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Abstract: The chiral algebra of a 4D N ≥ 2 superconformal field theory is a

vertex operator algebra generated by the Schur subsector of the 4D theory and its

rigid (yet rich) structure has been useful in constraining and classifying 4D N = 2

SCFTs. We study how the chiral algebra arises from the worldsheet perspective.

In the worldsheet CFT dual of 4D N = 4 SYM at the free point, we extract the

subsector that corresponds to the spacetime Schur operators at generic coupling,

and show how they generate the chiral algebra. The result can be easily generalized

to 4D N = 2 superconformal field theories that arise as orbifolds of 4D N = 4 SYM.
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1 Introduction

For a general 4D N ≥ 2 superconformal field theory (SCFT), there exists a (2D) ver-

tex operator algebra (called chiral algebra) structure underlying its Schur subsector

[1]. It can be defined by considering the BRST cohomology of the linear combination

of a Poincaré supercharge and a conformal one, which selects the Schur operators

restricted to R2 ⊂ R4; the correlation functions of these local operators are meromor-

phic functions of the R2 coordinates and are determined by the chiral algebra. The

chiral algebra is infinitely dimensional, and its rigid but rich structure has proven

to be useful in constraining, bootstrapping, and classifying the 4D theories, see e.g.

[2–4].1

The chiral algebra can also be viewed as the algebra generated by the local

operators of the holomorphic-topological twist (also called Kapustin twist [7]) of the

4D theory on C×Σ, in the presence of Ω-background [8–11]. In accordance with this

perspective, holographically, the chiral algebra should arise from twisting the bulk

supergravity, as in [12]. Indeed, for 4D N = 4 SYM, its chiral algebra was derived

from the topological B-model of the deformed conifold, which is the result of twisting

IIB supergravity [13]. For further developments and generalizations see e.g. [14–16].

The goal of this paper is to understand the chiral algebra from a string worldsheet

perspective. In particular, we start with the worldsheet CFT dual of free 4D N = 4

SYM of [17, 18] and derive the chiral algebra directly from the worldsheet CFT. This

provides an alternative derivation of the chiral algebra to the one from field theory

or gravity,

Apart from providing another perspective on the chiral algebra, one motivation

for this work is to better understand the worldsheet CFT dual of AdS5×S5. Finding

the string worldsheet theory for AdS5×S5 has been a difficult problem. Recently,

building on the success of the string worldsheet theory for AdS3×S3×M4 [19, 20],

with M4 being T 4 , K3, or S3×S1, a worldsheet theory was proposed for AdS5×S5,

and was shown to correctly reproduce the spectrum of 4D N = 4 SYM at large-N

[17, 18].

This worldsheet theory for AdS5×S5 relies on a conjectured physical state con-

dition, and one needs to have a more fundamental derivation of this physical state

condition in order to make further progress with this approach. However, this is

not an easy task, since it requires the construction of a suitable BRST operator,

generalizing the BVW string of [21]. As of this writing, this problem is yet unsolved.

On the other hand, the worldsheet theory for AdS3×S3×M4 is on a much more solid

footing, and its physical state condition comes from a cohomological argument [21].

If one could connect the worldsheet theories of AdS5 and AdS3, one might get some

useful hints for how to better understand the AdS5 story. Indeed, as we will see, the

1The story also has a generalization to 6D (2, 0) SCFTs [5, 6].
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chiral algebra in the AdS5×S5 case is related to the compactification-independent

part of AdS3×S3×M4, i.e. AdS3×S3.

In this work, we give a description of the chiral algebra of 4D N = 4 U(N) or

SU(N) theory from the worldsheet. In particular, we show the following.

1. Spectrum. Among the worldsheet free fields that describe 4D N = 4 SYM, the

Schur subsector of 4D N = 4 SYM is captured by half of this set, and they

inherit the same physical state conditions as for the full theory.

2. Algebra. The BPS spectrum of this “Schur subsector” of the worldsheet theory

then generates an N = 4 W∞ algebra2 that reproduces the chiral algebra

computed either directly as in [1] or holographically as in [13].

We emphasize that the free field modes in the Schur subsector actually produce a

much bigger algebra than the chiral algebra; this bigger algebra is generated by both

short and long multiplets of the 2D N = 4 superconformal algebra. But since we

are interested in the chiral algebra, which is independent of the coupling, we should

extract the subalgebra that survives even after we turn on the coupling. One would

expect that only the short multiplets (of the 2D N = 4 superconformal algebra)

within the Schur subsector of the worldsheet CFT are not lifted once the coupling is

switched on, and they generate the chiral algebra. In summary, on the worldsheet

the chiral algebra arises simply as the algebra generated by the BPS part of half of

the free fields used in the free-field realization of the worldsheet theory.

Furthermore, we will show that the Schur subsector of the worldsheet theory of

AdS5×S5 describes the “compactification-independent” part of the worldsheet theory

for AdS3×S3×M4, which can be viewed as an AdS3×S3 ⊂ AdS5×S5. This establishes

a link between the worldsheet theory for AdS3×S3×M4 and the worldsheet theory

for AdS5×S5.

Finally, the method of this paper can also be applied to those 4D N = 2 super-

conformal theories that are obtained by orbifolding 4D N = 4 SYM, whose world-

sheet CFTs are also known [31].

The plan of this paper is as follows. In section 2, we review all the necessary

ingredients for this paper. In section 3, we extract the subsector of the worldsheet

CFT of AdS5×S5 that corresponds to the Schur subsector of 4D N = 4 SYM. In

section 4, we first obtain the algebra generated by the physical fields in the world-

sheet Schur subsector, and then by restricting to the short multiplets of 2D N = 4

superconformal algebra we reproduce the chiral algebra. In Section 5, we end with

a summary and discussion.

2Note that this N = 4 W∞ algebra is not to be confused with the N = 4 W∞ algebra that

appears as the symmetry of the boundary CFT of an N = 4 Vasiliev higher spin gravity in AdS3.
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2 Review

2.1 4D N = 4 SYM, Schur operators, and chiral algebra

2.1.1 Large-N spectrum and index

For the purpose of comparing to the worldsheet theory, we only need to consider the

single-particle spectrum (consisting of only single-trace operators). The single-trace

operators in 4D N = 4 SYM are composed of fields from the set of (on-shell) letters

[22, 23]

S = {∂nϕi , ∂nΨA,α , ∂
nΨα̇

A , ∂
nFαβ , ∂

nF α̇β̇} , (2.1)

with i = 1, . . . , 6, A = 1, 2, 3, 4, α, β, α̇, β̇ = 1, 2, and n ∈ Z≥0. The fields in (2.1)

form the singleton representation of the global symmetry psu(2, 2|4) of the theory:

R0 =
∞⊕
n=0

(
(n
2
, n
2
; [0, 1, 0])n+1 ⊕ (n+1

2
, n
2
; [1, 0, 0])n+ 3

2
⊕ (n

2
, n+1

2
; [0, 0, 1])n+ 3

2

⊕ (n+2
2
, n
2
; [0, 0, 0])n+2 ⊕ (n

2
, n+2

2
; [0, 0, 0])n+2)

)
,

(2.2)

decomposed in terms of representations (J1, J2, [λ1, λ2, λ3])E of the bosonic subal-

gebra su(2)1 ⊕ su(2)2 ⊕ su(4)R ⊂ psu(2, 2|4), where J1,2 are the spin of su(2)1,2,

[λ1, λ2, λ3] is the Dynkin label3 of su(4)R, and E is the eigenvalue of the dilation

operator.

The index of the single-trace operators Is.p.(q) receives contributions from the

single-trace operators of length-w, whose index is denoted by I
(w)
s.p.(q):

Is.p.(q) =
∞∑

w=1

I(w)
s.p.(q) , (2.3)

where q stands for the collection of fugacities q = {q1, q2, . . . qm}.4 The problem of

counting the single-trace operators with length-w is then a special case of Polya’s

enumeration theorem [24] with the finite group being the cyclic group Zn,
5 which

relates I
(w)
s.p.(q) to the index of one letter from the set (2.1), denoted by i(q) [23, 25]:

I(w)
s.p.(q) =

1

w

∑
d|w

ϕ(d) i(qd)
w
d , (2.4)

where Euler’s totient function ϕ(d) counts the number of order-d elements in the

cyclic group Zw and can be computed by ϕ(d) =
∑

k|d k µ(
d
k
) where µ(n) is the

Möbius function.6

3Here we use the convention that 4s = [1, 0, 0], 4c = [0, 0, 1], and 6 = [0, 1, 0].
4Note that the lower bound in the sum, w = 1, is for the U(N) theory. If we are considering

SU(N), then the lower bound in the sum would be w = 2.
5This combinatorics problem can be phrased as counting the configurations of a necklace of

length-n with beads colored by the states from the set (2.1).
6Recall that µ(n) = 1 when n = 1, µ(n) = (−1)k when n is a product of k distinct primes, and

µ(n) = 0 otherwise. In particular, µ(p) = −1 for p prime.
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Consider the supercharge Q with spin

(j1, j2) ≡ (J3
1 , J

3
2 ) = (−1

2
, 0) . (2.5)

The single-letter index defined by Q is [26]:

ivec(T, a2, v2, v3) = TrR0(−1)FT 2(E+j1)a2j22 vR2
2 vR3

3 , (2.6)

where R1,2,3 are the three Cartan generators of su(4)R. It selects those states in (2.2)

that satisfy:

∆ ≡ 2{Q†,Q} = E − (2j1 +
3R1 + 2R2 +R3

2
) = 0 . (2.7)

The condition (2.7) allows one to evaluate the index explicitly, as in [26]. To compare

to the literature on the chiral algebra such as [1], we recast the result of [26] in the

N = 2 language:

ivec(a, p, q, t) = TrR0(−1)Fp
1
2
(E−2j2−2R−r)q

1
2
(E+2j2−2R−r)aR2/2tR+r

= 1− (1− a
1
2 t

1
2 )(1− a−

1
2 t

1
2 )(1− (pq)t−1)

(1− p)(1− q)
,

(2.8)

where we have redefined the fugacities

T = (pq)
1
6 , a2 = (p−1q)

1
2 , v2 = (pq)−

1
3a

1
2 t

1
2 , v3 = (pq)−

2
3 t , (2.9)

and used the condition (2.7); R and r are the charge of theN = 2 R-symmetry su(2)R
and u(1)r symmetry, respectively, and are related to the su(4)R Cartan generators

R1,2,3 by

R =
1

2
(R1 +R2 +R3) and r =

−R1 +R3

2
. (2.10)

Finally a is the fugacity of the su(2)F flavor symmetry, which is the commutant of

su(2)R ⊕ u(1)r ⊂ su(4)R; its charge is related to the su(4)R Cartans by RF = R2

2
.

The full index of N = 4 U(N) SYM is

IU(N)
full (a, p, q, t) =

1

|N !|

∮
[d⃗b] ∆(⃗b) PE[ ivec(a, p, q, t)χadj(⃗b) ] , (2.11)

where χadj(⃗b) is the character of the adjoint representation of U(N). In the large-N

limit, the integration greatly simplifies since the matrix integral is captured by the

zero modes, and the integral is given by the one-loop determinant; it can be evaluated

exactly and gives

N → ∞ : IU(N)
full (a, p, q, t) =

∞∏
k=1

1

1− ivec(ak, pk, qk, tk)
. (2.12)
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2.1.2 Schur index and Schur operators

The Schur limit is defined as t→ q, under which the single-letter index of the N = 4

vector multiplet (2.8) becomes7

iSchurvec (a, q) = limt→q,p→0ivec(a, p, q, t) =

√
q

1− q
χ 1

2
(a)− 2q

1− q
, (2.13)

where χj(a) is the character of the spin-j representation of su(2)F : χj(a) =
∑j

m=−j a
m.

The Schur limit selects operators (the so-called Schur operators) that satisfy

E = (j1 + j2) + 2R and r = j1 − j2 . (2.14)

From the single-letter Schur index (2.13), one can compute the Schur index of the

N = 4 U(N) theory in the large-N limit:

N → ∞ : ISchur,U(N)
full (a, q) =

∞∏
k=1

1

1− iSchurvec (ak, qk)
. (2.15)

Similarly, the Schur index of the N = 4 SU(N) theory in the large-N limit is

N → ∞ : ISchur,SU(N)
full (a, q) =

∞∏
k=1

Exp[− 1
k
iSchurvec (ak, qk)]

1− iSchurvec (ak, qk)
.

2.1.3 Chiral algebra

It was shown in [1] that for a general 4DN = 2 superconformal theory, by considering

the BRST cohomology of Q + S where Q is one of the supercharges and S is the

superconformal charge, we select the Schur subsector restricted to R2 ⊂ R4. These

Schur local operators are governed by an (infinitely dimensional) vertex operator

algebra. In particular, the character of the chiral algebra reproduces the Schur index

of the 4D theory,8 and the chiral algebra determines the correlation functions of the

Schur operators, as meromorphic functions of the R2 coordinates.

In this paper, we will not discuss the correlation functions but only focus on the

Schur index. The full Schur index for the U(N) theory (2.15) has the expansion

ISchur,U(N)
full (a, q) = 1 + q

1
2 χ 1

2
(a) + q (2χ1(a)− 2χ0(a)) + q

3
2 (3χ 3

2
(a)− 2χ 1

2
(a))

+ q2 (5χ2(a)− 4χ1(a) + χ0(a)) + q
5
2 (7χ 5

2
(a)− 5χ 3

2
(a) + χ 1

2
(a)) + . . . ,

(2.16)

which should match the full index of the vacuum representation of a certain N = 4

W∞ algebra that is the chiral algebra of the U(N) theory.9 Similarly, the expansion

7One can show that the Schur index is independent of p and hence one can set p→ 0.
8One can view the chiral algebra as the categorification of the Schur index of the 4D theory.
9Note that this is not to be confused with the N = 4 W∞ algebra that arises as the boundary

symmetry of the high spin gravity in AdS3, see also the discussion in Section. 4.5.
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of the full Schur index for the SU(N) theory (2.16) is

ISchur,SU(N)
full (a, q) = 1 + q χ1(a) + q

3
2 (χ 3

2
(a)− 2χ 1

2
(a)) + q2 (2χ2(a)− χ1(a) + 2χ0(a))

+ q
5
2 (2χ 5

2
(a)− 2χ 3

2
(a)− 2χ 1

2
(a)) + q3 (4χ3(a)− 3χ2(a) + 2χ1(a) + 3χ0(a)) + . . .

(2.17)

which should match the index of the vacuum representation of the chiral algebra

of the SU(N) theory. We will explain how to reproduce them from the worldsheet

perspective later.

2.1.4 Twisted holography

The gravity dual of 4D N = 4 SYM is IIB supergravity on AdS5×S5. A natural

question is how to describe the gravity dual of its chiral algebra. This was answered

by twisted holography [13], which we briefly review below. For subsequent develop-

ments see e.g. [14–16]

In this set up, one starts with the full holographic duality arising from type

IIB string in flat space together with a stack of N D3-branes: in the large-N limit,

turning on the backreaction gives IIB string theory living on AdS5×S5 as the gravity

dual of 4D N = 4 SYM. Before the backreaction, twisting the whole setup in the

presence of Ω-background localizes to the B-model topological string on C3, with N

B-branes wrapping holomorphic curve Σ in C3. The chiral algebra can be derived

from the B-brane worldvolume theory [13], and turning on the backreaction in the

large-N limit, we obtain the B-model topological string on SL(2,C) [13]. The current
paper concerns the worldsheet version of this twisting.

2.2 Worldsheet theory of AdS3×S3×T 4

Although our main focus is on the worldsheet theory of AdS5×S5, we first briefly

review the worldsheet theory of AdS3×S3×T 4, since the construction of the former is

largely inspired by the latter, which is also much further developed as of this writing.

2.2.1 Free field relation of psu(1, 1|2)1
The worldsheet CFT of AdS3×S3×T 4 that is dual to the (free) symmetric orbifold of

T 4 was proposed in [19]. The main ingredient is a free field realization of the current

algebra psu(1, 1|2)1. The reason that it is level-1 is because the worldsheet dual of

the symmetric orbifold of T 4 should correspond to a string theory at the tensionless

limit. Hence the AdS3 radius should be as small as possible in string units, which

means that the level of the current algebra should take the smallest possible value,

which is one in this case. The set of free fields consists of10

4 symplectic bosons (ξ±, η±) and 2 complex fermions (ϕ±, χ±) . (2.18)

10We largely follow the notation of [19] for the AdS3×S3×T 4 case and that of [17] for the AdS5×S5

case, except that one of the complex fermions in the AdS3×S3×T 4 case that is labeled as ψ in [19]

is here relabeled as ϕ to avoid conflict with the AdS5×S5 case.
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They all have conformal weight h = 1
2
, and satisfy the mode relations11

[ξαr , η
β
s ] = ϵαβδr+s,0 , {ϕα

r , χ
β
s} = ϵαβδr+s,0 . (2.19)

The neutral bilinears of these fields generate the current algebra u(1, 1|2)1, for more

details see [19, App. C]. To describe the worldsheet theory of AdS3×S3×T 4, we really

need the current algebra psu(1, 1|2)1, which is obtained from u(1, 1|2)1 upon setting

Zm in (2.25) to zero, see [28] for more details.

The bosonic subalgebra of psu(1, 1|2)1 is

sl(2,R)1 ⊕ su(2)1 . (2.20)

The first factor su(2)1 is realized by12

J3
m = −1

2
(η+ξ− + η−ξ+)m and J±

m = (η±ξ±)m . (2.21)

Similarly, the second factor su(2)1 is realized as

K3
m = −1

2
(χ+ψ− + χ−ψ+)m and K±

m = ±(χ±ψ±)m . (2.22)

The fermionic generators of psu(1, 1|2)1 are

Sαβ+
m = (χβξα)m and Sαβ−

m = −(ηαψβ)m . (2.23)

In addition, we define

Um = −1
2
(η+ξ− − η−ξ+)m and Vm = −1

2
(χ+ψ− − χ−ψ+)m , (2.24)

and also

Zm = Um + Vm and Ym = Um − Vm . (2.25)

2.2.2 Spectral flow and physical states

To match the field theory spectrum, one needs to impose the physical state condi-

tions on the worldsheet fields, which was derived from the BRST cohomology of the

hybrid formalism of Berkovits-Vafa-Witten, see [19] for this derivation and the full

list of physical state conditions. After the physical state conditions are imposed, the

partition function of the resulting physical spectrum can be written as a sum over

all the spectrally-flowed sectors, labeled by w:

Z w.s.
AdS3×S3×T 4(q) =

∞∑
w=1

Z (w)

AdS3×S3×T 4(q) , (2.26)

where the partition function Z (w)(q) from the w-spectrally-flowed sector reproduces

the single-particle spectrum of the w-cycle twisted sector of the symmetric orbifold

of T 4 [19].

11ϵ is the totally symmetric tensor and the convention here is that ϵ+− = 1.
12Recall that su(2)1 is defined as

[J3
m, J

3
n] =

k

2
mδm+n,0 , [J3

m, J
±
n ] = ±J±

m+n , [J+
m, J

−
n ] = 2J3

m+n + kmδm+n,0

with level k = 1.
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2.3 Worldsheet theory of AdS5 × S5

2.3.1 Free field relation of psu(2, 2|4)1
In view of the fact that theN = 4 SYM has the superconformal symmetry psu(2, 2|4),
the starting point of the proposal in [17, 18] is the free field realization of the current

algebra psu(2, 2|4)1,13 with the set of free fields consisting of 8 symplectic bosons

(λα , λ†α̇ , µ
α̇ , µ†

α) with α, α̇ = 1, 2 , (2.27)

and four complex fermions

(ψa , ψ†
a) with a = 1, 2, 3, 4 . (2.28)

It will be convenient to group the free fields according to their indices:

YI = (µ†
α, λ

†
α̇, ψ

†
a) and ZI = (µα̇, λα, ψa) . (2.29)

All the fields have conformal dimension h = 1
2
. The commutation relations among

their modes are

[λαr , (µ
†
β)s] = δαβ δr+s,0 , [µα̇

r , (λ
†
β̇
)s] = δα̇

β̇
δr+s,0 , {ψa

r , (ψ
†
b)s} = δab δr+s,0 ,

(2.30)

from which one can show that they generate the current algebra psu(2, 2|4)1 [17, 18],
as we will review below.

First of all, the compact bosonic subalgebra of psu(2, 2|4)1:

su(2)−1 ⊕ su(2)−1 ⊕ su(4)1 ⊂ psu(2, 2|4)1 (2.31)

is realized as follows. The first factor su(2)−1 is generated by14

J3
m =

(µ†
2 λ

2)m − (µ†
1 λ

1)m
2

, J+
m = (µ†

2 λ
1)m , J−

m = (µ†
1 λ

2)m , (2.32)

where all the products are normal ordered. Similarly, the second su(2)−1 is generated

by

J̇3
m =

(λ†2 µ
2)m − (λ†1 µ

1)m
2

, J̇+
m = (λ†2 µ

1)m , J̇−
m = (λ†1 µ

2)m . (2.33)

Finally, the factor su(4)1 is generated by

(Ra
b)m = (ψ†

bψ
a)m − 1

4
δab (ψ

†
cψ

c)m , (2.34)

13The reason why the level is one is same as for AdS3×S3×T 4, see Section. 2.2.2.
14Recall that su(2)−1 is defined as

[J3
m, J

3
n] =

k

2
mδm+n,0 , [J3

m, J
±
n ] = ±J±

m+n , [J+
m, J

−
n ] = 2J3

m+n + kmδm+n,0

with level k = −1.
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where we use the convention in which the positive roots of su(4) are given by (Ra
b)0

with a < b. In particular, the three Cartan generators of su(4) are

H1 = (ψ†
2ψ

2)0 − (ψ†
1ψ

1)0 , H2 = (ψ†
3ψ

3)0 − (ψ†
2ψ

2)0 , H3 = (ψ†
4ψ

4)0 − (ψ†
3ψ

3)0 .

(2.35)

The non-compact bosonic generators of psu(2, 2|4)1 are

P α̇
β = µα̇ µ†

β and Kα
β̇ = λα λ†

β̇
, (2.36)

which are the translation and special conformal generators, respectively. Finally, the

fermionic generators are

Sα
a = λα ψ†

a , Ṡa
α̇ = ψa λ†α̇ and Q̇α̇

a = µα̇ ψ†
a , Qa

α = ψa µ†
α . (2.37)

However, the list of fields

J , J̇ ,R ,K ,P ,S , Ṡ ,Q , Q̇ (2.38)

defined above do not close upon themselves and hence do not form the psu(2, 2|4)1
algebra at face value. Instead, the psu(2, 2|4)1 algebra can be obtained from the

larger u(2, 2|4)1 as follows. Apart from the fields in the list (2.38), u(2, 2|4)1 has two
additional (bosonic) generators:

Bm = 1
2
(µ†

α λ
α + λ†α̇µ

α̇)m and Cm = 1
2
(µ†

α λ
α + λ†α̇µ

α̇ + ψ†
aψ

a)m . (2.39)

From their commutation relations (see [18, App. A]), one can show that the (anti-

)commutation relations of the fields in (2.38) do not close upon themselves, but also

contain C (but not B). In addition, we have

[C, fields in (2.38)] = 0 , [C,B] = central , [B, fermions in (2.38)] ̸= 0 . (2.40)

Therefore, one can first obtain an su(2, 2|4)1 algebra generated by the fields in (2.38)

and C, in which C is central; then to obtain the psu(2, 2|4)1 algebra, one simply takes

all the fields in (2.38) and mods out C by imposing the condition15

C = 0 , (2.41)

which is the so-called anbitwistor constraint. For later convenience, we note that

C =
1

2
YIZ

I , (2.42)

15More precisely, at the level of the states, this can be done by imposing Cn = 0 with n ≥ 0,

and the C−n descendants are then null and are naturally quotiented out. (This follows a similar

argument as for the AdS3 case in [28].)
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from which it is transparent that the YI ’s have C-charge 1
2
whereas the ZI ’s have

C-charge −1
2
, and all the generators of psu(2, 2|4)1 are C-charge neutral.

From these commutation relations, one can deduce that

D0 =
1
2
(µ†

α λ
α − λ†α̇ µ

α̇)0 (2.43)

serves as the dilatation operator of 4D N = 4 SYM.

Finally, note that we just described the left-movers, and there is another copy for

the right-moving sector. The physical state condition postulated in [17, 18] ensures

that only the left-movers survive to contribute to the physical spectrum. In the end,

the physical spectrum of the worldsheet theory consists of Ramond sector together

with its spectrally-flowed sectors and matches the spectrum of 4D N = 4 SYM.

2.3.2 Spectral flow and physical states

Summarizing the proposal of [17], the procedure for obtaining the physical spectrum

is as follows.

1. In the w-spectrally-flowed sector, consider the subset of the free fields (2.29):

YI ⊃ ∨YI = (µ†
1 , µ

†
2 , ψ

†
1 , ψ

†
2) ,

ZI ⊃ ∨ZI = (µ1 , µ2 , ψ3 , ψ4) ,
(2.44)

and restrict to the space generated by the “wedge modes” of this subset:16

(µ†
1,2)r , (µ1,2)r , (ψ†

1,2)r , (ψ3,4)r with − w−1
2

≤ r ≤ w−1
2
, (2.45)

acting on the ground state |0⟩w. (Note that only the left-movers of the world-

sheet CFT are included.)

2. On this space, impose the residual Virasoro constraint

(L0 + nw) |Ψphy⟩ = 0 with n ∈ Z , (2.46)

where

[L0 , (µ
†
1,2)r] = −r(µ†

1,2)r , (2.47)

and similarly for all the other wedge modes, and

L0|0⟩w =
w

2
|0⟩w . (2.48)

This condition corresponds to the (spacetime) momentum conservation up to

cyclicity.

16They are called wedge modes since as w runs over N, the condition −w−1
2 ≤ r ≤ w−1

2 takes the

shape of a wedge. This is not to be confused with the wedge modes of W algebras although these

two nomenclatures share the same origin.
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3. Impose the“central term” constraint

Cn |Ψphy⟩ = 0 with n = 0, 1, . . . , w − 1 . (2.49)

As was observed in [18, Section. 4.2], the wedge constraint and the Cn = 0 constraint

together restrict us to states that are generated from the ground state by the C-
neutral DDF-like operators:

(S J
I )m =

w−1
2∑

r=m−w−1
2

(∨YI)r(
∨ZJ)m−r with m = 0, 1, 2, . . . , w − 1 , (2.50)

in the w-spectrally-flowed sector, where ∨YI and ∨ZJ are from the list (2.44) and

their modes numbers are inside the wedge (2.45). One can check that

[L0 , (S
J
I )m] = −m (S J

I )m . (2.51)

Therefore, the L0 constraint (2.46) dictates that in the w-spectrally-flowed sector,

the physical states are generated by products of DDF operators with total zero

momentum up to cyclicity:∏
i

(S J
I )mi

with
∑
i

mi = 0 mod w , (2.52)

acting on the ground state |0⟩w.

After imposing the physical state condition, the spectrum of the worldsheet

theory for AdS5×S5 is also given by a sum over all w-spectrally-flowed sectors:

Z w.s.
AdS5×S5(q) =

∞∑
w=1

Z (w)

AdS5×S5(q) , (2.53)

where q stands for all the fugacities collectively. For w = 1,

Z (1)(q) = TrH[q
Q] =: Z (q) (2.54)

is the character of the RR vacuum with Q denoting the charges collectively. We also

define

Z̃ (q) = TrH[(−1)FqQ] . (2.55)

The w-spectrally-flowed sector Z (w)(q) captures the cyclically invariant physical

states in the wth tensor power of Z (q):

Z (w)

AdS5×S5(q) = TrH⊗w/Zw [q
Q] =

1

w

w−1∑
k=0

Z σk

(q) =
1

w

w−1∑
k=0

TrH⊗w [qQσk] (2.56)
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where σ = (12 . . . w) is the cyclic permutation of length w. Z (w)(q) reproduces the

single-trace states with w letters in 4D N = 4 SYM; here and henceforth we drop

the subscript “AdS5×S5”.

The first few Z (w)(q) are explicitly

Z (2)(q) =
1

2

(
Z (q)2 + Z̃ (q2)

)
,

Z (3)(q) =
1

3

(
Z (q)3 + 2Z (q3)

)
,

Z (4)(q) =
1

4

(
Z (q)4 + Z̃ (q2)2 + 2 Z̃ (q4)

)
.

(2.57)

For w ≥ 3 prime, Z (w) has the simple expression of

Z (w)(q) =
1

w
(Z (q)w + (w − 1)Z (qw)) for w ≥ 3 prime . (2.58)

3 Schur subsector from worldsheet

In this section, we first explain the matching between the single-particle Schur index

of the 4D theory and the index of the untwisted sector of the worldsheet theory. We

then define a “Schur subsector” of the worldsheet theory and show that the physical

states from this subsector reproduce the Schur operators of the 4D theory.

3.1 4D single-particle spectrum v.s. worldsheet spectrum

The 4D index (2.12) or (2.15) captures the multi-particle spectrum, whereas the

worldsheet theory captures only the single-particle part. Therefore, in order to com-

pare with the worldsheet result, we need the single-particle spectrum of 4D N = 4

SYM [23, 25, 29, 30]:

Is.p.(q) =
∞∑

w=1 or 2

I(w)
s.p.(q) with I(w)

s.p.(q) =
1

w

∑
d|w

ϕ(d) i(qd)
w
d , (3.1)

where the lower bound is w = 1 for the U(N) theory and w = 2 for the SU(N)

theory. To confirm that the signs in the index (3.1) are taken care of properly,17 one

can check that the single-particle index (3.1) is related to the full index at large-N

IU(N)
full (q) =

∞∏
k=1

1

1− i(qk)
or I ,SU(N)

full (a, q) =
∞∏
k=1

Exp[− 1
k
i(qk)]

1− i(qk)
(3.2)

by

Ifull(q) = PE[Is.p(q)] and Is.p.(q) = Plog[Ifull(q)] , (3.3)

17As we will see momentarily, the formulae for the corresponding characters are slightly different.
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where PE stands for the plethystic exponent and Plog its inverse, the plethystic log;

they are defined as

PE[f(x)] ≡
∞∑
k=1

f(xk)

k
and Plog[g(x)] ≡

∞∑
n=1

µ(n)

n
log g(xn) . (3.4)

Let us now consider the case when the single-letter index in the formulae above

is the single-letter Schur index of the N = 4 vector-multiplet (2.13):

i(q) = iSchurvec (a, q) =

√
q

1− q
χ 1

2
(a)− 2q

1− q
. (3.5)

The goal of this section is to reproduce the spacetime single-particle Schur index

(3.1) with (3.5) from the worldsheet theory for AdS5×S5.

3.2 Schur subsector of worldsheet theory

Now we directly extract the subsector of the worldsheet theory for AdS5×S5 that

corresponds to the Schur sector. Recall that the physical spectrum is generated by

the C-neutral DDF-like operators that are bilinears of the free fields, see (2.50). We

would like to impose the Schur condition on these bilinears. It turns out that they

are generated by a subset of the free fields.

3.2.1 Imposing Schur condition

In order to impose the Schur condition (2.14) on the worldsheet spectrum, we first

summarize the operators whose eigenvalues appear in (2.14), in terms of the world-

sheet fields:

Dilatation : D = 1
2
(µ†

α λ
α − λ†α̇ µ

α̇)0

Cartan of su(2)1 ⊕ su(2)1 :

{
J3
0 = 1

2
(µ†

2 λ
2 − µ†

1 λ
1)0

J̇3
0 = 1

2
(λ†2 µ

2 − λ†1 µ
1)0

Cartan of su(4) :


H1 = (ψ†

2ψ
2 − ψ†

1ψ
1)0

H2 = (ψ†
3ψ

3 − ψ†
2ψ

2)0
H3 = (ψ†

4ψ
4 − ψ†

3ψ
3)0

(3.6)

whose charges are denoted as:

operator D (J3)0 (J̇3)0 H1 H2 H3 R r

charge E ( j1 , j2 , [ R1 , R2 , R3 ] ) R r
(3.7)

where the charges of the (N = 2) suR ⊕ u(1)r symmetries R and r are defined in

(2.10).

Next, we compute the charges of the basic free fields, i.e. the 8 symplectic bosons

and the 4 complex fermions in (2.29), under the operators in (3.6). In addition, we
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will also need their charges C w.r.t. the operator C0. We summarize the results in

the table below

C E j1 j2 R1 R2 R3 R r

µ†
1

1
2

1
2

−1
2

0 0 0 0 0 0

µ†
2

1
2

1
2

1
2

0 0 0 0 0 0

λ†1
1
2

−1
2

0 −1
2

0 0 0 0 0

λ†2
1
2

−1
2

0 1
2

0 0 0 0 0

ψ†
1

1
2

0 0 0 −1 0 0 −1
2

1
2

ψ†
2

1
2

0 0 0 1 −1 0 0 −1
2

ψ†
3

1
2

0 0 0 0 1 −1 0 −1
2

ψ†
4

1
2

0 0 0 0 0 1 1
2

1
2

λ1 −1
2

−1
2

1
2

0 0 0 0 0 0

λ2 −1
2

−1
2

−1
2

0 0 0 0 0 0

µ1 −1
2

1
2

0 1
2

0 0 0 0 0

µ2 −1
2

1
2

0 −1
2

0 0 0 0 0

ψ1 −1
2

0 0 0 1 0 0 1
2

−1
2

ψ2 −1
2

0 0 0 −1 1 0 0 1
2

ψ3 −1
2

0 0 0 0 −1 1 0 1
2

ψ4 −1
2

0 0 0 0 0 −1 −1
2

−1
2

(3.8)

where the bold letters denote those fields selected by the physical state condition

(2.44) and the meaning of the red coloring will be apparent momentarily.

Now we would like to restrict to a subset of all the free fields in (2.29) such that

their C-charge neutral bilinears satisfy the Schur condition (2.14). (We will impose

further physical state conditions afterwards.) This condition selects a subset of the

two lists in (2.29):

YI ⊃ SYI = (µ†
2 , λ

†
1 , ψ

†
2 , ψ

†
3) ,

ZI ⊃ SZI = (λ2 , µ1 , ψ2 , ψ3) ,
(3.9)

which we will call the “worldsheet Schur subsector” and which is colored red in the

table (3.8).

One can then check directly that the collection of free fields in (3.9) generate

the current algebra u(1, 1|2)1. And then imposing the C = 0 constraint18 takes us

from u(1, 1|2)1 to psu(1, 1|2)1. Indeed, one can make the following identification of

the free fields in (3.9) with the free fields in the worldsheet theory of AdS3×S3×T 4,

listed in (2.18):

(µ†
2 , λ

†
1) = (ξ+ , ξ−) , (µ1 , −λ2) = (η+ , η−) ,

(ψ†
3 , ψ

†
2) = (ϕ+ , ϕ−) , (−ψ2 , ψ3) = (χ+ , χ−) .

(3.10)

18Or more precisely, we impose Cn = 0 for n ≥ 0; and the C−n descendants are then null and are

naturally quotiented out.
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Then since the fields in (2.18) generate the current algebra psu(1, 1|2)1 under the

C = 0 constraint, so do the fields in the subset (3.9).

3.2.2 Imposing physical state condition

Now that we have the fields (3.9) that are selected out by the Schur condition (2.14),

we impose the physical state conditions (2.45), (2.46), and (2.49). In particular, we

need to check that after imposing physical state conditions, we are not left with an

empty set.

First, we impose the wedge condition (2.44) and (2.45) on the worldsheet Schur

subset (3.9). This first selects a subset of (3.9):

YI ⊃ SYI ⊃ S,∨YI = (µ†
2 , ψ

†
2) ,

ZI ⊃ SZI ⊃ S,∨ZI = (µ1 , ψ3) ,
(3.11)

which can be loosely called the “physical subset of worldsheet Schur fields” and are

denoted by bold red letters in (3.8), and then further restrict to the “worldsheet

Schur wedge-modes”, defined as

(µ†
2)r , (µ1)r , (ψ†

2)r , (ψ3)r with − w−1
2

≤ r ≤ w−1
2
. (3.12)

Next, recall that for the full theory, in the w-spectrally-flowed sector, imposing

the Virasoro constraint (2.46) and the Central constraint (2.49) together with the

Wedge mode constraint (2.44) and (2.45) amounts to considering only the C-charge
neutral DDF-like operators (2.50) that are bilinears of the form (∨YI

∨ZJ), where the

modes of both ∨YI and ∨ZJ are restricted to their wedge modes. Furthermore, we

require that the total mode number is zero mod w.

Therefore, within the Schur subsector (3.9), after imposing the physical state

condition (2.44), (2.45), (2.46), and (2.49), we are left with C-charge neutral DDF-

like operators

S(S J
I )m =

w−1
2∑

r=m−w−1
2

(S,∨YI)r(
S,∨ZJ)m−r with m = 0, 1, . . . , w − 1 , (3.13)

for each w-spectrally-flowed sector, where S,∨YI and
S,∨ZJ are from the list (3.11) and

their modes numbers are inside the wedge (3.12). There are only four such C-neutral
bilinears that one can build from the physical subse of worldsheet Schur fields in

(3.11). We list their charges below

C E j1 j2 R r

µ†
2µ

1 0 1 1
2

1
2

0 0

µ†
2ψ

3 0 1
2

1
2

0 0 1
2

ψ†
2µ

1 0 1
2

0 1
2

0 −1
2

ψ†
2ψ

3 0 0 0 0 0 0

(3.14)

– 16 –



which obey the Schur conditions (2.14) by design.

Finally, applying products:∏
i

S(S J
I )mi

with
∑
i

mi = 0 mod w , (3.15)

on the ground state |0⟩w, we obtain all the physical states in the w-spectrally-flowed

sector of the Schur subsector.

3.3 Reproducing Schur index

Now we show that the worldsheet Schur wedge modes in (3.12) reproduce the Schur

index of 4D N = 4 SYM.

3.3.1 Reproducing single-letter index from w = 1 sector

Let’s first consider the w = 1 spectrally-flowed sector, which should reproduce the

single-letter Schur index of 4D N = 4 SYM. The vacuum is the RR-vacuum, with

conformal dimension

|0⟩w=1 : h = 1
2
. (3.16)

Now we compute the characters of (the physical spectrum of) the w = 1 Schur

subsector of the worldsheet theory by applying the C-neutral bilinears composed of

the Schur wedge-modes in (3.12), for w = 1, repeatedly on the vacuum. From (3.12),

we can see that for w = 1, the wedge modes are simply the zero modes. Then due

to the commutation relations of the field in (3.11), we can apply the bilinear µ†
2,0µ

1
0

infinitely many times, but the other three bilinears, namely

µ†
2,0ψ

3
0 , ψ†

2,0µ
1
0 , ψ†

2,0ψ
3
0 (3.17)

at most once.

Therefore, there are four types of contributions to the character:

(µ†
2,0µ

1
0)

n|0⟩1 , (µ†
2,0µ

1
0)

n(ψ†
2,0ψ

3
0)|0⟩1 :

q
1
2

1− q
χ1

2
(a)

(µ†
2,0µ

1
0)

n(µ†
2,0ψ

3
0)|0⟩1 , (µ†

2,0µ
1
0)

n(ψ†
2,0µ

1
0)|0⟩1 :

2q

1− q
,

(3.18)

where n = 0, 1, . . . ,∞, and a is the chemical potential corresponding to R2

2
, which

is the Cartan of su(2)F (see (2.8)), and the charges of the fermions can be read off

from Table (3.8). In total, the character of the Schur subsector of the RR vacuum is

therefore19

z(1)(a, q) =
q

1
2

1− q

(
χ 1

2
(a) + 2 q

1
2

)
:= z(a, q) . (3.19)

19It is denoted as Z (a, q) in [31].
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To compute the corresponding index, note that the fermionic states (in the sec-

ond line of (3.18)) acquire an additional minus sign; therefore the index is

z̃(1)(a, q) =
q

1
2

1− q

(
χ 1

2
(a)− 2 q

1
2

)
=: z̃(a, q) . (3.20)

This then reproduces the single-letter Schur index of the 4D N = 4 vector-multiplet

(2.13):

z̃(a, q) = iSchurvec (a, q) , (3.21)

where the l.h.s. and r.h.s are from the worldsheet and spacetime computations, re-

spectively.

Note that in both the character (3.19) and the index (3.20), the coefficients for

the leading terms q
1
2 are positive, even though it is a half-integer mode; this is due

to the fact that the RR vacuum |0⟩1 has conformal dimension h = 1
2
(see (3.16)) but

is nevertheless “bosonic”. Namely, to go from the character to the index, instead of

flipping the signs of all terms ∼ O(qn+
1
2 ), one should apply the following operation

z(a, q) −→ q
1
2

1− q
·
((

1− q

q
1
2

· z(a, q)
) ∣∣

q
1
2→(−1)q

1
2

)
= z̃(a, q) . (3.22)

3.3.2 Including all spectrally-flowed sectors

Once we have the spectrum of the w = 1 sector, those of the general w spectrally-

flowed sectors can be derived using the argument reviewed in Section. 2.3.2. First,

we find that the character in the w-spectrally-flowed sector (2.56) can be rewritten

into a more convenient form

Z (w)

AdS5×S5(q) =
1

w

 ∑
d|w,d odd

ϕ(d)Z (qd)
w
d +

∑
d|w,d even

ϕ(d) Z̃ (qd)
w
d

 . (3.23)

Specializing to the worldsheet Schur subsector, the character of the worldsheet Schur

wedge-modes (3.12) in the w-spectrally-flowed sector is then

z(w)(a, q) ≡ 1

w

 ∑
d|w,d odd

ϕ(d) z(ad, qd)
w
d +

∑
d|w,d even

ϕ(d) z̃(ad, qd)
w
d

 , (3.24)

and the full character from the worldsheet Schur wedge-modes (3.12) is

Z ws, Schur
U(N) (a, q) =

∞∑
w=1

z(w)(a, q) . (3.25)

Let us now compute the corresponding index. For each w-spectrally-flowed sec-

tor, similar to the w = 1 case, we cannot just flip the signs for each half-integer term
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in the character, since the ground state |0⟩w of the w-spectrally-flowed sector has

conformal dimension h = w
2
but is always “bosonic”. To obtain the index z̃(w)(a, q)

from the character z(w)(a, q), we should apply the operation similar to (3.22) on each

term in z(w)(a, q):

d odd : z(ad, qd) −→ q
d
2

1− qd
·
((

1− qd

q
d
2

· z(ad, qd)
) ∣∣

q
1
2→(−1)q

1
2

)
= z̃(ad, qd) ;

d even : z̃(ad, qd) −→ q
d
2

1− qd
·
((

1− qd

q
d
2

· z̃(ad, qd)
) ∣∣

q
1
2→(−1)q

1
2

)
= z̃(ad, qd) .

(3.26)

Therefore, the index z̃(w)(a, q) from the w-spectrally-flowed sector is

z̃(w)(a, q) ≡ 1

w

∑
d|w

ϕ(d) z̃(ad, qd)
w
d . (3.27)

And the total index from the worldsheet Schur wedge-modes (3.12) is

Z̃ ws, Schur
U(N) (a, q) =

∞∑
w=1

z̃(w)(a, q) , (3.28)

and for the SU(N) theory the summation starts from w = 2. With the identification

(3.21), this then reproduces the single-particle Schur index of N = 4 SYM (3.1).

4 Chiral algebra from worldsheet

In the previous section, we showed that the physical states in the Schur subsector of

the worldsheet theory are generated by the C-neutral bilinears of the wedge modes of

the free fields in the Schur subsector. In this section, we study the algebra generated

by these physical states and then show that it contains the chiral algebra as its

subalgebra that is generated by the short multiplets of the N = 4 superconformal

algebra.

4.1 Worldsheet Schur algebra and symmetry enhancement at free point

The physical Schur states we identified in the previous section generate a large sym-

metry algebra, which we will call the “worldsheet Schur algebra”:

worldsheet Schur algebra : the N = 4 W∞ algebra generated by

the physical states as counted by (3.25) .
(4.1)

We will give the full (multi-particle) vacuum character later, which comes from all

the products of the single-particle physical states and is not directly part of the

worldsheet theory.
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It is a very large algebra: in particular, it has anN = 4 even spinW∞ subalgebra,

which is generated by the Schur physical states from the w = 2 spectrally-flowed

sector, whose character has the expansion:20

z(2)(a, q) = χN=4
vac (a, q) +

∞∑
n=1

XN=4, long
h=2n,0 (a, q) , (4.2)

where χN=4
vac (a, q) is the vacuum character of the N = 4 superconformal algebra

χN=4
vac (a, q) =

q

(1− q)

(
χ1(a) + 2 q1/2 χ 1

2
(a) + q χ0(a)

)
, (4.3)

where the lowest component is the adjoint of the su(2)R (the R-symmetry of the 2D

N = 4 superconformal algebra);21 and XN=4, long
h,0 (a, q) is the character of the long

multiplet of the N = 4 superconformal algebra whose lowest component is an su(2)R
singlet:

XN=4, long
h,0 (a, q) =

qh

(1− q)

(
1 + 2 q1/2 χ1/2(a) + q (χ1(a) + 3) + 2 q3/2 χ1/2(a) + q2

)
.

(4.4)

The fact that the decomposition is in terms of representations of the N = 4 super-

conformal algebra, which is the symmetry algebra of the boundary dual CFT of the

AdS3×S3×M4, will be explained later in Sec. 4.4.

Similarly, the index of the algebra (4.1) is (3.28), which by construction repro-

duces the single-particle Schur index of the 4D theory:

Ist, sp, Schur
U(N) (a, q) = Z̃ ws, Schur

U(N) (a, q) =
∞∑

w=1

z̃(w)(a, q) , (4.5)

and again for the SU(N) theory the summation starts from w = 2. However, the

chiral algebra that we want to reproduce from the worldsheet should only be a (small)

subalgebra of the worldsheet Schur algebra (4.1), since the latter only exists at the

free point of the 4D theory, whereas the chiral algebra is independent of the coupling.

Namely, the character of (4.1) is much larger than that of the chiral algebra.

4.2 Chiral algebra from BPS subsector of Schur subsector

In order to extract the chiral algebra from the worldsheet, which only describes the

free point of the 4D theory, we need to focus on the part of the spectrum that does

20Note that this is similar to the spectrum of the N = 4 W∞ algebra that arises as the boundary

symmetry of the N = 4 Vasiliev higher-spin gravity in AdS3, except that the latter has one long

multiplet for each positive integer spin, not just the even ones, see [32].
21Note that the su(2)R in this section refers to the R-symmetry of the 2D N = 4 superconformal

symmetry, which corresponds to the su(2)F flavor symmetry of 4D N = 4 SYM, by the argument

of [1] — it is not to be confused with the su(2)R R-symmetry from the N = 2 subalgebra of the

4D theory.
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not get lifted once we turn on the coupling. This suggests us to focus on the “BPS

sector” of worldsheet Schur subsector, given by (3.12). Namely, the character of

the chiral algebra should allow a decomposition in terms of characters of only short

multiplets of the N = 4 superconformal algebra.

Let us consider a short multiple of the N = 4 superconformal algebra whose

lowest component is the spin-s representation of su(2)R, with

conformal dimension h = spin s . (4.6)

The character of such a short multiplet is

XN=4, short
h≥1 (a, q) ≡ qh

1− q

(
χh(a) + 2 q

1
2 χh− 1

2
(a) + q χh−1(a)

)
,

XN=4, short
1
2

(a, q) ≡ q
1
2

1− q

(
χ 1

2
(a) + 2 q

1
2

)
,

(4.7)

where χs(a) is the character of the spin-s representation of su(2)R; h can take all

positive integer and half-integer values. The vacuum representation (4.3) is such a

short multiplet with h = s = 1, generated by the N = 4 superconformal generators

Ja
−1 , G±

− 3
2

, Ḡ±
− 3

2

, L−2 , (4.8)

acting on the vacuum state |0⟩. The correspondingly index is

X̃N=4, short

h≥ 1
2

(a, q) ≡ qh

1− q

(
χh(a)− 2 q

1
2 χh− 1

2
(a) + q χh−1(a)

)
,

X̃N=4, short
1
2

(a, q) ≡ q
1
2

1− q

(
χ 1

2
(a)− 2 q

1
2

)
.

(4.9)

Note that the bottom component always appears with a “+” sign, even for half-

integer h.

In comparison, the character of a long multiplet of the N = 4 superconformal

algebra whose lowest component is the spin-s representation of su(2)R is

XN=4, long
h,s≥1 (a, q) ≡ qh

1− q

(
χs(a) + 2 q

1
2 (χs− 1

2
(a) + χs+ 1

2
(a))

+ q (χs−1(a) + 4χs(a) + χs+1(a)) + 2 q
3
2 (χs− 1

2
(a) + χs+ 1

2
(a)) + q2 χs(a)

)
,

XN=4, long

h, 1
2

(a, q) ≡ qh

1− q

(
χ 1

2
(a) + 2 q

1
2 (1 + χ1(a))

+ q (4χ 1
2
(a) + χ 3

2
(a)) + 2 q

3
2 (1 + χ1(a)) + q2 χ 1

2
(a)

)
,

XN=4, long
h,0 (a, q) ≡ qh

(1− q)

(
1 + 2 q1/2 χ1/2(a) + q (χ1(a) + 3) + 2 q3/2 χ1/2(a) + q2

)
,

(4.10)
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where the last one XN=4, long
h,0 (a, q) was already given earlier in (4.4), and we list it

here to show the shortening condition of XN=4, long
h,s (a) for small s’s. Then flipping the

signs of the q
1
2 and q

3
2 terms inside the brackets gives their corresponding indices,

which will not play a role in this paper.

The main observation is that the index (3.28) of the algebra (4.1), which repro-

duces the single-particle Schur index of the 4D theory, has the following decomposi-

tion in terms of the indices (4.9):22

Ist, sp, Schur
U(N) (a, q) = Z̃ ws, Schur

U(N) (a, q) =
∞∑

w=1

X̃N=4, short
w
2

(a, q) . (4.11)

The fact that only the indices of the short multiplets appear is reassuring since we

are considering the spacetime Schur index, which counts the BPS spectrum.

Now let us compare the decompositions (4.5) and (4.11):

Ist, sp, Schur
U(N) (a, q) = Z̃ ws, Schur

U(N) (a, q) =
∞∑

w=1

z̃(w)(a, q) =
∞∑

w=1

X̃N=4, short
w
2

(a, q) . (4.12)

For this identity on indices to exist, there are lots of cancellations involved. First,

we note that the spectrum underlying
∑∞

w=1 z̃
(w)(a, q) is much larger than the spec-

trum underlying
∑∞

w=1 X̃
N=4, short
w
2

(a, q). To see this, one can compare the charac-

ters23 z(w)(a, q) and XN=4, short
w
2

(a, q). It is easy to check that the z(w)(a, q) “contains”

XN=4, short
h=w

2
as its leading terms, namely, the difference between the two characters

z(w)(a, q)− XN=4, short
h=w

2
(a, q) (4.13)

contains only positive terms. Moreover, we find that

z(w)(a, q)− XN=4, short
h=w

2
(a, q) =

∑
{h,s}

XN=4, long
h,s (a, q) , (4.14)

22Recall that the single-particle Schur index for the SU(N) theory is given by I
Schur,SU(N)
s.p. (a, q) =

I
Schur,U(N)
s.p. (a, q)− iSchurvec (a, q), where iSchurvec (a, q) is the single-letter Schur index.
23It is easier to do this comparison after multiplying both z(w)(a, q) and XN=4, short

h=w
2

(a, q) by the

factor (1 − q), since the factor (1 − q) only signifies that we are including all the modes that are

from derivatives.
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where the set {h, s} depends on w. For example:

w = 1 : 0

w = 2 :
∞∑
n=1

XN=4, long
2n,0 (a, q)

w = 3 : 2XN=4, long
2,0 (a, q) + XN=4, long

5
2
, 1
2

(a, q) + 2XN=4, long
7
2
, 1
2

(a, q) + 2XN=4, long
4,0 (a, q)

+ XN=4, long
9
2
, 1
2

(a, q) + 4XN=4, long
5,0 (a, q) + . . .

w = 4 : XN=4, long
2,0 (a, q) + 2XN=4, long

5
2
, 1
2

(a, q) + 2XN=4, long
3,1 (a, q) + XN=4, long

3,0 (a, q)

+ 4XN=4, long
7
2
, 1
2

(a, q) + 2XN=4, long
4,1 (a, q) + 7XN=4, long

4,0 (a, q) + . . .

(4.15)

Since the spectrum on the r.h.s. are all from long multiplets, as we move away

from the free point, they are expected to be lifted. Therefore the character for the

worldsheet spectrum that generates the chiral algebra, which is independent of the

coupling, should be

Z ws, Schur
U(N) (a, q) =

∞∑
w=1

XN=4, short
w
2

(a, q) . (4.16)

Namely, the chiral algebra is an N = 4 W∞ algebra generated by the modes captured

by the short N = 4 characters XN=4, short
h (a, q), defined in (4.7), with h ∈ 1

2
N. Since

XN=4, short
h (a, q) is a character, with only positive coefficients, it uniquely determines

the worldsheet content that generates the chiral algebra, and hence the spin-content

of the chiral algebra, at general coupling.

This is consistent with the picture that at the free point, for which the worldsheet

theory is valid, the symmetry is vastly enhanced, captured by the bigger characters

z(w)(a, q). Away from the free points, most of the spectrum gets lifted and the

remaining generators are described by XN=4, short
h=w

2
(a, q).

4.3 Full character and index of vacuum representation of chiral algebra

Finally, we consider the multi-particling of the worldsheet character (4.16) to derive

the full character and the index of the vacuum representation of the chiral algebra.

As we will see, there are a lot of cancellations in the index, which reproduces the full

large-N Schur index (2.15) from the spacetime.

First of all, each factor in (4.16) contributes

qhχj(a) −→



∞∏
n=h

j∏
m=−j

1

(1− amqn)
bosonic

∞∏
n=h

j∏
m=−j

(1± amqn) fermionic ,

(4.17)
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where for the fermionic case in the second line, “+” is for the character whereas “−”

is for the index.

Therefore, to the full character of the vacuum representation, each XN=4, short
w
2

(a, q)

(defined in (4.7)) in the sum (4.11) contributes

XN=4, short
w
2

(a, q) −→ ZN=4,short
w
2

(a, q) =
∞∏

n=w
2

w
2∏

m=−w
2

1

(1− amqn)

·
∞∏

n=w+1
2

w−1
2∏

m=−w−1
2

(1 + amqn)2 ·
∞∏

n=w
2
+1

w
2
−1∏

m=−w
2
+1

1

(1− amqn)
.

(4.18)

Taking all the spectrally-flowed sectors into account, the full character of the vacuum

representation of the chiral algebra is then

Zws, Schur
U(N) (a, q) =

∞∏
w=1

ZN=4,short
w
2

(a, q) . (4.19)

There is no cancellation between numerators and denominators due to the sign dif-

ference.

On the other hand, to the full index of the vacuum representation, each

XN=4, short
w
2

(a, q) (defined in (4.7)) in the sum (4.11) contributes

XN=4, short
w
2

(a, q) −→ Z̃N=4,short
w
2

(a, q) =
∞∏

n=w
2

w
2∏

m=−w
2

1

(1− amqn)

·
∞∏

n=w+1
2

w−1
2∏

m=−w−1
2

(1− amqn)2 ·
∞∏

n=w
2
+1

w
2
−1∏

m=−w
2
+1

1

(1− amqn)

(4.20)

Taking the product of Z̃N=4,short
w
2

(a, q) from all the spectrally-flowed sectors, we then

have the full index of the vacuum representation of the chiral algebra:

Z̃ws, Schur
U(N) (a, q) =

∞∏
w=1

Z̃N=4,short
w
2

(a, q) . (4.21)

Now that the sign structures of the numerators and the denominators in (4.20) are

the same, there is a huge amount of cancellation, which among other things removes

the higher n terms in (4.20), and we end up with

Z̃ws, Schur
U(N) (a, q) =

∞∏
w=1

Z̃N=4,short
w
2

(a, q) =
∞∏

w=1

(1− qw)

(1− a
w
2 q

w
2 )(1− a−

w
2 q

w
2 )
. (4.22)

It is then straightforward to check that it matches the spacetime result ISchur,U(N)
full (a, q)

in (2.15):

Z̃ws, Schur
U(N) (a, q) =

∞∏
k=1

1

1− iSchurvec (ak, qk)
= ISchur,U(N)

full (a, q) . (4.23)
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4.4 Relation to ompactification-independent subsector of AdS3×S3×T 4

The Schur subsector of the worldsheet theory of AdS5×S5 should capture the world-

sheet description of AdS3×S3, and hence should be the “compactification-independent”

subsector of the worldsheet theory of the AdS3×S3×T 4 case.

In fact, the analysis is greatly facilitated by the fact that [18] has already shown

that if one also imposes the analogue of the “wedge-mode” constraint on the

AdS3×S3×T 4 case, one lands on a subsector of AdS3×S3×T 4 case that is inde-

pendent of the excitations of T 4. Then since before imposing the physical state

condition, the worldsheet Schur subsector of the AdS5×S5 worldsheet CFT has the

same field contents as the worldsheet CFT of AdS3×S3×T 4, namely 4 symplectic

bosons plus 2 complex fermions, and imposing the physical state condition cuts down

the spectrum drastically and restricts to only the compactification-independent part

of the AdS3×S3×T 4 worldsheet CFT, we conclude that the Schur subsector of the

worldsheet theory of AdS5×S5 captures an AdS3×S3 subsector of AdS5×S5.

4.5 A comparison between chiral algebra W∞ and higher-spin W∞

Before we end this section, we compare this chiral algebra with the N = 4 W∞

algebra that is the symmetry algebra of the boundary CFT of a Vasiliev higher spin

gravity. To distinguish these two N = 4 W∞ algebras, we call the former “chiral

algebra W∞” and the latter “higher spin W∞”. The higher spin W∞ algebra consists

of one field per spin for s = 2, 3, . . . ,∞, and its character is [33, eq. (2.32)]

χN=4
W∞ (a, q) = χN=4

vac (a, q) +
∞∑
h=1

XN=4, long
h,0 (a, q) , (4.24)

where χN=4
vac (a, q) is the vacuum character of the N = 4 superconformal algebra

(4.3), and the XN=4, long
h (a, q) are the N = 4 superconformal characters of the long

multiplets whose bottom components have spin 0, see (4.4).

Comparing the expansion (4.11) with (4.9) vs. (4.24) with (4.3) and (4.4), the

difference between these two W algebras is immediate. First of all, the chiral algebra

W∞ has one generating multiplet for each spin s = n
2
, where n ∈ N, whereas the

higher spin W∞ has one generating multiplet for each spin s = n. More importantly,

in the chiral algebraW∞, all the generating fields are BPS, whereas in the higher spin

W∞ algebra all but the N = 4 superconformal generators are non-BPS. Therefore,

the chiral algebra is independent of the coupling, whereas the higher spin algebra

is the symmetry (sub)algebra only at zero-coupling. Namely, although the higher

spin W∞ is a subalgebra of the dual CFT, all the symmetries generated by the long

multiplets in (4.24) (which all contain higher spin fields, even for h = 1) disappear

once one moves away from the free point. The result is that, at generic coupling,

we have only the N = 4 superconformal symmetry, which manifests itself as the

– 25 –



symmetry algebra of the dual CFT of AdS3×S3×M4, as confirmed by a computation

of the anomalous dimensions as the string coupling is turned on [34].

5 Summary and discussion

In this paper, we have derived the chiral algebra of 4D N = 4 SYM from its world-

sheet CFT. We first extracted the subsector of the worldsheet theory that captures

the Schur operators of the 4D theory. This worldsheet “Schur subsector” consists of

precisely half of the free fields of the full worldsheet CFT, namely 4 symplectic bosons

plus 2 complex fermions out of the 8 symplectic bosons plus 4 complex fermions. It

generates a very large N = 4 W∞ algebra (which we called the worldsheet Schur al-

gebra), consisting of both short and long multiplets of the 2D N = 4 superconformal

algebra.

Next, using the fact that the chiral algebra is independent of the coupling and

hence should only be generated by short multiplets of the 2D N = 4 superconfor-

mal algebra, we obtain the chiral algebra by removing all the long multiplets. The

resulting chiral algebra is an N = 4 W∞ algebra, generated by all the short N = 4

multiplets XN=4, short
h=w

2
(a, q), with h = s running through all positive integers and posi-

tive half-integers. This is consistent with the picture that at the free point, for which

the worldsheet theory is valid, the symmetry is vastly enhanced, captured by the

bigger characters z(w)(a, q). Away from the free point, most of the spectrum gets

lifted and the remaining algebra is generated by XN=4, short
h=w

2
(a, q). We have checked

that the chiral algebra agrees with the result from the SYM computation.

Finally, we have also shown that the worldsheet Schur algebra corresponds to the

compactification-independent part of AdS3×S3×M4. This is from the observation

that before imposing the physical state condition, the worldsheet Schur subsector of

the AdS5×S5 worldsheet CFT has the same field contents as the worldsheet CFT of

AdS3×S3×T 4, namely 4 symplectic bosons plus 2 complex fermions. Imposing the

physical state condition cuts down the spectrum drastically and restricts to only the

compactification-independent part of the AdS3×S3×M4 worldsheet CFT. Roughly

speaking, the Schur subsector captures an AdS3×S3 subsector of AdS5×S5.

The result of this paper thus gives a further check for the proposed worldsheet

CFT dual for 4D N = 4 SYM of [17, 18], and it also connects to the worldsheet

CFT of the free symmetric orbifold of M4. Finally, we comment that, since the

computation is done at the level of the spectrum, it is not sensitive to the origin or

the meaning of the conjectured physical state condition of [17, 18] itself.

Before we end this paper, we list some interesting problems for future research.

• The analysis of this paper can be straightforwardly generalized to the 4DN = 2

superconformal theories obtained from orbifolding 4D N = 4 SYM. Instead
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of AdS5×S5, the bulk geometry is AdS5×SE5 where SE5 are those Sasaki-

Einstein manifolds that are the tip of the Calabi-Yau cone C2/Zn × C, and
their worldsheet duals are given in [31].

• It would be interesting to study the worldsheet counterparts of the BPS sectors

with fewer supersymmetries of 4DN = 4 SYM. Even in the large-N limit, there

are interesting features such as the indices of different saddles [35, 36], SL(3,Z)
modularity [37–39], the Bethe Ansatz equations [40, 41] etc. One might try to

see whether the worldsheet theory can shed any new light on these problems.
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