off the shelf machine learning tools such as neu-

ral networks can help determine the simplicity of a group with relatively high accuracies and

produce novel insights. We conduct a number of machine learning experiments with differ-

ent mathematical features to determine simplicity. When using permutation representations

of group generators, we find modest learning outcomes. In another experiment, using element

orders as features alongside the order of the group, we demonstrate remarkable class accuracies

of close to 99% in Figure 5, reflective of a known result for finite simple groups, viz., Theorem 1.

The success our experiments gives further confidence that the ability of machine-learning (in

particular support vector machines) to distinguish simple/non-simple groups when trained on

Cayley tables [21] was not a mere artifact of data representation, but truly underlies interesting

mathematics.

From these experiments, we distill Proposition 1, which we then prove using properties of

finite simple groups. The result restricts choices of 2-generating sets for finite simple groups.

We recast this result in terms of fixed point ratios of group generators in Corollary 1. Bounds

on fixed point ratios are an important topic of consideration. The above observation feeds

directly into studies of fixed point ratios of groups, which have been studied extensively over

many decades [53]. The result places restrictions on the traces of generators of any finite simple

group. The computational advantage this observation yields is ≈ 10−4% when looking for a

generator of the Monster group in the smallest faithful irreducible representation which occurs

at n = 196 883. The more interesting point is that the determinant and trace of the generators

conspire in some cases to form a dihedral group. Corollary 1 holds for all finite simple groups

in the permutation representation. As such it holds for sporadic groups in their permutation

representations. In Table 1, we check consistency of our results for the Mathieu group. For

this, we note that the traces and determinants of known generators of the Mathieu group are

consistent with the allowed values in Corollary 1. We can as well study other presentations of

finite groups, and we leave this to future work.

The prospect of finding novel mathematical results is tantalising in the age of AI. There

are a number of emerging pathways for mathematical research in light of machine learning.

In this work, we exploit one such pathway which involves learning a mathematical property

(in this case simplicity) using standard machine learning architectures, and exploiting insights

from the learning process to distill a theorem. Often, tools from machine interpretability such

as relevance scores can aid in this process resulting in new mathematical insights or theorems [6,

28, 36, 37]. Complementary approaches have been proposed in the recent literature, relying on

an organisational principle for mathematical statements, resulting in novel conjectures which

could often be proved using domain expertise [51].
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Group Id Name Simple? Generators

[ 1, 1 ] 1 No


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



[ 2, 1 ] Z2 Yes


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1



[ 3, 1 ] Z3 Yes


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1



[ 4, 1 ] Z4 No


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0



[ 6, 1 ] S3 No


0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1




0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1



[ 24, 12 ] S4 No


0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1




0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0



[ 8, 3 ] D8 No


0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1




0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0



[ 4, 2 ] Z2 × Z2 No


0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



[ 12, 3 ] A4 No


0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1




0 0 0 1

0 1 0 0

1 0 0 0

0 0 1 0
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A Machine learning experiments

There were therefore many entries in the dataset for groups equivalent under isomorphism, and

the number of entries per-group was not changed to be less imbalanced. This was intentional.2

A.1 2-generated subgroups of Sn

The input data to our models were the permutation matrices corresponding to the generators

of each group. We found this to be the most effective representation of the data, as it allowed

for fixed-size inputs and produced better performing models than encoding the generators as

permutation vectors.

Example: 2-generated subgroups of S3

Group Id Name Simple? Generators

[ 1, 1 ] 1 No


1 0 0

0 1 0

0 0 1




1 0 0

0 1 0

0 0 1



[ 2, 1 ] Z2 Yes


1 0 0

0 1 0

0 0 1




0 1 0

1 0 0

0 0 1



[ 3, 1 ] Z3 Yes


1 0 0

0 1 0

0 0 1




0 0 1

1 0 0

0 1 0



[ 6, 1 ] S3 No


0 1 0

1 0 0

0 0 1




0 0 1

1 0 0

0 1 0


Table 2: Subgroups of S3.

Model training and validation were performed on subsets of the balanced datasets for 5-fold

cross-validation. The mean final validation accuracy for models trained on different portions of

the balanced dataset for each n is displayed in Figure 1, from “Results”.

A.2 Datasets

The datasets are given by the generating permutation matrices for each subgroup of some Sn.

Only the two-generated subgroups were selected, but all permutations were included, giving a

2To give a sense of scale, the number of subgroups of Sn for n = [4, 7] are 11, 19, 56, 96. The number of

entries generated by our methods for each Sn would be 560, 14375, 518 364, 25 401 551.
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Group Id Name Simple? Count (filtered) Count (unfiltered)

[ 2, 1 ] C2 Yes 18 27

[ 3, 1 ] C3 Yes 24 32

[ 4, 1 ] C4 No 30 36

[ 4, 2 ] C2 × C2 No 24 24

[ 6, 1 ] S3 No 72 72

[ 8, 3 ] D8 No 72 72

[ 12, 3 ] A4 No 96 96

[ 24, 12 ] S4 No 216 216

Table 3: Number of each subgroup of S4 that would be present in the dataset.

total (n!)2 − n2 individual entries in each dataset. The orders of the groups in these datasets

were therefore not evenly distributed; the number of each group included in the dataset for

S4 and S5 is in Table 3 and Table 4. It was computationally infeasible to include the same

information for S6 and larger.

For all datasets, we used the SageMath interface to GAP to analyze the groups generated by

each pair of permutation matrices. The categorization of whether a group is simple was paired

with the generating matrices to produce the entry for that group.

With most of the symmetric groups examined here, it was feasible to produce the catego-

rization from GAP for all permutation pairs, which was done by simple iteration. Experiments

on S8 used a random subset of all possible permutation pairs by taking a random sample of

integers 1 to (8!)2, mapping these values to permutation matrices, and filtering out pairs with

the same permutation. The component of this mapping that produces the permutation3 is

specified in algorithm 1.
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Group Id Name Simple? Count (filtered) Count (unfiltered)

[ 2, 1 ] C2 Yes 50 75

[ 3, 1 ] C3 Yes 60 80

[ 4, 1 ] C4 No 150 180

[ 4, 2 ] C2 x C2 No 120 120

[ 5, 1 ] C5 Yes 120 144

[ 6, 2 ] C6 No 220 240

[ 6, 1 ] S3 No 360 360

[ 8, 3 ] D8 No 360 360

[ 10, 1 ] D10 No 360 360

[ 12, 3 ] A4 No 480 480

[ 12, 4 ] D12 No 360 360

[ 20, 3 ] C5 : C4 No 1440 1440

[ 24, 12 ] S4 No 1080 1080

[ 60, 5 ] A5 Yes 2280 2280

[ 120, 34 ] S5 No 6840 6840

Table 4: Number of each subgroup of S5 present in the dataset.
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Algorithm 1: Conversion from k ∈ [0, n!) to a permutation of n elements.

Input: An integer k ∈ [0, n!)

Output: A permutation of the elements 0, 1, ..n

vs := [ ] // The values 0, .. n

ps := [ ] // The final permutation

for i← 0 to n− 1 do

vs.append(i)

end

for i← n to 1 do

r := remainder of k
i

k ← k mod i

v := vs[r]

Remove vs[r] and shift remaining elements to the left

ps.append(v)

end

return ps

A single sample in one of the datasets could be constructed as follows. Suppose we are

generating data for the subgroups of S4, with the permutations given by the integer pair (6, 19).

The corresponding permutations, as generated by the aforementioned algorithm, are:

(2, 1, 0, 3) and (3, 1, 2, 0) (3)

which generate the following permutation matrices, respectively:
0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

 and


0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0

 (4)

The inputs for the training sample are just the concatenation of each row in the two matrices

into a single vector, as shown below:

⟨0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0⟩ (5)

The particular group corresponding to these inputs S3, which is not simple.

Training datasets

The generated datasets were unbalanced; only approximately 20% of the entries correspond to

simple groups in each dataset.4 From here on, we refer only to the balanced datasets, which are

3Constructing the permutation matrix from the corresponding permutation of n elements is trivial; we leave

this undiscussed.
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chosen by a random selection of the non-simple entries in equal number to the set of simple

ones.

All experiments were done with 5-fold cross-validation, with each train/validation split tak-

ing from the same balanced subset of the unbalanced dataset. For experimentation on differing

amounts of data (e.g., using 50% of the “full”, balanced dataset), all balanced datasets were

subsets of the “full” balanced dataset.

A.3 Neural network architectures

. . .
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Figure 6: Generic architecture of the models used. The generating permutation matrices are flat-

tened and provided as input. Softmax is applied to the two outputs, which give probabilities for

whether the group is simple or not.

The models used for experimentation were fully-connected neural networks with the two

input permutation matrices flattened into a single vector of 2n2 boolean values for each Sn.

Predictions are chosen by the greater of two output values, scaled by the softmax activation

function. Hidden layers for all final models consist of 256 nodes, with all nodes using the ReLU

activation function. See Figure 6 above for an illustration.

Optimization was done with stochastic gradient descent (SGD) with Nesterov-accelerated

momentum and Mean Squared Error as the loss function. The hyperparameters for SGD (both

learning-rate and momentum), the number of hidden layers for each n, and the size of the

hidden layers were selected by manual hyperparameter search. The results with the best mean

validation accuracy across all five validation datasets at the end of training. A hidden layer size

of 256 was chosen for all n as a common best size for n = 5 and n = 6.

For n = 7 and n = 8, rigorous hyperparameter search was infeasible due to the size of the

4For each value of n ∈ {5, ..8}, these fractions are 0.1758, 0.2027, 0.2315, and 0.2133, respectively.
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n Learning rate Momentum Num. hidden layers γ

5 0.05 0 1 0.1

6 0.001 0.01 3 0.05

7* 0.01 0.1 9 0.05

8* 0.01 0.1 9 0.05

Table 5: Hyperparameters used for each dataset.

datasets and the resulting computational restrictions – less so with the former than the latter.

For these datasets, the hyperparameters were initially chosen by extrapolation from those used

with the lower two values for n, without attempting to produce optimal results. Adjustments

were made only until the model was successfully better than random chance. This less rigorous

iteration was required as, for some sets of hyperparameters, the models completely fail to

perform any meaningful learning (often skewing entirely towards one output or another). This

occurred most prominently at n = 7, when testing with five or fewer hidden layers. This effect

was avoided by increasing the number of hidden layers, which did not prove to be additionally

necessary for n = 8 (i.e., there was no increase from n = 7 to 8).

In addition to the hyperparameters previously mentioned, learning rate decay was also

provided, with the learning rate at each epoch calculated from the previous by:

lri+1 = (1− γ)lri (6)

with γ as the hyperparameter controlling the rate of decay. The hyperparameters used for each

n are given above, in Table 5.
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