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Abstract

We provide a first principles derivation of the supersymmetric Casimir energy of
N = 1 SCFTs in four dimensions using the supercharge algebra on general confor-
mal supergravity backgrounds that admit Killing spinors. The superconformal Ward
identities imply that there exists a continuous family of conserved R-currents on super-
symmetric backgrounds, as well as a continuous family of conserved currents for each
conformal Killing vector. These continuous families interpolate between the consistent
and covariant R-current and energy-momentum tensor. The resulting Casimir energy,
therefore, depends on two continuous parameters corresponding to the choice of con-
served currents used to define the energy and R-charge. This ambiguity is in addition
to any possible scheme dependence due to local terms in the effective action. As an ap-
plication, we evaluate the general expression for the supersymmetric Casimir energy we
obtain on a family of backgrounds with the cylinder topology R×S3 and admitting two
supercharges of opposite R-charge. Our result is a direct consequence of the supersym-
metry algebra, yet it resembles more known expressions for the non-supersymmetric
Casimir energy on such backgrounds and differs from the supersymmetric Casimir en-
ergy obtained from the zero temperature limit of supersymmetric partition functions.
We defer a thorough analysis of the relation between these results to future work.
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1 Introduction and summary of results

The Casimir energy of a conformal field theory (CFT) is defined as its ground state energy.
Placing the theory on the cylinder R×Sd−1 and in the absence of other background fields it
is given by

ECasimir =
∫
Sd−1

dd−1x
√
−g ⟨Ttt⟩g.s., (1.1)

where Tµν is the energy-momentum tensor and ⟨...⟩g.s. stands for the expectation value in
the ground state of the CFT on the cylinder. This is determined by the conformal anomaly

⟨T µµ ⟩ = 1
(4π)2 (aE − cW 2 + b□R) , (1.2)

where E is the Euler density, W 2 the square of the Weyl tensor and the anomaly coefficients
a and c depend on the specific CFT. The b-term is scheme-dependent and corresponds to
the addition of a local counterterm proportional to R4 in the effective action.
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To evaluate the Casimir energy, one may integrate the conformal anomaly (1.2) in or-
der to determine its contribution to the effective action, known as the Riegert action [1, 2].
Its derivative with respect to the background metric computes the expectation value of the
energy-momentum tensor in the ground state, and hence the Casimir energy (1.1). Conce-
quently, the Casimir energy of a CFT is in general determined by the conformal anomaly
coefficients a and c, as well as any scheme-dependent terms, such as b. For example, the
Casimir energy on the round unit sphere is given by (see e.g. [3])

ECasimir = 3
4

(
a− b

2

)
. (1.3)

The Casimir energy, therefore, is in general a scheme-dependent quantity.

The procedure outlined above applies to any CFT, including supersymmetric conformal
field theories (SCFTs). However, supersymmetry allows several alternative approaches to
computing the supersymmetric Casimir energy [3–9], while requiring that the renormaliza-
tion scheme preserves supersymmetry reduces considerably the allowed scheme dependence.
One common definition of the Casimir energy on S1

β ×M3 with M3 a three-manifold admit-
ting supersymmetry is given by the “zero temperature” limit, β →∞, of the supersymmetric
partition function. Namely,

E susy
Casimir = − lim

β→∞

d

dβ
logZsusy

S1
β

×M3
, (1.4)

since the β →∞ limit projects the ground state energy.

For N = 1 SCFTs on S1
β × S3

b1,b2 with squashing parameters b1 and b2 it has been shown
using supersymmetric localization that [5]

Zsusy
S1

β
×S3 = e−βEsusy

CasimirIsusy
S1

β
×S3 , (1.5)

where IS1
β

×S3 is the superconformal index and the exponential factor determines the Casimir
energy through the definition (1.4), namely

E susy
Casimir (b1, b2) = 4π

3 (|b1|+ |b2|)(a− c) + 4π
27

(|b1|+ |b2|)3

|b1||b2|
(3c− 2a) . (1.6)

For b1 = b2 = β
2π , (1.6) gives the supersymmetric Casimir energy on the round sphere

E susy
Casimir

(
β

2π ,
β

2π

)
= 4

27 (a + 3c) . (1.7)
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Another approach to computing the supersymmetric Casimir energy was undertaken
in [3], by reducing an N = 1 theory on S1

β×M3 to quantum mechanics. The 1d Hamiltonian
is the sum of the Hamiltonian for chiral and Fermi multiplets and, therefore, the ground
state energy can be computed through the expression

⟨Hsusy⟩ =
∑

chiral
⟨Hchiral⟩+

∑
Fermi
⟨HFermi⟩ . (1.8)

The result for the Casimir energy ECasimir = ⟨Hsusy⟩ so obtained agrees with (1.6) and (1.7).
Yet another approach was considered in [6], where it was conjectured that the supersymmet-
ric Casimir energy in d even dimensions is given by an equivariant integral of the anomaly
polynomial in two higher dimensions.

The approach we follow in the preset work, however, is based on the supersymmetry
algebra. On a curved background, the supercharges satisfy (schematically) the algebra

{Q†, Q} = H −QR − ECasimir , (1.9)

where H is the Hamiltonian and QR is the R-charge operator. Since in a supersymmetric
vacuum ⟨{Q†, Q}⟩ = 0, it follows that

⟨H −QR⟩g.s. = ECasimir . (1.10)

We determine the general form of the Casimir energy ECasimir in (1.9) by coupling a generic
N = 1 SCFT to background conformal supergravity and using the operator algebra obtained
in [19]. This leads to the general expression (6.23) for the supersymmetric Casimir energy in
terms of local curvatures and Killing spinor bilinears. Evaluating this general expression on
backgrounds with the cylinder topology R× S3 and admitting two supercharges of opposite
R-charge we arrive at the expression (6.29). This result is consistent with (1.3), but differs
significantly from (1.6). We defer a thorough analysis of the relation between these two
results to a future publication.

The rest paper is organized as follows. In section 2 we review the N = 1 superconfor-
mal Ward identities of conformal supergravity, including the superconformal anomalies. In
section 3 we introduce the relevant Bardeen-Zumino terms for the R-current and energy-
momentum tensor, which allow us to rewrite the superconformal Ward identities in terms of
the covariant R-current and the energy-momentum tensor. In section 4 we consider bosonic
backgrounds with numerically zero anomalies, such as those admiting Killing spinors, and
show the existence of continuous families of conserved R-charges and charges associated with
conformal Killing vectors. Section 5 is devoted to the detailed evaluation of the Casimir en-
ergy on such backgrounds using the anomalous transformation of the supercurrent obtained
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in [19]. This leads to the general BPS relation (5.43) and the “local charge” (5.44). These
are the main results of this work. As an illustrative example, in section 6, we evaluate the
Casimir energy on R× S3, obtaining the result (6.23).

2 N = 1 superconformal Ward identities

The superconformal Ward identities that four-dimensional N = 1 SCFTs satisfy can be de-
termined by coupling the theory to N = 1 off-shell conformal supergravity [10–13], whose
field content consists of the vielbein eaµ, an Abelian gauge field Aµ, and a Majorana grav-
itino ψµ, comprising 5+3 bosonic and 8 fermionic off-shell degrees of freedom. Treating the
supergravity fields as external background fields, the SCFT partition function takes the form

Z[e, A, ψ] =
∫

[DΦ]eiS[Φ,e,A,ψ] , (2.1)

where Φ denotes collectively all the microscopic degrees of freedom.1

The logarithm of the partition function on an arbitrary supergravity background

W [e, A, ψ] = −i logZ[e, A, ψ] , (2.2)

is often referred to as the ‘quantum effective action’ and amounts to the generating function
of connected (renormalized) correlation functions of the current operators

⟨T µa ⟩ = e−1 δW
δeaµ

, ⟨J µ
a ⟩ = e−1 δW

δAµ
, ⟨Sµa ⟩ = e−1 δW

δψ̄µ
, (2.3)

where e ≡ det(eaµ) and the notation ⟨·⟩ denotes one-point functions in the presence of arbi-
trary sources, i.e. on an arbitrary supergravity background. These operators comprise the
conformal multiplet of currents and satisfy a set of superconformal Ward identities.

N = 1 conformal supergravity is a gauge theory of the N = 1 superconformal algebra
[10–13] (see [14–17] and chapter 16 of [18] for pedagogical reviews). Its local symmetries
consist of diffeomorphisms ξµ(x), Weyl transformations σ(x), local frame rotations λab(x),
U(1) R-symmetry transformations θ(x), as well asQ- and S-supersymmetry transformations,

1Evaluating the path integral over the microscopic degrees of freedom Φ in general requires the intro-
duction of a regulator that explicitly breaks conformal symmetry. Although the regulated theory cannot
couple consistently to conformal supergravity, the renormalized theory can, even in the presence of super-
conformal anomalies. Throughout this article we refer exclusively to the renormalized observables, which
can consistently couple to conformal supergravity.
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parameterized respectively by the local spinors ε(x) and η(x). Under these, the fields of
N = 1 conformal supergravity transform as

δeaµ = ξλ∂λe
a
µ + eaλ∂µξ

λ − λabebµ + σeaµ −
1
2ψµγ

aε ,

δψµ = ξλ∂λψµ + ψλ∂µξ
λ − 1

4λabγ
abψµ + 1

2σψµ +Dµε− γµη − iγ5θψµ ,

δAµ = ξλ∂λAµ + Aλ∂µξ
λ + 3i

4 ϕµγ
5ε− 3i

4 ψµγ
5η + ∂µθ , (2.4)

where
ϕµ ≡ −

1
6
(
4δ[ρ
µ δ

σ]
ν + iγ5ϵµν

ρσ
)
γνDρψσ , (2.5)

and the spinor covariant derivatives are given by

Dµψν ≡
(
∂µ + 1

4ωµ
ab(e, ψ)γab + iγ5Aµ

)
ψν − Γρµνψρ ≡

(
Dµ + iγ5Aµ

)
ψν ,

Dµε ≡
(
∂µ + 1

4ωµ
ab(e, ψ)γab + iγ5Aµ

)
ε ≡

(
Dµ + iγ5Aµ

)
ε . (2.6)

In these expressions ωµab(e, ψ) denotes the torsion-full spin connection

ωµ
ab(e, ψ) ≡ ωµ

ab(e) + 1
4
(
ψaγµψb + ψµγaψb − ψµγbψa

)
, (2.7)

where ωµab(e) is the torsion-free metric compatible connection.

The quantum effective action (2.2) of any N = 1 SCFT is invariant under the local
symmetry transformations (2.4), up to local expressions in the background supergravity
fields that comprise the multiplet of superconformal anomalies. In particular, there exists
a renormalization scheme such that, under an infinitesimal local symmetry transformation
with parameters Ω = (ξ, σ, λ, θ, ε, η), the quantum effective action transforms as

δΩW [e, A, ψ] =
∫
d4x e

(
σAW − θAR − ε̄AQ + η̄AS

)
, (2.8)
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where the superconformal anomalies AW , AR, AQ and AS take the form [19]

AW = c

16π2

(
W 2 − 8

3F
2
)
− a

16π2E +O(ψ2) ,

AR = (5a− 3c)
27π2 F̃F + (c− a)

24π2 P ,

AQ = − (5a− 3c)i
9π2 F̃ µνAµγ

5ϕν + (a− c)
6π2 ∇µ

(
AρR̃

ρσµν
)
γ(νψσ) −

(a− c)
24π2 FµνR̃

µνρσγρψσ +O(ψ3) ,

AS = (5a− 3c)
6π2 F̃ µν

(
Dµ −

2i
3 Aµγ

5
)
ψν + ic

6π2F
µν
(
γµ

[σδρ]
ν − δ[σ

µ δ
ρ]
ν

)
γ5Dρψσ (2.9)

+ 3(2a− c)
4π2 Pµνg

µ[νγρσ]Dρψσ + (a− c)
8π2

(
Rµνρσγµν −

1
2Rgµνg

µ[νγρσ]
)
Dρψσ +O(ψ3) .

The anomaly coefficients a and c in these expressions depend on the specific SCFT and
are normalized such that for Nχ free chiral and Nv free vector multiplets [20]

a = 1
48(Nχ + 9Nv) , c = 1

24(Nχ + 3Nv) . (2.10)

W 2 in (2.9) denotes the square of the Weyl tensor, while E and P are respectively the Euler
and Pontryagin densities. Namely,

W 2 ≡ WµνρσW
µνρσ = RµνρσR

µνρσ − 2RµνR
µν + 1

3R
2 ,

E = RµνρσR
µνρσ − 4RµνR

µν +R2 ,

P ≡ 1
2ϵ

κλµνRκλρσRµν
ρσ = R̃µνρσRµνρσ , (2.11)

where
R̃µνρσ ≡

1
2ϵµν

κλRκλρσ . (2.12)

Finally, Pµν in (2.9) denotes the Schouten tensor

Pµν = 1
2

(
Rµν −

1
6Rgµν

)
, (2.13)

and we have defined

F 2 ≡ FµνF
µν , F F̃ ≡ 1

2ϵ
µνρσFµνFρσ , F̃µν ≡

1
2ϵµν

ρσFρσ . (2.14)

The anomalous transformation (2.8) of the quantum effective action, together with the
definition of the currents (2.3), leads to the superconformal Ward identities [19]
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eaµ∇ν⟨T νa ⟩+∇ν(ψµ⟨Sν⟩)− ψν
←−
D µ⟨Sν⟩ − Fµν⟨J ν⟩

+ Aµ
(
∇ν⟨J ν⟩+ iψνγ

5⟨Sν⟩
)
− ωµab

(
eν[a⟨T νb] ⟩+ 1

4ψνγab⟨S
ν⟩
)

= 0 ,

eaµ⟨T µa ⟩+ 1
2ψµ⟨S

µ⟩ = AW ,

eµ[a⟨T µb] ⟩+ 1
4ψµγab⟨S

µ⟩ = 0 ,

∇µ⟨J µ⟩+ iψµγ
5⟨Sµ⟩ = AR ,

Dµ⟨Sµ⟩ −
1
2γ

aψµ⟨T µa ⟩ −
3i
4 γ

5ϕµ⟨J µ⟩ = AQ ,

γµ⟨Sµ⟩ −
3i
4 γ

5ψµ⟨J µ⟩ = AS . (2.15)

The transformation (2.8) of the quantum effective action, and hence the local terms in
the Ward identities (2.15), may be modified by adding local terms to the effective action
W [e, A, ψ]. For example, adding the term

∫
A ∧ Tr

(
Γ ∧ dΓ + 2

3Γ ∧ Γ ∧ Γ
)
, (2.16)

with Γµν ≡ Γµνρdxρ the Christoffel connection, breaks the diffeomorphism invariance of the
effective action and modifies the form of its anomalous transformation under the rest of the
local symmetries. In particular, the addition of this term with a specific coefficient eliminates
the Pontryagin term from the R-symmetry anomaly AR, as is reviewed e.g. in [21]. Although
the fermionic anomalies AQ and AS can be modified by the addition of such local terms,
there exists no local term that sets them to zero within conformal supergravity. It is these
fermionic anomalies AQ and AS that determine the supersymmetric Casimir energy [9].

3 Bardeen-Zumino terms and covariant currents

The anomalies (2.9) are solutions of the Wess-Zumino (WZ) consistency conditions for the
local symmetry transformations (2.4) of N = 1 conformal supergravity [19]. As such, they
correspond to the so called consistent anomalies, while the operators defined in (2.3) are
known as the consistent currents. As a consequence of the R-symmetry anomaly, the consis-
tent currents are not gauge invariant, while if the local term (2.16) is added to the effective
action, the consistent currents are not diffeomorphism covariant either.

The gauge and diffeomorphism covariance of the R-current J µ and of the stress tensor
T µa can be restored by adding local Bardeen-Zumino (BZ) terms to the currents [22]. These
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terms are not related to the choice of renormalization scheme discussed above, since they
cannot be expressed as derivatives of a local term in the effective action. Instead, they arise
from a Chern-Simons action in five dimensions that cancels the R-symmetry/mixed anomaly
through the mechanism of anomaly inflow (see e.g. [21] for an extensive discussion).

However, the BZ terms for the R-current and the energy-momentum tensor are already
encoded in the form of the anomalies (2.9) [9, 19]. This observation was understood in [23]
as a direct consequence of the WZ consistency conditions. As an example, let us consider
the WZ condition2

(δξδθ − δθδξ)W = 0 . (3.1)

In the absence of the local term (2.16), δξW = 0 and so δξδθW = 0 and δθδξW = 0 separately.
These imply respectively that δθW is diffeomorphism invariant and δξW is gauge invariant.
Focusing on δξW , it can be expressed in terms of the consistent currents (2.3) as [19]

δξW = −
∫
d4x e ξµ

(
eaµ∇ν⟨T νa ⟩+∇ν(ψµ⟨Sν⟩)− ψν

←−
D µ⟨Sν⟩ − Fµν⟨J ν⟩+ AµAR

)
, (3.2)

whose bosonic part is not manifestly gauge invariant. As we will now demonstrate, the form
of the R-symmetry anomaly AR is such that this expression can be written in manifestly
gauge invariant form in terms of the covariant R-current and energy-momentum tensor.

Writing the R-symmetry anomaly explicitly, the bosonic terms in (3.2) take the form

eaµ∇ν⟨T νa ⟩ − Fµν⟨J ν⟩+ AµAR

= eaµ∇ν⟨T νa ⟩ − Fµν⟨J ν⟩+ (5a− 3c)
54π2 ϵκλρσFκλFρσAµ + (c− a)

48π2 ϵκλρσRκλαβRρσ
αβAµ . (3.3)

Antisymmetrizing five indices in four dimensions gives zero. Hence, F[µκFλρAσ] = 0 and
R[κλαβRρσ

αβAµ] = 0, which imply respectively the identities

ϵκλρσFκλFρσAµ = −4ϵκλρσFµκFλρAσ , (3.4)

and
ϵκλρσRκλαβRρσ

αβAµ = −4ϵκλρσRµκαβRλρ
αβAσ . (3.5)

2We adopt the convention of [19], where the transformations act of the transformation parameters as
well. This is analogous to the BRST treatment of the WZ consistency conditions, where the transformation
parameters are replaced by ghost fields that themselves transform. The same conclusions are reached in the
convention that the transformation parameters do not transform – see section 3.2 of [23].
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Therefore, the bosonic part of (3.2) becomes

eaµ∇ν⟨T νa ⟩ − Fµν⟨J ν⟩+ AµAR

= eaµ∇ν⟨T νa ⟩ − Fµν⟨J ν
cov⟩ −

(c− a)
12π2 ϵκλρσRµκαβRλρ

αβAσ , (3.6)

where the covariant R-current is given by

⟨J µ
cov⟩ = ⟨J µ⟩+ P µ

BZ , (3.7)

with the Bardeen-Zumino term

P µ
BZ = 2(5a− 3c)

27π2 ϵµλρσFλρAσ . (3.8)

Since the local term (2.16) is absent, the consistent R-current J µ transforms as tensor under
diffeomorphisms and so the relevant BZ term need only restore gauge invariance.

The BZ term for the energy-momentum tensor T µν = T µaeνa takes the form [21]

P µν
BZ = − 1

2∇λ

(
Xλµν +Xλνµ −Xµνλ

)
,

Xµλ
ν = − (c− a)

12π2

(
ϵµρκσRλ

νκσ + ϵλρκσRµ
νκσ

)
Aρ . (3.9)

With a bit of algebra this can be simplified to

P µν
BZ = (c− a)

6π2 ∇λ

(
ϵαρκσRλβ

κσAρ
)
δµ(αδ

ν
β) . (3.10)

Evaluating its covariant divergence we find

∇µP
µν
BZ = (c− a)

12π2 ∇µ∇λ

(
ϵµρκσRλν

κσAρ + ϵνρκσRλµ
κσAρ

)
(3.11)

= (c− a)
12π2

((
[∇µ,∇λ] +∇λ∇µ

)
(ϵµρκσRλν

κσAρ) + 1
2[∇µ,∇λ](ϵνρκσRλµ

κσAρ)
)

= (c− a)
24π2

(
[∇µ,∇λ](2ϵµρκσRλν

κσAρ − ϵνρκσRµλ
κσAρ) +∇λ(ϵµρκσRλν

κσFµρ)
)
,

where we made use of the second Bianchi identity ∇[µR
κλ
νρ] = 0.

Moreover, using the first Bianchi identity, Rκ
[λνρ] = 0, we obtain

[∇µ,∇λ](2ϵµρκσRλν
κσAρ − ϵνρκσRµλ

κσAρ) = 2ϵρακσRν
αµλR

µλ
κσAρ , (3.12)
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and hence
∇µP

µν
BZ = (c− a)

12π2 ϵρακσRν
αµλR

µλ
κσAρ +∇µL

µν , (3.13)

where

Lµν = (c− a)
12π2 FρσR̃

ρσµν . (3.14)

It follows that the bosonic part of (3.2) takes the form

eaµ∇ν⟨T νa ⟩ − Fµν⟨J ν⟩+ AµAR = ∇ν⟨T νcovµ⟩ − Fµν⟨J ν
cov⟩ − ∇νL

ν
µ , (3.15)

where
⟨T µνcov⟩ = ⟨T µν⟩+ P µν

BZ . (3.16)

Since Lµν is gauge invariant, we have demonstrated that all terms in (3.2) can be made
manifestly gauge invariant in terms of the covariant R-current and energy-momentum tensor.

The covariant R-current and energy-momentum tensor help simplify not only the diffeo-
morphism and R-symmetry Ward identities, but also those for Q- and S-supersymmetry. In
particular, in terms of the covariant currents, the Ward identities (2.15) take the form

eaµ∇ν⟨T νcov a⟩+∇ν(ψµ⟨Sν⟩)− ψν
←−
D µ⟨Sν⟩ − Fµν⟨J ν

cov⟩ = Acov
Dµ ,

eaµ⟨T µcov a⟩+ 1
2ψµ⟨S

µ⟩ = Acov
W ,

eµ[a⟨T µcov b]⟩+ 1
4ψµγab⟨S

µ⟩ = 0 ,

∇µ⟨J µ
cov⟩+ iψµγ

5⟨Sµ⟩ = Acov
R ,

Dµ⟨Sµ⟩ −
1
2γ

aψµ⟨T µa cov⟩ −
3i
4 γ

5ϕµ⟨J µ
cov⟩ = Acov

Q ,

γµ⟨Sµ⟩ −
3i
4 γ

5ψµ⟨J µ
cov⟩ = Acov

S . (3.17)

with the covariant anomalies given by the simple expressions
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Acov
Dµ = ∇νL

ν
µ = (a− c)

12π2 ∇
ν(FρσR̃ρσ

µν) ,

Acov
W = AW = c

16π2

(
W 2 − 8

3F
2
)
− a

16π2E +O(ψ2) ,

Acov
R = (5a− 3c)

9π2 F̃F + (c− a)
24π2 P ,

Acov
Q = (c− a)

24π2 FµνR̃
µνρσγρψσ +O(ψ3) ,

Acov
S =

[(5a− 3c)
6π2 F̃ ρσ + ic

6π2F
µν
(
γµ

[σδρ]
ν − δ[σ

µ δ
ρ]
ν

)
γ5 + 3(2a− c)

4π2 Pµνg
µ[νγρσ]

+ (a− c)
8π2

(
Rµνρσγµν −

1
2Rgµνg

µ[νγρσ]
)]
Dρψσ +O(ψ3) . (3.18)

4 Conserved charges

The superconformal Ward identities determine the conserved charges and their algebra.
In preparation for the derivation of the supersymmetric Casimir energy in the subsequent
sections, we consider the R-charge and the charges associated with conformal Killing vectors
and spinors on supergravity backgrounds that admit Killing spinors. A key property of
such backgrounds is that the supercoformal anomalies are numerically zero, resulting in
continuous families of conserved bosonic charges.

Starting with the R-charge, we define the one-parameter family of R-currents [9]

⟨J µ
ωJ
⟩ ≡ ⟨J µ⟩+ ωJP

µ
BZ , (4.1)

where P µ
BZ is the BZ term given in (3.8). Clearly, ⟨J µ

0 ⟩ is the consistent R-current, while
⟨J µ

1 ⟩ is the covariant one. On a bosonic background the divergence of this current is

∇µ⟨J µ
ωJ
⟩ = (1 + 2ωJ )5a− 3c

27π2 F̃F + c− a
24π2 P , (4.2)

which is nonzero on a generic supergravity background. However, for conformal supergravity
backgrounds that admit Killing spinors both terms in the R-symmetry anomaly are numeri-
cally zero, i.e. F̃F = 0 and P = 0. As a result, on supersymmetric backgrounds there exists
a continuous family of conserved R-charges defined as
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Q
ωJ
R =

∫
C
dσµ⟨J µ

ωJ
⟩ , (4.3)

where C is a Cauchy surface and dσµ is the corresponding infinitesimal area element. Notice
that although the anomalies are numerically zero on supersymmetric backgrounds, the BZ
terms are not necessarily vanishing, and hence the value of the R-charge (4.3) in general
depends on the parameter ωJ .

Let us now consider the conserved charges associated with conformal Killing vectors of
supersymmetric backgrounds. A conformal Killing vector Kµ satisfies the relations

LK gµν = ∇µKν +∇νKµ = 1
2(∇ρKρ)gµν , LKAµ = ∂µΛK , (4.4)

where LK denotes the Lie derivative with respect to Kµ and ΛK is an arbitrary R-symmetry
gauge parameter. The Killing condition on the R-symmetry gauge field Aµ is equivalent to
the gauge-invariant condition LKFµν = 0.

As with the R-current, we define the continuous family of energy-momentum tensors

⟨T µνωT
⟩ ≡ ⟨T µν⟩+ ωT P

µν
BZ , (4.5)

where P µν
BZ is the BZ term (3.10). Notice again that ⟨T µν0 ⟩ corresponds to the consistent

energy-momentum tensor, while ⟨T µν1 ⟩ is the covariant one. The divergence of this current
on a bosonic background is given by

∇µ⟨T µωT ν⟩ = Fνµ⟨J µ
cov⟩+ ωT

(a− c)
12π2 ∇

µ(FρσR̃ρσ
νµ) . (4.6)

In order to determine the conserved charge associated with the conformal Killing vector
Kµ we evaluate the divergence

∇µ

(
(⟨T µωT ν⟩+ Aν⟨J µ

ωJ
⟩)Kν

)
= ∇µ⟨T µωT ν⟩Kν + 1

4⟨T
µ
ωT µ⟩∇ρKρ + ∂µ(AνKν)⟨J µ

ωJ
⟩+ AνKν∇µ⟨J µ

ωJ
⟩

= KνFνµ⟨J µ
cov⟩+ (FµνKν + ∂µΛK)⟨J µ

ωJ
⟩

+ ωT
(a− c)
12π2 K

ν∇µ(FρσR̃ρσ
νµ) + 1

4AW∇ρKρ + AνKν∇µ⟨J µ
ωJ
⟩

= (ωJ − 1)FµνKνP µ
BZ +∇µ(ΛK⟨J µ

ωJ
⟩)

+ ωT
(a− c)
12π2 K

ν∇µ(FρσR̃ρσ
νµ) + 1

4AW∇ρKρ + (AνKν − ΛK)∇µ⟨J µ
ωJ
⟩ . (4.7)
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The relation (3.4) implies that

FµνKνP µ
BZ = (5a− 3c)

27π2 FF̃AµKµ , (4.8)

and so we conclude that

∇µ

(
⟨T µωT ν⟩Kν + (AνKν − ΛK)⟨J µ

ωJ
⟩
)

= 1
4AW∇ρKρ + ωT

(a− c)
12π2 K

ν∇µ(FρσR̃ρσ
νµ)

+ (ωJ − 1)(5a− 3c)
27π2 AνKνFF̃ + (AνKν − ΛK)

(
(1 + 2ωJ )5a− 3c

27π2 F̃F + c− a
24π2 P

)
. (4.9)

It follows that if the anomalies F̃F , P , AW as well as ∇µL
µν vanish numerically, as is the

case for supersymmetric backgrounds, then there exists a two-parameter family of conserved
currents for any conformal Killing vector Kµ,

∇µ

(
⟨T µωT ν⟩Kν + (AνKν − ΛK)⟨J µ

ωJ
⟩
)

= 0 , (4.10)

and hence a two-parameter family of conserved charges

QωT ,ωJ [K] =
∫

C
dσµ

(
⟨T µωT ν⟩Kν + (AνKν − ΛK)⟨J µ

ωJ
⟩
)
. (4.11)

Finally, we consider the conserved charges associated with (conformal) Killing spinors of
N = 1 conformal supergravity. These are solutions of the Killing spinor equation obtained
by setting the local symmetry transformation of the gravitino in (2.4) to zero. On a bosonic
background this leads to the Killing spinor equation

Dµε0 = γµη0 . (4.12)

In the following we will also need the Majorana conjugate equation

ε̄0
←−
D µ = −η̄0γµ . (4.13)

Expressing η0 in terms of ε0 through the algebraic relation

η0 = 1
4γ

νDνε0 , (4.14)

the Killing spinor equation can be written in the form
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Dµε0 = 1
4γµγ

νDνε0 . (4.15)

On a bosonic background the Ward identities (2.15) imply that the supercurrent is co-
variantly conserved and has zero γ-trace, i.e.

Dµ⟨Sµ⟩ = 0 , γµ⟨Sµ⟩ = 0 . (4.16)

These in turn imply that

∇µ(ε̄0⟨Sµ⟩) = ε̄0
←−
D µ⟨Sµ⟩ = −η̄γµ⟨Sµ⟩ = 0 , (4.17)

and, hence, the quantity

Q[ε0] =
∫

C
dσµε̄0⟨Sµ⟩ , (4.18)

corresponds to the conserved supercharge associated with the (conformal) Killing spinor ε0.
Note that the Killing spinor ε0 must be commuting in order for the supercharge (4.18) to be
Grassmann-valued.

5 Supersymmetric Casimir energy

We are now in a position to obtain the general form of the supersymmetric Casimir energy on
N = 1 conformal supergravity backgrounds, generalizing the result of [9] to generic SCFTs
with a ̸= c. Our starting point is the anomalous transformation of the supercurrent Sµ under
local Q- and S-supersymmetries. These transformations follow directly from the anomalous
superconformal Ward identities (2.15) and are given by [19]

δε⟨Sµ⟩ = 1
2γ

aε⟨T µcov a⟩+ i

8
(
4δ[µ
ν δ

ρ]
σ + iγ5ϵµν

ρ
σ

)
γνγ5Dρ

(
ε⟨J σ

cov⟩
)

+ (a− c)
24π2 FρσR̃

ρσµνγνε ,

δη⟨Sµ⟩ = 3i
4 γ

5η⟨J µ
cov⟩+ (5a− 3c)

6π2 Dν(F̃ µνη)− ic

6π2

(
γ[µ

ρδ
ν]
σ − δ[µ

ρ δ
ν]
σ

)
γ5Dν(F ρση) (5.1)

− 3(2a− c)
4π2 Dν

(
Pρσg

ρ[σγµν]η
)
− (a− c)

8π2 Dν
[(
Rµνρσγρσ −

1
2Rgρσg

ρ[σγµν]
)
η
]
.
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5.1 Supercharge algebra on curved backgrounds

Taking the transformation parameters ε, η to be the (commuting) components of a conformal
Killing spinor, ε0, η0 = 1

4γ
νDνε0, the transformations (5.1) compute the algebra of the

corresponding supercharges through the relation

⟨{Q[ε0], Q[ε0]}⟩ =
∫

C
dσµε̄0(δε0 + δη0)⟨Sµ⟩ . (5.2)

Since the anticommutator of the supercharges vanishes on BPS states, this relation deter-
mines the BPS relation among the bosonic conserved charges on an arbitrary supersymmetric
background, and hence the general form of the supersymmetric Casimir energy.

Our task, therefore, is to evaluate the r.h.s. of (5.2) using th supercurrent transformations
(5.1). The term ε̄0δε0⟨Sµ⟩ takes the form

1
2 ε̄0γνε0

(
⟨T µνcov⟩+ (a− c)

24π2 FρσR̃
ρσµν

)
+ i

8 ε̄0
(
4δ[µ
ν δ

ρ]
σ + iγ5ϵµν

ρ
σ

)
γνγ5Dρ

(
ε0⟨J σ

cov⟩
)
, (5.3)

Integrating by parts, the term proportional to the covariant R-current becomes

∇ρVµρQ −
i

8 ε̄0
←−
D ρ

(
4δ[µ
ν δ

ρ]
σ + iγ5ϵµν

ρ
σ

)
γνγ5ε0⟨J σ

cov⟩ , (5.4)

where
VµρQ = i

8 ε̄0
(
4δ[µ
ν δ

ρ]
σ + iγ5ϵµν

ρ
σ

)
γνγ5ε0⟨J σ

cov⟩ . (5.5)

The Killing spinor equation (4.13) and the identity (A.4) in Appendix A, allow us to simplify
the second term in (5.4) to

−3i
4 (η̄0γ

5ε0)⟨J µ
cov⟩ . (5.6)

Therefore, we conclude that the term ε̄0δε0⟨Sµ⟩ takes the form

ε̄0δε0⟨Sµ⟩ = 1
2 ε̄0γνε0

(
⟨T µνcov⟩+ (a− c)

24π2 FρσR̃
ρσµν

)
− 3i

4 (η̄0γ
5ε0)⟨J µ

cov⟩+∇ρVρµQ . (5.7)

Let us next focus on the term

ε̄0δη0⟨Sµ⟩ = 3i
4 ε̄0γ

5η0⟨J µ
cov⟩+ (5a− 3c)

6π2 ε̄0Dν(F̃ µνη0)−
ic

6π2 ε̄0
(
γ[µ

ρδ
ν]
σ − δ[µ

ρ δ
ν]
σ

)
γ5Dν(F ρση0)

− 3(2a− c)
4π2 ε̄0Dν

(
Pρσg

ρ[σγµν]η0
)
− (a− c)

8π2 ε̄0Dν
[(
Rµνρσγρσ −

1
2Rgρσg

ρ[σγµν]
)
η0

]
, (5.8)

and consider in turn all local terms.
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(5a−3c)
6π2 ε̄0Dρ(F̃ µρη0) :

Integrating by parts and using the Killing spinor equation (4.13) this term becomes

∇ρVµρS1 + (5a− 3c)
6π2 F̃ µρ(η̄0γρη0) , (5.9)

where
VµρS1 = (5a− 3c)

6π2 F̃ µρε̄0η0 . (5.10)

− ic
6π2 ε̄0(γ[µ

ρδ
ν]
σ − δ[µ

ρ δ
ν]
σ )γ5Dν(F ρση0) :

Similarly, this term can be written in the form

∇ρVµρS2 −
ic

6π2 η̄0γρ
(
γ[µ

νδ
ρ]
σ − δ[µ

ν δ
ρ]
σ

)
γ5η0 F

νσ , (5.11)

with
VµρS2 = − ic

6π2 ε̄0
(
γ[µ

νδ
ρ]
σ − δ[µ

ν δ
ρ]
σ

)
γ5η0 F

νσ . (5.12)

Moreover, the second term in (5.11) gives

− ic

6π2 η̄0γρ
(
γ[µ

νδ
ρ]
σ − δ[µ

ν δ
ρ]
σ

)
γ5η0 F

νσ = − ic

6π2 η̄0(γσγµν − δµν γσ)γ5η0F
νσ

= − ic

6π2

(
η̄0γ

σγµνγ5η0 Fνσ − η̄0γσγ
5η0F

µσ
)
. (5.13)

The second term vanishes, since η̄0γσγ
5η0 = 0 for commuting spinors, while

η̄0γ
σγµνγ5η0 = η̄0γ

µνγσγ5η0 = η̄0(γµνσ + γµgνσ − γνgµσ)γ5η0 = iϵµνσρη̄0γρη0 . (5.14)

Hence,

− ic

6π2 η̄0γρ
(
γ[µ

νδ
ρ]
σ − δ[µ

ν δ
ρ]
σ

)
γ5η0 F

νσ = c

6π2 ϵ
µνσρFνση̄0γρη0 = c

3π2 F̃
µρ η̄0γρη0 , (5.15)

and therefore (5.11) can be simplified to

∇ρVµρS2 + 2c
6π2 F̃

µρ η̄0γρη0 . (5.16)

−3(2a−c)
4π2 ε̄0Dν(Pρσgρ[σγµν]η0) :
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Using integration by parts and the Killing spinor equation (4.13) this term becomes

∇ρVµρS3 −
3(2a− c)

4π2 Pνσ η̄0γρ g
ν[σγµρ]η0 , (5.17)

where
VµρS3 = −3(2a− c)

4π2 ε̄0(Pνσgν[σγµρ]η0) . (5.18)

The second term in (5.17) can be simplified as

−3(2a− c)
4π2 Pνσ η̄0γρ g

ν[σγµρ]η0 = −3(2a− c)
4π2

2
3Pνσ(−gνση̄0γ

µη0 + gµν η̄0γ
ση0)

= −(2a− c)
2π2

(
−1

6Rδ
µ
σ + P µ

σ

)
η̄0γ

ση0 , (5.19)

where in the last step we used that P ≡ Pνσg
νσ = R/6. Observing that

−1
6Rδ

µ
σ + P µ

σ = 1
2

(
Rµ

ν −
1
2Rδ

µ
ν

)
(5.20)

we arrive at the final form of the expression (5.17):

∇ρVµρS3 −
(2a− c)

4π2

(
Rµ

ν −
1
2Rδ

µ
ν

)
η̄0γ

νη0 . (5.21)

− (a−c)
8π2 ε̄0Dν

[(
Rµνρσγρσ − 1

2Rgρσg
ρ[σγµν]

)
η0
]

:

This term is similarly written as

∇ρVµρS4 −
(a− c)

8π2 η̄0γρ

(
Rµρνσγνσ −

1
2Rgνσg

ν[σγµρ]
)
η0 , (5.22)

with
VµρS4 = −(a− c)

8π2 ε̄0

(
Rµρνσγνσ −

1
2Rgνσg

ν[σγµρ]
)
η0 . (5.23)

The first term in the square bracket in (5.22) gives

η̄0γρ (Rµρνσγνσ) η0 = −Rµ
ρνσ η̄0 (γνσρ + γνgσρ − γσgνρ) η0

= −2Rµ
ν η̄0γ

νη0 , (5.24)

where we used the property η̄0γργνση0 = −η̄0γνσγρη0 for commuting spinors. Moreover, the
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second term in the square bracket in (5.22) becomes

1
2Rgνσ(η̄0γρg

ν[σγµρ]η0) = 1
2Rgνσ

(
−2

3 g
νση̄0γ

µη0 + 2
3 g

µν η̄0γ
ση0

)
= −R η̄0γ

µη0 , (5.25)

where we used the identity (A.11) in Appendix A with ε = η.

We therefore conclude that

−(a− c)
8π2 η̄0γρ

(
Rµρνσγνσ −

1
2Rgνσg

ν[σγµρ]
)
η0 = (a− c)

4π2

(
Rµ

ν −
1
2Rδ

µ
ν

)
η̄0γ

νη0 , (5.26)

and hence (5.22) reduces to

∇ρVµρS4 + (a− c)
4π2

(
Rµ

ν −
1
2Rδ

µ
ν

)
η̄0γ

νη0 . (5.27)

Returning to the overall variation (5.8), we observe that (5.9) and (5.16) combine to

(5a− c)
6π2 F̃ µρ(η̄0γρη0) , (5.28)

while (5.21) and (5.27) reduce to

− a

4π2

(
Rµ

ν −
1
2Rδ

µ
ν

)
η̄0γ

νη0 . (5.29)

Therefore, gathering all terms, the variation (5.8) is written as

ε̄0δη0⟨Sµ⟩ = 3i
4 ε̄0γ

5η0⟨J µ
cov⟩+

[(5a− c)
6π2 F̃ µ

ν−
a

4π2

(
Rµ

ν−
1
2Rδ

µ
ν

)]
η̄0γ

νη0+∇ρVµρS , (5.30)

with

VµρS = (5a− 3c)
6π2 ε̄0(F̃ µρη0) + ic

6π2 ε0
(
γ[µ

νδ
ρ]
σ − δ[µ

ν δ
ρ]
σ

)
γ5(F νση0)

− 3(2a− c)
4π2 ε̄0

(
Pνσg

ν[σγµρ]η
)
− (a− c)

8π2 ε0

(
Rµρνσγνσ −

1
2Rgνσg

ν[σγµρ]
)
η0 . (5.31)

Combining (5.7) and (5.30), and using the commuting spinor identity η̄0γ
5ε0 = −ε̄0γ

5η0,
we arrive at the result
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ε̄0(δε0 + δη0)⟨Sµ⟩ = 1
2 ε̄0γνε0

(
⟨T µνcov⟩+ (a− c)

24π2 FρσR̃
ρσµν

)
+ 3i

2 (ε̄0γ
5η0)⟨J µ

cov⟩ (5.32)

+
[(5a− c)

6π2 F̃ µ
ν −

a

4π2

(
Rµ

ν −
1
2Rδ

µ
ν

)]
η̄0γ

νη0 +∇ρ(VρµQ + VµρS ) .

Inserting this in (5.2) and dropping the total derivative terms we conclude that BPS states
satisfy the integral constraint

0 =
∫

C
dσµε̄0(δε0 + δη0)⟨Sµ⟩

=
∫

C
dσµ

{1
2 ε̄0γνε0

(
⟨T µνcov⟩+ (a− c)

24π2 FρσR̃
ρσµν

)
+ 3i

2 (ε̄0γ
5η0)⟨J µ

cov⟩

+
[(5a− c)

6π2 F̃ µ
ν −

a

4π2

(
Rµ

ν −
1
2Rδ

µ
ν

)]
η̄0γ

νη0

}
. (5.33)

We will now show that this constraint corresponds to the BPS relation among the bosonic
charges of supersymmetric states and determines the supersymmetric Casimir energy.

5.2 BPS relation and the supersymmetric Casimir energy

In order to relate the constraint (5.33) to the conserved R-charge and conformal Killing
charges, respectively (4.3) and (4.11), we begin by showing that the spinor bilinear ε̄0γ

µε0

is a conformal Killing vector. In fact, for later use we show more generally that if ε0 and ε′
0

are conformal Killing spinors, then the spinor bilinear

Kµ(ε0, ε
′
0) ≡ ε̄′

0γ
µε0 , (5.34)

is a conformal Killing vector.

We have,

∇µKν(ε0, ε
′
0) = ε̄′

0
←−
D µγνε0 + ε̄′

0γνDµε0

= − η̄′
0γµγνε0 + ε̄′

0γνγµη0

= ε̄0γνγµη
′
0 + ε̄′

0γνγµη0 , (5.35)

where we used the Killing spinor equations (4.12) and (4.13) and the fact that for commuting
spinors η̄′

0γµγνε0 = −ε̄0γνγµη
′
0. Hence,

∇µKν(ε0, ε
′
0) +∇νKµ(ε0, ε

′
0) = gµν(ε̄0η

′
0 + ε̄′

0η0) = 1
2gµν∇ρKρ(ε0, ε

′
0) , (5.36)
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which confirms that Kµ(ε0, ε
′
0) is a conformal Killing vector.

It follows that
Kµ0 ≡ ε̄0γ

µε0 , (5.37)

is a conformal Killing vector and so (5.33) can be written in the form

0 = QωT ,ωJ [K0] +
∫

C
dσµ

{(
3i(ε̄0γ

5η0)− AνKν0 + ΛK0

)
⟨J µ

ωJ
⟩

+
(

(1− ωT )P µν
BZ + (a− c)

24π2 FρσR̃
ρσµν

)
K0ν + 3i(ε̄0γ

5η0)(1− ωJ )P µ
BZ

+
[(5a− c)

3π2 F̃ µ
ν −

a

2π2

(
Rµ

ν −
1
2Rδ

µ
ν

)]
η̄0γ

νη0

}
. (5.38)

However, the coefficient multiplying the R-current ⟨J µ
ωJ
⟩ is a constant, since

∂µ
(
3i(ε̄0γ

5η0)− AνKν0 + ΛK0

)
= 3i∂µ(ε̄0γ

5η0)− FµνKν0 , (5.39)

and

3i∂µ(ε̄0γ
5η0) = 3iε̄0

←−
D µγ

5η0 + 3iε̄0γ
5Dµη0

= − 3iη̄0γµγ
5η0 −

3i
2 ε̄0γ

5
(
Pµν + 2i

3 Fµνγ
5 − 1

3 F̃µν
)
γνε0

= FµνKν0 , (5.40)

where we used the fact that η̄0γµγ
5η0 = ε̄0γµγ

5ε0 = 0 for commuting spinors and [19]

Dµη0 = −1
2

(
Pµν + 2i

3 Fµνγ
5 − 1

3 F̃µν
)
γνε0 . (5.41)

ΦK0 ≡ 3i(ε̄0γ
5η0)− AνKν0 + ΛK0 = const. . (5.42)

We conclude that (5.33) can be further simplified to

QωT ,ωJ [K0] + ΦK0Q
ωJ
R +Q

ωT ,ωJ
local [K0] = 0 , (5.43)

where
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Q
ωT ,ωJ
local [K0] ≡

∫
C
dσµ

{(
(1− ωT )P µν

BZ + (a− c)
24π2 FρσR̃

ρσµν
)
K0ν (5.44)

+ (1− ωJ )(ΦK0 + AνKν0 − ΛK0)P µ
BZ +

[(5a− c)
3π2 F̃ µ

ν −
a

2π2

(
Rµ

ν −
1
2Rδ

µ
ν

)]
η̄0γ

νη0

}
,

is a local charge that depends only on the supergravity background. As we demonstrate in the
next section, when applied to the global timelike Killing vector, the relation (5.43) determines
the energy of a BPS state in terms of the conserved R-charge, with (5.44) corresponding to
the supersymmetric Casimir energy.

6 Casimir energy on R× S3

The BPS relation (5.43) and the local charge (5.44) hold for any supersymmetric background
of N = 1 conformal supergravity with numerically vanishing superonformal anomalies. Such
backgrounds have been studied extensively [24–34] (see also [35, 36] for earlier work). In
this section we will focus on a concrete background for which the supersymmetric Casimir
energy has been computed in the literature by other means. In particular, we will apply our
general result to an example in the class of backgrounds with topology R × S3 (or S1 × S3

in Euclidean signature) that admit two supercharges with opposite R-charge.

6.1 Supersymmetric backgrounds with R× S3 topology

Following [5], we consider four-dimensional backgrounds of topology R × S3 that admit a
non-singular complete direct product metric of the form3

ds2 = −Ω2(ρ)dt2 + f 2(ρ)dρ2 +mIJ(ρ) dφI dφJ , I, J = 1, 2 , (6.1)

where φI ∈ [0, 2π], ρ ∈ [0, 1], while the functions Ω(ρ), f(ρ) are positive definite, as is
the symmetric matrix mIJ(ρ). This metric possesses an R × U(1)2 isometry (U(1)3 in its
Euclidean form) corresponding to the commuting Killing vectors ∂t, ∂φ1 and ∂φ2 .

Demanding that the background admits two supercharges with opposite R-charge requires
the existence of a globally defined null Killing vector of the form

3The corresponding Euclidean backgrounds are obtained by setting t = iτ , see e.g. [32, 37].
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K = 1
2(∂t + bI∂φI

) = 1
2(∂t + b1∂φ1 + b2∂φ2) , (6.2)

where b1, b2 are real parameters. The requirement that this is null fixes

Ω2 = bImIJb
J . (6.3)

However, note that the metric on S3, which is parameterized by f(ρ) and mIJ(ρ), is not
constrained by supersymmetry.

Finally, the globally well defined R-symmetry gauge field takes the form [5]4

A = − Ω
8fc∂ρ

[
(c2 + a2

χ)
(
dφ1

b1
− dφ2

b2

)
+ 2aχ

(
dφ1

b1
+ dφ2

b2
+ dt

)]
− 1

2dω , (6.4)

where

aχ = 1
Ω2 (b2

1m11 − b2
2m22) , c = 2|b1b2|

Ω2

√
det(mIJ) , ω = sgn(b1)φ1 + sgn(b2)φ2 . (6.5)

These expressions describe a family of non-singular backgrounds that admit two super-
charges of opposite R-charge. They are parameterized by the arbitrary non-singular metric
on S3 and the real parameters b1, b2. The squashed (Berger) three-sphere is a special case of
these backgrounds [5]. However, for simplicity we will illustrate our results by considering
the background with arbitrary b1, b2 and the round metric on S3.

6.2 Round S3 with arbitrary b1, b2

Defining the angular coordinate θ = πρ, the metric (6.1) corresponding to the round S3 is

ds2 = −Ω2dt2 + dθ2 +mIJdφIdφJ , (6.6)

with

m11 = 4 cos2 θ

2 , m22 = 4 sin2 θ

2 , m12 = 0 , f = π . (6.7)

These expressions for mIJ completely determine the background. In particular,

Ω2 = bImIJb
J = 2

(
b2

1 + b2
2 + (b2

1 − b2
2) cos θ

)
, (6.8)

4This differs by an overall minus sign compared to [5] due to different conventions.

22



aχ = 1
Ω2 (b2

1m11 − b2
2m22) = b2

1 − b2
2 + (b2

1 + b2
2) cos θ

b2
1 + b2

2 + (b2
1 − b2

2) cos θ , (6.9)

and
c = 2|b1b2|

Ω2

√
det(mIJ) = 2|b1b2| sin θ

b2
1 + b2

2 + (b2
1 − b2

2) cos θ . (6.10)

Inserting these in (6.4) we obtain the R-symmetry gauge field

A = sgn(b1b2)
Ω (b2dφ1 + b1dφ2) + |b1b2|

Ω dt− 1
2dω . (6.11)

Killing spinors

The Killing spinors are solutions of the conformal Killing equation (4.15). In order to solve
this equation we introduce a suitable local frame for the background metric (6.6), namely

e0 = Ωdt ,

e1 = Ω
2b1b2

(
(1 + aχ)b2dφ1 + (1− aχ)b1dφ2

)
,

e2 = dθ ,

e3 = Ω
2b1b2

(b2dφ1 − b1dφ2) , (6.12)

so that
ds2 = −(e0)2 + (e1)2 + (e2)2 + (e3)2 . (6.13)

We also use the Weyl representation of the gamma matrices so that γµ = eµaγ
a with

γa =
(

0 σa

σ̄a 0

)
, σa = (−1, σi), σ̄a = (1, σi) , (6.14)

and
γab =

(
σab 0
0 σ̄ab

)
, σab = 1

2[σa, σ̄b], σ̄ab = 1
2[σ̄a, σb] . (6.15)

Moreover, the chirality matrix takes the form

γ5 =
(

1 0
0 −1

)
. (6.16)
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Th commuting Majorana spinors ε0 and η0 can then be expressed as

ε0 =
(
ϵ

ϵ̃

)
, η0 =

(
ζ

ζ̃

)
, (6.17)

where ϵ, ζ are left-handed two-component Weyl spinors and ϵ̃ ≡ iσ2ϵ
∗, ζ̃ ≡ iσ2ζ

∗. Moreover,
the Killing spinor equation (4.15) is equivalent to the two-component spinor equations

DLµ ϵ = σµζ̃ , ζ̃ = 1
4 σ̄

µDLµ ϵ , DRµ ϵ̃ = σ̄µζ , ζ = 1
4σ

µDRµ ϵ , (6.18)

where the chiral derivatives are DLµ = ∂µ + 1
4ω

ab
µ σab + iAµ and DRµ = ∂µ + 1

4ω
ab
µ σ̄ab − iAµ.

For generic b1 and b2 the Killing spinor equation (4.15) admits the unique solution

ε0 = e
i
2ω

√
Ω
2


−1
1
0
0

+ e− i
2ω

√
Ω
2


0
0
1
1

 , (6.19)

while η0 = 1
4γ

νDνε0 takes the form

η0 = − i

(2Ω)3/2 e
i
2ω


0
0

−2|b1b2|+ ΩΩ′

2|b1b2|+ ΩΩ′

− i

(2Ω)3/2 e
− i

2ω


2|b1b2|+ ΩΩ′

2|b1b2| − ΩΩ′

0
0

 . (6.20)

Having determined the conformal Killing spinor, we can evaluate the three spinor bilinears
that enter in the BPS relation (5.43) and the local charge (5.44). We find

ε̄0γ
µε0 = −4Kµ ,

3iε̄0γ
µη0 − Aµε̄0γ

µε0 = −(|b1|+ |b2|) ,

η̄0γ
µη0 = 1

4K
µ − 1

2Ω2

(
b2

1 + b2
2, 0, (b2

1 − b2
2)b1,−(b2

1 − b2
2)b2

)
, (6.21)

where K is the globally defined null Killing vector (6.2). These expressions reaffirm the
results we obtained earlier. In particular, ε̄0γ

µε0 is a Killing vector, as it should, while the
R-charge potential (5.42) is indeed constant (note that ΛK0 = 0 in this case since LK0Aµ = 0).
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Casimir energy

We now have all ingredients in order to evaluate the local charge (5.44) on this supersym-
metric background. Since ε̄0γ

µε0 = −4Kµ ∼ −2∂t, the Casimir energy corresponds to

EωT ,ωJ
Casimir ≡ −

1
2Q

ωT ,ωJ
local [K0] = Q

ωT ,ωJ
local [2K] , (6.22)

and, therefore, it is given by

EωT ,ωJ
Casimir ≡

∫
C
dσµ

{(
2(1− ωT )P µν

BZ − Lµν
)
Kν − (1− ωJ )3i

2 (ε̄0γ
5η0)P µ

BZ

+
[
a

4π2

(
Rµ

ν −
1
2Rδ

µ
ν

)
− (5a− c)

6π2 F̃ µ
ν

]
η̄0γ

νη0

}
, (6.23)

where Kµ is the globally defined Killing vector in (6.2), Lµν is given in (3.14), while the BZ
terms are given in (3.8) and (3.10).

Evaluating the R-current BZ term on the background specified by the metric (6.6) and
R-symmetry gauge field (6.11) we find

P µ
BZ = 2(5a− 3c)

27π2
(b2

1 − b2
2)

2Ω4

(
− sgn(b1b2)(|b1| − |b2|), 0,−|b1|b2, |b2|b1

)
. (6.24)

Similarly, the only nonzero components of the stress tensor BZ term (3.10) become

P tφ1
BZ = (c− a)

3π2
(b2

1 − b2
2)

Ω8 (2Ω− 5|b1|) b2
1b

2
2 sgn(b2) ,

P tφ2
BZ = − (c− a)

3π2
(b2

1 − b2
2)

Ω8 (2Ω− 5|b2|) b2
1b

2
2 sgn(b1) . (6.25)

Moreover, the nonzero components of the tensors Lµν and F̃µν are respectively

Ltφ1 = (a− c)
24π2

(b2
1 − b2

2)2

Ω6 |b1|sgn(b2)(1− cos θ) ,

Ltφ2 = (a− c)
24π2

(b2
1 − b2

2)2

Ω6 |b2|sgn(b1)(1 + cos θ) ,

Lφ1φ2 = − (a− c)
48π2

(b2
1 − b2

2)
Ω4 |b1b2| , (6.26)
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and

F̃tφ1 = − (b2
1 − b2

2)
Ω2 |b1|sgn(b2)(1 + cos θ) ,

F̃tφ2 = (b2
1 − b2

2)
Ω2 |b2|sgn(b1)(1− cos θ) ,

F̃φ1φ2 = 2(b2
1 − b2

2)
Ω4 |b1b2| sin2 θ , (6.27)

while the Einstein tensor on the supersymmetric background (6.6) takes the form

Rµν −
1
2Rgµν = diag

(
0, b

2
1 + b2

2
Ω2 ,

b2
2m11

Ω2

(4b2
1

Ω2 + 1
)
,
b2

1m22

Ω2

(4b2
2

Ω2 + 1
))
− 3

4gµν . (6.28)

Putting everything together we can evaluate the integral (6.23) on the Cauchy surface
defined by the constant time slices. The result is

EωT ,ωJ
Casimir = 3a

2
|b1||b2|

(|b1|+ |b2|)
+ (|b1| − |b2|)2

9b1b2(|b1|+ |b2|)
(
c1(|b1|2 + |b2|2) + c2|b1||b2|

)
, (6.29)

where the coefficients c1 and c2 are given by

c1 = (5a− 3c)(ωJ − 1)− (a− c)(2ωT − 1) + 3
2(5a− c) ,

c2 = 9a sgn(b1b2) + 2(5a− 3c)(ωJ − 1)− 3(a− c)(ωT − 1) + 3
2(5a− c) . (6.30)

For |b1| = |b2|, in which case the metric (6.6) is conformally flat, (6.23) reduces to

ECasimir = 3a
4 |b| , |b1| = |b2| = |b| , (6.31)

independently of the values of ωT and ωJ . This result is in agreement with the expression
(1.3) in the scheme where the coefficient of the R4 counterterm is set to zero.
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A Conventions and spinor identities

Our spacetime and spinor conventions are those of [18]. The tangent space metric is η =
diag (−1, 1, 1, 1) and the Levi-Civita symbol εµνρσ = ±1 satisfies ε0123 = 1. Moreover, the
Levi-Civita tensor is defined as ϵµνρσ = √−g εµνρσ = e εµνρσ. Finally, the chirality matrix is

γ5 = iγ0γ1γ2γ3 . (A.1)

Several gamma matrix and spinor identities we use in this manuscript are given in Ap-
pendix A of [19]. Here we quote only the gamma matrix identities

γµνρσ = iϵµνρσγ5, γµνρ = iϵµνρσγσγ
5, γµν = i

2ϵ
µν
ρσγ

ρσγ5 (A.2)

and the anticommuting spinor flip relations under Majorana conjugation

ε̄ γ5η = η̄γ5ε ,

ε̄ γµη = −η̄γµε ,
ε̄ γµγ

5η = η̄ γµγ
5 , ε

ε γσγµνγ5η = −η̄ γµνγσγ5ε ,

ε γσγµνη = η̄ γµνγσε . (A.3)

However, the evaluation of the Casimir energy involves bilinears of commuting spinors,
for which the flip relation (A.3) hold with an additional minus sign. Using these we now
prove two identities commuting spinor identities that we use extensively in the our analysis.

η̄γρ
(
4δ[µ
ν δ

ρ]
σ + iγ5ϵµν

ρ
σ

)
γνγ5ε = −6δµσ η̄γ5ε . (A.4)

Proof
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The first term can rewritten as follows:

η̄γρ(4δ[µ
ν δ

ρ]
σ )γνγ5ε = 2 η̄γρ(δµν δρσ − δρνδµσ)γνγ5ϵ

= 2 η̄γσγµγ5ϵ− 2δµσ η̄γνγνγ5ε

= 2gκση̄γκγµγ5ε− 8 δµσ η̄γ5ε ,

(A.5)

where in the second step we used that γνγν = 4. The first term of eq. (A.5) becomes

2gκση̄γκγµγ5ε = 2gκση̄(γκµ + gκµ)γ5ε

= 2gκσ η̄γκµγ5ε+ 2δµσ η̄γ5ε ,
(A.6)

and expressing γµν in terms of the Levi-Civita symbol using eq. (A.2), we get

2gκσ η̄γκµγ5ε = igκσ ϵ
κµ
νρ η̄γ

νρε = −iϵµσνρ η̄γνρε . (A.7)

Inserting eq. (A.6) we obtain

2gκση̄γκγµγ5ε = −iϵµσνρ η̄γνρε+ 2δµσ η̄γ5ε , (A.8)

so that eq. (A.5) is written as

η̄γρ(4δ[µ
ν δ

ρ]
σ )γνγ5ε = −iϵµσνρ η̄γνρε− 6δµσ η̄γ5ε . (A.9)

The second term of the spinor part in eq. (5.4) is easily treated and gives

iη̄γργ
5ϵµν

ρ
σγ

νγ5ε = iϵµσρν η̄γ
ργνε0 = iϵµσνρ η̄γ

νρε0 . (A.10)

Summing eq. (A.9) and eq. (A.10) the Levi-Civita part cancels out and get eq. (A.4). ■

ε̄γρ g
ν[σγµρ]η = − i3ϵ

σµνρ η̄γργ
5ε− 2

3 g
νσε̄γµη + 2

3 g
µν ε̄γση . (A.11)

Proof

Let us first consider the γ-terms. We have

γρ g
ν[σγµρ] = 1

3γρ (gνσγµρ + gνργσµ + gνµγρσ) = 1
3(−3gνσγµ + γνγσµ + 3 gµνγσ) , (A.12)
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where we used that γργρµ = 3γµ. For commuting spinors ε̄γνγµρη = −η̄γµργνε and hence

ε̄γρ g
ν[σγµρ]η = −gνσε̄γµη + gµν ε̄γση − 1

3 η̄γ
σµγνε . (A.13)

Note that the last term may be written as

η̄γσµγνε = η̄ (γσµν + γσgµν − γµgσν) ε . (A.14)

The first term in this expression gives η̄γσµνε = iϵσµνρ η̄γργ
5ε. Inserting eq. (A.14) in

eq. (A.13) we obtain eq. (A.11). ■

Note that for ε = η, the first term on the r.h.s of (A.14) vanishes and we get

η̄γρ g
ν[σγµρ]η = −2

3 g
νση̄γµη + 2

3 g
µν η̄γση . (A.15)
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