arXiv:2312.05299v1 [cs.LG] 8 Dec 2023

Learning to be Simple

Yang-Hui He®"*, Vishnu Jejjala‘’, Challenger Mishra?, Max Sharnoff®/®

@ London Institute for Mathematical Sciences, Royal Institution, London W1§ 4BS, UK
b Merton College, University of Oxford, OX1 4JD, UK

¢ Mandelstam Institute for Theoretical Physics, School of Physics, NITheCS, and CoE-MaSS5,
University of the Witwatersrand, Johannesburg, South Africa

@ Department of Computer Science & Technology, University of Cambridge, CB3 OFD, UK

¢ Department of Computer Science, University of Oxzford, OX1 3QG, UK
f Christ Church, University of Ozford, OX1 1DP, UK

Abstract

In this work we employ machine learning to understand structured mathematical data in-
volving finite groups and derive a theorem about necessary properties of generators of finite
simple groups. We create a database of all 2-generated subgroups of the symmetric group
on n-objects and conduct a classification of finite simple groups among them using shal-
low feed-forward neural networks. We show that this neural network classifier can decipher
the property of simplicity with varying accuracies depending on the features. Our neural
network model leads to a natural conjecture concerning the generators of a finite simple
group. We subsequently prove this conjecture. This new toy theorem comments on the
necessary properties of generators of finite simple groups. We show this explicitly for a class
of sporadic groups for which the result holds. Our work further makes the case for a machine
motivated study of algebraic structures in pure mathematics and highlights the possibility of

generating new conjectures and theorems in mathematics with the aid of machine learning.

*hey@maths.ox.ac.uk
Tv.jejjala@wits.ac.za
fcm2099@cam. ac . uk

§github@max.sharnoff.org

Contents

1 Introduction: Machine learning and symmetries 1
2 Machine learning simplicity 3
3 Learning outcomes and a conjecture 4
3.1 Machine learning experiments Lo Lo oL 4
3.2 A machine guided mathematical conjecture 8
4 Discussion 13
A Machine learning experiments 16
A1 2-generated subgroupsof S,o 16
A2 Datasets e 16
A.3 Neural network architectures 20

1 Introduction: Machine learning and symmetries

Machine learning is an increasingly ubiquitous tool for studying a wide range of problems from
self-driving cars and drug design to many electron systems in quantum chemistry and protein
folding in vivo. However, thus far machine learning has played a smaller role in developing pure
mathematics. Since the injection of machine learning into investigations of algebraic geometry in
the context of theoretical physics [1-8], there has been an explosion of activity to machine learn
various aspects of the topology and geometry of Calabi—Yau manifolds [9-20], algebra [21-24],
knot theory [25-30], combinatorics [31, 32], and number theory [33-35], etc. The present work
has a two-fold purpose. We investigate the following questions: (i) can one learn the structure
of mathematics and let artificial intelligence help the intuition of a mathematician along [36,
37]7 (ii) how does one develop machine learning architectures that can identify structures
in mathematical datasets which are difficult to observe with the human eye? The aim is to
develop new machine driven methodologies and architectures that can study such synthetic
data, as opposed to real world data.

One fundamental algebraic structure to examine through the lens of machine learning is a
group. Groups provide a mathematical description of the symmetries of a system and are a
guiding principle in our descriptions of Nature. Noether’s theorems [38] establish that conserved
quantities arise from the symmetries of a theory. For example, the conservation of energy is the
consequence of the translational invariance of a system in time, the conservation of momentum
is the consequence of the translational invariance of a system in space, and the conservation

of angular momentum is the consequence of the invariance of a system under spatial rotations.

Similarly, conserved currents in electromagnetism originate from the U(1) gauge symmetry of
quantum electrodynamics. The particles in the Standard Model are organized according to
how they transform, namely in representations of certain Lie groups associated to the gauge
symmetries. Identifying the underlying symmetries of a system and assessing their meaning is
of paramount importance in understanding the physics [39,40].

The analogous argument can be made for many machine learning endeavours. Knowledge of
the symmetries of a dataset, real world or otherwise, is central to identifying correlations within
the data. Indeed, making machine learning inferences using datasets is made more tractable
by incorporating known invariances of the dataset into the models ab initio. This could, for
instance, be accomplished by embedding the invariances into the architecture of a neural net-
work [41,42], or in the kernel of a Gaussian process. This way, various seemingly disconnected
parts of the parameter space at play, albeit connected by these invariances, inform each other.
This has the practical advantage of reducing computational costs, improving generalisation, and
has led to many real world applications. The abiding principle is that a cat is a cat regardless
of how it is viewed and this equivalence should be in built where possible. These applications
exploit the relationship between model invariances and the dynamics of optimisation, leading
to improved generalisation.

Preliminary studies of machine learning the algebraic structure of groups and rings were
initiated for finite groups [21,36] and for Lie groups [43]. For specific algebraic structures,
the reader is also referred to [13,22-24,31,44,45]. One key motivation of our present work
is to advance these investigations to a deeper level. With a view towards building a machine
driven detector of algebraic structures (and groups in particular), we ask if interpretable neural
networks can study different properties of a group. Such properties can range from the order
of a group (or group element), to more involved computations such as the invariant ring of a
group. In this work, we concern ourselves with finite simple groups.

In Section 2, we review some general results on finite simple groups, and describe the subclass
of groups we study in this paper, i.e., two generated subgroups of the symmetric group S,, with
examples. We also explain motivations behind our various representations for these groups,
and their limitations. In Section 3, we present our machine learning outcomes as well as a
proposition that we were able to extract from our the machine learning investigations. Finally,
we conclude with the discussion in Section 4. Appendices A.1 and A.2 describe details of the
datasets of groups we employ for our machine learning endeavours, while Appendix A.3 presents

the neural network architectures.

2 Machine learning simplicity

Recall that a group is simple if it does not admit any non-trivial normal subgroups. Following
decades of effort, the finite simple groups are completely classified: they are cyclic groups of
prime order Z,, or alternating groups A, with n > 4, or belong to one of 16 infinite families
of groups of Lie type (plus the related Tits group), or are one of 26 exceptional cases called
sporadic groups, the largest of which is the Fischer—Griess Monster, the source of Moonshine [46].
Indeed, the classification of the finite simple groups initially relied on computational technology
to establish the existence and uniqueness of certain sporadic groups.

In [21], relatively shallow neural networks as well as support vector machines were used to
distinguish simple groups from non-simple one to 99% accuracy without the AI knowing any-
thing about the usual techniques; this beckoned the question as to whether there is underlying
new mathematics and constituted a motivation for the present study. In particular, the Cayley
multiplication tables of all finite groups up to size 70 (there are 602) were taken. Next, random
permutations were performed on each (since Cayley tables are only defined up to permutations)
such that more permutations are included for the simple groups (since there are many more fi-
nite groups that are non-simple). This created a balanced database of 60 000 examples of 70 x 70
matrices (a group of size n would have all entries in {1,2,...,n} and all tables are padded with
0 where necessary) labelled as “simple” or “non-simple”, with 50% each. Remarkably, when
flattened and represented as points in R702, a support vector machine with Gaussian kernel was
able to separate them to 99% accuracy. This led to a proto-conjecture that in the space of finite
groups, the simple and non-simple groups are thus separated and can be so classified.

One shortcoming of using the Cayley table is that these grow as the square of the group
order and working in R"™ limits the computational power. In the paper, we focus on building
a multi-layer perceptron model that can classify whether finite groups are simple using a much
more succinct representation. This gives a two-fold advantage: (i) it will allow the exploration
of more groups; and (ii) it will cross-check whether the simple/non-simple separation is truly
underlying some deep mathematics and not just an artifact of Cayley tables.

Now, in the literature there are some age old results regarding the simplicity of groups.
Burnside’s theorem, Sylow’s test, and detecting zeroes from the character table are notable
examples. Such classical results are helpful in assessing a small sample of possible finite simple
groups. One naive algorithm that would determine simplicity of a group would list out all pos-
sible non-trivial subgroups of a given group and sequentially check if any of those are normal.
State of the art deterministic algorithms that test the simplicity of a finite group are computa-
tionally non-trivial even though they might incorporate known classical theorems about finite

simple groups.!

1One method is to compute the character table and spotting the positions of 0s. We grant that these are

Non-deterministic algorithms are faster at establishing simplicity. In this paper, we provide
an example of a non-deterministic multi-layer perceptron classifier that works in polynomial

time in the size of the inputs.

Conjecture (Dixon 1969) [48]: Two randomly chosen elements of a finite simple group G

generate G with probability — 1 as |G| — oo.

Noting that every finite group is a subgroup of the symmetric group S,, for some n and that
every simple group is 2-generated [49], Dixon’s conjecture motivates our study of 2-generated
subgroups of S, and consider criterion about their simplicity [48,50]. In the experiments, groups
were randomly generated by two permutations drawn at random from S,,. We use these as
generators of a finite group and query a neural network classifier with the question of simplicity
of the resulting group. We conduct a number of experiments with different representations. In
one set of experiments, we use the full permutation representation of both the generators (which
are required to be unequal to each other and identity). In the second set of experiments, we
only use traces and determinants of generators (as they are representation invariant quantities).
In a final experiment we only use the orders of the group elements and the order of the group
as features. This is motivated by Theorem 1, which says that finite simple groups can be

characterised by these integers. Further details about the experiments are in Appendix A.

3 Learning outcomes and a conjecture

3.1 Machine learning experiments
Experiment 1

Our first experiment takes, as input, a pair of matrices as elements of the symmetric group
Sn. We mark whether the group generated by the pair as simple or non-simple accordingly. All
results described here were generated via the cross-validation process described in Appendix A.2.
Figure 1 shows the individual average validation accuracies at the end of training for each portion
of dataset for n. Only a single data point is available for n = 8 (at 4.6%), due to computational
restrictions from such a large dataset.

In general, there seem to be two different patterns in the validation accuracies above: for
n = 5 and 6, the validation accuracy appears to increase in a roughly linear fashion with the
percent of the dataset given, ending between 85% to 95% accuracy. For n = 7, however —

and this effect is still visible with n = 8 to some extent — the validation accuracy jumps up

polynomial complexity [47], but our main motivation is to uncover new structures in simple groups using Al

rather than to find faster algorithms in their detection.

. 0.9
Q
©
jn]
S 08
<
=i
3
£ 07
.-
3
~ 06 —
—B-n =
n =
0‘5 | | | |
0 20 40 60 80 100

Percentage of dataset

Figure 1: Validation accuracy for varied amount of datasets for each n. Percentages are of the

total dataset, after balancing but before splitting to allow k-fold cross validation.

to 82% at only 5% of the full dataset. There is a slight decrease as the percent of dataset
increases for n = 7 from 60% to 80%; this is likely due to the variability in the final accuracy
for cross-validation runs at n = 7. We will discuss this further shortly.

Putting these patterns aside, the models appear to become highly accurate when given
greater portions of the dataset — finishing at 89%, 96%, and 96% validation accuracy for
n =5, 6, and 7 respectively. Excluding an outlier in the final result for n = 7 gives an average
of 99% validation accuracy on the full dataset. Figure 2 displays the models’ loss and accuracy
on the training set during training, for each cross-validation run combined. The curves forn =5
fit with the typically expected images; the other two sets merit further comments.

A particular effect discovered in the training runs for n = 6 is that the model appears to
take some time to “get off the ground” — i.e., some amount of training with slow progress is
required before learning can accelerate. This effect was equally visible in the validation loss and
accuracy. Multiple initializers were tried as replacements in an attempt to mitigate this effect,
but it did not improve. Once training accelerated, the models appeared to behave normally.

Because epochs count the number of times the entire dataset has been used for training,
there were also different requirements for each n in the number of epochs run for. For example,
n = 7 only required six epochs, which partially explains why the per-epoch variability is more
visible. Also present in n = 7 were occasional regressions during training, where one of the cross-
validation runs would suddenly increase in loss and decrease in both training and validation
accuracy. This consistently affected one or two cross-validation runs, entirely at random; even
though the individual datasets used for each cross-validation run were kept consistent across
repeated experimentation, the particular “failing” runs were not consistent. In the particular

case shown in Figure 2, the “failing” run finished with a heavy bias for negative results (i.e.,

0.16
0.14
0 P n
z 2 g 012
= =) =
3 2 2 0.1
= = = 8-107°
g g 8 . 10-2
= 8- s s 6-10
6- 4-1072
4. ~ -
U Il Il Il Il Il Il Il Il
5 10 15 20 25 30 35 40 45 50
Epoch
1 1 1
0.95 B 0.95
5
b 0.9 . - 0.9 . 0.95
g 0.85 % 0.85 g 0.9
g 08 R g 08 B
2 0.75 B £ 0.7 g 0.85
g g 6
< 07 N £ 07 &g
= g 5 08
£ 06 1 o6 E)
= 5 - = 5 = b
0.6 0.6 0.75
0.55 B 0.55
Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il
05 5 10 15 20 25 30 05 5 10 15 20 25 30 35 40 45 50 0‘71 2 3 4 5 6
Epoch Epoch Epoch

Figure 2: Loss and accuracy on training data while training on full datasets, for n € {5,6,7}. Bold

curves give the average value at that epoch across all cross-validation runs.

indicating that a group is not simple). The class accuracies for that trial were 98% and 4%,
respectively. We were unable to identify a cause, though it happens to be simply to manu-
ally identify when training a model, given knowledge of the previous behavior. There were

insufficient data to determine whether this effect would occur at n = 8.

15 T T T 15 T T T
§ ——100% 80% g\g —100% 80%
= 1250 50% —35% |1 = 195 Cls0% 3% ||
o PPN N o oy
= PN N em T = PR ,
= 10 | K T N NS 10 - RN pa
=] ’ 0N AN e =] s N ’
2 A [=)/ /) o ,
g 75f K 18 75b S oS
- e A = K ' N
3 / . o) , / \ AN
& 7 S = , h AN
[a W) 5 S [a M) 5l , , S r---ssz==4
(<5} (D) ’ / —=
) = / / -
= E N //
2 25| 1 o2 |
< Q
< — <

0 | | | | | 0 | | | | |

0 5 10 15 20 25 30 0 5 10 15 20 25 30

Epoch Epoch
Figure 3: Error in predictions of accuracy from simplicity (dashed) versus parity (solid) during

training for n = 5 (left) and n = 6 (right).

In order to gain further insights into understanding simplicity of finite groups, we now

describe further machine learning experiments we conducted using alternate features.

12 1842 118 16464
123
2 @
3 °
g 3
g 8
0 32 126 {158 0 271 1022 11293
! ! N~ o
N @ ~ <
(o] [3p] © ~—
[¢0) ~ (o) ~
predicted class predicted class
-~ o -~ o
18 16464 86 13976
[o
© ©
2 2
s S
0 271 1022 11293 0 123 658 1781
N~ o ™ <
-— < — <
© -~ N~
© ~ <
predicted class predicted class

(L) Training performance; (R) Test performance

Figure 4: A classifier predicts simplicity of a group based on orders and traces of group gen-
erators and the property of being Abelian. The plot shows a confusion plot where the class 0
stands for simple groups and 1 for nonsimple groups. Using a neural network model and 1000
training points, class accuracies were found to be &~ 97% and 85%, respectively, on the training
set (left) and ~ 97% and 86% on the test set (right). We use 1000 (top row) and 4000 (bottom

row) points for training.

Experiment 2

In this experiment we choose the features to be the traces and determinants of the two gener-
ators and the binary property of the group being Abelian. We used a multi-layer perceptron
model with three hidden layers with 1000, 500, and 200 nodes respectively, and logistic sigmoid
activation. We used an ADAM optimiser. The dataset of size ~ 8500 was split into a training
set of sizes size 1000, 4000. The remaining data was used for validation in both cases. The

results are described in Figure 4.

Experiment 3

In this experiment we chose the features to be the orders of the group elements and the order
of the group. We used a multi-layer perceptron model with three hidden layers with 1000, 500,
and 200 nodes respectively, and logistic sigmoid activation. We used an ADAM optimiser. The

0 190 Or 1367 74 1441
123
S E
® 1 22 7216
0 0 10 10
(o] o]
L L 8 g
8 \9 ~ N~
predicted class predicted class
~ o (e) ~
0 1832 Op 1255 28 1283
g 4
g E
I 8
0 7 161 {168 1m0 6474
! ! w0 N
(o] - Te] o
(32 [(e] AN Yo}
[ce] -~ ~— (o]
predicted class predicted class

(L) Training performance; (R) Test performance

Figure 5: A classifier predicts simplicity of a group based on orders of group elements and order
of the group. The plot shows a confusion plot where the class 0 stands for simple groups and 1
for nonsimple groups. Using a neural network model when using only 100 training points (top)

and 1000 training points (bottom), class accuracies on the test set were found to be ~ 99%.

dataset of size ~ 8500 was split into a training set of size 1000, and a test set of ~ 7500. We
repeated the experiment using a smaller architecture with 10 times fewer nodes and a training
set of size 100. The results are described in Figure 5.

The second and third experiments were particularly illuminating in terms of choice of fea-
tures. The new features in these experiments were the traces and determinants of the generators
as opposed to the full generators; and some combination of two other features, the group order
and the property of being Abelian.

With these outcomes, it is interesting to consider a mathematical statement that might cap-
ture these experiments. We therefore consider necessary conditions on traces and determinants
of generators of finite simple groups; hinted by our machine learning outcomes above. This

manner of investigation has yielded different conjectures using an alternative approach [51].

3.2 A machine guided mathematical conjecture

In Experiments 1-3 of Section 3.1 we have built simple feed-forward multi-layer perceptron

models to predict the simplicity of a 2-generated group given merely the generators, or their

properties. Our learning outcomes were modest with predictive accuracies ~ 80%. In a tradi-
tional approach, one can conceive of a straightforward methodology for resolving the question
of the simplicity of the resulting group. This could be seen to involve two key steps, the first
of which is to freely generate a group from the two generators. Following this, one could list
all non-trivial subgroups of this group, and check for normal subgroups. Both these key steps
are computationally intensive. Therefore, it is impressive that a simple feed-forward multi-layer
perceptron model should address this question to any reasonable degree of accuracy. We now
ask the following question: can similar learning outcomes be attained using alternate represen-
tations for the generators? These could involve high level properties of the generators given a
representation — traces and determinants are examples of such properties. If a similar or better
learning outcome is obtained using such the above properties as alternate features, this is per-
haps indicative of an underlying mathematical relationship between such generator properties
and the property of simplicity. This indeed turns out to be the case: Figure 4 and Figure 5
show learning outcomes using different features. In this section, we present such a mathemat-
ical relationship as a conjecture motivated by the above learning outcome, for which we then
provide a proof. This Al-guided mathematical conjecture formulation is very much in the spirit
of [6,37,51].

First, we recall a theorem for characterising finite simple groups [52]. Let us define the set

of orders of group elements as
m(G) :={0rd(g) : g € G} . (1)

Theorem 1. A finite simple group G is completely characterised by the order of group elements

m(G) and the order (size) of the group G.

Theorem 1 implies that for G and H simple finite groups, G ~ H iff |G| = |H| and
m(G) = w(H) (as sets). This is indicative that perhaps determinants of the generator could
play a crucial role in discovering a new mathematical relationship between the generators and
the property of simplicity. In fact, this also provides an alternate representation for our clas-
sification problem. Computing 7(G) for a group 2-generated G requires further computation.
When our ML models are trained using these alternate features, it is not surprising that the
learning outcomes are nearly perfect. Figure 5 shows the learning outcome. However, this is at
additional computational cost, since generating such representations involves computing 7 (G)
and computing |G| requires.

Furthermore, we make an observation from studying our dataset. Before doing this, we
introduce a preliminary notion [53]. Let G be a subgroup of a symmetric group acting as
permutation of a set €2, as is with the case with all groups we consider here. We recall the
standard definitions that for an element o €), the stabilizer G, of « is the set of all group

elements that fix a. On the contrary, the set of all fixed points for a group element z € G is

denoted Cq(x). In short,
Gy ={zxeG:z(a) =0a},
Ca(z) ={aeQ:z(a) =a}. (2)
Then,

Definition 1. The fized point ratio of x € G, denoted by fpr(x) (which is of course implicitly
dependent upon), is the proportion of points in Q fized by x, i.e.,

_ [Ca(z)]

For our dataset of all the 2-generated subgroups of .S, up to n < 10, we notice that whenever
a resulting group is simple, the number of fixed points of either of its two generators is never
n—2orn—4forn >5 Now, all our group elements are n x n permutation matrices (in
particular matrices with only 0 and 1) acting on {1,2,...,n}. Hence, the number of fixed
points is counted by the number of 1s on the diagonal. Hence, this observation hints towards
the existence of a conjecture regarding traces (or equivalently, number of fixed points) and signs

of permutations.

Proposition 1. (conjectured from machine learning) Consider 2-generated subgroups H C S,
(n > 5) with distinct non-trivial generators in the permutation representation. That is, consider

oi=12(# e) € Sy, as n x n permutation matrices. If H is a simple group, then
1. det(oy) =1, and,
2. tr(o;) €{1,2,...,n}\{n—4,n—2,n—1,n}.

In particular, if tr(o;) = n — 4, then H = Do, C A,, < Sp,,n > 5. That is H is the dihedral

group, and thus not simple.

We can prove this conjecture which is inspired from our machine learning experiments.

Proof. First, since H is a subgroup of S,, as represented by permutation matrices, the deter-
minant of all group elements is equal to +1. Suppose, without loss of generality, det(c1) =
—1. It is straightforward to check that the following defines a homomorphism from H to

(Z/(2Z), +mod 2).
¢ H— {0, 1}
0, if det(c) =1,
1, if det(o) = —1 .

10

By the first isomorphism theorem, H/ker(¢) ~ im(v), with ker(¢)) < H. Clearly, ¢(e) = 0, and
Y(o1) =1 (by assumption). Therefore, im(¢)) = {0, 1} = Z/(2Z). As such, ker(¢)) is an index
two subgroup of H, and therefore normal. Hence, H is not simple. Thus the determinant of
both o1 should by 1. This proves the first part of the proposition.

To prove the second part, let’s assume H is simple. We begin by observing that tr(o;) # n
since e is the only element that has trace n and o; # e by assumption. Progressing further,
tr(o;) # n — 1 as that would require a single 0 and 1s everywhere else on a diagonal, which is
a singular matrix. Finally, we in fact have that tr(o;) # n — 2 since then det(o;) = —1, coming
from the (2 (1)> block.

Now consider the case of tr(c;) = n — 4 and det(o;) = 1. We will show that o? = e. If
this were to be the case, H would be a group generated by involutions. This would imply
that H is the dihedral group of order 2m, Dg,, (where for for m = 1,2 they are, Z/(27Z) and
Z/(2Z) x Z/(2Z)). In any case, H would not simple (except for the trivial case of m = 1, which
we excluded by having n > 5).

To finish the proof, it remains show that
P(n) := ((det(o) = 1) A (tr(c) =n—4) = o;=0")

holds. We do this by induction. We can enumerate to see that P(4) holds. Now assume
P(n) holds. Let ¢ € A,1, so that det(c) = 1 (by definition of the alternating group), and
tr(G) = (n + 1) — 4. We must show that P(n + 1) holds by showing & = 5. Note that each
o can be obtained from a o with the introduction of a 1 in the diagonal at one of (n + 1)

possible positions (reflecting the fact that |A,41] = (n + 1) |[A,|). Note that this doesn’t alter

T T

the determinant but increases the trace by 1. It therefore follows that ¢ = g+ since ¢ = o',

establishing that P(n + 1) holds, completing the proof. O
The following corollary is a restatement of the above written in terms of fixed point ratios.

Corollary 1. Let H be a finite simple group with the generating set containing only two distinct
group elements in a permutation representation of degree n. Then, the fized point ratio (fpr) of

any such generator cannot equal 2 /n, Vi € {0,1,2}.

11

Sporadic group generators trace {n — 2"’}%:0

Mo 1,4,9,8)(2,5,3,6),
1,6,5,2)(3,7,9,8) 1,1 5,7,8
1,9, 6,7, 5)(2,10, 3,8, 4),
1,10, 7, 8)(2, 9, 4, 6) 0, 2 6,8,9
1,2,3,4,5,6,7,8,9,10,11),
3,7,11,8)(4,10,5,6) 0,3 7,9,10
1,2,3,4,5,6,7,8,9,10,11),
3,7,11,8)(4,10,5,6),
1,12)(2,11)(3,6)(4,8)(5,9)(7,10) 1,4,0 810,11
1,4,5,9,3)(2,810, 7, 6)
12,15,16,20,14)(13,19,21,18,17),
1,21, 5,12,20)(2,16, 3, 4,17)
6,18, 7,19,15)(8,13, 9,14,11) 0,3 17,19,20
1,2,3,4,5,6,7,8,9,10,11)
12,13,14,15,16,17,18,19,20,21,22),
1,4,5,9,3)(2,810, 7, 6)
12,15,16,20,14)(13,19,21,18,17),
1,21)(2,10, 8, 6)(3,13, 4,17)
5,19, 9,18)(11,22)(12,14,16,20) 1,1,1 18,2021
1,2,3,4,5,6,7,8,910,11,12,
13,14,15,16,17,18,19,20,21,22,23),
(13,17,10, 7, 9)(4,13,14,19, 5)
(8,18,11,12,23)(15,20,22,21,16) 1,1 19, 21,22
Moy (1,2,3,4,5,6,7,8,9,10,11,12,13,
14,15,16,17,18,19,20,21,22,23),
(13,17,10, 7, 9)(4,13,14,19, 5)
(18,18,11,12,23)(15,20,22,21,16),
(11,24)(2,23)(3,12)(4,16)
(
(

Mio

Mo

Moo

e T T e e e N N T T T N N N T T T N e NN

M3

5,18)(6,10)(7,20)(8,14)
9,21)(11,17)(13,22)(15,19) 1,4,0 20,22, 23

Table 1: Properties of Mathieu Group generators. All the generators are of positive signature and

the number of fixed points is never n — 2% k € {0,1,2}, ala proposition 1.

12

4 Discussion

In this work, we demonstrate that standard off the shelf machine learning tools such as neu-
ral networks can help determine the simplicity of a group with relatively high accuracies and
produce novel insights. We conduct a number of machine learning experiments with differ-
ent mathematical features to determine simplicity. When using permutation representations
of group generators, we find modest learning outcomes. In another experiment, using element
orders as features alongside the order of the group, we demonstrate remarkable class accuracies
of close to 99% in Figure 5, reflective of a known result for finite simple groups, viz., Theorem 1.
The success our experiments gives further confidence that the ability of machine-learning (in
particular support vector machines) to distinguish simple/non-simple groups when trained on
Cayley tables [21] was not a mere artifact of data representation, but truly underlies interesting
mathematics.

From these experiments, we distill Proposition 1, which we then prove using properties of
finite simple groups. The result restricts choices of 2-generating sets for finite simple groups.
We recast this result in terms of fixed point ratios of group generators in Corollary 1. Bounds
on fixed point ratios are an important topic of consideration. The above observation feeds
directly into studies of fixed point ratios of groups, which have been studied extensively over
many decades [53]. The result places restrictions on the traces of generators of any finite simple
group. The computational advantage this observation yields is ~ 1074% when looking for a
generator of the Monster group in the smallest faithful irreducible representation which occurs
at n = 196 883. The more interesting point is that the determinant and trace of the generators
conspire in some cases to form a dihedral group. Corollary 1 holds for all finite simple groups
in the permutation representation. As such it holds for sporadic groups in their permutation
representations. In Table 1, we check consistency of our results for the Mathieu group. For
this, we note that the traces and determinants of known generators of the Mathieu group are
consistent with the allowed values in Corollary 1. We can as well study other presentations of
finite groups, and we leave this to future work.

The prospect of finding novel mathematical results is tantalising in the age of AL There
are a number of emerging pathways for mathematical research in light of machine learning.
In this work, we exploit one such pathway which involves learning a mathematical property
(in this case simplicity) using standard machine learning architectures, and exploiting insights
from the learning process to distill a theorem. Often, tools from machine interpretability such
as relevance scores can aid in this process resulting in new mathematical insights or theorems [6,
28,36,37]. Complementary approaches have been proposed in the recent literature, relying on
an organisational principle for mathematical statements, resulting in novel conjectures which

could often be proved using domain expertise [51].

13

Acknowledgments

YHH would like to thank STFC for grant ST/J00037X/2, the Leverhulme Trust for a project
grant, as well as Joseph Chuang and Radha Kessar for many helpful discussions. VJ is supported
by the South African Research Chairs Initiative of the Department of Science and Innovation
and the National Research Foundation. CM is supported by the Accelerate Programme for
Scientific Discovery, at the Computer Laboratory, University of Cambridge. CM would like
to thank Damidn Kaloni Mayorga Pena, Aditya Ravuri, Subhayan Roy Moulik for helpful
discussions. The authors would like to thank the Isaac Newton Institute for Mathematical
Sciences for support and hospitality during the program “Black holes: bridges between number
theory and holographic quantum information” when work on this paper was undertaken; this

work was supported by EPSRC grant number EP/R014604/1.

14

Group Id || Name | Simple? Generators
1000][1000
0100 0100
[1,1] 1 No
00 1 0 0010
000T1[]/0001
1000][o0o100
0100 1000
[2,1] Zo Yes
00 1 0 0010
000 1][0001
1000][oo010
0100 1000
[3,1] Z3 Yes
00 1 0 0100
000 1][0001
1000][o0oo0o01
0100 1000
[4,1] 74 No
00 1 0 0100
000 1][0010
01 00][oo010
100 0 1000
[6,1] S5 No
00 1 0 0100
000 1][0001
0o100][0o0o01
100 0 1000
[24,12] Sy No
00 10 0100
000T1[][0010
0100][o0oo010
1000 000 1
(8, 3] Dy No
00 1 0 1000
000T1[]/0100
0100][1000
100 0 0100
[4,2] ZQXZQ No
00 1 0 00 0 1
0001][0010
0010][o0oo0o01
100 0 0100
[12, 3] Ay No
010 0 1000
000 1 0010

15

A Machine learning experiments

There were therefore many entries in the dataset for groups equivalent under isomorphism, and

the number of entries per-group was not changed to be less imbalanced. This was intentional.?

A.1 2-generated subgroups of 5,

The input data to our models were the permutation matrices corresponding to the generators
of each group. We found this to be the most effective representation of the data, as it allowed
for fixed-size inputs and produced better performing models than encoding the generators as

permutation vectors.

Example: 2-generated subgroups of S

Group Id || Name | Simple? Generators
1 00][1 0 0]
[1,1] 1 No 010|010
00 1]][00 1,
1 00][0 1 0]
[2,1] Ly Yes 010 1 00
00 1]][00 1,
1 00][0 0 1]
[3,1] Zs3 Yes 010 100
00 1]][0 10,
o1 0][0 0 1]
[6,1] Ss No 100 100
00 1[0 10,

Table 2: Subgroups of Ss.

Model training and validation were performed on subsets of the balanced datasets for 5-fold
cross-validation. The mean final validation accuracy for models trained on different portions of

the balanced dataset for each n is displayed in Figure 1, from “Results”.

A.2 Datasets

The datasets are given by the generating permutation matrices for each subgroup of some 5.

Only the two-generated subgroups were selected, but all permutations were included, giving a

2To give a sense of scale, the number of subgroups of S, for n = [4,7] are 11, 19, 56, 96. The number of

entries generated by our methods for each S, would be 560, 14375, 518 364, 25401 551.

16

Group Id | Name | Simple? | Count (filtered) | Count (unfiltered)
[2,1] C2 Yes 18 27

[3,1] C3 Yes 24 32

[4,1] C4 No 30 36

[4,2] | C2xC2| No 24 24

(6, 1] s3 No 72 72

(8, 3] DS No 72 72
[12,3] A4 No 96 96
[24,12] S4 No 216 216

Table 3: Number of each subgroup of S4 that would be present in the dataset.

total (n!)? — n? individual entries in each dataset. The orders of the groups in these datasets
were therefore not evenly distributed; the number of each group included in the dataset for
Sy and S5 is in Table 3 and Table 4. It was computationally infeasible to include the same
information for Sg and larger.

For all datasets, we used the SageMath interface to GAP to analyze the groups generated by
each pair of permutation matrices. The categorization of whether a group is simple was paired
with the generating matrices to produce the entry for that group.

With most of the symmetric groups examined here, it was feasible to produce the catego-
rization from GAP for all permutation pairs, which was done by simple iteration. Experiments
on Sg used a random subset of all possible permutation pairs by taking a random sample of
integers 1 to (8!)2, mapping these values to permutation matrices, and filtering out pairs with
the same permutation. The component of this mapping that produces the permutation® is

specified in algorithm 1.

17

Group Id | Name | Simple? | Count (filtered) | Count (unfiltered)
[2,1] C2 Yes 50 75
[3,1] C3 Yes 60 80
[4,1] C4 No 150 180
(4,2] | C2xC2| No 120 120
[5,1] C5 Yes 120 144
[6,2] 6 No 220 240
[6,1] S3 No 360 360
[8, 3] D8 No 360 360
[10,1] | D10 No 360 360
[12,3] A4 No 480 480
[12,4] | D12 No 360 360
[20,3] | C5:C4| No 1440 1440
[24,12] S4 No 1080 1080
[60, 5] A5 Yes 2280 2980

[120,34] | S5 No 6840 6840

Table 4: Number of each subgroup of S5 present in the dataset.

18

Algorithm 1: Conversion from k € [0,n!) to a permutation of n elements.

Input: An integer k € [0, n!)

Output: A permutation of the elements 0,1, ..n
vs:=[]// The values O, .. n

ps =[] // The final permutation

fori<0ton—1do
| vs.append(i)

end

fori < ntoldo

r := remainder of %
k< k mod ¢

v = vs[r]

Remove vs[r] and shift remaining elements to the left

ps.append(v)
end

return ps

A single sample in one of the datasets could be constructed as follows. Suppose we are
generating data for the subgroups of Sy, with the permutations given by the integer pair (6, 19).

The corresponding permutations, as generated by the aforementioned algorithm, are:
(2,1,0,3) and (3,1,2,0) (3)

which generate the following permutation matrices, respectively:

and

(4)

o = O O
= o O O
_ o O O

0
0
1
0

o o o =

0 1 0
10 1
0 0 0
0 0 0

The inputs for the training sample are just the concatenation of each row in the two matrices
into a single vector, as shown below:
(0,0,1,0, 0,1,0,0, 1,0,0,0, 0,0,0,1, 0,0,0,1, 0,1,0,0, 0,0,1,0, 1,0,0,0) (5)

The particular group corresponding to these inputs S3, which is not simple.

Training datasets

The generated datasets were unbalanced; only approximately 20% of the entries correspond to

simple groups in each dataset.* From here on, we refer only to the balanced datasets, which are

3Constructing the permutation matrix from the corresponding permutation of n elements is trivial; we leave

this undiscussed.

19

chosen by a random selection of the non-simple entries in equal number to the set of simple
ones.

All experiments were done with 5-fold cross-validation, with each train/validation split tak-
ing from the same balanced subset of the unbalanced dataset. For experimentation on differing
amounts of data (e.g., using 50% of the “full”, balanced dataset), all balanced datasets were

subsets of the “full” balanced dataset.

A.3 Neural network architectures

1 2 n
h3s6 h3s6 Tt hase
1 2 n
hass hass tet hass
1 2 n
IN h3s4 has4 s has4
1 2 n
FN-1 has53 W h353 s his3

ni h? . hY

2 outputs

2n? inputs

n hidden layers

Figure 6: Generic architecture of the models used. The generating permutation matrices are flat-
tened and provided as input. Softmax is applied to the two outputs, which give probabilities for

whether the group is simple or not.

The models used for experimentation were fully-connected neural networks with the two
input permutation matrices flattened into a single vector of 2n? boolean values for each S,.
Predictions are chosen by the greater of two output values, scaled by the softmax activation
function. Hidden layers for all final models consist of 256 nodes, with all nodes using the ReLLU
activation function. See Figure 6 above for an illustration.

Optimization was done with stochastic gradient descent (SGD) with Nesterov-accelerated
momentum and Mean Squared Error as the loss function. The hyperparameters for SGD (both
learning-rate and momentum), the number of hidden layers for each n, and the size of the
hidden layers were selected by manual hyperparameter search. The results with the best mean
validation accuracy across all five validation datasets at the end of training. A hidden layer size
of 256 was chosen for all n as a common best size for n =5 and n = 6.

For n = 7 and n = 8§, rigorous hyperparameter search was infeasible due to the size of the

4For each value of n € {5, ..8}, these fractions are 0.1758, 0.2027, 0.2315, and 0.2133, respectively.

20

n | Learning rate | Momentum | Num. hidden layers | ~
0.05 0 1 0.1
6 0.001 0.01 3 0.05
* 0.01 0.1 9 0.05
8% 0.01 0.1 9 0.05

Table 5: Hyperparameters used for each dataset.

datasets and the resulting computational restrictions — less so with the former than the latter.
For these datasets, the hyperparameters were initially chosen by extrapolation from those used
with the lower two values for n, without attempting to produce optimal results. Adjustments
were made only until the model was successfully better than random chance. This less rigorous
iteration was required as, for some sets of hyperparameters, the models completely fail to
perform any meaningful learning (often skewing entirely towards one output or another). This
occurred most prominently at n = 7, when testing with five or fewer hidden layers. This effect
was avoided by increasing the number of hidden layers, which did not prove to be additionally
necessary for n = 8 (i.e., there was no increase from n =7 to 8).

In addition to the hyperparameters previously mentioned, learning rate decay was also

provided, with the learning rate at each epoch calculated from the previous by:

Irjp1 = (1 —)l (6)

with v as the hyperparameter controlling the rate of decay. The hyperparameters used for each

n are given above, in Table 5.

21

References

1]
2]

[5]

[6]

[14]

[15]

Y.-H. He, Deep-Learning the Landscape, 1706.02714.

J. Carifio, J. Halverson, D. Krioukov and B. D. Nelson, Machine learning in the string

landscape, JHEP 09 (2017) 157, [1707.00655].

D. Krefl and R.-K. Seong, Machine learning of Calabi- Yau volumes, Phys. Rev. D96
(2017) 066014, [1706.03346].

F. Ruehle, Evolving neural networks with genetic algorithms to study the string landscape,

JHEP 08 (2017) 038, [1706.07024].
Y.-H. He, Machine-learning the string landscape, Phys. Lett. B774 (2017) 564-568.

Y.-H. He, The Calabi-Yau Landscape: From Geometry, to Physics, to Machine Learning.
Lecture Notes in Mathematics. 5, 2018, 10.1007/978-3-030-77562-9.

F. Ruehle, Data science applications to string theory, Phys. Rept. 839 (2020) 1-117.

A. Jain, C. Mishra and P. Lio, A physics-informed search for metric solutions to ricci

flow, their embeddings, and visualisation, arXiv preprint arXiv:2212.05892 (2022) .

K. Bull, Y.-H. He, V. Jejjala and C. Mishra, Machine Learning CICY Threefolds, Phys.
Lett. B 785 (2018) 65-72, [1806.03121].

K. Bull, Y.-H. He, V. Jejjala and C. Mishra, Getting CIC'Y High, Phys. Lett. B 795
(2019) 700-706, [1903.03113|.

P. Berglund, B. Campbell and V. Jejjala, Machine Learning Kreuzer-Skarke Calabi- Yau
Threefolds, 2112.09117.

A. Ashmore, Y.-H. He and B. A. Ovrut, Machine Learning Calabi—Yau Metrics, Fortsch.
Phys. 68 (2020) 2000068, [1910.08605].

D. Peifer, M. Stillman and D. Halpern-Leistner, Learning selection strategies in
buchberger’s algorithm, in International Conference on Machine Learning, pp. 7575-7585,
PMLR, 2020.

L. B. Anderson, M. Gerdes, J. Gray, S. Krippendorf, N. Raghuram and F. Ruehle,
Moduli-dependent Calabi-Yau and SU(3)-structure metrics from Machine Learning,
2012.04656.

M. R. Douglas, S. Lakshminarasimhan and Y. Qi, Numerical Calabi-Yau metrics from

holomorphic networks, 2012.04797.

22

https://arxiv.org/abs/1706.02714
http://dx.doi.org/10.1007/JHEP09(2017)157
https://arxiv.org/abs/1707.00655
http://dx.doi.org/10.1103/PhysRevD.96.066014
http://dx.doi.org/10.1103/PhysRevD.96.066014
https://arxiv.org/abs/1706.03346
http://dx.doi.org/10.1007/JHEP08(2017)038
https://arxiv.org/abs/1706.07024
http://dx.doi.org/10.1016/j.physletb.2017.10.024
http://dx.doi.org/10.1007/978-3-030-77562-9
http://dx.doi.org/10.1016/j.physrep.2019.09.005
http://dx.doi.org/10.1016/j.physletb.2018.08.008
http://dx.doi.org/10.1016/j.physletb.2018.08.008
https://arxiv.org/abs/1806.03121
http://dx.doi.org/10.1016/j.physletb.2019.06.067
http://dx.doi.org/10.1016/j.physletb.2019.06.067
https://arxiv.org/abs/1903.03113
https://arxiv.org/abs/2112.09117
http://dx.doi.org/10.1002/prop.202000068
http://dx.doi.org/10.1002/prop.202000068
https://arxiv.org/abs/1910.08605
https://arxiv.org/abs/2012.04656
https://arxiv.org/abs/2012.04797

[16] V. Jejjala, D. K. Mayorga Pena and C. Mishra, Neural Network Approzimations for
Calabi-Yau Metrics, 2012.15821.

[17] M. Larfors, A. Lukas, F. Ruehle and R. Schneider, Learning Size and Shape of Calabi-Yau
Spaces, 2111.01436.

[18] A. Ashmore, L. Calmon, Y.-H. He and B. A. Ovrut, Calabi- Yau Metrics, Energy
Functionals and Machine-Learning, 2112.10872.

[19] M. Larfors, A. Lukas, F. Ruehle and R. Schneider, Numerical metrics for complete
intersection and Kreuzer—Skarke Calabi-Yau manifolds, Mach. Learn. Sci. Tech. 3 (2022)
035014, [2205.13408].

[20] P. Berglund, G. Butbaia, T. Hiibsch, V. Jejjala, D. Mayorga Pena, C. Mishra et al.,
Machine Learned Calabi—Yau Metrics and Curvature, 2211.09801.

[21] Y.-H. He and M. Kim, Learning Algebraic Structures: Preliminary Investigations,
1905.02263.

[22] J. Bao, S. Franco, Y.-H. He, E. Hirst, G. Musiker and Y. Xiao, Quiver Mutations, Seiberg
Duality and Machine Learning, Phys. Rev. D 102 (2020) 086013, [2006.10783].

[23] L. Amorés, O. Gasanova and L. Jakobsson, A machine learning approach to commutative

algebra: Distinguishing table vs non-table ideals, arXiv preprint arXiv:2109.11417 (2021) .

[24] P.-P. Dechant, Y.-H. He, E. Heyes and E. Hirst, Cluster Algebras: Network Science and
Machine Learning, 2203.13847.

[25] M. C. Hughes, A neural network approach to predicting and computing knot invariants,

Journal of Knot Theory and Its Ramifications 29 (2020) 2050005.

[26] V. Jejjala, A. Kar and O. Parrikar, Deep Learning the Hyperbolic Volume of a Knot,
Phys. Lett. B 799 (2019) 135033, [1902.05547].

[27] S. Gukov, J. Halverson, F. Ruehle and P. Sutkowski, Learning to Unknot, 2010.16263.

[28] J. Craven, V. Jejjala and A. Kar, Disentangling a Deep Learned Volume Formula,
2012.039565.

[29] J. Craven, M. Hughes, V. Jejjala and A. Kar, Learning knot invariants across

dimensions, 2112.00016.

[30] J. Craven, M. Hughes, V. Jejjala and A. Kar, llluminating new and known relations
between knot invariants, 2211.01404,

23

https://arxiv.org/abs/2012.15821
https://arxiv.org/abs/2111.01436
https://arxiv.org/abs/2112.10872
http://dx.doi.org/10.1088/2632-2153/ac8e4e
http://dx.doi.org/10.1088/2632-2153/ac8e4e
https://arxiv.org/abs/2205.13408
https://arxiv.org/abs/2211.09801
https://arxiv.org/abs/1905.02263
http://dx.doi.org/10.1103/PhysRevD.102.086013
https://arxiv.org/abs/2006.10783
https://arxiv.org/abs/2203.13847
http://dx.doi.org/10.1016/j.physletb.2019.135033
https://arxiv.org/abs/1902.05547
https://arxiv.org/abs/2010.16263
https://arxiv.org/abs/2012.03955
https://arxiv.org/abs/2112.00016
https://arxiv.org/abs/2211.01404

31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[44]

[45]

[46]

Y.-H. He and S.-T. Yau, Graph Laplacians, Riemannian Manifolds and their
Machine-Learning, 2006.16619.

J. Bao, Y.-H. He, E. Hirst, J. Hofscheier, A. Kasprzyk and S. Majumder, Polytopes and
Machine Learning, 2109.09602.

L. Alessandretti, A. Baronchelli and Y.-H. He, Machine Learning meets Number Theory:
The Data Science of Birch-Swinnerton-Dyer, 1911.02008.

Y.-H. He, E. Hirst and T. Peterken, Machine-learning dessins d’enfants: explorations via

modular and Seiberg—Witten curves, J. Phys. A 54 (2021) 075401, [2004.05218].

Y.-H. He, K.-H. Lee and T. Oliver, Machine-Learning the Sato—Tate Conjecture,
2010.01213.

Y.-H. He, Machine-Learning Mathematical Structures, 2101.06317.

A. Davies, P. Velickovi¢, L. Buesing, S. Blackwell, D. Zheng, N. Tomasev et al.,
Advancing mathematics by guiding human intuition with ai, Nature 600 (2021) 70-74.

E. Noether, Invariant Variation Problems, Gott. Nachr. 1918 (1918) 235-257,
[physics/0503066].

V. I. Arnol’d, Mathematical methods of classical mechanics, vol. 60. Springer Science &

Business Media, 2013.
S. Weinberg, The quantum theory of fields, vol. 1,2. Cambridge university press, 1995.

T. S. Cohen and M. Welling, Group equivariant convolutional networks, Proceedings of
The 33rd International Conference on Machine Learning, Proceedings of Machine

Learning Research 48 (2016) 2990-2999.

R. Kondor and S. Trivedi, On the generalization of equivariance and convolution in
neural networks to the action of compact groups, in International Conference on Machine

Learning, pp. 2747-2755, PMLR, 2018.

H.-Y. Chen, Y.-H. He, S. Lal and S. Majumder, Machine learning Lie structures €
applications to physics, Phys. Lett. B 817 (2021) 136297, [2011.00871].

M.-W. Cheung, P.-P. Dechant, Y.-H. He, E. Heyes, E. Hirst and J.-R. Li, Clustering
Cluster Algebras with Clusters, 2212.09771.

K.-H. Lee, Data-scientific study of kronecker coefficients, 2023.

D. Gorenstein, Finite groups, vol. 301. American Mathematical Soc., 2007.

24

https://arxiv.org/abs/2006.16619
https://arxiv.org/abs/2109.09602
https://arxiv.org/abs/1911.02008
http://dx.doi.org/10.1088/1751-8121/abbc4f
https://arxiv.org/abs/2004.05218
https://arxiv.org/abs/2010.01213
https://arxiv.org/abs/2101.06317
http://dx.doi.org/10.1080/00411457108231446
https://arxiv.org/abs/physics/0503066
http://dx.doi.org/10.1016/j.physletb.2021.136297
https://arxiv.org/abs/2011.00871
https://arxiv.org/abs/2212.09771

[47] D. Bernstein, The computational complezity of rules for the character table of sn, Journal

of Symbolic Computation 37 (2004) 727-748.

[48] J. D. Dixon, The probability of generating the symmetric group, Mathematische Zeitschrift
110 (1969) 199-205.

[49] M. Aschbacher and R. Guralnick, Some applications of the first cohomology group,
Journal of Algebra 90 (1984) 446-460.

[50] A. Shalev, Asymptotic group theory, Notices of the AMS April (2001) 383-389.

[51] C. Mishra, S. R. Moulik and R. Sarkar, Mathematical conjecture generation using
machine intelligence, arXiv preprint arXiv:2306.07277 (2023) .

[52] A. V. Vasil’ev, M. A. Grechkoseeva and V. D. Mazurov, Characterization of the finite
simple groups by spectrum and order, Algebra and Logic 48 (2009) 385-409.

[53] T. C. Burness, Simple groups, fized point ratios and applications, arXiv preprint
arXiv:1707.03564 (2017) .

25

http://dx.doi.org/https://doi.org/10.1016/j.jsc.2003.11.001
http://dx.doi.org/https://doi.org/10.1016/j.jsc.2003.11.001

	Introduction: Machine learning and symmetries
	Machine learning simplicity
	Learning outcomes and a conjecture
	Machine learning experiments
	A machine guided mathematical conjecture

	Discussion
	Machine learning experiments
	2-generated subgroups of Sn
	Datasets
	Neural network architectures

