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Abstract

Solid partitions are the 4D generalization of the plane partitions in 3D and
Young diagrams in 2D, and they can be visualized as stacking of 4D unit-size boxes
in the positive corner of a 4D room. Physically, solid partitions arise naturally as
4D molten crystals that count equivariant D-brane BPS states on the simplest toric
Calabi-Yau fourfold, C4, generalizing the 3D statement that plane partitions count
equivariant D-brane BPS states on C

3. In the construction of BPS algebras for
toric Calabi-Yau threefolds, the so-called charge function on the 3D molten crystal
is an important ingredient – it is the generating function for the eigenvalues of
an infinite tower of Cartan elements of the algebra. In this paper, we derive the
charge function for solid partitions. Compared to the 3D case, the new feature is
the appearance of contributions from certain 4-box and 5-box clusters, which will
make the construction of the corresponding BPS algebra much more complicated
than in the 3D.
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1 Introduction and Summary

It has been proposed by Harvey and Moore that it is possible to endow the space of
BPS states (for systems with enough supersymmetries) with an algebraic structure [1,2]
and define a BPS algebra. For the IIA string on toric Calabi-Yau threefolds, the BPS
algebra of the 1

2
-BPS states was first constructed in the form of a cohomological Hall

algebra (CoHA) in [3]. Using the description of these BPS states in terms of 3D molten
crystals [4,5], one can also bootstrap their BPS algebras in the form of quiver Yangians [6].
For simple cases, it has been demonstrated that the latter is the Drinfeld double of the
former [7, 8].

A natural question is how to generalize to toric Calabi-Yau four-folds (CY4), namely,
to construct BPS algebras describing BPS D-branes on CY4. However, this is a much
harder question. To illustrate the difficulty, it is enough to compare the simplest cases in
these two dimensions: C3 and C4. First of all, the D6-D0-branes in C3 can be described
in terms of plane partitions (a 3D generalization of the 2D Young diagrams), whereas
the D8-D0-branes in C4 are described by the 4D version and are called solid partitions.

To start with, solid (4D) partitions are notorious for the difficulty of writing down
their generating function, which is presumably related to the BPS partition function of
D8-D0 branes in C4, if we assume that each configuration is weighted by q|π| with |π|
being the number of 4D boxes in the solid partition π. Recall that the conjectured
generating function of solid partitions (with a similar structure) of MacMahon famously
failed at level 6. As a comparison, ordinary (2D) partitions and plane (3D) partition both
have rather simple generating functions, which can be written as the plethystic exponents
of even simpler expressions.

This problem has been clarified in [9]. In the ADHM construction that describes D-
branes wrapping toric Calabi-Yau varieties [10–13], solid partitions correspond to fixed
points on the ADHM space for 8D instantons, and the measure should be given by the
loop-correction determinants in the instanton background, instead of the simple one in
which each configuration is weighted by q|π|. Adopting this measure, [9] proposed a closed-
form formula for the generating function of solid partitions, as a plethystic exponent.1

The next difficulty appears at an early stage of the bootstrap procedure. The boot-
strapping procedure of [6] starts with a certain ansatz on the actions of operators of the
BPS algebra (in the Chevalley basis) on the representation vector |π〉 labeled by a 3D
crystal (a plane partition for the C3 case). We first organize all the Cartan/creation/an-
nihilation operators into three fields of z, using a complex spectral parameter z. The
eigen-values of each crystal configuration under the action of the Cartan operators are
correspondingly organized into a function of z, referred to as the “charge function” in [6].
The action of the creation and annihilation operators depends on the charge function.
To fulfil some basic requirement on the BPS algebra, the charge function has the impor-
tant property that for each crystal configuration, each pole of its charge function either

1For subsequent development see [14–20]; for recent progress on counting BPS states of D-branes
wrapping toric Calabi-Yau fourfolds (CY4) and associated geometric structures see [21–24].
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corresponds to a position where the creation operators of the BPS algebra can add a
new atom, or a position where an existing atom of the crystal can be removed by the
annihilation operators of the BPS algebra.2 In 3D, this property then determines the
charge function and furthermore the action of the BPS algebra on the representation
space, which then allows us to determine the algebraic relations of the BPS algebra itself.

Therefore one of the most important steps in determining the BPS algebra is to
construct the charge function with the important property explained above. In the 3D
case, the charge function that has these properties actually takes a very simple form:
each box in the partition contributes one rational factor, which is defined in terms of a
basic rational function (the “bonding factor”) that eventually enters the definition of the
BPS algebra. However, this simple form of charge function does not generalize to 4D.
Already for the simplest case of C4, a charge function with this simple factorized form
does not have the correct pole structure that can capture the adding and removing 4D
boxes from a given solid partition.

The aim of this note is to construct the charge function for solid partitions, as a first
step towards constructing the BPS algebra describing D8-D0 branes on C4. We first
arrive at a conjectured charge function by examining all solid partitions with up to 15
boxes, and then prove that it indeed obeys all the requirements for all solid partitions,
by analyzing local shapes of the boundaries of the solid partitions. Relative to the 3D
counterpart, the crucial new feature of the final result (4.26) is the appearance of the
contributions from certain 4-box and 5-box clusters, apart from the contributions from
single boxes. We expect that this construction can be straightforwardly generalized to
other toric Calabi-Yau fourfolds and the new features will be crucial in constructing the
BPS algebra for C4.3

This paper is organized as follows. In Sec. 2 we give a brief review of the construction
of the effective theory of D-brane systems on C

4 and the counting problem for BPS states
in this system. In Sec. 3 we review the construction of solid partitions. The main result is
in Sec. 4, where we construct the charge function for the solid partitions. Then in Sec. 5
we propose some interesting problems for further research. Finally, in App. A we review
the Young diagrams (2D) and plane partitions (3D) together with the construction of
their charge functions; and App. B contains material for the effective theory on the D8
brane world-volume.

2 BPS D-branes on toric Calabi-Yau fourfolds

The effective theory of D-branes wrapping toric Calabi-Yau varieties is known to flow
to an effective super-Yang-Mills-Higgs theory whose gauge-matter-interaction content is

2In this paper, since we will only deal with D-dimensional partitions, henceforward we will refer to
these atoms by “boxes”, which seem to be the standard terminology for D-dimensional partitions.

3We are not aware of an algebra with representations furnished by solid partitions. This suggests
that the resulting BPS algebra for solid partitions could turn out to be a new algebraic structure, e.g. a
“Mama-algebra” in the sense of [9].
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encoded in a quiver [11].

In the case of toric Calbi-Yau 4-folds (CY4), the effective theory is given by a 2D
N = (0, 2) theory (see App. B for details). The corresponding quiver can be lifted to a
periodic extended quiver on a 3-torus [25–27]. In addition to the usual gauge and chiral
multiplets encoded in the nodes and oriented edges of the quiver, the 2d N = (0, 2)
theory has a Fermi multiplet encoded in the unoriented edges of the extended quiver.
The usual F-term of N = 1 4d theories (see App. B) is replaced by EJ-terms defined by
a signed sum over faces with unoriented edges.

In this note, we concentrate on the simplest toric CY4: C
4. We follow [25] and consider

a quiver with canonical framing I, which represents a canonical D8-brane wrapping the
whole C4:

B1

Λ(1)

B2

Λ(2)

B3

Λ(3)

B4

I

,

Ek = [B4, Bk] , k = 1, 2, 3 ;

WJ =
3
∑

i,j,k=1

ǫijkTr
(

Λ(i)BjBk

)

.
(2.1)

For the case of C4, the periodic quiver and the EJ-vacuum equations are:

B2

B3

B1

Λ(2)

Λ(1)

Λ(1)

J E

Λ(1) : B2 · B3 − B3 · B2 = 0 , B4 ·B1 − B1 · B4 = 0

Λ(2) : B3 · B1 − B1 · B3 = 0 , B4 ·B2 − B2 · B4 = 0

Λ(3) : B1 · B2 − B2 · B1 = 0 , B4 ·B3 − B3 · B4 = 0

(2.2)
The vacuum equations for the fields Ba and I consist of the canonical D-term and the
EJ-term discussed above:

D-term:

4
∑

i=1

[

Bi, B
†
i

]

+ II† = ζ1 ,

EJ-term: [Bi, Bj ] = 0, i, j = 1, 2, 3, 4 .

(2.3)

Note that these vacuum equations are equivalent to the ADHM description of instantons
on R

8 [9, 15, 28].

Classical vacua are fixed points on this variety that correspond to equivariant 8D
instantons in the Ω-background. We can count them in a way similar to the 4D or 6D
case [29], using a theorem of King [30]. Consider the equivariant monomials in the quiver
path algebra:

A = C[B1, B2, B3, B4]/〈[Ba, Bb] = 0〉 , (2.4)
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which act on a cyclic vector I. All such monomials can be enumerated by points of the
positive sedecant Z4

≥0 in a 4D integral lattice. We denote the canonical basis in the 4D
space by

~e1 =
(

1 , 0 , 0 , 0
)

,

~e2 =
(

0 , 1 , 0 , 0
)

,

~e3 =
(

0 , 0 , 1 , 0
)

,

~e4 =
(

0 , 0 , 0 , 1
)

.

(2.5)

A monomial is defined by the coordinates of a point in this lattice:

(i, j, k, l) ∈ Z≥0 ←→ Bi
1B

j
2B

k
3B

l
4 · I . (2.6)

Some of these operators acquire vacuum expectation values (vevs) when acting on
the vacuum state. A set of operators with vevs forms a subset of points (which will
correspond to boxes in a solid partition) in Z4

≥0, which we call a 4D crystal. The stability
conditions on the fixed points of the quiver moduli space, together with the EJ-term
constraints, impose a convexity constraint on possible crystal configurations, known in
the literature as the melting rule [4, 29, 31–35]. As a result, the BPS vacua of D-brane
systems wrapping toric CY4’s are described by a melting crystal model.

In the current case, the melting rule is:

For any box � ∈ Z
4
≥0,

if there is another box �
′ ∈ K at ~x(�′) = ~x(�) + ~ek for any k = 1, 2, 3, 4 ,

then � ∈ K.
(2.7)

K is called a molten crystal if it satisfies the melting rule.

3 Solid partitions

A solid partition of an integer n is a three-dimensional array π of non-negative integers
πi,j,k ≥ 0 satisfying:

∑

i,j,k

πi,j,k = n, πi+1,j,k ≤ πi,j,k, πi,j+1,k ≤ πi,j,k, πi,j,k+1 ≤ πi,j,k, ∀ i, j, k ∈ Z≥0.

(3.1)
The (naive) generating series for solid partitions, which is defined as

P (q) ≡
∑

π

q|π| (3.2)
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is given by [36]:

P (q) =1 + q + 4q2 + 10q3 + 26q4 + 59q5 + 140q6 + 307q7 + 684q8 + 1464q9

+ 3122q10 + 6500q11 + 13426q12 + 27248q13 + 54804q14 + . . . .
(3.3)

Unlike the 2D and 3D counterparts, the coefficients in its plethystic logarithm are neither
monotonic nor all positive:

f(q) = PL[P ](q) =1 + q + 3q2 + 6q3 + 10q4 + 15q5 + 20q6 + 26q7 + 34q8

+ 46q9 + 68q10 + 97q11 + 120q12 + 112q13 + 23q14

− 186q15 − 496q16 − 735q17 − 531q18 + 779q19 + . . . ,

(3.4)

where the non-monotonicity first appears at q13 and the first negative term appears at
q15.4

A solid partition can be visualized as stacking 4D unit-size boxes in the corner of a
4D room. Namely, a solid partition π can be represented by a subset of nodes (boxes in
the solid partition) of Z4

≥0, with coordinates:

(i, j, k, l), 0 ≤ l < πi,j,k. (3.5)

A set of solid partitions is equivalent to a set of 4D crystals in Z4
≥0 satisfying the melting

rule (2.7), thus we will use these two terms interchangeably.

For a solid partition π, we define two sets of boxes

Add(π) ⊂ Z
4
≥0 and Rem(π) ⊂ Z

4
≥0 (3.6)

as positions in the 4D lattice where the corresponding boxes can be added to π or removed

from π in such a way that the resulting configurations are again solid partitions. (See
Fig. 1 for the illustration of the 3D counterparts.)

In what follows, we will work with the weight space. To each field Bi, we assign a
complex weight (or flavor parameter) hi. These weights measure the equivariant toric
action on the CY4:

(x, y, z, w) 7→ (eh1x, eh2y, eh3z, eh4w) (3.7)

and satisfy the Calabi-Yau condition:

h1 + h2 + h3 + h4 = 0 . (3.8)

Consider a projection:

prj : (i, j, k, l) 7−→ i h1 + j h2 + k h3 + l h4 . (3.9)

4This is what makes it impossible to interpret the naive generating series as the multi-particle partition
function of a physics system, in which the single-particle partition function is given by its plethystic
logarithm. To relate the solid partitions to a physical system, one needs to adopt a non-trivial measure
instead, such as done in [9].
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a) π b) Add(π) c) Rem(π)

Figure 1: An example of plane partition π (white), its set of addable boxes Add(π) (red),
and its set of removable boxes Rem(π) (blue).

The physical meaning of this projection is the following: an operator Bi
1B

j
2B

k
3B

l
4I which

acquires an expectation value in the SUSY vacuum has a flavor charge given by prj(i, j, k, l).

We assume that the weights hk are generic complex numbers that satisfy (3.8).
Therefore three of these numbers, say h1,2,3, form a non-reduced basis in the mod-
ule Zh1 + Zh2 + Zh3 over Z, so that the complex numbers (i h1 + j h2 + k h3) and
(i′ h1 + j′h2 + k′h3) for two different tuples (i, j, k) and (i′, j′, k′) are linearly indepen-
dent over Z. In other words, if one has a decomposition of a number c:

c = i h1 + j h2 + k h3, i, j, k ∈ Z , (3.10)

then this decomposition is unique.

As we have just seen, the projection operator prj maps the positive sedecant (i.e. 4D
orthant) Z4

≥0, where the 4D crystal associated with the solid partition π is located, into
a 3D body-centered cubic (BCC) Bravais lattice, denoted as B (see Fig. 2). Note that
following (3.10) (which in turn due to the Calabi-Yau constraint (3.8)), the weight space
is equivalent to the 3D BCC lattice B, therefore we will use h1,2,3,4 (subject to

∑4
i=1 hi)

to denote both the basis (as complex numbers) of the weight space and the basis (as 3D
vectors) of the lattice B.5 Correspondingly, we can use the same letter, such as z, u, c
etc, to denote both a point in the 3D lattice B and a point in the weight space, which
the charge function is a meromorphic function of.

Voronoi cells (“bricks”) of the BCC lattice are truncated octahedra and furnish a tes-
sellation of R3. A boundary of a solid partition consist of plaques of 3D cubes, which can
be mapped to parallelograms under prj. Therefore tessellations of R3 by parallelograms
are in 1-to-1 correspondence with solid partitions π. See Fig. 3 for two examples.

5For example, we can draw the 3D lattice B by choosing the following representation for its vectors:

h1 7→ (1, −1, −1) , h2 7→ (−1, 1, −1) , h3 7→ (1, 1, 1) , h4 7→ (−1, −1, 1) .
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h1 h2

h3

h4

Figure 2: A parameterization of 3D BCC Bravais lattice B.

a) Empty 4D corner b) One hypercubic box in the 4D corner

Figure 3: Two tessellations using 3D Voronoi cells.

Let us consider the lift map:

ℓ : B −→ Z
4
≥0 , (3.11)

where the quadruplet ℓk=1,...,4 of non-negative integers is defined uniquely in terms of a
vector c ∈ B by the following rule:

∃! {ℓk}k=1,...,4 : c =
4

∑

i=1

ℓihi, ℓi ≥ 0, 0 ∈ {ℓk}k=1,...,4. (3.12)

Given a solid partition π, we can translate it to the field of heights µ(c), defined as
the number of boxes projected to the same point c ∈ B by prj.

Then using the lift map (3.11), we can map a field of height µ(c) back to a subset of
nodes of Z4

≥0:

L : µ(c) 7→
{(

ℓ1(c) + u , ℓ2(c) + u , ℓ3(c) + u , ℓ4(c) + u
)}µ−1

u=0
. (3.13)

The height field µ is a section of the Z4
≥0 → B fibration with a non-trivial connection.

Let us parallel transport a point (c ∈ B, µ ∈ Z≥0) along the vector hk in the following
way. First, we lift it with L to the top-most box in Z4

≥0, then we move this point with
the 4D lift ek of the vector hk, and finally we project back to B with prj. The result of
this parallel-transport operation is:

T
3D
k = prj ◦ T4D

k ◦ L : (c, µ) 7→ (c+ hk , µ+∆k(c)) , (3.14)
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where
∆k(c) := δ0,ℓk(c) δ0,ℓk(c+hk) . (3.15)

As we can see, the connection ∆k(c) acquires only the values 0 or 1 and it depends only
on the edge (c→ c+ hk) ∈ B, rather than on the fiber value µ, therefore we will call the
∆k(c) the edge weight.

Now we translate the melting rule (2.7) for the 4D crystal, which ensures that π is
indeed a solid partition, into a constraint on the height fields µ(c). The melting rule (2.7)
simply means that when one parallel transports the top box hovering over the projection
c ∈ B along hk, it should not get below the top box hovering over c+ hk ∈ B. Thus we
arrive at the following rewriting of the melting rule (2.7) in terms of the height field:

µ (c+ hk) ≤ µ (c) + ∆k(c), ∀c ∈ B, k = 1, . . . , 4 . (3.16)

4 Charge function for solid partitions

4.1 Strategy

As summarized in Sec. 1, our ultimate goal is to construct the BPS algebra that acts
on the set of solid partitions in a manner similar to the 3D case. As reviewed in App.
A.2, the crucial ingredients in the construction of the BPS algebra for the C3 case is the
charge function (A.21) that satisfies the properties listed in Sec. A.2. Therefore, for the
4D case, we will aim to construct a charge function ψπ(z) on solid partitions π satisfying
the following properties:

1. ψπ(z) is a meromorphic function of z.

2. All the poles of ψπ(z) are simple

3. All the poles of ψπ(z) are in 1-to-1 correspondence with the set of projected co-
ordinates prj (~x(�)), with the boxes � ∈ Add(π) ∪ Rem(π) and ~x(�) their 4D
coordinates.

In the 3D case, the plane partitions represent BPS states of D-branes on the simplest
toric CY3: C3, and the corresponding BPS algebra is the affine Yangian of gl1, whose
Cartan generators on vector |π〉 have eigenvalues that can be packaged in ψπ(z) [6], see
(A.21). The 4D charge function ψπ(z) that we are trying to define in this section will
have an analogous physical meaning in 4D.

As we will see shortly, a simple definition that is analogous to the 3D version (A.21),
namely (4.3), which includes contributions only from individual boxes, together with the
constraint (3.8), fails already at the two-box level.

9



Our strategy is to use eq. (4.4) below as a starting point, and implement the process
of growing solid partitions level by level starting from the vacuum. At each level, the
requirements from the list above will demand introducing additional contributions to the
charge function. We will see that not only do we have to modify the contribution from
each individual 4D box (4.4), but we also need to include contributions from certain
4-box and 5-box clusters. We arrive at a conjectured form of the charge function by
implementing this process from the vacuum (level-0) to level-15. Then we use computer
to check higher levels and finally give a proof in Sec. 4.3.

4.2 Charge function conjectured

In this subsection, we will try to construct an expression for the charge function that
obeys all the requirements listed above. The full solid partition is an uplift of a 3D
periodic quiver, namely it can be grown from the vacuum layer by layer according to the
3D periodic quiver. For example, consider the process that starts from the vacuum and
reaches the first box in the 2nd layer:

vacuum −→ (0, 0, 0, 0) −→ ~ei −→ ~ei + ~ej 6=i −→ ~ei + ~ej 6=i + ~ek 6=j 6=i −→
4

∑

i=1

~ei (4.1)

In this process, we try to define the charge function in such a way that for each solid
partition configuration, the set of poles of its charge function accounts for all the adding
poles and removing poles. Apart from the condition that it has to provide all the necessary
poles, we also require that there are no spurious poles (i.e. poles that do not belong to
the projection of coordinates prj (~x(�)) of the boxes � ∈ Add(π) ∪ Rem(π)).

1. vacuum −→ (0, 0, 0, 0).
From the vacuum, i.e. the empty 4D room, we can only add a single box, at coordi-
nate (0, 0, 0, 0), with equivariant weight h� = 0. In order to add this box, we need
the contribution from the vacuum to the charge function to be:

ψπ(z) ∋
1

z
. (4.2)

2. (0, 0, 0, 0) −→ ~ei.
From the first box at (0, 0, 0, 0), we can add all its four nearest neighbors, namely
the boxes �i at ~ei, with weight h� = hi, where i = 1, 2, 3, 4. In order to add these
four boxes, we need:

ψπ(z) =
1

z

∏

Φ1∈π

ϕ1(z − c(Φ1)) , (4.3)

where each individual 4D box Φ1 contributes a bonding factor

ϕ1(z) =

4
∏

i=1

z + hi

z − hi
, (4.4)
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together with the constraint (3.8). The poles guarantee that we can add the boxes,
and they are in one-to-one correspondence with the projections prj(~ei); whereas
the zeros are to cancel the pole of the box at the origin so that it can no longer
be removed once some of its nearest neighbors have been added. This is parallel to
the 3D case (A.21).

3. ~ei −→ ~ei + ~ej 6=i.
This is the first step where we see the need to modify the expression (4.3) with
(4.4). First, we know from the melting rule (2.7) that in order to add the box at
~ei + ~ej 6=i, we need both the boxes at ~ei and ~ej 6=i to be present first.

Consider the configuration with two boxes, one at the origin and one at one of its
nearest neighbor sites, say at ~e1. Its charge function is

ψ�0�1(u) =
1

u
· ϕ1(u) · ϕ1(u− hi)

=
1

✚u
· (u+ h1)(u+ h2)(u+ h3)(u+ h4)

(u− h1)(u− h2)(u− h3)(u− h4)

· ✚u(u+ h2 − h1)(u+ h3 − h1)(u+ h4 − h1)

(u− 2h1)(u− h2 − h1)(u− h3 − h1)(u− h4 − h1)
.

(4.5)

We immediately see the difference from the 3D case: now there are three spurious
poles at

h1 + hj with j = 2, 3, 4 , (4.6)

corresponding to adding of the three boxes at ~e1+~ej 6=1,
6 which haven’t been canceled

by the zeros from ϕ1(u) defined in (4.4). To remedy this, we modify the contribution
from individual boxes (4.4) to7

ϕ1(z) =
4
∏

i=1

z + hi

z − hi

∏

1≤i<j≤4

(z + hi + hj) (4.7)

together with the constraint (3.8). This modification cures the problem with spu-
rious poles for two-box configurations.

4. ~ei + ~ej 6=i −→ ~ei + ~ej 6=i + ~ek 6=j 6=i.
At this step, we will see the need to include contributions from certain clusters of
4-boxes, apart from those from individual boxes. First, we know from the melting
rule (2.7) that in order to add the box at ~ei +~ej 6=i+~ek 6=j 6=i, we need all three boxes
at

~ei + ~ej 6=i , ~ei + ~ek 6=j 6=i , ~ej 6=i + ~ek 6=j 6=i (4.8)

to be present first, which in turn need the three boxes at

~ei , ~ej 6=i , ~ek 6=j 6=i (4.9)

6The reason that these poles are spurious is that we need both the boxes at ~ei and ~ej 6=i to be present
first in order to add the box at ~ei + ~ej 6=i.

7Another choice is to introduce the contribution from the 2-box cluster to cancel this spurious pole,
but this is a less efficient route since we would soon need to introduce the contribution from some
additional 2-box cluster (with different type of configuration) at level-3.

11



to be present, which in turn need the box at the origin to be present. Now consider
the 1 + 3 + 3 = 7-box configuration, with the 7 boxes at the coordinates

(0, 0, 0, 0) , ~ei , ~ej , ~ek , ~ei + ~ej , ~ej + ~ek , ~ek + ~ei , (4.10)

with i 6= j 6= k. Its charge function (4.3) with the contribution from individual
boxes given by (4.7), instead of having a desired pole at hi + hj + hk, has a zero
there instead! To remedy this,8 we introduce a contribution

ϕ4,ℓ(u) =
1

(u+ hℓ)2
(4.11)

from the 4-box cluster at

(0, 0, 0, 0) , ~ei , ~ej , ~ek (4.12)

with i 6= j 6= k 6= ℓ. More generally, consider a 4-box cluster with

� , �+ ~ei , �+ ~ej , �+ ~ek . (4.13)

It contributes a factor

ϕ4,ℓ(u− h�) =
1

(u+ hℓ − h�)2
, (4.14)

where (i, j, k, ℓ) are a permutation of (1, 2, 3, 4). Namely, now

ψπ(z) =
1

z

∏

Φ1∈π

ϕ1 (z − c (Φ1))
∏

Φ4,ℓ∈π

ϕ4,ℓ (z − c (Φ4,ℓ)) . (4.15)

5. ~ei + ~ej 6=i + ~ek 6=j 6=i −→
∑4

i=1 ~ei
Now we will demonstrate the need of introducing contributions from certain 5-box
clusters. First, we know from the melting rule (2.7) that in order to add the box
at

∑4
i=1 ~ei, we need all four boxes at

(

4
∑

i=1

~ei)− ~ej with j = 1, 2, 3, 4 (4.16)

to be present first, which in turn need the 6 boxes at

~ei + ~ej 6=i i, j = 1, 2, 3, 4 (4.17)

to be present, which need all 4 boxes at

~ei with i = 1, 2, 3, 4 (4.18)

to be present, which in turn need the box at the origin to be present.

8Note that it is impossible to cure this new problem by simply modifying the single box contribution,
as what we have done for the spurious poles from the 2-box configurations, without spoiling the correct
charge function properties for configurations with fewer than 7 boxes.
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Consider the 1 + 4 + 6 + 2 = 13-box state

(0, 0, 0, 0) ,

~ei , i = 1, 2, 3, 4 ,

~ei + ~ej , i 6= j = 1, 2, 3, 4 ,

(

4
∑

i=1

~ei)− ~ej , j takes two value from {1, 2, 3, 4} .

(4.19)

For this configuration, the charge function (4.15) that we have determined so far
has a single pole at z = 0, which we know to be spurious from the melting rule
(2.7). Similarly, the 1 + 4 + 6 + 3 = 14-box state

(0, 0, 0, 0) ,

~ei , i = 1, 2, 3, 4 ,

~ei + ~ej , i 6= j = 1, 2, 3, 4 ,

(

4
∑

i=1

~ei)− ~ej , j takes three value from {1, 2, 3, 4}

(4.20)

has a double pole at z = 0, which is also spurious. To remedy the two problems,
we introduce a contribution from the 5-box cluster at

(0, 0, 0, 0) , ~ei i = 1, 2, 3, 4 (4.21)

with
ϕ5(u) = u2 (4.22)

Now we check the 1 + 4 + 6 + 4 = 15-box configuration with

(0, 0, 0, 0) ,

~ei , i = 1, 2, 3, 4 ,

~ei + ~ej , i 6= j = 1, 2, 3, 4 ,

(

4
∑

i=1

~ei)− ~ej , j = 1, 2, 3, 4

(4.23)

This is the configuration from which one can add the first box at the 2nd layer, at
(1, 1, 1, 1). Including the additional contribution (4.22), the charge function now
has the correct single pole at z = 0! (Otherwise, it would have had a triple pole at
z = 0.) More generally, for a 5-box configuration with

� , �+ ~ei i = 1, 2, 3, 4 , (4.24)

it contributes a factor
ϕ5(u− h�) = (u− h�)

2 (4.25)

Summarizing, these iterative considerations fix the charge function for a solid partition
π to be

13



ψπ(z) =
1

z

∏

Φ1∈π

ϕ1 (z − c (Φ1))
∏

Φ4,k∈π

ϕ4,k (z − c (Φ4,k))
∏

Φ5∈π

ϕ5 (z − c (Φ5)) , (4.26)

with 4 types of contributions:

• The first factor 1
z
is the contribution from the vacuum, with a pole at 0 that allows

the first box to be added.

• A singlet Φ1 is a single box � ∈ π. The contribution is the function

ϕ1(z) =

4
∏

i=1

z + hi

z − hi
×

∏

1≤i<j≤4

(z + hi + hj) , (4.27)

shifted by the coordinate c (Φ1), which is the projected coordinate of the box
prj (~x (�)).

• A fan quadruplet Φ4,k is a quadruplet of boxes �i=1,2,3,4 ∈ π satisfying the coordi-
nate constraint:

~x(�2)− ~x(�1) = ~ea, ~x(�3)− ~x(�1) = ~eb, ~x(�4)− ~x(�1) = ~ec , (4.28)

where the indices {a, b, c, k} represent any permutation of {1, 2, 3, 4}. Its contribu-
tion is the function

ϕ4,k(z) =
1

(z + hk)
2 , k = 1, 2, 3, 4 , (4.29)

shifted by the coordinate c (Φ4), which is the projected coordinate of the first box
prj (~x (�1)).

• A quintuplet Φ5 is a quintuplet of boxes �i=1,2,3,4,5 ∈ π satisfying the coordinate
constraint:

~x(�i+1)− ~x(�1) = ~ei, ∀i = 1, 2, 3, 4 . (4.30)

Its contribution is the function

ϕ5(z) = z2 . (4.31)

shifted by the coordinate c (Φ5), which is the projected coordinate of the first box
prj (~x (�1)).

We have checked using computer that the charge function (4.26) obeys the required
properties for all solid partitions up to 19 boxes, and for all solid partitions confined in a
3× 3× 3× 3 hypercube. In the next subsection, we will prove that the charge function
(4.26) obeys the required properties for all solid partitions.
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4.3 Proof

In this subsection, we give a proof that the charge function (4.26) satisfies the require-
ments for all solid partition configurations. The proof proceeds in three steps:

1. First we translate the expression of the charge function(4.26), which is a function
directly of the solid partition configurations, into the potential function w(c)[µ] of
the lattice point c ∈ B and the height field µ(x). The two functions contain the
same amount of information.

2. We then show that w(c)[µ] depends only on the value of the height field µ at point
c and some of its nearest and next-to-nearest neighbor points in the lattice B. We
call this small collection of neighbor points of the lattice B a local patch and prove
that the set of inequalities (3.16) has only a finite number of integral solutions on
any local patches.

3. Finally, we simply analyze the behavior of the charge function (4.26) via its corre-
sponding potential function w(c)[µ] for all solutions computed in the previous step
and show that the charge function (4.26) has all the desired properties on all these
solutions and thus conclude the proof.

4.3.1 Local potential

Let us introduce the local potential w for a lattice point c ∈ B: it is defined as the order
of the pole of the charge function ψπ at point c:

ψπ(z) =
β

(z − c)w(c)
× (1 +O(z − c)), as z → c . (4.32)

Apparently, when w(c) is negative, ψπ has a zero of order “−w” at this point.

From (4.26) we can derive the expression for the local potential w(c) for the lattice
point c to be

w(c) =
4

∑

k=1

(µ(c− hk)− µ(c+ hk))−
∑

1≤i<j≤4

µ(c+ hi + hj)+

+ 2
4

∑

k=1

min
1≤i≤4
i 6=k

{

µ(c+ hk + hi)−∆i(c+ hk)
}

− 2 min
1≤i≤4

{

µ(c+ hi)−∆i(c)
}

+ δc,0 ,

(4.33)

where the first two terms come from individual boxes Φ1, the next two terms are the
contributions from the quadruplets Φ4,k and the quintuplets Φ5, respectively, and the
last term is from the vacuum contribution in (4.26). While the contribution from Φ1 is
easy to understand, let us explain the other two in more detail.
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To capture the contribution from a cluster of boxes such as Φ4,k and Φ5, we first need
to determine all the situations when the position of the box � and all its neighboring
positions along the required edges ~ek are filled. Consider a row of µ(c) boxes hovering
over some position c:

{

~ℓ(c) , ~ℓ(c) + ~s , . . . , ~ℓ(c) + (µ(c)− 1)~s
}

(4.34)

where

~ℓ(c) :=

4
∑

k=1

ℓk(c)~ek and ~s :=

4
∑

k=1

~ek . (4.35)

Now we shift all these boxes by a vector ~ek. This is equivalent to the parallel transport
of the corresponding sections by T

3D
k :

Λ1 :=
{

~ℓ(c+ hk) + ∆k(c)~s , ~ℓ(c+ hk) + (∆k(c) + 1)~s , . . .

, ~ℓ(c+ hk) + (∆k(c) + µ(c)− 1)~s
}

.

(4.36)

Then we compare it with the row of boxes hovering over c+ hk:

Λ2 :=
{

~ℓ(c+ hk) , ~ℓ(c+ hk) + ~s , . . . , ~ℓ(c+ hk) + (µ(c+ hk)− 1)~s
}

. (4.37)

Using the set of inequalities (3.16) and ∆k(c) ≥ 0, we find that the size of the intersection
of two sets of boxes (4.36) and (4.37) equals:

|Λ1 ∩ Λ2| = µ(c+ hk)−∆k(c) . (4.38)

To compute the size of the intersection of all sets over all required directions ~ek, we only
need apply the minimum function in (4.33).

4.3.2 Solving inequalities locally

Now let us consider a local “patch” of nodes in the lattice B that are close to point c:

Πc = {c} ∪ {c± hk}1≤k≤4 ∪ {c+ (hi + hj)}1≤i,j≤4
i 6=j

, (4.39)

The first and second subsets of this patch represent the center and the 8 vertices of the
cube in the 3D BCC Bravais lattice cell (see Fig. 2), respectively, while the last subset
represents the 6 boxes sitting at the centers of the 6 neighboring BCC cells, across each
face of the cube. Below we draw this patch with all the oriented edges c→ c+ hk in it:

∆1 ∆2

∆3∆4

µ0

µ1

µ2

µ3

(4.40)

16



Let us first consider a fibration of the height field over an oriented cycle in patch
Πc that passes through the box at the center c, then at one of the four vertices (say at
c + h1), then at the center of the neighboring cell (say at c + h1 + h2), then the vertex
c− h4, before coming back to the starting point (see the path marked by the green color
in (4.40)):
(

c
µ0

)

+h1−→
(

c + h1

µ1

)

+h2−→
(

c+ h1 + h2 = c− h3 − h4

µ2

)

+h3−→
(

c− h4

µ3

)

+h4−→
(

c
µ0

)

(4.41)
Using the set of inequalities (3.16), one can derive the following ranges for the possible
heights of the neighboring boxes, µ1,2,3, relative to that of the box at the center, µ0:

µ1 ≤ µ0 +∆1

µ2 ≤ µ1 +∆2

µ3 ≤ µ2 +∆3

µ0 ≤ µ3 +∆4

⇒
µ0 −∆2 −∆3 −∆4 ≤ µ1 ≤ µ0 +∆1

µ0 −∆3 −∆4 ≤ µ2 ≤ µ0 +∆1 +∆2

µ0 −∆4 ≤ µ3 ≤ µ0 +∆1 +∆2 +∆3

, (4.42)

where ∆i are the corresponding edge weights, which take the values of 0 or 1. Such cycles
can be drawn through all the boxes at the vertices and at the centers of the neighboring
cells in patch Πc. It follows that, on the patch Πc, the set of inequalities (3.16) allows
only for a finite set of integer solutions, for a given µ0 (the height at the center of the
patch c, a modulus). Let us denote such a solution as M(Πc, µ0).

Now we can count the number of such solutions. First, note that the weight formula
(4.33) is symmetric with respect to the permutation group S4 permuting hk → hσ(k),
σ ∈ S4. Therefore we only describe representatives of the S4 orbits. We find 4 possible
edge weight distributions on the patch Πc modulo the action of S4, shown in Fig. 4, where
we have adopted the following color code for the oriented edges:

∆(�) = 0, ∆(�) = 1 , (4.43)

and also given, below each edge weight configuration, the size of the corresponding S4

orbit. The number of solutions to the set of inequalities (3.16) for each local edge weight
configuration on patch Πc depicted in Fig. 4 turns out to be 166.

We will call the configuration M(Πc, µ0) open if a box can be added to or removed
from a stack of boxes on top of point c, and closed otherwise. Namely, M(Πc, µ0) is open
if either one of M(Πc, µ0 ± 1) is also a solution of (3.16) over Πc, and closed otherwise.

Therefore, to prove that the charge function (4.26) has the desired properties, in
particular having poles of order 1 at positions where boxes can be added or removed,
we only need to prove that the weight function (4.33) can distinguish between open
and closed solutions M(Πc, µ0). And this can be done directly since the inequivalent
M(Πc, µ0) form a finite set. We will return to this computation at the end of this section.

4.3.3 Analyzing local configurations

First, to gain some visual intuition about the boundary behavior of the solid partitions, we
would like to discuss the structure of the “local pictures” – local shapes of the 3D hyper-
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a)

|S4 ◦Diag| = 4

b)

|S4 ◦Diag| = 6

c)

|S4 ◦Diag| = 1

d)

|S4 ◦Diag| = 4

Figure 4: Local edge weight configurations on patch Πc.

surface of a solid partition boundary. To do so, similarly to what is discussed in the 2D
and 3D cases in App. A, we will only present explicitly the solutions for one configuration,
namely case (c) in Fig. 4, which is S4-symmetric. The S4-symmetric configuration (c)
corresponds to the configuration where the central box is along the diagonal line, similar
to the partition and plane partition cases. The other 3 S4 orbits in Fig. 4 then simply
correspond to shifting the resulting local pictures obtained from configuration (c) away
from the diagonal line. And we choose the S4 symmetric configuration (c) in Fig. 4 since
in this case the solutions to (3.16) can also be divided into S4-orbits, where it is enough
to analyze a single representative of each orbit.

Now, consider the 15 boxes corresponding to the 15 vectors in the local patch Πc in
the configuration (c) in Fig. 4. Let us denote their height field values by

µ0 , µ1,2,3,4 , µ12,13,23,14,24,34 , µ−1,−2,−3,−4 . (4.44)

The set of inequalities (3.16) translates into 32 inequalities among them:

µi ≤ µ0 ,

µ0 ≤ µ−i + 1 ,

µij ≤ µi , µij ≤ µj i 6= j ,

µ−k ≤ µij i 6= j 6= k ,

(4.45)

which can be further translated into

µ0 − 1 ≤ µ−3,−4 ≤ µ12 ≤ µ1,2 ≤ µ0 , (4.46)

etc.
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Using our strategy of considering only a single representative in each S4 orbit, we
obtain 28 S4 symmetry classes of solutions in total, corresponding to 28 local pictures,
shown in Fig. 5, where we have used the following color coding to label the local height
field µ(c) value:

µ
( )

= µ0, µ
( )

= µ0 − 1 . (4.47)

One could then lift the local pictures in Fig. 5 to 3D tessellations similarly to the
Young diagrams and the plane partition cases in App. A. We will not present them here
since these 3D tessellations are rather complicated and not very intelligible in print.9

In words, each of these tessellations is a unique representative of the S4 group orbit
and represents a local picture of a 3D hyper-surface with “pits”, “hills”, and “saddles”
that bound a solid partition configuration. Therefore, we conclude that the number of
inequivalent local pictures for the solid partitions is 28, in comparison to the 3 and 8

local pictures for the Young diagram and plane partition cases, respectively.

From Fig. 5, it is clear that when the configuration of the height fields in the neighbor-
hood of point c is “open”, namely when the solid partition π admits adding or removing
of boxes, the potential w = 1, which corresponds to the order-1 pole in the charge func-
tion (4.26). On the other hand, in a “closed” case, w is non-positive, indicating a zero of
order −w at the corresponding lattice point.

Since the weight function (4.33) is merely a rewriting of the charge function (4.26), and
we have shown, by simply examining all 28 cases in Fig. 5, that the weight function (4.33)
correctly distinguishes between open and closed solutions M(Πc, µ0), we have effectively
proven that the charge function (4.26) has the desired properties, in particular having
poles of order 1 at positions where boxes can be added or removed, for all the local
pictures from configuration (c) of Fig. 4.

Next, we need to consider the other 3, non-S4-symmetric, configurations in Fig. 4 as
well, which correspond to contributions from the boxes near the walls of the 4D room, as
one moves away from the diagonal. One straightforward way is to simply check all the
4 × 166 = 664 combinations of edge weights in Fig. 4 and their solutions to the set of
inequalities (3.16), which is what we did first (using computer) and we confirmed that
for open local solutions w = 1 and for closed ones w ≤ 0. Therefore, the charge function
(4.26) has the desired properties for all these configurations as well.

However, let us also give another proof that does not need to involve checking this
large number of cases explicitly. Let us first explain where this large number come from.
Consider a lift Π̂c of a local patch Πc to Z4

≥0 (see Fig. 6). From the stacked boxes in

the solid partitions, the lift Π̂c carves out all layers of the boxes projected with vector
(1, 1, 1, 1) to B, therefore Π̂c can be viewed as a cylinder of height µ0 and with a 3D
cross-section. As a cylinder, Π̂c has two boundaries: the top one and the bottom one.
The top boundary belongs to the 3D surface that is part of the outer boundary of the solid
partition, whose projection to 3D is called a tessellation, whereas the bottom boundary
is at the intersection of Π̂c with the walls of the 4D room, from the corner of which 4D
boxes are stacked to form solid partitions.

9It is easier to view them in e.g. Mathematica since one can then rotate them.
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(1)

Open

w = 1

(2)

Closed

w = 0

(3)

Closed

w = −1

(4)

Closed

w = −2

(5)

Closed

w = −2

(6)

Closed

w = −3

(7)

Closed

w = −4

(8)

Closed

w = −5

(9)

Closed

w = −4

(10)

Closed

w = −5

(11)

Closed

w = −6

(12)

Closed

w = −7

(13)

Closed

w = −8

(14)

Closed

w = −6

(15)

Closed

w = −7

(16)

Closed

w = −8

(17)

Closed

w = −7

(18)

Closed

w = −9

(19)

Closed

w = −6

(20)

Closed

w = −3

(21)

Closed

w = −7

(22)

Closed

w = −6

(23)

Closed

w = −5

(24)

Closed

w = −2

(25)

Closed

w = −4

(26)

Closed

w = −1

(27)

Closed

w = 0

(28)

Open

w = 1

Figure 5: Independent local solutions M(Πc, µ0) to inequalities (3.16).
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When we mod out all the possible local shapes of the top boundaries of these cylinder
by S4, we get 28 local pictures, shown in Fig. 5. When we mod out all the local shapes
of the bottom boundaries by S4, we get 4 edge weight configurations, shown in Fig. 4.
The fact that the charge function (4.26) is symmetric with respect to S4 (which acts by
permuting h1,2,3,4) allows us to consider only individual representatives of the local patch
in the S4 conjugacy classes. However, this does not allow us to mod out by S4 the top
and bottom boundaries independently — the S4 group acts on the cylinder of Π̂c as a
whole! This is the reason behind the large number of cases mentioned earlier.

To improve the situation, let us perform a canonical cut somewhere in the middle of
the cylinder as it is depicted in Fig. 6. This canonical cut is chosen to have the form of

~ℓ(c)

Π̂−
c

Π̂+
c

µ0

top boundary

canonical cut

bottom boundary

Π̂c = Π̂−
c ∪ g(Π̂+

c ), g ∈ S4 ,

ψΠ̂c
(z) = ψΠ̂−

c
(z) · ψΠ̂+

c
(z) ;

Figure 6: The lift Π̂c of a local patch Πc from the projection to the solid partition.

the corner of the empty 4D room, transported to the position of the cut, hence is S4-
symmetric. The cut divides Π̂c into two haves: Π̂−

c and Π̂+
c . Since the shape of the cut

is S4-symmetric, we can obtain an arbitrary cylinder Π̂c by gluing a pair of S4-conjugacy
classes Π̂−

c and Π̂+
c after first imposing a twist g ∈ S4 (see Fig. 6).

Since the charge function (4.26) is extensive with respect to size of the solid partition,
namely, the products in the expression (4.26) decompose into products over Π̂−

c and Π̂+
c .

Therefore, to prove that the charge function has the right properties, it is sufficient to
prove that its Π̂−

c and Π̂+
c components have the right properties. In other words, one only

needs to check all the S4-conjugacy classes of the bottom boundaries, which are paired
using the canonical cut with the top boundary and then, separately, all the S4-conjugacy
classes of the top boundaries, which are paired using the canonical cut with the bottom
boundary. In total, this only gives us 4+ 28 = 32 cases to check.

Before we end this section, we mention again that we have also checked explicitly,
using computer, all solutions of the set of inequalities (3.16) for all the possible the edge
weight configurations in Fig. 4, without considering the S4 action. In fact, just to be on
the safer side, we even considered a local patch larger than Πc, by appending to Πc the
lattice nodes located at hi − hj 6=i, which sit at the centers of the 12 BCC cells located
across the 12 edges of the cube, see Fig. 2. We found that for this larger local patch,
there are 7 (instead of 4) local edge weight configurations and for each such configuration,
there are 14 656 (instead of 166) solutions to the inequalities (3.16). We have also used
computer to check all the 7 × 14 656 = 102 592 cases and verified that w = 1 (resp.
w ≤ 0) for open (resp. closed) local solutions, thus confirmed the validity of the charge
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function (4.26).

5 Discussion

In this note we have constructed the charge function (4.26) for solid partitions that
satisfies a set of properties that are natural analogues to the lower dimensional cases and
are essential for the charge function to be the ingredient in constructing the corresponding
BPS algebra. We first obtained a conjectured form by analyzing the solid partitions with
the number of boxes up to 15, and then proved that it indeed satisfies the required
properties for all possible solid partitions by checking explicitly all local pictures.

Compared to the case for the plane partitions, which describe D-brane BPS states
on C3, the charge function (4.26) of the solid partitions, which describes D-brane BPS
states on C4, has a somewhat more intricate structure: apart from contributions from
individual boxes, the charge function (4.26) also receives contributions from certain 4-box
and 5-box clusters. Therefore, the corresponding BPS algebra would need to have more
than just creation and annihilation operators that add and remove single boxes, different
from the 3D case in [6]. Equivalently, if we want to have some effective model description
for the solid partition boundary, similar to the anyons organized on a lattice in the case
of the plane partitions (see e.g. [37, Sec. 2.7]), we would have to mix the purely pairwise
particle interaction with higher order interactions of 4- and 5-particle clusters.

To conclude this note we would like to list some interesting problems for future di-
rections:

• It would be interesting to generalize the story to dimensions D > 4 and construct
the charge functions of D-dimensional partitions.

• One can also generalize to other toric CY4s, maybe using the effective mechanism of
constructing quivers and molten crystal systems for toric CY4 proposed in [25,26].
It would be interesting to see how the structure of the charge function varies across
the entire toric CY4 family.

• The charge function hierarchy problem: a D-dimensional partition π
(D) is a slice

in a D + 1-dimensional partition π
(D+1). Suppose this slice is perpendicular to the

D + 1-st axis, then imposing hD+1 = 0 produces the CYD constraint
∑D

k=1 hk = 0
from the CYD+1 constraint. Following this hierarchy of partitions across different
dimensions, one would expect some corresponding hierarchy of their charge func-
tions, such that they simply reduce to one another:10

. . . ψ
(4D)
π (z) ψ

(3D)
π (z) ψ

(2D)
π (z)

h4=0 h3=0
(5.1)

Note that this doesn’t work straightforwardly. Indeed if we set either h3 = 0 in the
ϕ1(z) contribution in 3D (A.21), or h4 = 0 in the ϕ1(z) contribution in 4D (4.26),

10We would like to thank Alexei Morozov for drawing our attention to this problem.

22



while keeping the CY constraint
∑

k

hk = 0, then the contribution from the singlet

loses poles and the charge function no longer works even for the partition consisting
of a single box. Therefore it would be very interesting to determine the mechanism
that governs the dimensional reduction at the level of the charge functions.

• As we have seen, the charge function for the D-dimensional partitions is a function
on the D− 1-dimensional boundaries. By enhancing the partitions with statistical
weights, one can even reproduce some dynamics of this boundary form and acquire
an effective model of D − 1-dimensional gravity [5, 38]. Thus we wonder whether
the simplicity of the charge function in 3D might indicate the emergence of some
integrability properties, similar to how 2D gravity turns out to be integrable, and
whether some analogous structure can be uncovered in higher dimensions.

• Finally, the most intriguing problem is whether and how we can bootstrap the BPS
algebraic structure using the charge function (4.26) that admits contributions from
clusters of boxes.
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A Warm up: Young diagrams and plane partitions

In this Appendix we review the Young diagrams (2D) and plane partitions (3D), in
particular the construction of their charge functions, using the same method that we
apply on solid partitions in the main text.
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A.1 2D: Young diagrams

The generating function for 2D partitions (Young diagrams) is:

g(q) =
∞
∏

k=1

1

(1− qk) =
∞
∑

n=0

p(n)qn

= 1 + q + 2q2 + 3q3 + 5q4 + 7q5 + 11q6 + . . . ,

(A.1)

where p(n) counts the number of ways to partition a non-negative integer n. Its plethystic
log is:

f(q) = PL[g](q) =
1

1− q =
∞
∑

k=0

qk (A.2)

Given a Young diagram, we can translate it into a spin-chain configuration by the
following rule, see e.g. [?]. We position the Young diagram as follows and project it onto
a spin-chin, with each vertical strip corresponding to a spin and the spin flipping each
time the outer boundary of the Young diagram has a corner (either convex or concave):

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

(A.3)

Then we view this configuration as a tessellation of the real line by plaques of two types,
which we depict as spin-up and spin-down in diagram (A.3).

There are three possible distributions of the weights of the local edges (3.15), depend-
ing on whether the point of observation is located at the point 0, or to the left or to the
right of 0:

µ1
µ0

µ2 µ1
µ0

µ2 µ1
µ0

µ2

S2

S2

(A.4)

where we have adopted the color code (4.43), and indicted how they transform under the
S2 reflection. Equivalently, the three pictures in (A.4) correspond to the three cases where
the middle box is along, to the right of, and to the left of, the diagonal line, respectively.

Let us express the 2D version of the inequalities (3.16) explicitly for the first diagram
in (A.4), which is S2-symmetric. Using the fact that the middle box is along the diagonal
line of the 2D plane, we have

µ0 ≤ µ1 + 1 , µ1 ≤ µ0 and µ2 ≤ µ0 , µ0 ≤ µ2 + 1

=⇒ µ0 − 1 ≤ µ1 ≤ µ0 and µ0 − 1 ≤ µ2 ≤ µ0 .
(A.5)
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The set of inequalities (A.5) has 4 solutions:

(1) : µ1 = µ2 = µ0

(2) : µ1 = µ0 − 1 , µ2 = µ0 (3) : µ1 = µ0 , µ2 = µ0 − 1

(4) : µ1 = µ2 = µ0 − 1

(A.6)

which correspond to the four cases below:

↓↑ ↑↑ ↓↓ ↑↓

S2 S2S2

(A.7)

with 2 of which in the same orbit of S2. Thus in this case we have 3 local pictures (here
we have used the color coding for vertices (4.47). Repeating this computation for the
other two pictures in (A.4), for each of them, we get four solutions as in (A.7), except
that the second (resp. third) picture in (A.4) corresponds to shifting all local pictures in
(A.7) to the right (resp. left) of the diagonal line.11

For 2D, the Calabi-Yau condition is

h1 + h2 = 0 . (A.8)

Without loss of generality, we can drop the scaling of these parameters and set

h1 = 1 and h2 = −1. (A.9)

In terms of these, the projection operator acquires a very simple form for a box with
coordinates (a, b):

prj(a, b) = a− b . (A.10)

The charge function for the 2D partition (Young diagram) π is:

ψπ(z) =
1

z

∏

Φ1∈π

ϕ1 (z − c (Φ1))

2
∏

k=1

∏

Φ2,k∈π

ϕ2,k (z − c (Φ2,k))
∏

Φ3∈π

ϕ3 (z − c (Φ3)) , (A.11)

where

• A singlet Φ1 denotes a single box (a, b) ∈ π, contributing

ϕ1(z) =
1

z2 − 1
, (A.12)

shifted by its projected coordinate c (Φ1) = a− b.
11Note that for the second and third cases in (A.4), the inequalities and their solutions are different

from (A.5) and (A.6), and only the final configurations are to be compared with (A.7) — they are the
same configurations as (A.7) shifted to the right and left of the diagonal line, for the second and third
cases in (A.4).
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• A doublet Φ2,k=1,2 is a pair of boxes at

(a, b) and (a+ δk,1, b+ δk,2) , (A.13)

together contributing
ϕ2,k(z) = z2 , k = 1, 2, (A.14)

shifted by its projected coordinate c (Φ4,k) = a− b.

• A triplet Φ3 is a triplet of boxes at the positions

(a, b) , (a+ 1, b) , (a, b+ 1), (A.15)

together contributing

ϕ3(z) =
1

z2
, (A.16)

shifted by its projected coordinate c (Φ3) = a− b.

A.2 3D: plane partitions

The generating function for the plane partition numbers P (n) is the MacMahon function;

g(q) =
∞
∏

k=1

1

(1− qk)k =
∞
∑

n=0

P (n)qn

= 1 + q + 3q2 + 6q3 + 13q4 + 24q5 + 48q6 + . . . ,

(A.17)

whose plethystic logarithm is

f(q) = PL[q](q) =
1

(1− q)2 −
q

1− q =

∞
∑

k=0

k qk . (A.18)

The Calabi-Yau constraint in this case reads:

h1 + h2 + h3 = 0 . (A.19)

The projection of the 3D plane partition to the 2D plane (A.19) works straightforwardly.
The result is a picture of level lines separating areas of different height field values for
the dual dimer model [38]:

←→
0

0

0

0
0

0

0

0

0

0

0
1

1

1

1

1
1

1

11

1

11

2

h3

h1 h2

(A.20)
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And the charge function is well-known [39] in this case. In this case we have only a
product over singlets, i.e. over box positions ~x(�) in π, with prj ~x(�) =

∑3
i=1 xi(�)hi:

ψπ(z) =
1

z

∏

Φ1∈π

ϕ1(z − c(Φ1)) , (A.21)

where the pairwise potential is the bonding factor from [6]:

ϕ1(z) =

3
∏

i=1

z + hi

z − hi
, (A.22)

which satisfies the properties

1. ψπ(z) is a meromorphic function of z.

2. All the poles of ψπ(z) are simple.

3. All the poles of ψπ(z) are in 1-to-1 correspondence with the set of projected co-
ordinates prj (~x(�)), with the boxes � ∈ Add(π) ∪ Rem(π) and ~x(�) their 3D
coordinates.

As was shown in [6], these three properties, in particular the last one, were crucial in
bootstrapping the BPS algebra from its action on the 3D crystals (plane partitions in
the case of C3.)

The potential function corresponding to the charge function is

w(c) =

3
∑

i=1

(µ(c− hi)− µ(c+ hi)) + δc,0 . (A.23)

Next we enumerate all the 3 local edge weight configurations, modulo S3 that per-
mutes hk:

|S3 · Diag| = 1

,

|S3 ·Diag| = 3

,

|S3 · Diag| = 3

, (A.24)

where below each local edge weight configuration we have also given the size of its orbit
under S3.

As in 2D, it is enough to consider the first, S3 symmetric, configuration in (A.24).12

For this case, the set of inequalities (3.16) contains 12 inequalities (one for each edge)
for the height functions of the 7 boxes involved. Denoting them as µ0, µ1,2,3, µ12,23,31, we
have

µ0 − 1 ≤ µ12 ≤ µ1 ≤ µ0 , µ0 − 1 ≤ µ12 ≤ µ2 ≤ µ0

µ0 − 1 ≤ µ23 ≤ µ2 ≤ µ0 , µ0 − 1 ≤ µ23 ≤ µ3 ≤ µ0

µ0 − 1 ≤ µ31 ≤ µ3 ≤ µ0 , µ0 − 1 ≤ µ31 ≤ µ1 ≤ µ0 .

(A.25)

12Similarly to what happened in 2D, the other two configurations in (A.24) do not give new local
pictures but only the shifted versions of the local pictures from the first configuration.
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The set of inequalities (A.25) has 18 different solutions. Instead of enumerating all of
them here, we only present solutions modulo S3, or equivalently, we only present solutions
obeying

µ12 ≤ µ31 ≤ µ23 ≤ µ1 ≤ µ2 ≤ µ3 ≤ µ0 . (A.26)

(1) (2) (3) (4)

Solutions

Tessellations

w 1 0 −1 0

(5) (6) (7) (8)

Solutions

Tessellations

w −2 −1 0 1

Figure 7: Local pictures for plane (3D) partitions

We will call these configurations local pictures, and there are 8 of them, shown in
Fig. 7. We note that among the local pictures depicted in Fig. 7, there are three pairs
of plane partitions, (1,8), (2,7), and (3,6), that complement each other in the following
sense. The two plane partitions in a pair can combine into a n × n × n cubic partition
after one of them is reflected in all axes, namely, the hills of one complement the pits
of the other. (Using the same terminology as for ordinary partitions, we call two plane
partitions in such a pair being transposed to each other: π ↔ π

T .) In addition, the plane
partitions (4) and (5) are self-transposed. Therefore, if we further factor out the 8 plane
partitions in Fig. 7 by the transposition symmetry, we finally arrive at 5 independent
local pictures, coinciding with the classification given in [39, Sec. 4.5].

B N = (0, 2) 2d effective theory of D8-D0 branes

The effective theory of a D8-D0 brane system wrapping CY4 is given by an N = (0, 2) 2d
effective theory [40]. In this Appendix we summarize the basic features of this N = (0, 2)
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2d theory, following [41].

There are three types of multiplets:

• Chiral multiplet:
Φ = φ+

√
2θ+χ+ − i θ+θ̄+ ∂+φ . (B.1)

• Fermi multiplet:

Ψ = ψ− −
√
2θ+G− i θ+θ̄+ ∂+ψ− −

√
2θ̄+E , (B.2)

where E is a holomorphic function of the chiral fields φ.

• Vector multiplet:

V = A− − 2i θ+λ− − 2i θ̄+λ̄− + 2θ+θ̄+D , (B.3)

where A± = 1
2
(A0 ± A1).

The Lagrangian has five terms:

L = Lgauge + LΦ + LΨ + LFI + LJ , (B.4)

Here, the gauge Lagrangian is:

Lgauge =
1

8e2

∫

d2θ Λ̄Λ =
1

e2

(

1

2
F 2
01 + i λ̄−∂+λ− +

1

2
D2

)

; (B.5a)

the chiral Lagrangian is:

LΦ = − i

2

∫

d2θ Φ̄i∇−Φ
i =

= − |Dµφi|2 + 2i χ̄+iD−χ
i
+ − iqi φ̄iλ−χ

i
+ + iqi φ

iχ̄+iλ̄− + qi |φi|2D ;

(B.5b)

the Fermi Lagrangian is:

LΨ = −1
2

∫

d2θ Ψ̄aΨ
a =

= 2i ψ̄−aD+ψ
a
− + |Ga|2 − |Ea(φ)|2 − ψ̄−a

∂Ea

∂φi

χ+i − χ̄+i

∂Ēa

∂φ̄i

ψa
− ;

(B.5c)

and the Faye-Illiopolous term is:

LFI =
t

4

∫

dθ+ Λ
∣

∣

∣

θ̄+=0
+ c.c. = −rD+

θ

2π
F01 . (B.5d)

Finally, the J-term, which replaces the canonical F-term, is

LJ =

∫

dθ+ WJ(Ψ,Φ)
∣

∣

∣

θ̄+=0
+ c.c. =

∫

dθ+ ΨaJ
a(Φ)

∣

∣

∣

θ̄+=0
+ c.c.

=GaJ
a(φ) +

1

2
ψ−aχ+i

∂Ja

∂φi
+ c.c. .

(B.5e)
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The action is invariant (modulo boundary terms) under the following SUSY transfor-
mations:

δA0 =
i

2
ǭ−λ− +

i

2
ǫ−λ̄− , δφi = −ǫ−χi

+ ,

δA1 = −
i

2
ǭ−λ− −

i

2
ǫ−λ̄− , δχi

+ = 2i ǭ−D+φ
i ,

δλ− = i ǫ− (D− iF01) , δψa
− = ǫ−G

a + ǭ−E
a ,

δD = −ǭ−D+λ− + ǫ−D+λ̄− , δGa = −2i ǭ−D+ψ
a
− + ǭ−

∂Ea

∂φi
χi
+ .

(B.6)

The complete SUSY invariance imposes the following constraint on the E- and J-fields:

∑

a

Ea(Φi)J
a(Φi) = 0 . (B.7)

And finally, there is an additional anomaly cancellation constraint:

Tr γ3GG =
∑

i: chiral

q2i −
∑

a: Fermi

q2a = 0 . (B.8)
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