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Abstract: Understanding how the thermodynamic properties of a black hole are modi-

fied when probed by D-branes is an important problem in AdS/CFT. This work focuses

on a recently proposed black hole/D3-brane system in AdS5×S5, which is dual to four-

dimensional N = 4 SYM in the presence of a two-dimensional surface defect. The Laplace

transform that extracts the asymptotic growth of states in this defect CFT naturally defines

a thermodynamic approach in the gravitational side of the duality for which charges and

entropy are real. Studying the superconformal defect index in a large-charge expansion for

all values of N , we compute the leading correction to the entropy of the combined system,

which matches precisely with its gravity counterpart.
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1 Introduction and Summary

The AdS/CFT correspondence has allowed us to understand the Bekenstein-Hawking en-

tropy for a large class of supersymmetric black holes as a semiclassical limit of the Boltzmann

entropy of supersymmetric gauge theories [1–29]. Subleading corrections beyond the semi-

classical result, which could be perturbative or logarithmic in the semi-classical expansion,

and which could come from α′ corrections, as well as from other quantum effects, have been

also computed and exactly matched across both sides of the duality, see for example [30–41].

Despite these remarkable quantitatively precise advances, not much is understood yet about

more drastic quantum gravity processes such as perturbing black holes with D-branes.

A pioneering attempt in this direction has been recently put forward in the context of

AdS5/CFT4 in [42]. In this reference the authors studied the effect of perturbing a super-
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symmetric black hole in AdS5 [43–48] with a D3-brane1 extending across the time, radial,

one compact direction in AdS5 and one compact direction in the internal space S5. In the

dual gauge theory, which is the four-dimensional SU(N) N = 4 SYM, inserting this probe

D3-brane corresponds to inserting a surface operator [49], compatible with the supercharges

used to construct the 4d superconformal index.

In the probe approximation, the authors of [42] found that the free energy of the black

hole/D3-brane system reduces to the sum of the free energy of the unperturbed black hole

solution and the Dirac-Born-Infeld on-shell action of the D3-brane in the geometry of the

unperturbed black hole solution, respectively. It may seem natural to assume that in the

very same probe approximation the entropy of the total system reduces to the sum of the

entropies of the two unperturbed components. Indeed, if one commits to this intuition then

the charges of the D3-brane are fixed in terms of the charges of the embedding black hole

solution. Unfortunately, the charges and entropy of the D3-brane fixed by this procedure

turn out to be complex.2 As also stated in [42], this result is intriguing, because the dual

microstates that one counts in the field theory do indeed have real charges, and certainly

their Boltzmann entropy is not complex.

This naive contradiction strongly suggests that another procedure must be used to define

the thermodynamic properties of the combined system. The goal of this paper is to find

such a procedure. Indeed, we propose that the entropy of the system black hole/D3-brane

is recovered by means of the natural holographic translation of the method used to count

states in the holographic dual 4d-2d field theory system: the Laplace transform of the defect

superconformal index.3

For the case of the superconformal index without the insertion of the surface defect, the

Laplace transform – in the leading order in the semiclassical large charge approximation –

picks up two leading complex conjugated saddle points whose contributions add up to give a

real entropy [18, 50, 51]. Similarly, as we show here, we find this also to be the case when

the defect is introduced in the system. In the gravitational picture, these leading saddle

points correspond to two complex geometries that serve as saddle points of the Euclidean

gravitational path integral. Borrowing the field-theory procedure to the holographic dual

setup implicitly defines how to compute the corrections to the entropy that the D3-brane

induces when probing the black hole.

Using a Cardy-like expansion we confirm the results of [42] for the free energy of the 4d-

1There are two non-trivial properties that need a closer analysis regarding how to preserve supersymmetry

when inserting the D3-brane: The first is to check that it is possible for the D3-brane to be supersymmetric

and the second is whether or not this supersymmetry is compatible with the one preserved by the black hole.

Some indications that it is possible for this D3-brane to be supersymmetric have been presented in [42]. Here

we assume this is true and leave a more rigorous check for future work.
2In contradistinction to the unperturbed system, in the presence of the D3-brane there is no non-linear

constraint among real charges for which the extremal value of the corresponding entropy function becomes

real and thus identifiable with the asymptotic value of a Boltzmann entropy.
3This Laplace transforms only depends on the charges of the combined system and not on the charges of

its individual components.
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2d field theory, and extend them, both to finite N and beyond the probe approximation. We

find that at leading order in the Cardy-like expansion, inserting the defect does not change

the shape of the saddle point governing the growth of the unperturbed 4d superconformal

index. Surprisingly, this tells us that the naive probe approximation is sufficiently precise to

exactly describe the 4d-2d system at large charges. In the string-theory side of the duality,

this result predicts a fully backreacted answer for the entropy of the perturbed black hole at

leading order in the Cardy-like expansion. It would be very interesting to understand whether

the 1
N corrections induced by the presence of the D3-brane can be understood, geometrically,

as a change in the area of the horizon. In order to answer this question we would need to

understand how the D3-brane backreacts the geometry in the bulk. We leave that problem

for future work.

The paper is organized as follows. Section 2 summarizes the supergravity theory, and

other useful background information. We motivate and present our prescription to study

the thermodynamics of the combined black hole/D3-brane system and perform the Laplace

transform to extract the microcanonical entropy. In Section 3 we study the field theory dual

description and we revisit the 4d computation in the absence of defect and recall how to

evaluate the asymptotic growth of the index in that case. In Section 4 we compute the defect

index. We analyze the 2d index of the surface defect at large charges by implementing a sys-

tematic Cardy-like expansion. In Section 5 we conclude with brief remarks and questions for

the future. Appendix A reviews the thermodynamic procedure used in [42] while Appendix B

summarizes useful mathematical identities.

2 The gravity theory

In this section, we summarize the five-dimensional gauged black hole solution of [44] and its

thermodynamic properties. After reviewing its supersymmetric limit we carry on to study

the effects of adding the probe D3-brane. Then we proceed to study the thermodynamics of

the combined system.

2.1 The black hole solution

We consider five-dimensional minimal gauged supergravity whose action takes the form

S =
1

16πG5

∫
d5x

[
(R+ 12g2) ⋆ 1− 2

3g2
F ∧ ⋆F +

8

27g3
F ∧ F ∧A

]
, (2.1)

where F = dA and g is the inverse length of AdS. The five-dimensional coordinates describing

the solution are {t, r, θ, ϕ, ψ} where 0 ≤ ϕ, ψ ≤ 2π and 0 ≤ θ ≤ π
2 . The equations of motion

can be derived from (2.1)

0 = Rµν −
1

2
gµνR− 6g2gµν −

4

3g2

(
1

2
F 2
µν −

1

8
gµνF

2

)
, 0 = d ⋆ F +

2

3g
F ∧ F. (2.2)
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We review the known nonextremal nonsupersymmetric black hole solution with one electric

charge and two rotations as was studied in [44]. The solution of the metric and gauge field

are given by

ds2AdS5 =−
∆θ

[(
1 + g2r2

)
ρ2dt+ 2qν

]
dt

ΞaΞbρ2
+

2qνω

ρ2
+
f

ρ4

(
∆θdt

ΞaΞb
− ω

)2

+
ρ2dr2

∆r
+
ρ2dθ2

∆θ

+
r2 + a2

Ξa
sin2 θdϕ2 +

r2 + b2

Ξb
cos2 θdψ2,

A =
3q

2ρ2

(
∆θdt

ΞaΞb
− ω

)
+ α5dt,

(2.3)

where we have added a pure gauge term α5dt with α5 being a constant. The remaining

functions in the metric and 1-form are

ν = b sin2 θdϕ+ a cos2 θdψ, ∆r = g2
(
r2 + a2

) (
r2 + b2

)(
1 +

1

g2r2

)
+
q2 + 2abq

r2
− 2m,

ω = a sin2 θ
dϕ

Ξa
+ b cos2 θ

dψ

Ξb
, ∆θ = 1− a2g2 cos2 θ − b2g2 sin2 θ,

ρ2 = r2 + a2 cos2 θ + b2 sin2 θ, Ξa = 1− a2g2,

f = 2mρ2 − q2 + 2abqg2ρ2, Ξb = 1− b2g2.

(2.4)

For the general non-extremal solution with no supersymmetry, there are four independent

parameters that characterize the black hole

{a, b,m, q}. (2.5)

Moreover, we may sometimes find it convenient to swap one of the parameters, namely, q

with the horizon radius, i.e.,

q = −ab± r+

√
−a2

(
b2g2 + g2r2+ + 1

)
− b2

(
g2r2+ + 1

)
− g2r4+ + 2m− r2+. (2.6)

The electric charges and angular momentum can be computed via the Komar integrals

QBH =
1

16πG5

∫
S3

(
4

3g2

)
⋆ F − 8

9g3
F ∧A =

1

G5

πq

2gΞaΞb
, (2.7)

J1,BH =
1

16πG

∫
S3

⋆dξϕ =
1

G5

π
[
2am+ qb

(
1 + a2g2

)]
4Ξ2

aΞb
, (2.8)

J2,BH =
1

16πG

∫
S3

⋆dξψ =
1

G5

π
[
2bm+ qa

(
1 + b2g2

)]
4Ξ2

bΞa
, (2.9)

where ξϕ and ξψ are dual to Killing vector −∂ϕ and −∂ψ respectively such that

ξϕ = −gµϕdxµ, ξψ = −gµψdxµ. (2.10)
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The charges are evaluated at the asymptotic boundary and for this reason, the Chern Simons

term in the integral for the electric charge does not contribute to the charge. In fact there

are different notions of charge and we refer the reader to [52] for more details. The energy

can be found from the AMD formalism

EBH =
1

G5

mπ (2Ξa + 2Ξb − ΞaΞb) + 2πqabg2 (Ξa + Ξb)

4Ξ2
aΞ

2
b

. (2.11)

The Hawking temperature is derived by requiring appropriate periodic identifications in Eu-

clidean time, which leads us to

TBH = β−1
BH =

r4+
[(
1 + g2

(
2r2+ + a2 + b2

)]
− (ab+ q)2

2πr+
[(
r2+ + a2

) (
r2+ + b2

)
+ abq

] . (2.12)

The angular velocities Ω1 and Ω2 are found to be

Ω1,BH =
a
(
r2+ + b2

) (
1 + g2r2+

)
+ bq(

r2+ + a2
) (
r2+ + b2

)
+ abq

, Ω2,BH =
b
(
r2+ + a2

) (
1 + g2r2+

)
+ aq(

r2+ + a2
) (
r2+ + b2

)
+ abq

. (2.13)

We can now define the null Killing vector field

χµ = ∂t +Ω1∂ϕ +Ω2∂ψ, (2.14)

and the electrostatic potential is

ΦBH = χµAµ|r→r+
− χµAµ|r→r+

=
3gqr2+

2
((
r2+ + a2

) (
r2+ + b2

)
+ abq

) . (2.15)

The entropy can be computed via the area of the horizon

SBH =
1

G5

π2
[(
r2+ + a2

) (
r2+ + b2

)
+ abq

]
2ΞaΞbr+

. (2.16)

Once we have computed these thermodynamic quantities, we may deduce the on-shell action

from the quantum statistical relation

IBH = βBHEBH − SBH − βBHΩ1,BHJ1,BH − βBHΩ2,BHJ2,BH − βBHΦBHQBH

=
πβ

4G5ΞaΞb

(
m− g2

(
a2 + r2+

) (
b2 + r2+

)
−

q2r2+(
a2 + r2+

) (
b2 + r2+

)
+ abq

)
.

(2.17)

2.2 The supersymmetric limit

We are interested in solutions that admit a Killing spinor, i.e., preserveN = 2 supersymmetry.

The BPS bound

EBH = gJ1,BH + gJ2,BH +
3

2
gQBH , (2.18)
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is saturated for

q =
m

1 + (a+ b)g
. (2.19)

This can be found by imposing (2.7), (2.8), (2.9) and (2.11) into (2.18). Keeping in mind

(2.6), we find that the parameter q simplifies to the following

q = −ab+ agr2+ + bgr2+ + r2+ ± ir+
(
abg + a+ b− gr2+

)
= (a− n0ir+)(b− n0ir+)(−1 + n0igr+).

(2.20)

From now on, we denote n0 = ±1 for the upper/lower sign in (2.20) respectively. This choice

of sign can be interpreted as a choice in one of two branches that dominate the path integral

and denote a growth of states. We shall come back to this point in great detail in Section 2.4.

In the supersymmetric limit, the temperature, angular velocities and electrostatic potential

in (2.12), (2.13) and (2.15) are complex

TBH =
g
(
r2+ − r2∗

) (
2r+(ag + bg + 1) + in0g

(
r2∗ − 3r2+

))
2π (a− in0r+) (b− in0r+) (gr2∗ + in0r+)

, (2.21)

Ω1,BH =
g
(
ar+ − in0r

2
∗
)
(1− in0gr+)

(a− in0r+) (r+ − in0gr2∗)
, (2.22)

Ω2,BH =
g
(
br+ − in0r

2
∗
)
(1− in0gr+)

(b− in0r+) (r+ − in0gr2∗)
, (2.23)

ΦBH =
3gr+ (1− in0gr+)

2r+ − 2in0gr2∗
, (2.24)

and we can equivalently find a linear constraint among the angular velocities and electrostatic

potentials of the black hole

βBH (g +Ω1,BH +Ω2,BH − 2ΦBH) = 2πin0. (2.25)

Once (2.18) is imposed, we find that if we want to preserve the reality of the parameters a, b, q

and m, we find that

r⋆ =

√
a+ b+ abg

g
, (2.26)

and this is the exact value where the discriminant of r2∆r is zero, i.e., the inner and outer

horizons coincide and we land in the extremal regime of the solution. This analysis leads us

to conclude that supersymmetric Lorentzian solutions must be extremal if we preserve the

reality of roots of ∆r to avoid naked singularities.
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Imposing both these conditions (2.19) and (2.26) leads to the following thermodynamic

relations

Q⋆BH =− 1

G5

π(a+ b)

2g(1− ag)(1− bg)
,

J⋆1,BH =
1

G5

π(a+ b)(2a+ b+ abg)

4g(1− ag)2(1− bg)
,

J⋆2,BH =
1

G5

π(a+ b)(a+ 2b+ abg)

4g(1− ag)(1− bg)2
,

E⋆BH =
1

G5

π(a+ b)

4g(1− ag)2(1− bg)2
((1− ag)(1− bg) + (1 + ag)(1 + bg)(2− ag − bg)),

S⋆BH =
1

G5

π2(a+ b)
√
a+ b+ abg

2g3/2(1− ag)(1− bg)
,

(2.27)

which are now all real-valued expressions. We shall call the BPS limit the limit of the solution

where both extremal and supersymmetric conditions are imposed and we denote this by ⋆.

The family of solutions has now been reduced to two free parameters, a and b. Revisiting the

quantum statistical relation, we introduce the variables

ω1,BH =
βBH

2πi
(Ω1,BH − Ω⋆1,BH), ω2,BH =

βBH

2πi
(Ω2,BH − Ω⋆2,BH),

3

2
φBH =

βBH

2πi
(ΦBH − Φ⋆BH),

(2.28)

with

Ω⋆1,BH = g, Ω⋆2,BH = g, Φ⋆BH =
3g

2
. (2.29)

Note that the BPS values of the chemical potentials are independent of which saddle we

consider. Imposing these new variables into (2.25), we find the new linear constraint among

the chemical potentials takes the form

ω1,BH + ω2,BH − 3φBH = n0. (2.30)

With some manipulation, as the supersymmetric limit must be taken carefully, the quantum

statistical relation can now be rewritten as a statement independent of the temperature

IBH, SUSY = −SBH − ω1,BHJ1,BH − ω2,BHJ2,BH − φBHQBH =
π2i

2g3G5

φ3
BH

ω1,BHω2,BH
, (2.31)

and via the holorgraphic dictionary, we arrive at the following on-shell action

IBH, SUSY = πiN2 φ3
BH

ω1,BHω2,BH
. (2.32)
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2.3 The combined system: black hole and probe D3-brane

Next we move on to introduce the methodology we follow to compute the O(N) corrections to

the entropy induced by the probe D3-brane. It is important to emphasize that even when α′

corrections are included, the entropy of the supersymmetric black hole receives corrections

of O(N0) [37–40] and so for the purposes of this paper, they can be ignored.

Assuming unequal black hole angular momentum and equal black hole electric

charges, [42] found that the supersymmetric on-shell action of the D3-brane is

ID3, SUSY = −2πiN
φ̃2

ω̃1
. (2.33)

This result comes from regularizing the Dirac-Born-Infeld and the Wess-Zumino contribu-

tions [42].

The wide tilde denotes the variables in the perturbed system and not just of the unper-

turbed black hole, e.g., φ̃ ̸= φBH .

To understand physically the dependence on the chemical potentials in the on-shell ac-

tion, let us review how the brane is extended into the bulk. On the AdS5 coordinates, the

coordinates θ and ψ are fixed

AdS5 : (t, r, θ = θ0, ϕ, ψ = ψ0), (2.34)

while on the S5, the D3-brane only wraps around one of the coordinates while the others

remain fixed

S5 : (ϕ1, ϕ2 = ϕ2,0, ϕ3 = ϕ3,0, θ = θ0, ψ = ψ0). (2.35)

As the angular momentum of the system comes from the symmetries associated to the Killing

vectors ∂ϕ and ∂ψ, only one is set to be free which means that the on-shell action may only

depend on the chemical potential conjugate to the angular momentum associated to ∂ϕ. On

the other hand, the electric charges come from the S5, in particular, from ϕi and we expect

that the on-shell action depends on the two potentials associated to the electric charges from

the fixed angles ϕ2 and ϕ3.

Although we have studied the black hole at equal electric charges and potentials, once

the D3-brane is introduced into the system, the potentials acquire a subleading correction in

the 1/N -expansion. Denoting the perturbed potentils as φ̃1, φ̃2 and φ̃3 we expect the on-shell

actions for the fully refined system to be

Ĩ = IBH, SUSY + ID3, SUSY, (2.36)

where

IBH, SUSY = πiN2 φ̃1φ̃2φ̃3

ω̃1ω̃2
, ID3, SUSY = −2πiN

φ̃2φ̃3

ω̃1
. (2.37)
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This expectation is reassured by microscopic computations of the fully refined 4d supercon-

formal index [3–5] and our calculation of the 2d index in Section 4.1. To prove (2.37), one

would need to study the BPS limit of the fully refined AdS5 black hole solution of [47].

The quantum statistical relation of the perturbed system is

Ĩ = −S̃ −
∑2

k=1ω̃kJ̃k −
∑3

I=1φ̃IQ̃I . (2.38)

2.4 The extremization

The entropy of the system can be found by extremizing the entropy function

S̃ = −Ĩ − 2πi

3∑
I=1

φ̃IQ̃I − 2πi

2∑
k=1

ω̃kJ̃k + 2πiΛ̃

(
3∑
I=1

φ̃I −
2∑

k=1

ω̃k + n0

)
. (2.39)

We impose the linear constraint among the chemical potentials via the Lagrange muliplier

Λ.4

The extremization of (2.39) leads to the following constraints

0 = 2πi(Λ̃− Q̃I)− iπN2 φ̃1φ̃2φ̃3

ω̃1ω̃2φ̃I
+ 2iπN

φ̃2φ̃3

ω̃1(φ2
I φ̃2 + φ3

I φ̃3)
, I = 1, 2, 3, (2.40)

0 = −2πi(Λ̃ + J̃k) + iπN2 φ̃1φ̃2φ̃3

ω̃1ω̃2ω̃k
− 2iπN

φ̃2φ̃3

δ1k(ω̃1)2
, k = 1, 2 . (2.41)

Solving for the charges and substituting back into (2.39) we find the extremal value of the

entropy function

S̃ = 2πin0Λ̃ , (2.42)

which has the same structure as the result obtained in the absence of the probe D3-brane,

although the value of Λ̃ as a function of charges changes for the perturbed system.

In order to identify (2.42) with the entropy, which is a real-valued quantity, one may

constrain the charges of the system to the locus Im(S̃) = 0. In the absence of the D3-brane,

this is the well-known non-linear constraint among charges that happens to be equivalent to

the vanishing of the Bekenstein-Hawking temperature. In the presence of the D3-brane and

for real charges, there is no solution to the locus Im(S̃) = 0 . As explained in the introduction,

the field-theoretic analysis will provide the solution to this puzzle: at large charges of order N2

for large N the entropy of the system approaches, asymptotically, to the real part of entropy

functional S̃ of the dominating saddle points,

Entropy ∼ Re(S̃) , (2.43)

without the need of imposing further constraints on the charge locus. This result comes from

the addition of contributions coming from two complex conjugated saddles, each of them with

4We note that in the gauge theory side the two choices n0 = ±1 correspond to two different saddle points

of a multi-dimensional Laplace transform used to exchange from canonical to microcanonical ensemble as well

as to impose the gauge-singlet constraint. We will further elaborate on this in Section 4.
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its own on-shell entropy functional. This addition yields a real-valued asymptotic entropy.

Let us elaborate. With four of the extremization equations in (2.40) and (2.41), we solve for

φ̃1, φ̃2, φ̃3, and ω̃2

φ̃1 =
2ω̃1(J̃1N + Λ̃(Λ̃ +N − Q̃3) + Q̃2(Q̃3 − Λ̃))2

N2(J̃2 + Λ̃)(Q̃2 − Λ̃)(Q̃3 − Λ̃)
,

φ̃2 = − ω̃1(J̃1 + Λ̃)

Q̃2 − Λ̃
,

φ̃3 = − ω̃1(J̃1 + Λ̃)

Q̃3 − Λ̃
,

ω̃2 =
ω̃1(J̃1 + Λ̃)(J̃1N + Λ̃(Λ̃ +N − Q̃3) + Q̃2(Q̃3 − Λ̃))

(J̃2 + Λ̃)(Λ̃− Q̃2)(Λ̃− Q̃3)
.

(2.44)

Note that the dependence on ω̃1 is trivial. Imposing these relations into the remaining ex-

tremization equation in (2.40) and (2.41) leads to the following equation for Λ̃

0 = 2(Λ̃− Q̃1)(Λ̃− Q̃2)(Λ̃− Q̃3)−N2(Λ̃ + J̃1)(Λ̃ + J̃2) + 2N(Λ̃ + J̃1)(Λ̃− Q̃1). (2.45)

From (2.45), we can see that the first two terms have the same form as the cubic equation

for Λ for the black hole in absence of the D3-brane, but now the charges correspond to the

combined system. The last term in (2.45) is of order O(N) and can be treated perturbatively.

To keep track of the leading terms in N , we consider a rescaling of the form

Λ̃ = N2Λ, J̃k = N2Jk,BH+D3, Q̃I = N2QI,BH+D3. (2.46)

To ease presentation we remove the subscript “BH+D3” in the remaining of this section.

Then, we find

0 = 2(Λ−Q1)(Λ−Q2)(Λ−Q3)− (Λ + J1)(Λ + J2) +
2

N
(Λ + J1)(Λ−Q1). (2.47)

Moreover, the first two terms, with the probe D3-brane turned off, is the usual cubic equation

for Λ that appears when only considering the black hole [3–5]. We analyze the cubic equation

in a perturbative expansion in N by first considering the general form of the cubic polynomial

P (aℓ,Λ) ≡ a0 + a1Λ + a2Λ
2 + a3Λ

3 = (Λ− Λ+)(Λ− Λ0)(Λ− Λ−) = 0 , a0, 1, 2, 3 ∈ R ,
(2.48)

where Λ± and Λ0 are the three roots of the cubic equation.

With the combined system, each coefficient in the polynomial as well as the Lagrange

multiplier may also receive corrections

aℓ = a
(0)
ℓ +

1

N
a
(1)
ℓ , Λ = Λ(0) +

1

N
δΛ(1), ℓ = 0, 1, 2, 3. (2.49)
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The given values of a
(0)
ℓ and a

(1)
ℓ are

a
(0)
0 = −2Q1Q2Q3 − J1J2, a

(1)
0 = 2J1Q1, (2.50a)

a
(0)
1 = 2(Q1Q2,+Q2Q3 +Q1Q3)−

∑2
k=1 Jk, a

(1)
1 = 2(Q1 − J1), (2.50b)

a
(0)
2 = −2

∑3
I=1QI − 1, a

(1)
2 = −2, (2.50c)

a
(0)
3 = 2, a

(1)
3 = 0. (2.50d)

We can expect that the roots of (2.48) are shifted by a subleading correction in N

3∑
l=0

(
a
(0)
l +

1

N
a
(1)
l

)(
Λ(0) +

1

N
Λ(1)

)l
= 0. (2.51)

Expanding for large N , we find

P (aℓ,Λ) = P (a
(0)
ℓ ,Λ(0)) +

1

N

3∑
ℓ=0

∂P (a
(0)
ℓ ,Λ(0))

∂aℓ
a
(1)
ℓ +

1

N

∂P (a
(0)
ℓ ,Λ(0))

∂Λ
Λ(1) +O(N−2).

(2.52)

Note that the expansion is only valid up to O(N−1) as higher corrections must also be

supplemented, for example, by higher derivative corrections from the black hole. Evaluating

at the roots Λ
(0)
k=±,0, the zeroth order term vanishes, as expected, while the subleading terms

are in general nonzero

3∑
ℓ=0

∂P (a
(0)
ℓ ,Λ

(0)
k )

∂aℓ
a
(1)
ℓ = a

(1)
0 + a

(1)
1 Λ

(0)
k + a

(1)
2 (Λ

(0)
k )2 + a

(1)
3 (Λ

(0)
k )3, (2.53a)

∂P (a
(0)
ℓ ,Λ

(0)
k )

∂Λ
= a

(0)
1 + 2a

(0)
2 Λ

(0)
k + 3a

(0)
3 (Λ

(0)
k )2

=
1

2

∑
m ̸=n̸=k

(Λ
(0)
k − Λ(0)

m )(Λ
(0)
k − Λ(0)

n ).
(2.53b)

Using (2.53a) and (2.53b), we arrive at an expression for the subleading correction to the

roots of the cubic equation

Λ
(1)
k =

2(Λ
(0)
k +Q1)(Λ

(0)
k + J1)

1
2

∑
m ̸=n̸=k(Λ

(0)
k − Λ

(0)
m )(Λ

(0)
k − Λ

(0)
n )

. (2.54)

This solution is only valid when there are three distinct roots. In the case of degenerate roots,

the corrections are modified and the analysis must be done carefully. Since the coefficients of

the cubic equation for Λ are real, we expect two cases for the types of roots we may encounter:

A) one real root and two complex conjugated roots or B) all real roots.5

5The regime where the roots are all real are defined by a constraint on the discriminant of (2.48): disc =

−4a3a
3
1 + a2

2a
2
1 + 18a0a2a3a1 − a0

(
4a3

2 + 27a0a
2
3

)
> 0.
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Figure 1: Here we show the complex Λ plane with several values of two different sets of roots

of (2.45) for N = 20, Q1 = Q2 = Q3 = Q and J1 = J2 = J satisfying the non-linear constraint

that ensures a real entropy in the pure black hole case. The first set of roots corresponds to the

black hole without D3-brane, whereas the second corresponds to the combined system. The

nonlinear constraint no longer remedies the two complex roots of Λ to be purely imaginary

when a probe D3-brane is introduced in the system.

We shall focus on case A first and for simplicity, we choose a regime of charges, where all

angular momenta are equal denoted by J and likewise all electric charges are equal denoted

by Q. We now revisit the problem of the nonlinear constraint

(6Q+ 1)
(
3Q2 − J

)
=
(
2Q3 + J2

)
, (2.55)

in the case of no probe brane. Then we find that the roots Λk are given by

Λ
(0)
± = ±i

√
3Q2 +

1

2

(
−6Q+

√
(1− 4Q)3 + 1

)
, Q <

2

9
, (2.56a)

Λ
(0)
0 =

1

2
− 3Q , (2.56b)

where Λ
(0)
± are complex conjugated to each other and Λ

(0)
0 is real. We plot the functions of

these roots on the left hand side of Figure 1. With the probe brane extended in the bulk,

we impose yet again the nonlinear constraint (2.55) with the charges promoted to the total

charge of the combined system. We then see that the two purely imaginary roots pick up a

real part and therefore get shifted while the real root also takes a smaller value, as shown in

the right plot of Figure 1.

The key observation here is that in contradistinction to the unperturbed black holes, there

is no generalization of the nonlinear constraint enforcing the reality of the entropy when the

D3-brane is introduced. Instead, the reality of the entropy comes from the addition of the

two leading gravitational saddles corresponding to the constraints n0 = 1 and n0 = −1.
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Therefore, in the case of not imposing (2.55), we find two of the roots take the general

form

Λ± = Λx ± iΛy, (2.57)

where Λx and Λy are real and can be found by taking the real and imaginary parts of (2.54).

The entropy of the system can be found by considering the sum of the two gravitational

saddles, where the first saddle corresponds to the constraint n0 = 1 for the choice Λ− and

the second saddle corresponds to n0 = −1 for the choice Λ+

eS ∼ e2πiΛ− + e−2πiΛ+ ∼ e2πi(Λx−iΛy) + e−2π(Λx+iΛy) = 2e2πΛy cos(2πΛx) ∼ e2πΛy , (2.58)

where

Λy =
γ
(√

3ξ
(
3δ2(γ − 3) + γ − 1

)
+ 9δ3(3γ − 1)

)
6
(
ξ (54δ4 + 18δ2 + 1) + 6

√
3 (27δ2 + 2) δ3

) (2.59)

and

γ3 = 6δ2
(√

3ξδ + 9δ2 + 3
)
+ 1, δ2 = J +Q, ξ2 = 27J + 27Q+ 2. (2.60)

We stress that this result is not assuming a non-linear constraint amongst charges and we

have assumed equal charges for simplicity.

Finally, we make a brief comment about scenario B. In this case, there is no predicted

growth of states as the extremized value of the entropy function is purely imaginary. It would

be interesting to study what happens to the growth of BPS states in this regime of charges

realized in the field theory dual.

3 The 4d superconformal index: A brief review

In this section we focus on the undeformed 4d superconformal index and its integral repre-

sentation. We also review the Laplace transform procedure that extracts state-degeneracies

at large charges and finite values N .

The superconformal index counts (with sign) BPS states that can not combine to form

long representations of the superconformal algebra. For N = 1 theories on S1 × S3, the

superconformal index was defined in [53, 54] and takes the form

I4d(ω; ξ) = TrH(S1×S3)

[
(−1)F e−β{Q,Q

†}e2πiξaQae2πiσ(J1+
r
2
)e2πiτ(J2+

r
2
)
]
, (3.1)

where Qa are the flavor charges with chemical potentials given by ξa that will be later traded

by ∆a ≡ ξa+
1
2ra(σ+ τ), where ra is the R-charge. The combination J1,2 +

r
2 , where J1,2 are

the angular momenta on S3 and r is the R-charge, commute with the supercharge Q. The

chemical potentials σ and τ are associated to J1 +
r
2 and J2 +

r
2 , respectively.
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In particular, the superconformal index I4d(σ, τ ; ∆) counts 1
16−BPS states for N = 4

SYM theory and we shall focus on this theory from now on. The matter content is given by

the three chiral fields Φ1,2,3 appearing in the superpotential

W = Tr (Φ1 [Φ2,Φ3]) , (3.2)

with the associated chemical potentials being ∆1,2,3. For an SU(N) gauge group, I4d(σ, τ ; ∆)

can be written as a multidimensional contour integral over the gauge holonomies uij ≡ ui−uj
that imposes the gauge singlet constraint

I4d (σ, τ ; ∆) =

∫
SU(N)

[DU ]Z4d(u, σ, τ ; ∆) (3.3)

= κN

∫ 1

0

N−1∏
k=1

duk

∏3
a=1

∏
i ̸=j Γ̃ (uij +∆a;σ, τ)∏
i ̸=j Γ̃ (uij ;σ, τ)

,

where

κN =

(
e2πiσ; e2πiσ

)N−1

∞
(
e2πiτ ; e2πiτ

)N−1

∞
(N − 1)!

3∏
a=1

(
Γ̃(∆a;σ, τ)

)N−1
. (3.4)

We have used a modified version of the elliptic gamma function Γ̃(u; τ, σ), as described in

Appendix B. The evaluation of (3.3) has been the subject of several works [3–13, 15–22, 25,

26, 28, 29, 34, 55, 56]. The final outcome is of the following form

I4d(σ, τ ; ∆) = N exp

[
−(N2 − 1)

iπ

στ

3∏
I=1

(
{∆I}ω − 1− n0

2

)]
, (3.5)

where we set ω = s−1
1 σ = s−1

2 τ for some coprime integers s1, s2 (a more generic relation ).

We have ignored exponentially suppressed corrections in 1/|ω|. The function {·}ω is defined

in (B.5) and the value of n0 = ±1 indicates the domain of chemical potentials

Im

(
− 1

ω

)
> Im

(
∆

ω

)
> 0, n0 = 1, (3.6a)

Im

(
− 1

ω

)
< Im

(
∆

ω

)
< 0, n0 = −1. (3.6b)

Moreover, the chemical potentials satisfy the constraint

3∑
I=1

{∆I}ω = σ + τ +
3− n0

2
. (3.7)

In case of real chemical potentials with |∆I | < 1, for I = 1, 2, 3, the leading contribution

obtained in the large N limit of (3.5) gives

I4d(σ, τ ; ∆) = N exp

[
−πi(N

2 − 1)

στ
∆1∆2∆3

]
, (3.8)
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10−1

ωω − 1 ω + 1

∆+

∆−

Figure 2: The Figure shows the complex plane of chemical potentials for a generic ∆ where

the region corresponding to n0 = 1 (3.6a) is shown in gray and the region specified by n0 = −1

(3.6b) is shown in light blue. The thick blue arrows running over the interval Re(∆) ∈
(−1; 1) represent the integration contour for ∆I . With dashed curves we schematically show

a deformation of the initial contour such that it passes through the critical values of chemical

potentials ∆±.

where the linear constraint (3.7) simplifies to

3∑
I=1

∆I − τ − σ = −n0. (3.9)

As we see, the 4d index crucially depends on the domain of chemical potentials, i.e., the value

of n0.

3.1 Extracting degeneracies: changing ensemble

Now we would like to extract the degeneracies of the 1
16 -BPS states counted by the supercon-

formal index, see for example [18, 50, 51]. This means that we have to change (3.5) from the

grand canonical ensemble — with fixed chemical potentials – to the microcanonical ensemble.

To do so, we are instructed to perform the following Laplace transformation

d(J ;Q) =

∫
d∆dτdσe− log I4d−2πi

∑3
I=1 ∆IQI−2πi(σJ1+τJ2)+2πiΛ(

∑3
I=1 ∆I−τ−σ+n0) . (3.10)

This integration can be approximately solved in the large N limit or in the Cardy-like limit

(|τ | , |σ| ≪ 1)6 using the saddle point approach. We then must find the extrema of the

exponent and sum over the saddle points that dominate. Let us consider a family of critical

points {∆n0 , ωn0}, as shown schematically in Figure 2, such that the effective action has the

same real part when evaluated at these points. In other words, both saddles are equally

leading in the saddle point approximation which then gives us

d(J ; Q) ≈
∑
n0=±1

(
e− log I4d−2πi

∑3
I=1 ∆IQI−2πi(σJ1+τJ2)+2πiΛ(

∑3
I=1 ∆I−τ−σ+n0)

) ∣∣∣
∆n0

. (3.11)

6See [6–11, 57] for extensive work on the Cardy-like limit of the superconformal index.
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Note that here we identify the critical points using only ∆n0 because the constraint (3.9)

already determines the critical values of ωn0 . The extremization leads us to the following

relations

∂ log I4d
∂∆I

= 2πi(Λ−QI), I = 1, · · · 3 , (3.12a)

∂ log I4d
∂σ

= 2πi(J1 + Λ), (3.12b)

∂ log I4d
∂τ

= 2πi(J2 + Λ), (3.12c)

under the constraint (3.9). This implies

2

3∏
I=1

(QI − Λ) = N2(J1 + Λ)(J2 + Λ). (3.13)

The relation (3.13) have precisely the same structure as (2.45), without the last term that

accounts for the D3-brane contributions and assuming the charges are the ones of the 4d
1
16 -BPS states counted by the superconformal index. The degeneracy of states is then given

by

d(J ; Q) ∼
∑
n0=±1

∑
k=±,0

e−2πin0Λk . (3.14)

Generically, if we require a growth of states, then (3.13) must have two complex con-

jugated solutions for Λ, which we have called Λ± in (2.57), that upon application of (3.14)

generate a dominant saddle for each value of n0. These dominant saddles correspond to

the roots satisfying Re(2πin0Λ±) > 0. If we appropriately label Λ± such that the subindex

corresponds to the sign of its imaginary part, we have

d(J ; Q) ∼ e−2πiΛ+ + e2πiΛ− = 2e2πΛy cos (2πΛx) ∼ e2πΛy . (3.15)

If the imaginary part of Λ± vanishes, then we see that the microcanonical expression for the

index is a pure oscillatory term that does not probe the growth of states compatible with

black hole entropy.

4 The defect superconformal index

The computation of the defect index requires the consistent embedding of the 2d N = (2, 2)

superconformal algebra into the 4d N = 4 superconformal algebra. This has been done in

detail for N = 2 [58] as well as for N = 4 [42]. In these works, the fugacities used in the 2d

description are related to those in 4d. For this reason, we write the full defect index purely

in terms of the 4d chemical potentials.

The defect worldvolume M2d extends along the S1 and wraps a circle inside the S3. The

surface operator with support on this M2d will be such that it commutes with the supercharge
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selected to construct the 4d superconformal index, and this is ensured in practice by appro-

priately choosing the orientation of the surface operator during the embedding procedure.

The defect index is then given by

ID =

∫
SU(N)

[DU ]Z4d(u, σ, τ ; ∆)Z2d(u, σ, τ ; ∆) . (4.1)

It has been proposed that (4.1) provides the microscopic definition of a dual gravity system

which includes black holes interacting with a probe D3-brane [42]. We revisit this matter

carefully in this section.

It is possible to work in the approximation where the saddles of (3.3) are not affected by

the insertion of Z2d in (4.1). This regime corresponds holographically to the probe limit of

the black hole/D3-brane system. In this probe limit we can write

ID =
∑

û∈4d−saddles

Z4d(û, σ, τ ; ∆)Z2d(û, σ, τ ; ∆) + · · · , (4.2)

where the · · · correspond to the subleading saddles. Instead of directly implementing the

probe limit (4.2), we first study the 2d index in the context of a systematic Cardy-like ex-

pansion along the lines of [34, 59]. This enables us to have better control over the effect

of backreaction coming from the 2d defect on the 4d index. If we denote the fundamental

domains of chemical potentials ∆(n0), n0 = ±1 then we will see in Subsection 4.1 that for

n0 = 1, the integrand Z2d in (4.1) becomes independent of the holonomies up to corrections

exponentially suppressed in 1/|ω|

I(1)
D = Z2d(σ, τ ; ∆

(1))
∑

û∈4d−saddles

Z4d(û, σ, τ ; ∆
(1)) . (4.3)

Moreover, for the other domain of chemical potentials labelled by n0 = −1, the leading order

in the Cardy-like limit is given by

I(−1)
D

∣∣∣
ω→0

= Z2d(σ, τ ; ∆
(−1))

∑
û∈4d−saddles

Z4d(û, σ, τ ; ∆
(−1)) . (4.4)

We now turn to study the 2d index in the systematic Cardy-like expansion.

4.1 The Cardy-like expansion of the 2d index

Following [42, 58], we start with the 2d index given as

Z2d =
N∑
i=1

exp

[∑
j ̸=i

log
θ0(−uij −∆2 + σ; σ)

θ0(−uij +∆1 − τ ; σ)
+ log

θ0(uij −∆1 −∆2 + τ + σ; σ)

θ0(uij ; σ)

]
. (4.5)
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Now using the elliptic theta functions in (B.2a) and (B.2b), the 2d index can be recast in the

form

Z2d =
N∑
i=1

exp

∑
j ̸=i

log

(
e2πi(−uij−∆2+σ); e2πiσ

)
∞
(
e2πi(uij+∆2); e2πiσ

)
∞(

e2πi(−uij+∆1−τ); e2πiσ
)
∞
(
e2πi(uij−∆1+τ+σ); e2πiσ

)
∞

+
∑
j ̸=i

log

(
e2πi(uij−∆1−∆2+τ+σ); e2πiσ

)
∞
(
e2πi(−uij+∆1+∆2+τ); e2πiσ

)
∞(

e2πi(uij); e2πiσ
)
∞
(
e2πi(σ−uij); e2πiσ

)
∞

 .
(4.6)

We consider uij = (xijσ + yijτ) and τ = s1
s2
σ such that uij = σ(xij +

s1
s2
yij) ≡ σzij . These

change of variables allows us to implement the systematic Cardy-like expansion.7 Upon using

the asymptotic expansion (B.3), we find

Z2d =
N∑
i=1

exp

 1

2πiσ

∑
j ̸=i

∞∑
r=0

(−1)r
(2πiσ)r

r!

(
Br(zij)Li2−r

(
e2πi(−∆2)

)
+Br (1− zij) Li2−r

(
e2πi(∆2)

)
+Br

(
−s1
s2

− zij

)
Li2−r

(
e2πi(−∆1−∆2)

)
+Br

(
1 +

s1
s2

+ zij

)
Li2−r

(
e2πi(∆1+∆2)

)
−Br

(
1 +

s1
s2

+ zij

)
Li2−r

(
e2πi(∆1)

)
−Br

(
−s1
s2

− zij

)
Li2−r

(
e2πi(−∆1)

)
−Br (1− zij) Li2−r

(
e2πi(ϵ)

)
−Br (zij) Li2−r

(
e2πi(−ϵ)

))]
.

(4.7)

In the last line we have regulated the Polylogarithms via a small ϵ > 0 regulator. We will

see that we can safely take ϵ → 0 at the end of the manipulations. Utilizing the property of

Bernoulli polynomials,

Br(1− x) = (−1)rBr(x), r ≥ 0 , (4.8a)

Br(0) = (−1)rBr(1) , (4.8b)

the 2d index is simplified to

Z2d =
N∑
i=1

exp

 1

2πiσ

∑
j ̸=i

∞∑
r=0

(2πiσ)r

r!

[
Br(zij)

(
(−1)rLi2−r

(
e2πi(−∆2)

)
+ Li2−r

(
e2πi(∆2)

))
+Br(−

s1
s2

− zij)
(
(−1)rLi2−r

(
e2πi(−∆1−∆2)

)
+ Li2−r

(
e2πi(∆1+∆2)

))
−Br(−

s1
s2

− zij)
(
Li2−r

(
e2πi(∆1)

)
+ (−1)rLi2−r

(
e2πi(−∆1)

))
−Br(zij)

(
Li2−r

(
e2πi(ϵ)

)
+ (−1)rLi2−r

(
e2πi(−ϵ)

))]]
.

(4.9)

7See [59] for a similar implementation to the 3d superconformal index.
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The final simplification requires us to use the property of Polylogarithm functions

Lin(e
2πiz) + (−1)nLin(e

−2πiz) = −(2πi)n

n!
Bn({z}), n = 1, 2, 3, · · · , (4.10a)

Li−n(e
2πiz) + (−1)nLi−n(e

−2πiz) = 0, n = 0, 1, 2, 3, · · · , (4.10b)

for 0 ≤ Re(z) < 1 and Im(z) ≥ 0 or 0 < Re(z) ≤ 1 and Im(z) < 0. Now (4.9) becomes

Z2d =
N∑
i=1

exp

 1

2πiσ

∑
j ̸=i

1∑
r=0

(2πi)2−r

(2− r)!

(2πiσ)r

r!
(−Br(zij) (B2−r ({∆2})−B2−r)

−(−1)2−rBr(−
s1
s2

− zij) (B2−r ({−∆1 −∆2})−B2−r ({−∆1}))+
)]

=

N∑
i=1

exp

2πi(N − 1)

σ

 3∏
a=2

({∆a} − n) + δn0,−1

∑
j ̸=i

uij
N − 1

− σ

2

 ,

(4.11)

where we have recovered the original holonomy variables, namely uij =
zij
σ and for compact-

ness we have defined n ≡ 1−n0
2 . The function {z} defined in (B.6) is such that it forces the

Bernoulli polynomials to have the same periodicity properties as the Polylogarithm functions.

Note that (4.10a) ensures that the terms with the ϵ regulator produce a finite result as the

right hand side is a finite quantity at z = 0.

For the leading correction in the Cardy-like limit, the last terms in (4.11) vanishes and

we have

Z2d = N exp

[
2πi(N − 1)

σ

(
3∏

a=2

({∆a} − n)

)]
. (4.12)

There are two main observations to make regarding the transition from (4.11) to (4.12):

• For the fundamental domain of chemical potentials labelled by n0 = 1, the holonomies

drop from the expression (4.11), rendering our result (4.12) valid at finite N up to expo-

nentially supressed corrections in 1/|ω|. This domain of chemical potentials corresponds

to (4.3) and clearly in this case there is no need to work in the probe limit.

• For n0 = −1 there is a linear dependence of the holonomies in (4.11) that accounts for

backreaction of the D3-brane when considering the combined 4d-2d system. However,

this term vanishes in the leading term of the Cardy-like limit. This allow us to factor

out the 2d index contribution to the 4d defect superconformal index, as anticipated in

(4.4).

The next step is to explicitly evaluate (4.1) and extract the microcanonical degeneracies

implementing the Laplace transformation.
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Figure 3: The Figure shows the complex plane of chemical potentials for a generic ∆ where

the region corresponding to n0 = 1 (3.6a) is shown in gray and the region specified by n0 = −1

(3.6b) is shown in light blue. The thick blue arrows running over the interval Re(∆) ∈ (−1; 1)

represent the integration contour for ∆I . Now we represent the deformed contour in the

presence of the D3-brane in black dashed lines passing throught the new saddles labeled as

∆̃±. We have kept the contour (dashed orange curve) for the case of the black hole in the

absence of D3-brane just for reference.

4.2 The combined 4d-2d system: extracting degeneracies

For simplicity, we continue to restrict ourselves to the leading term in the Cardy-like limit

when we consider the combined 4d-2d system. From (3.5), (4.3), (4.4) and (4.12), the total

defect index is given by

ID = Nexp

[
iπ(N − 1)

σ

(
−(N + 1)

τ

3∏
I=1

({∆I}ω − n) + 2

3∏
a=2

({∆a} − n)

)]
. (4.13)

Note that for purely imaginary σ, τ as well as for purely real arguments, the functions {·}ω
and {·} coincide, which allows the expressions for Z2d and Z4d to be written in terms of the

same combinations of chemical potentials. The expression (4.13) considerably simplifies in

the regimes of real chemical potentials ∆I such that |∆I | < 1

ID = Nexp

[
iπ(N − 1)

σ

(
−(N + 1)

τ
∆1∆2∆3 + 2∆2∆3

)]
, (4.14)

∆3 = σ + τ −∆1 −∆2 − n0 . (4.15)

From now on we proceed to extract the microcanonical degeneracies from the grandcanonical

expression for the defect index given in (4.14). Implementing the Laplace transform using

the saddle point method requires the following extremization process

∂ log ID
∂∆I

= 2πi(Λ−QI), I = 1, · · · 3 , (4.16)

∂ log ID
∂σ

= −2πi(J1 + Λ) , (4.17)
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∂ log ID
∂τ

= −2πi(J2 + Λ) , (4.18)

under the constraint (3.9). It is worth pointing out that in this case the charges Q1,2,3 and

J1,2 are the total charge of 4d and 2d states.

From this point on, the mathematical problem is essentially equivalent to (2.40). In

the field theoretical language we have to repeat the calculation of Section 3.1 just replacing

I4d by ID in (3.10). If we focus on the large N regime, following the logic of Section 2.4,

we find a new set of saddle points through solving a modified cubic equation completely

equivalent to (2.45). In Figure 3, we show a schematic picture of how the new saddles in the

complex domain of chemical potentials can be changed by the 1/N corrections introduced by

considering the contribution of the 2d defect states to the degeneracy.

5 Final comments and open questions

We have presented the thermodynamic analysis for the combined black hole/D3-brane system

in a way that ensures the reality of the charges and the entropy. To do so, we took into account

both leading saddles of the gravitational path integral and likewise, on the gauge dual, the two

leading saddles of the integral over the holonomies that represent the defect superconformal

index. Following this procedure we obtain real charges and entropy without the need of

imposing a nonlinear constraint among the charges.

There are various interesting extensions of this work. The first is to compute the back-

reaction of the D3-brane in the geometry. One first step in this direction may be solving

the Killing spinor equations for the combined system of a black hole/D3-brane. Presumably,

while doing so, we would be forced into computing relevant backreaction effects. This may

allow us to answer questions like whether the exact change in entropy predicted by the field

theory side of the duality can be interpreted as a change in the area of the black hole horizon.
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A Revisiting a previous approach

In this appendix we briefly review the procedure used in [42] to compute the entropy of the

combined system. Recalling that at the level of the on-shell action

I = IBH + ID3 (A.1)

and requiring that

S = SBH + SD3, (A.2)

then the first law of thermodynamic of the total system would unequivocally constrain the

thermodynamic charges of the D3-brane to be

J1,D3 = − 1

β

∂ID3

∂Ω1
, J2,D3 = − 1

β

∂ID3

∂Ω2
, QD3 = − 1

β

∂ID3

∂Φ
, (A.3)

provided the chemical potentials do not receive subleading corrections in 1/N , or equivalently,

that they are the very same chemical potentials of the unperturbed black hole. To evaluate

the right hand sides of the equations in (A.3), we must invert the Jacobian matrix

∂(Ω1,Ω2,Φ, β)

∂(a, b, q, r+)
. (A.4)

In this way we find the expressions for the electric charges and angular momentum of the

D3-brane reported in [42].

A.1 Legendre transform with just the D3-brane

The entropy of the D3-brane is defined from the Legendre transform

SD3 = −ID3 − 2πi

3∑
I=1

φI,BHQI,D3 − 2πi

2∑
k=1

ωk,BHJk,D3 + 2πiΛ

(
3∑
I=1

φI,BH −
2∑

k=1

ωk,BH + n0

)
,

(A.5)

where Λ is a Lagrange multiplier implementing the corresponding linear constraint, and we

have reinstated the subindex BH to recall that these are the very same potential as the black

hole solution. The extremization leads to the following equations

0 = − ∂ID3

∂φI,BH
− 2πi(QI,D3 − Λ) = 2πi

(
N
φ2,BHφ3,BH

φI,BHω1,BH
(δI2 + δI3)−QI,D3 + Λ

)
, I = 1, 2, 3,

0 = − ∂ID3

∂ωk,BH
− 2πi(Jk,D3 + Λ) = −2πi

(
N
φ2,BHφ3,BH

ωk,BHω1,BH
δk1 + Jk,D3 + Λ

)
, k = 1, 2.

(A.6)

Imposing (A.6), we find that the entropy is given by

SD3 = 2πin0Λ. (A.7)
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Solving for φ2,BH and φ3,BH in the equation for I = 2 and I = 3, we find

φ2,BH = −ω1,BH
Λ−Q3,D3

N
, φ3,BH = −ω1,BH

Λ−Q2,D3

N
. (A.8)

and imposing this into the equation for k = 1, we have

0 = (Λ−Q2,D3) (Λ−Q3,D3) +N(J1,D3 + Λ)

= Λ2 + Λ(−Q2,D3 −Q3,D3 +N) + (Q2,D3Q3,D3 +NJ1,D3).
(A.9)

As this is a quadratic polynomial with real coefficients, the solutions can either be two real

roots or two complex roots, conjugate to each other. Therefore, we have

Λ± =
1

2

(
Q2,D3 +Q3,D3 −N ±

√
(−Q2,D3 −Q3,D3 +N) 2 − 4 (NJ1,D3 +Q2,D3Q3,D3)

)
.

(A.10)

In general, using the expression for the charges found in [42], Λ± are complex valued roots,

but not necessarily complex conjugate to each other. Moreover, we have the extremization

equations

Λ = Q1,D3 , Λ = −J2,D3 . (A.11)

In the regime that (A.10) and (A.11) are satisfied, we find a complex-valued entropy.

B Elliptic functions and their asymptotic behavior

Here we gather definitions and useful identities of elliptic functions.

The Pochhammer symbol is defined as

(z; q)∞ =

∞∏
k=0

(1− zqk). (B.1)

The elliptic theta functions have the following product forms

θ0(u; τ) =

∞∏
k=0

(1− e2πi(u+kτ))(1− e2πi(−u+(k+1)τ)) (B.2a)

=
(
e2πiu; e2πiτ

)
∞

(
e2πi(τ−u); e2πiτ

)
∞
. (B.2b)

Consider an asymptotic expansion in τ with fixed 0 < arg τ < π as given in [60]:

(zeaπiτ ; e2πiτ )∞ = exp

(
1

2πiτ

∞∑
r=0

(−1)rBr

(
1− a

2

) (2πiτ)r

r!
Li2−r(z)

)
. (B.3)

The elliptic gamma function and the ‘tilde’ elliptic gamma function are defined as

Γ(z; p, q) =
∞∏

j,k=0

1− pj+1qk+1z−1

1− pjqkz
, (B.4a)
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Γ̃(u;σ, τ) =

∞∏
j,k=0

1− e2πi[(j+1)σ+(k+1)τ−u]

1− e2πi[jσ+kτ+u]
. (B.4b)

To study asymptotic behaviors of elliptic functions, we introduce a τ -modded value of a

complex number u, namely {u}τ , as

{u}τ ≡ u− ⌊Reu− cot(arg τ)Imu⌋ (u ∈ C), (B.5)

and define {x} such that

{x} ≡ x− ⌊Rex⌋ , (B.6)

where {x}τ = {x} for purely imaginary τ .
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