arXiv:2312.17740v1 [hep-th] 29 Dec 2023

Supersymmetric Casimir energy on

N =1 conformal supergravity backgrounds

Pantelis Panopoulos® , Ioannis Papadimitriou®

® Asia Pacific Center for Theoretical Physics, Postech, Pohang 37673, Korea

b Division of Nuclear and Particle Physics, Department of Physics, National and
Kapodistrian University of Athens, GR-157 84 Athens, Greece

Pantelis.Panopoulos@apctp.org, Ioannis.Papadimitriou@phys.uoa.gr

Abstract

We provide a first principles derivation of the supersymmetric Casimir energy of
N =1 SCFTs in four dimensions using the supercharge algebra on general confor-
mal supergravity backgrounds that admit Killing spinors. The superconformal Ward
identities imply that there exists a continuous family of conserved R-currents on super-
symmetric backgrounds, as well as a continuous family of conserved currents for each
conformal Killing vector. These continuous families interpolate between the consistent
and covariant R-current and energy-momentum tensor. The resulting Casimir energy,
therefore, depends on two continuous parameters corresponding to the choice of con-
served currents used to define the energy and R-charge. This ambiguity is in addition
to any possible scheme dependence due to local terms in the effective action. As an ap-
plication, we evaluate the general expression for the supersymmetric Casimir energy we
obtain on a family of backgrounds with the cylinder topology R x S3 and admitting two
supercharges of opposite R-charge. Our result is a direct consequence of the supersym-
metry algebra, yet it resembles more known expressions for the non-supersymmetric
Casimir energy on such backgrounds and differs from the supersymmetric Casimir en-
ergy obtained from the zero temperature limit of supersymmetric partition functions.
We defer a thorough analysis of the relation between these results to future work.
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1 Introduction and summary of results

The Casimir energy of a conformal field theory (CFT) is defined as its ground state energy.
Placing the theory on the cylinder R x S?~! and in the absence of other background fields it
is given by

gCasimir = /Sd—l ddilx\/ —g <7;t>g.s.7 (11)

where 7, is the energy-momentum tensor and (...)gs stands for the expectation value in
the ground state of the CFT on the cylinder. This is determined by the conformal anomaly

(TH = (aE — cW? +b0R), (1.2)

(47)?

where F is the Euler density, W? the square of the Weyl tensor and the anomaly coefficients
a and ¢ depend on the specific CFT. The b-term is scheme-dependent and corresponds to
the addition of a local counterterm proportional to R* in the effective action.



To evaluate the Casimir energy, one may integrate the conformal anomaly (1.2) in or-
der to determine its contribution to the effective action, known as the Riegert action [1,2].
Its derivative with respect to the background metric computes the expectation value of the
energy-momentum tensor in the ground state, and hence the Casimir energy (1.1). Conce-
quently, the Casimir energy of a CFT is in general determined by the conformal anomaly
coefficients a and ¢, as well as any scheme-dependent terms, such as b. For example, the
Casimir energy on the round unit sphere is given by (see e.g. [3])

3 b
asimir — 7 -5 - 1.
£ 4(“ 2) (1.3)

The Casimir energy, therefore, is in general a scheme-dependent quantity.

The procedure outlined above applies to any CF'T, including supersymmetric conformal
field theories (SCEFTs). However, supersymmetry allows several alternative approaches to
computing the supersymmetric Casimir energy [3-9], while requiring that the renormaliza-
tion scheme preserves supersymmetry reduces considerably the allowed scheme dependence.
One common definition of the Casimir energy on Sé x M3 with M3 a three-manifold admit-
ting supersymmetry is given by the “zero temperature” limit, 8 — oo, of the supersymmetric
partition function. Namely,

sus . d sus
gCas}i,mir - = ﬂh_)r{.lo % 1Og ZSé >}</M3 ) (14)

since the f — oo limit projects the ground state energy.

For N' =1 SCFTs on Sj x S ,, with squashing parameters by and b, it has been shown
using supersymmetric localization that [5]

susy

susy = _ﬂg asimir susy
Zgixss =€ il gn s (1.5)
where Isé «s3 1s the superconformal index and the exponential factor determines the Casimir
energy through the definition (1.4), namely

Am (|ba + [b2])’

3c —2a). 1.6
7 o] 0T %) (1)

Casimir

sus, 4
Enie (b1,82) = S (Ibr] + o]y (2 — <) +

For by = by = %, (1.6) gives the supersymmetric Casimir energy on the round sphere

Casimir 27'('7 o 27

gousy (5 5) ~ L a3 (1.7)



Another approach to computing the supersymmetric Casimir energy was undertaken
in [3], by reducing an N = 1 theory on S} x M; to quantum mechanics. The 1d Hamiltonian
is the sum of the Hamiltonian for chiral and Fermi multiplets and, therefore, the ground
state energy can be computed through the expression

(Hyusy) = Y (Henirat) + D (Hpermi) - (1.8)

chiral Fermi

The result for the Casimir energy Ecasimir = (Hsusy) S0 obtained agrees with (1.6) and (1.7).
Yet another approach was considered in [6], where it was conjectured that the supersymmet-
ric Casimir energy in d even dimensions is given by an equivariant integral of the anomaly
polynomial in two higher dimensions.

The approach we follow in the preset work, however, is based on the supersymmetry
algebra. On a curved background, the supercharges satisfy (schematically) the algebra

{QTJ Q} =H — QR - €Casimir ) (19)

where H is the Hamiltonian and (g is the R-charge operator. Since in a supersymmetric
vacuum ({QF, Q}) = 0, it follows that

<H - QR>g.s. = gCasimir . (1.10)

We determine the general form of the Casimir energy Ecasimir in (1.9) by coupling a generic
N =1 SCFT to background conformal supergravity and using the operator algebra obtained
in [19]. This leads to the general expression (6.23) for the supersymmetric Casimir energy in
terms of local curvatures and Killing spinor bilinears. Evaluating this general expression on
backgrounds with the cylinder topology R x S® and admitting two supercharges of opposite
R-charge we arrive at the expression (6.29). This result is consistent with (1.3), but differs
significantly from (1.6). We defer a thorough analysis of the relation between these two
results to a future publication.

The rest paper is organized as follows. In section 2 we review the N/ = 1 superconfor-
mal Ward identities of conformal supergravity, including the superconformal anomalies. In
section 3 we introduce the relevant Bardeen-Zumino terms for the R-current and energy-
momentum tensor, which allow us to rewrite the superconformal Ward identities in terms of
the covariant R-current and the energy-momentum tensor. In section 4 we consider bosonic
backgrounds with numerically zero anomalies, such as those admiting Killing spinors, and
show the existence of continuous families of conserved R-charges and charges associated with
conformal Killing vectors. Section 5 is devoted to the detailed evaluation of the Casimir en-
ergy on such backgrounds using the anomalous transformation of the supercurrent obtained



in [19]. This leads to the general BPS relation (5.43) and the “local charge” (5.44). These
are the main results of this work. As an illustrative example, in section 6, we evaluate the
Casimir energy on R x S®, obtaining the result (6.23).

2 N =1 superconformal Ward identities

The superconformal Ward identities that four-dimensional A" = 1 SCFTs satisfy can be de-
termined by coupling the theory to N/ = 1 off-shell conformal supergravity [10-13], whose
field content consists of the vielbein e}, "
itino 1), comprising 543 bosonic and 8 fermionic off-shell degrees of freedom. Treating the

an Abelian gauge field A,, and a Majorana grav-

supergravity fields as external background fields, the SCFT partition function takes the form
Zle, A,v] = [[D@lesitet], (2.1

where ® denotes collectively all the microscopic degrees of freedom.!

The logarithm of the partition function on an arbitrary supergravity background
W[evAaw] =—1 IOgZ[€7A7¢] ’ (22)

is often referred to as the ‘quantum effective action’ and amounts to the generating function
of connected (renormalized) correlation functions of the current operators

oW

<7-'u‘> = e 715& — 716&
@ 562’

Sty = ¢ 127
SA,’ (Sa) =e 50,

(Ja) =e (2.3)

where e = det(ej) and the notation (-) denotes one-point functions in the presence of arbi-
trary sources, i.e. on an arbitrary supergravity background. These operators comprise the
conformal multiplet of currents and satisfy a set of superconformal Ward identities.

N = 1 conformal supergravity is a gauge theory of the N/ = 1 superconformal algebra
[10-13] (see [14-17] and chapter 16 of [18] for pedagogical reviews). Its local symmetries
consist of diffeomorphisms £#(x), Weyl transformations o(z), local frame rotations A% (z),
U(1) R-symmetry transformations 6(x), as well as Q- and S-supersymmetry transformations,

!Evaluating the path integral over the microscopic degrees of freedom ® in general requires the intro-
duction of a regulator that explicitly breaks conformal symmetry. Although the regulated theory cannot
couple consistently to conformal supergravity, the renormalized theory can, even in the presence of super-
conformal anomalies. Throughout this article we refer exclusively to the renormalized observables, which
can consistently couple to conformal supergravity.



parameterized respectively by the local spinors £(z) and n(z). Under these, the fields of

N =1 conformal supergravity transform as

57%7(15 )

1 1 .
5¢u = 5A3A% + %@LSA - ZAab’)/abwu + §U¢u + DME = Yull — 2759¢u )

oe, = 8@@; + ei@uR — )\“bez + o€, —

31— 31—
§A, = E A, + 400, + Zd)ﬂ”e — Zw,ﬂ"’n + 0,0,
h
where 1
HT6
and the spinor covariant derivatives are given by

(45553} + i’y5eu,,pg)'y”l)pwa ,

1 , ‘
Doty = (B + ™ V)90 + 1P )y = Tty = (T 0P A

1
D, = (QL - Zwuab(e, V) Yap + i75Au)5 = (@M + 2'7514“)5 .

In these expressions w,® (e, 1) denotes the torsion-full spin connection

1, _ _
w0 e, 1) = 0, (e) + 7 (Parths + Dy vaty = Vymta)

where w,%(e) is the torsion-free metric compatible connection.

(2.4)

(2.5)

(2.6)

(2.7)

The quantum effective action (2.2) of any N' = 1 SCFT is invariant under the local
symmetry transformations (2.4), up to local expressions in the background supergravity

fields that comprise the multiplet of superconformal anomalies. In particular, there exists

a renormalization scheme such that, under an infinitesimal local symmetry transformation

with parameters Q2 = (£, 0, A, 0,¢,7), the quantum effective action transforms as

doWle, A, ¢ = /d493 e(a.AW —0AR —cAQ + ﬁAs) ,

(2.8)



where the superconformal anomalies Ay, Ag, Ag and Ag take the form [19]

Aw = 153 (W2 a in) 167r2E +0WY,
Ag= - Wﬁ“%w%u - (‘%;2‘3)% (A B )y tho) — <2 e D By B8 + O
As = (5616;236)@” (DM - 2Z'A,n5) ¥+ i—CQF“” (wl"0) = 31785 )7* Dy (29)

N 3<2Z7T;c) Pog 1D, + Wc) ( Reverny,, — ; nggmwpd)pp% +OW?).

The anomaly coefficients a and ¢ in these expressions depend on the specific SCFT and
are normalized such that for N, free chiral and N, free vector multiplets [20]
1

a=—(N, +9N,),

1
o — (N, +3N,). (2.10)

T 24

W2 in (2.9) denotes the square of the Weyl tensor, while £ and P are respectively the Euler
and Pontryagin densities. Namely,

1
W2 = WpeWH P = Rype R*P — 2R, R + - R,

3
E = RWpUR“”p” — 4R, R" + R?,
P = 3 ”“’\“”R,.i,\pURW”” = R R (2.11)
where
D — 1 H)\
Rvpe = 6w Rixpo - (2.12)
Finally, P,, in (2.9) denotes the Schouten tensor
1 1
P = 5 (R = <R ). (2.13)
and we have defined
1 ~ 1
F?=F,F", 6  FF= 3¢ Fuwloos  Fu = 56w Fpo (2.14)

The anomalous transformation (2.8) of the quantum effective action, together with the
definition of the currents (2.3), leads to the superconformal Ward identities [19]



EVATE) + VoB,48) = B, Du(S") = FulT”)
+ A (VAT + T,5°(5) =0 (eualT) + JP0(S) =0,
ATE) + 2 Bu(S") = Aw
euolT) + 0, 1a(8) = 0,
VAT + W,0%(S*) = An,
DU(SH) = 3AulTE) = S1°9udT*) = g,

VulSH) — ?Z75¢H<J“> =As. (2.15)

The transformation (2.8) of the quantum effective action, and hence the local terms in
the Ward identities (2.15), may be modified by adding local terms to the effective action
Wle, A,1]. For example, adding the term

/AATr<rAdP+§MrAr>, (2.16)

with I, = I'} da” the Christoffel connection, breaks the diffeomorphism invariance of the
effective action and modifies the form of its anomalous transformation under the rest of the
local symmetries. In particular, the addition of this term with a specific coefficient eliminates
the Pontryagin term from the R-symmetry anomaly Ag, as is reviewed e.g. in [21]. Although
the fermionic anomalies Ag and Ag can be modified by the addition of such local terms,
there exists no local term that sets them to zero within conformal supergravity. It is these
fermionic anomalies Ag and Ag that determine the supersymmetric Casimir energy [9)].

3 Bardeen-Zumino terms and covariant currents

The anomalies (2.9) are solutions of the Wess-Zumino (WZ) consistency conditions for the
local symmetry transformations (2.4) of A/ = 1 conformal supergravity [19]. As such, they
correspond to the so called consistent anomalies, while the operators defined in (2.3) are
known as the consistent currents. As a consequence of the R-symmetry anomaly, the consis-
tent currents are not gauge invariant, while if the local term (2.16) is added to the effective
action, the consistent currents are not diffeomorphism covariant either.

The gauge and diffeomorphism covariance of the R-current J# and of the stress tensor
T+ can be restored by adding local Bardeen-Zumino (BZ) terms to the currents [22]. These



terms are not related to the choice of renormalization scheme discussed above, since they
cannot be expressed as derivatives of a local term in the effective action. Instead, they arise
from a Chern-Simons action in five dimensions that cancels the R-symmetry /mixed anomaly
through the mechanism of anomaly inflow (see e.g. [21] for an extensive discussion).

However, the BZ terms for the R-current and the energy-momentum tensor are already
encoded in the form of the anomalies (2.9) [9,19]. This observation was understood in [23]
as a direct consequence of the WZ consistency conditions. As an example, let us consider
the WZ condition?

(0g09 — 6g0e)WW = 0. (3.1)

In the absence of the local term (2.16), 6.V = 0 and so d¢dpWV = 0 and 6y VW = 0 separately.
These imply respectively that WV is diffeomorphism invariant and d:)V is gauge invariant.
Focusing on §¢W, it can be expressed in terms of the consistent currents (2.3) as [19]

5W = — [ diee g (aV(T2) + Vul$,48") = B, DulS") = FudT”) + Audr) . (3.2)

whose bosonic part is not manifestly gauge invariant. As we will now demonstrate, the form
of the R-symmetry anomaly Apg is such that this expression can be written in manifestly
gauge invariant form in terms of the covariant R-current and energy-momentum tensor.

Writing the R-symmetry anomaly explicitly, the bosonic terms in (3.2) take the form
€ZVV<7;V> - F/ﬂ/<x7y> + A,uAR

(5a — 3c)
5472

GK/\pUFﬂ)\FpgAH + (C - a> GK/\pURx)\aﬁRpaaﬁAu . (33>

= VTY) — FulT) + T

Antisymmetrizing five indices in four dimensions gives zero. Hence, Fj,.f),A, = 0 and
R[n,\anggo‘B A, = 0, which imply respectively the identities

N FAFp A, = —4e M7 F, Fy, A, (3.4)

and
EHAPUR,{)\QQRPJQ’BAM = —4€HAPUR#5C¥5RAP&BAJ. (35)

2We adopt the convention of [19], where the transformations act of the transformation parameters as
well. This is analogous to the BRST treatment of the WZ consistency conditions, where the transformation
parameters are replaced by ghost fields that themselves transform. The same conclusions are reached in the
convention that the transformation parameters do not transform — see section 3.2 of [23].



Therefore, the bosonic part of (3.2) becomes

V(1)) = Fu(T") + ApAr

cC—a
= e, V(1)) = Flu(T) — (uﬁ)ewﬂmmﬁmﬁmg , (3.6)

where the covariant R-current is given by
(Jlov) =(T") + Pyg, (3.7)

with the Bardeen-Zumino term

2(ba — 3¢)

Phy = 2772

e Fy A, (3.8)

Since the local term (2.16) is absent, the consistent R-current J* transforms as tensor under
diffeomorphisms and so the relevant BZ term need only restore gauge invariance.

The BZ term for the energy-momentum tensor 7+ = TH%e" takes the form [21]

1
sz - _ §v>\<)(>\uu + )()\V[,L . X'pu)\) 7
px (C—(I) UPKT DA APKO D
X, = = ot (€7 Ry + € R0 ) A, (3.9)

With a bit of algebra this can be simplified to

v (C — CL) apko v
Piz =53V (2R A, )6, 5%) . (3.10)

Evaluating its covariant divergence we find

VuPgy = (012_75) ViV (G“p”"R’\VmAp + GVPHUR)‘“MA,J> (3.11)
_ 1
B ﬁ%j) (UW Vol + VaVi ) (77 RY o Ay) + 519, vﬂ(e“ﬁ”"RMmAp))
c—a RO v VpRO KO v
- <247T2) ([V#, V)\](QE“p R)\ ”UAP s RH)\HO'AP> + v)\<€,up R)\ no‘FHP)> )

where we made use of the second Bianchi identity V[uR“)‘Vp] = 0.

Moreover, using the first Bianchi identity, Ry, , = 0, we obtain

[V, Vo] (2e"75 RY (g A, — /PR R LA = 267 RY n R 0 A, (3.12)



and hence

VuPsy = (612_W3>6”°‘“"R”WR“AMAP +V,L", (3.13)
where
o= =D p poow 3.14
_ 1272 po : ( o )

It follows that the bosonic part of (3.2) takes the form

e ViulTy) = Fu(T") + AuAr = V(T u) = Fuu(Teon) = Vul"u, (3.15)

where

(T&5v) = (T™) + Ppy. (3.16)

Since L, is gauge invariant, we have demonstrated that all terms in (3.2) can be made
manifestly gauge invariant in terms of the covariant R-current and energy-momentum tensor.

The covariant R-current and energy-momentum tensor help simplify not only the diffeo-
morphism and R-symmetry Ward identities, but also those for Q- and S-supersymmetry. In
particular, in terms of the covariant currents, the Ward identities (2.15) take the form

Y Tea) + Vo (B,(5")) = B, Dol S") = FulTl) = AL,
T o) + 50,51 = A

eutal T + TH8(5") = 0,

VT + 5,775 = A,

Do) — 51 Thior) — S Bl Tt} = A",

Z
TSy = Tr Wl Th) = AT (3.17)

with the covariant anomalies given by the simple expressions

10



cov v (a — C) v PO

Dp= Vol = 1272 VY (o R 1)

cov c 2 8 2> a 2

1% Aw 162 (W 3 1672 + O(w ) !

cov _ (Ba—3¢c) ~ (c—a)
AR =g P+ o Ps

cC—a ~

g =D, By, 4 0,

cov_ [(Ba—=3¢) =s | € it o sosol)s . S(2a—¢) v po]
A = [ F o g (o) = 180y + SO Py

+ (CL — C) RHvPo _ lR plv A po] D w + O(w3> (3 18)
) Vv 9 Juwd =Y pFo : ’

4 Conserved charges

The superconformal Ward identities determine the conserved charges and their algebra.
In preparation for the derivation of the supersymmetric Casimir energy in the subsequent
sections, we consider the R-charge and the charges associated with conformal Killing vectors
and spinors on supergravity backgrounds that admit Killing spinors. A key property of
such backgrounds is that the supercoformal anomalies are numerically zero, resulting in
continuous families of conserved bosonic charges.

Starting with the R-charge, we define the one-parameter family of R-currents [9]

(JL) =(T") +wsPpy, (4.1)

where Pj, is the BZ term given in (3.8). Clearly, (J3') is the consistent R-current, while
(TJ!") is the covariant one. On a bosonic background the divergence of this current is

da — 3¢ ~ c—a

V(T ) =(142ws)———FF+ —=7P, 4.2
M(jw3> ( + CUJ) 277T2 + 247T2 ( )
which is nonzero on a generic supergravity background. However, for conformal supergravity
backgrounds that admit Killing spinors both terms in the R-symmetry anomaly are numeri-
cally zero, i.e. FF' =0 and P = 0. As a result, on supersymmetric backgrounds there exists

a continuous family of conserved R-charges defined as

11



Q¥ = [ do( L) (4.3)

where C is a Cauchy surface and do, is the corresponding infinitesimal area element. Notice
that although the anomalies are numerically zero on supersymmetric backgrounds, the BZ
terms are not necessarily vanishing, and hence the value of the R-charge (4.3) in general
depends on the parameter w .

Let us now consider the conserved charges associated with conformal Killing vectors of
supersymmetric backgrounds. A conformal Killing vector K satisfies the relations

1
£IC Guv = Vulcu + vylcu = i(vplcp)guu ) *CICAM = auAIC ) (44)

where L denotes the Lie derivative with respect to K and Ax is an arbitrary R-symmetry
gauge parameter. The Killing condition on the R-symmetry gauge field A, is equivalent to
the gauge-invariant condition LxF),, = 0.

As with the R-current, we define the continuous family of energy-momentum tensors

(157) = (T") + wrPgy, (4.5)

where PL7 is the BZ term (3.10). Notice again that (7¢") corresponds to the consistent
energy-momentum tensor, while (7{") is the covariant one. The divergence of this current
on a bosonic background is given by

a—C ~
VM<7Z;—V> = F,(T&y) + WT(12W2)VM(F/MRMW) . (4.6)

In order to determine the conserved charge associated with the conformal Killing vector
KH we evaluate the divergence

V(T2 + AT )KY)
= VT K+ T IVKP + B AKTL,) + ALKV T,

wT VvV wT K
= ICVFI/N<‘7C%V> + (FMVICV + aMA’C)<‘7"ﬁ7>

a—c). ., = o 1 v
+w7(127r2>lc VA ER R ) + L AWV K + ALKV (T )

= (wg = DEWK" Ppy + Vu(Ac(TL,))

a—c). ., ~ 1 V
*‘*’T(W)’C VA (FpoB7) + 7AWV K+ (ALK = AVU(TE) . (A7)

12



The relation (3.4) implies that
= " FFAK", (4.8)

and so we conclude that

1 - _
V(T2 K+ (ALK = A)(TE,)) = T AWV KP +wr (@ = v, e,

1272
(5a — 3c¢) e 5 ( ba — 3¢ ~ c—a )
+ (wy — 1) 572 AK'FF + (ALK — A) [ (1 + 2wyq) 572 FF+ 247T273 . (4.9)

It follows that if the anomalies FF, P, Ay as well as VL' vanish numerically, as is the
case for supersymmetric backgrounds, then there exists a two-parameter family of conserved
currents for any conformal Killing vector K,

V(T K"+ (ALK = Ac)(TE)) =0, (4.10)

wT Vv

and hence a two-parameter family of conserved charges

QK] = [ dow((TL K" + (ALK = A)(TL)) - (4.11)

Finally, we consider the conserved charges associated with (conformal) Killing spinors of
N =1 conformal supergravity. These are solutions of the Killing spinor equation obtained
by setting the local symmetry transformation of the gravitino in (2.4) to zero. On a bosonic
background this leads to the Killing spinor equation

Du50 = YuNo - (412)

In the following we will also need the Majorana conjugate equation

4= _
0Dy =~y - (4.13)

Expressing 19 in terms of ¢y through the algebraic relation
1 v
o = 17 D,ey, (414)

the Killing spinor equation can be written in the form

13



1
DMEO = Z—I’VM’YVDVSO o (415)

On a bosonic background the Ward identities (2.15) imply that the supercurrent is co-
variantly conserved and has zero vy-trace, i.e.

D, (S") =0, Yu(S*) =0. (4.16)
These in turn imply that
Vu(E0(S") = 20D, (8") = ~iu(S") = 0, (4.17)
and, hence, the quantity
Qleo] = [ do0(5"). (4.18)

corresponds to the conserved supercharge associated with the (conformal) Killing spinor &.
Note that the Killing spinor €y must be commuting in order for the supercharge (4.18) to be
Grassmann-valued.

5 Supersymmetric Casimir energy

We are now in a position to obtain the general form of the supersymmetric Casimir energy on
N =1 conformal supergravity backgrounds, generalizing the result of [9] to generic SCFTs
with a # ¢. Our starting point is the anomalous transformation of the supercurrent S* under
local Q- and S-supersymmetries. These transformations follow directly from the anomalous
superconformal Ward identities (2.15) and are given by [19]

1 0} _ a—c ~
6:(S") = 37°e(Tlhva) + 5 (40407 + v, 20 )11 Dy ((T20)) + o 24W2)FWRW%5,

31 da — 3¢ ~ e y ” -
68" = Sty + O3 () - L (e 50— sy DL (P (5.0)
3(2a —c y a—c Voo 1 .
= %Dy (PoogyIn) — ( = )p, KR“ *Yor = 3 R9pag"" 7" ]>n} .

14



5.1 Supercharge algebra on curved backgrounds

Taking the transformation parameters €, 7 to be the (commuting) components of a conformal
Killing spinor, €y, 19 = 17"D,co, the transformations (5.1) compute the algebra of the
corresponding supercharges through the relation

{Qleol, Qleo]}) = /(:daﬂg()(&Eo + 0y )(S") - (5:2)

Since the anticommutator of the supercharges vanishes on BPS states, this relation deter-
mines the BPS relation among the bosonic conserved charges on an arbitrary supersymmetric
background, and hence the general form of the supersymmetric Casimir energy.

Our task, therefore, is to evaluate the r.h.s. of (5.2) using th supercurrent transformations
(5.1). The term £yd,,(S*") takes the form

1 = v (a _ C) o UV ]
250’7V€0<<72(§v> + 24 2 FPURp a > + 860(45 H(sp + Z’)/ 6'u‘l/ U)’Y 7 D ( <*7cov>)7 (53)

Integrating by parts, the term proportional to the covariant R-current becomes
V, VY — 750 p(45[y5gl + i€, 0 )7 (T ) (5.4)

where

VI = Leo(4515 e )y T (5:5)

The Killing spinor equation (4.13) and the identity (A.4) in Appendix A, allow us to simplify

the second term in (5.4) to
3t

—Z(?m g0)(Tdow) - (5.6)

Therefore, we conclude that the term £¢d, (S*) takes the form

- L_ v (CL B C) PO LV 3i,
€00, (S*) = 250%50(<7Z’$v> + TﬂngaRp g ) — Z(n07580)<‘7cov> + Vv,V (5.7)

Let us next focus on the term

B 34 da — 3¢
€00 (S") = €07 "10(Tdow) + (62)

3(2a — ¢)

_ Tgop (p g7 )

— uy ’iC = v v o
goD,(F*'ng) — G250 (7[“p50_] — 5L”§U})75D,,(Fp o)
a—c)_ vpo 1 o, pv

87T2 )EODV{(RM P Yoo — iRnggp[ ’7# })770] ) (58)

and consider in turn all local terms.
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e

Integrating by parts and using the Killing spinor equation (4.13) this term becomes

(5a —3¢) ~,,, _
VS g £ ), 5.9
where . 5
yur (50~ 3) GG;Q <) Froz o, (5.10)
—gezfo (Y0, — 0J0,)y* Dy (FP7mo) -
Similarly, this term can be written in the form
ZC = vo
VoV = i (7,080 — alrael) yPmg 7 (5.11)
with ,
Vi = = e (1107 — el )y (5.12)
™
Moreover, the second term in (5.11) gives
ic oy Vo ic oy vo
— a0 (W0 = L0 ) 7o B0 = — (s = 070)7 o F
IZ.C = ag v = a
= 5 (177" 7" Foo = o7 noF*) . (5.13)
The second term vanishes, since 7y7y,7°19 = 0 for commuting spinors, while
1077 00 = 107"y 00 = To("T + 1" =g ) 0 = i€ Pigyene . (5.14)
Hence,
ic _ vo c vo — C Fup -
— o (10 = L0 ) Yo B0 = e P Eygiioin = 5 5 F* oy (5.15)
and therefore (5.11) can be simplified to
o 2C He 5
VvV, Vsl + WF 0010 - (5.16)

_ 3(2a—¢) éODV(Ppng[afyuu} 770) .

4m2
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Using integration by parts and the Killing spinor equation (4.13) this term becomes

32a—¢) . _ o
VoVs, — ( An? Poo 07, 9 kel (5.17)
where 32 )
a—C)_ vio
Vgg == A2 EO(PVO'g [ ’Y”p}no) . (518)
The second term in (5.17) can be simplified as
3(2@-0) — vio 3(2G_C)2 Vo = V= o
== Per 0%, 6770 = == 5 S Puo (=00 o + 61077
(2a—c) [ 1 _

= —727]_2 <—6R 65 + Plé—) Mo Mo, (519)

where in the last step we used that P = P,,¢"? = R/6. Observing that
Y T T (R” - 1R(5“> (5.20)

6 [ e 2 v 2 v

we arrive at the final form of the expression (5.17):

2 — 1
Ry ) (Rﬂ,, _ 235/;) o7 1l - (5.21)

472

_(Z;g) 50 Du {(Ruupof}/pa - %Rgpagp[aﬁywlono} :

This term is similarly written as

a—c)_ Vo 1 o
VoVs, — (87r2>7707p (R“p Yo = 519vsg [ 7"”])770, (5.22)
with ( ) ,
a—c)_ o o
ng = = 872 €0 (RMP Yvo — §ngag [ f}’up}>770 . (523)

The first term in the square bracket in (5.22) gives

N0Yp (R Vo) o = —RY 0 10 (V77 + 797977 —479"") mo
= —QRMV 77]0’)/1/’/70 y (524)
where we used the property 7oY,Yve0 = —7oVveY,pMo for commuting spinors. Moreover, the
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second term in the square bracket in (5.22) becomes

2 vo - 2 Ve O =
Rgua(no%g viopelng) = *ng (—39 oY 10 + 5 9" 7oy 770) = —Rijpy"no,  (5.25)

where we used the identity (A.11) in Appendix A with € = 7.
We therefore conclude that

a—c 1 a—c 1 .
—< Q72 )770’Yp (RWW QRQWQV[U’YW])UO = ( A2 ) (RM,, - §R 55) oY Mo (5.26)
and hence (5.22) reduces to
B (a—c) " 1 B\ 5o~V
V,Vs! + = (R L, — §R (5,/) oY Mo - (5.27)

Returning to the overall variation (5.8), we observe that (5.9) and (5.16) combine to

ba — ¢) ~
( 62 F* (oy,m0) (5.28)
while (5.21) and (5.27) reduce to
— (R, = SR . (5.29)

Therefore, gathering all terms, the variation (5.8) is written as

_ 31 _ 54 — C) ~ a _
Zobyy (SH) = —sov5no<$iv>+[—< § )F“,,——2<R ——Ré“)}nov”no—irv,)l/”p, (5.30)
4 67 4
with
w _ (5a—3¢) I [ spl _ slugel\~5( Fre
VE = a(Fm) + 60( v,88 — oar )y (F )
3(2a — ¢) ] (a—oc) ve 1 vl npr)
—Teo(P 29"77"n) — 87T2>€o(R“” Yoo = 5R9u0g v”p)no- (5.31)

Combining (5.7) and (5.30), and using the commuting spinor identity 7yy°cy = —&07°n0,
we arrive at the result
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) U
ol + 5u)(8") = 2eomeo (T8 + S o) 4 Diaprmyany  (532)

2472
(5a —¢) ~ a 1 _
n [WF“V _ H(R“y ~ SR 55)]7;07 Mo + V,(VE + V).

Inserting this in (5.2) and dropping the total derivative terms we conclude that BPS states
satisfy the integral constraint

0= /C do, 20 (62 + 8, )(S")

= [Ldod g7 + £

- 3, _
RMR”WD—+§%QW%NXJ£J

2472
(ba —¢) ~ a < 1 ﬂ_ }
WIZOpu, L (R R )|y mo b . (5.
-I-[ 62 v s R, 2R5V Toy" Mo (5.33)

We will now show that this constraint corresponds to the BPS relation among the bosonic
charges of supersymmetric states and determines the supersymmetric Casimir energy.

5.2 BPS relation and the supersymmetric Casimir energy

In order to relate the constraint (5.33) to the conserved R-charge and conformal Killing
charges, respectively (4.3) and (4.11), we begin by showing that the spinor bilinear £yy*eq
is a conformal Killing vector. In fact, for later use we show more generally that if ¢y and ¢,
are conformal Killing spinors, then the spinor bilinear

KH(g0,84) = 57" €0, (5.34)

is a conformal Killing vector.

We have,

= B
VKoo, €0) = €D yywe0 + €01 Dpco

= — )Y WwEo + €9V Yuo

= €07 Yo + €0V Vo 5 (5.35)

where we used the Killing spinor equations (4.12) and (4.13) and the fact that for commuting

Spinors 74y, V€0 = —E0V Y- Hence,

_ _ 1
V;JCV(%?Oa 86) + VZ/IC,u<507 6/0) = 9#11(350776 + <C:6770) = §g,ul/vplcp(507 6,0> ) (536)
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which confirms that KF(eg, €p) is a conformal Killing vector.

It follows that
Ky = éoyteo, (5.37)

is a conformal Killing vector and so (5.33) can be written in the form

0= QwTMJ [’CO] + /c do_”{ (3i<§075770) o AVICS + AKO) <‘7“lf\7>

y a—c e .
+ <(1 —wr) Py + (247TQ)FWRP . >’C0u +3i(E07°m0) (1 — wy) Phy
o4 — ¢) ~ a 1 _
+ {( 2 )Fuu _ 271,2(}%/’;/ — 2R§;‘/‘)]7’]0f}/ 770} . (538)

However, the coefficient multiplying the R-current (Jjj) is a constant, since
0u(3i(207°m0) — ALKE + Axey ) = 30, (207" m0) — Flu K, (5.39)
and
. _ 5 _ oe= % 5 = b
3i0,,(€07°n0) = 310D w7y 1Mo + 3180y’ Dyutio
21

N 3i 1=\
= = 3'”707/175770 - 55075 (PMV + gFuV/YS - 3Fuu>7 €0

= F,, Ky, (5.40)

where we used the fact that 797,7°n0 = £97,7°€0 = 0 for commuting spinors and [19]

1 21 1~
i, = 3i(Z07°n0) — AKY + Ak, = const. . (5.42)

We conclude that (5.33) can be further simplified to

QWTMJ [’CO] + (I)/Co %7 + QwT’wj [ICO] =0, (5'43)

local

where
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W ,w v a—=cC SO0 LY
wr e ] = /C da#{ ((1 — W) P 4 (247T2)F,,URP " )ICOV (5.44)

Sa — ¢) ~ a 1 _
ez 32 L, - oz (B = 5% ) [form}

is a local charge that depends only on the supergravity background. As we demonstrate in the

+ (1 —wg)(Px, + AKG — Ax,)Ppy +

next section, when applied to the global timelike Killing vector, the relation (5.43) determines
the energy of a BPS state in terms of the conserved R-charge, with (5.44) corresponding to
the supersymmetric Casimir energy.

6 Casimir energy on R x S3

The BPS relation (5.43) and the local charge (5.44) hold for any supersymmetric background
of N = 1 conformal supergravity with numerically vanishing superonformal anomalies. Such
backgrounds have been studied extensively [24-34] (see also [35,36] for earlier work). In
this section we will focus on a concrete background for which the supersymmetric Casimir
energy has been computed in the literature by other means. In particular, we will apply our
general result to an example in the class of backgrounds with topology R x S3 (or St x 3
in Euclidean signature) that admit two supercharges with opposite R-charge.

6.1 Supersymmetric backgrounds with R x S? topology

Following [5], we consider four-dimensional backgrounds of topology R x S? that admit a
non-singular complete direct product metric of the form?

ds* = —Q*(p)dt* + f*(p)dp® + mrs(p) dordey, I,J=1,2, (6.1)

where ¢; € [0,27], p € [0,1], while the functions Q(p), f(p) are positive definite, as is
the symmetric matrix mr;(p). This metric possesses an R x U(1)? isometry (U(1)? in its
Euclidean form) corresponding to the commuting Killing vectors 0, 0,, and 0,,.

Demanding that the background admits two supercharges with opposite R-charge requires
the existence of a globally defined null Killing vector of the form

3The corresponding Euclidean backgrounds are obtained by setting t = iT, see e.g. [32,37].
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1 1
K= 5(@ +b;0,,) = 5(& + 010, + 020,,) (6.2)

where by, by are real parameters. The requirement that this is null fixes
02 = blmy b7 . (6.3)

However, note that the metric on S®, which is parameterized by f(p) and mz;(p), is not
constrained by supersymmetry.

Finally, the globally well defined R-symmetry gauge field takes the form [5]*

dpr  dpy dpr  dypo 1
A:——a[ (—— ) % (— i dtﬂ——d . (64
8f @ )61 By ) T\ T, T 2 (64)
where
Lo 2 2|blb2|
ay = Q2(1) map — bymas) , vdet(mry), w =sgn(b)er +sgn(be)ys. (6.5)

These expressions describe a family of non-singular backgrounds that admit two super-
charges of opposite R-charge. They are parameterized by the arbitrary non-singular metric
on S? and the real parameters by, by. The squashed (Berger) three-sphere is a special case of
these backgrounds [5]. However, for simplicity we will illustrate our results by considering
the background with arbitrary by, by and the round metric on S3.

6.2 Round S? with arbitrary b;, by
Defining the angular coordinate § = mp, the metric (6.1) corresponding to the round S? is
d82 = —Q2dt2 —f- d@z —|— m[JdQOIdQOJ s (66)

with

0 0
mqy = 4 cos® 3 Mgy = 4sin® o mipy =0, f=m. (6.7)

These expressions for m;; completely determine the background. In particular,

02 =blmpsb’ = 2<b% + b3 + (b — b3) cos 9) : (6.8)

4This differs by an overall minus sign compared to [5] due to different conventions.
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1
X — QQ

b3 — b3 + (b2 + b3) cos
b3 + b3 + (b3 — b3) cosf’

2|b1b2| 2|blb2|sin«9
\/det(m . 6.10
b2+b§+(b%—b§)cosﬁ (6.10)

Inserting these in (6.4) we obtain the R-symmetry gauge field

a (b2m11 b 7TL22)

and

sgn(blbg)
Q

bib
A— |12

dt — L. (6.11)

(bgd@l + bld(p2) + 9

Killing spinors

The Killing spinors are solutions of the conformal Killing equation (4.15). In order to solve
this equation we introduce a suitable local frame for the background metric (6.6), namely

eV = Qdt,
Q

1_ i ((1 + a,)badipr + (1 — ax)bldgp2> ,
e =db,

5 Q
e = 2b1b2 (de(ﬂl — bldg02> 5 (612)

so that
ds® = —(9)% + (e + (eH)? + (*)2. (6.13)

We also use the Weyl representation of the gamma matrices so that v* = e#~v* with

,)/0« = ( ;a 0(-) > ) Oq = (_17 Ui)? 6-(1 = (1701) ’ (614)
and ,
a 1 1
VQb - ( UO O_(()Ib > 9 Oab = 5[0-&7 61)]7 6-ab - 5[5—0,7 O-b] . (6]—5)

Moreover, the chirality matrix takes the form
1 0
5
= ) 1
v=(3 %) (6.16)
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Th commuting Majorana spinors €y and 79 can then be expressed as

() (). o1

where ¢, ¢ are left-handed two-component Weyl spinors and € = ioqe*, ¢ = iooC*. Moreover,
the Killing spinor equation (4.15) is equivalent to the two-component spinor equations

_ 1
Die=0,(, (= —0“ Dle Die=5,(, (= Za“ Dle, (6.18)

where the chiral derivatives are DL Oy + 4w boup +iA, and DR Oy + 4w Gy — 1A,

For generic b; and b the Killing spinor equation (4.15) admits the unique solution

—1 0
i, Q] 1 i, [2]0
g=e"15 ], e 5 (1] (6.19)
0 1
while ny = %fy”D,,ao takes the form
0 2|b1by| + QY
i i 0 i _iy | 2|61 — QY
— 3w — 2% 2
M= =20 | Zofbiby| + 00 | T @€ 0 (6:20)
2|b1bo| + QY 0

Having determined the conformal Killing spinor, we can evaluate the three spinor bilinears
that enter in the BPS relation (5.43) and the local charge (5.44). We find

EoM'eo = —4KH
3igoy 1m0 — Augoeo = —(|ba] + [b2)
1
Ao = K" — 50 (B 4 530, (8 — )by, —(F — ) (6.21)

where K is the globally defined null Killing vector (6.2). These expressions reaffirm the
results we obtained earlier. In particular, £yy*eq is a Killing vector, as it should, while the
R-charge potential (5.42) is indeed constant (note that Ax, = 0 in this case since Lx, A4, = 0).
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Casimir energy

We now have all ingredients in order to evaluate the local charge (5.44) on this supersym-

metric background. Since £gy*ey = —4K* ~ —20,, the Casimir energy corresponds to
ECasimir = *Q‘fél‘a‘f’[ o] = Quoca " [2KT] (6.22)

and, therefore, it is given by

ww v v 32—
gt = [ dod (20— wr)Phy — 1)K, = (1 - wg)5 Eon ) Pl

1 (ba—c) ~, -
R — “Ro") — B | iy b (6.23
* [4#( 2 ) 62 }W 770} (6.23)

where IC* is the globally defined Killing vector in (6.2), L*” is given in (3.14), while the BZ
terms are given in (3.8) and (3.10).

Evaluating the R-current BZ term on the background specified by the metric (6.6) and
R-symmetry gauge field (6.11) we find

2(5a — 3c) (b? — b3)
272 2004

-
PBZ_

(= sgn(baba)([bs] — [b2]), 0, —[ba[ba, [Balby ) - (6.24)

Similarly, the only nonzero components of the stress tensor BZ term (3.10) become

(c—a) (b = b5)

P =g (20— 5lb) b3 sgn(b)
c—a) (b2 — b3
Pz = — ( o3 ) o0 )(29 5|by|) bb3 sgn(by) . (6.25)

Moreover, the nonzero components of the tensors L and F),, are respectively

pon = @G0 ) (1 — cosh)

2472 Q6
a—c)(b? —b3
Lte2 — <247r2 ( oG 2) |ba|sgn(by)(1 4 cosf),
a—c) (b? — b3
[F1%2 — _ (487r2) ( i )|blb2| (6.26)
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and

~ b2 - b2
Fipy = — (1922)|bl|sgn(b2)(1 + cosf),
- b2 _ bZ
Fypp = (1922)|62|sgn(b1)(1 — cosf),
_ o — |
F<P1<Pz = <1Q42)|b1b2’ Sln2 0 , (627)

while the Einstein tensor on the supersymmetric background (6.6) takes the form

1 . b2 =+ b2 men 4b2 b2m22 4b2 3
R, — ing, = dlag(O, 192 2 292 ((221 + 1>, 192 (QQQ + 1)) — Eg“l" (6.28)

Putting everything together we can evaluate the integral (6.23) on the Cauchy surface
defined by the constant time slices. The result is

wrwy _ 30 |bi][bo] (Ib1] — [ba]) 2 2
ECasimir = + e (|b)? + [b2]?) + colba||bo]),  (6.29
c > Tl + oo+ Goua(or] 3 [y (1ol + 1oal®) +caltulleal) - (6.29)

where the coefficients ¢; and ¢y are given by

c1=(5a—3c)(wy—1)—(a—c)2wr — 1) + g(5a -0,

ca = 9asgn(biby) + 2(5a — 3¢)(wy — 1) = 3(a — ¢)(wr — 1) + g(5a —c). (6.30)

For |by| = |be|, in which case the metric (6.6) is conformally flat, (6.23) reduces to

3a
—|b’, ‘bl| = |bz\ = ]b\, (6-31)

ECasimir _
4

independently of the values of wy and wz. This result is in agreement with the expression
(1.3) in the scheme where the coefficient of the R* counterterm is set to zero.
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A Conventions and spinor identities

Our spacetime and spinor conventions are those of [18]. The tangent space metric is n =
diag (—1,1,1,1) and the Levi-Civita symbol €,,,, = %1 satisfies €p123 = 1. Moreover, the
Levi-Civita tensor is defined as €., = /=9 €uvps = € Euwpo- Finally, the chirality matrix is

7’ = imeYs - (A1)

Several gamma matrix and spinor identities we use in this manuscript are given in Ap-
pendix A of [19]. Here we quote only the gamma matrix identities

ey e Ly e R (A.2)

2

and the anticommuting spinor flip relations under Majorana conjugation

Ev°n =17’e,

5_/7,1177 = —777“6 )

EuY’n =Y’ €
ey = =y,

eV =y e. (A.3)

However, the evaluation of the Casimir energy involves bilinears of commuting spinors,
for which the flip relation (A.3) hold with an additional minus sign. Using these we now
prove two identities commuting spinor identities that we use extensively in the our analysis.

77, (40162 + in°et, 2, )7 7" = —654 e . (A.4)

Proof

27



The first term can rewritten as follows:

717, (401687 Pe = 21y, (5168 — 6001) 7"~ e
= 277,77 ’€ — 264 7"y e (A.5)
= 20,117 " e — 80k e,

where in the second step we used that «,7” = 4. The first term of eq. (A.5) becomes

29&077’7H7u755 = 29&077(’7’W + gﬁu)755

= 20,0 Y™ y°e + 26 7%, (4.6)
and expressing v*” in terms of the Levi-Civita symbol using eq. (A.2), we get
20k0 1V = igng €, 17 e = —i€ 4, 17 e . (A.7)
Inserting eq. (A.6) we obtain
20n0 YV e = —ie! 5y, 1Y€ + 204 7€, (A.8)
so that eq. (A.5) is written as
777{)(45,[/#55})7”755 = —iel,,, 17" e — 64 T (A.9)
The second term of the spinor part in eq. (5.4) is easily treated and gives
7,7 P 0V e = i€ 5 1YY €0 = i€t o0, TV PED - (A.10)

Summing eq. (A.9) and eq. (A.10) the Levi-Civita part cancels out and get eq. (A.4). W

= vio i loging — 2 Vo — 2 V=_.0
&Y, 9"yl = —3¢” P iy, e — 3978 N + 3 9" &, (A.11)

Proof
Let us first consider the y-terms. We have

1 vo v o v loa 1 vo V.o VAo
% 9" = 2 (g7 4 g+ g ) = (=3¢ H 9 4 39"7), (A1)
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where we used that v,y = 39#. For commuting spinors £y"y*’n = —ny*#v”c and hence

£, 9" = —g" &y + g ey — ;ﬁvc’“’y”a (A.13)

Note that the last term may be written as
e =q (" + 79" — g7 e (A.14)
The first term in this expression gives 777"e = i€?"? jy,7°c. Inserting eq. (A.14) in
eq. (A.13) we obtain eq. (A.11). |

Note that for € = 7, the first term on the r.h.s of (A.14) vanishes and we get

i, g1y = =39+ 5 "I (A.15)
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