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Abstract: One of the challenges of heterotic compactification on a Calabi–Yau threefold

is to determine the physical (27)3 Yukawa couplings of the resulting four-dimensional N = 1

theory. In general, the calculation necessitates knowledge of the Ricci-flat metric. However,

in the standard embedding, which references the tangent bundle, we can compute normalized

Yukawa couplings from the Weil–Petersson metric on the moduli space of complex structure

deformations of the Calabi–Yau manifold. In various examples (the Fermat quintic, the

intersection of two cubics in P5, and the Tian–Yau manifold), we calculate the normalized

Yukawa couplings for (2, 1)-forms using the Weil–Petersson metric obtained from the Kodaira–

Spencer map. In cases where h1,1 = 1, this is compared to a complementary calculation based

on performing period integrals. A third expression for the normalized Yukawa couplings

is obtained from a machine learned approximate Ricci-flat metric making use of explicit

harmonic representatives. The excellent agreement between the different approaches opens

the door to precision string phenomenology.
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1 Introduction

String theory on Calabi–Yau manifolds has offered the promise of deriving the complete

structure of the Standard Model of particle physics from the compactification geometry [1].

We focus here on the case of the “standard embedding” [1–5] of heterotic E8×E8 superstring

theory on Calabi–Yau threefolds for which there are 1
2 |χ| generations of particles in the low-

energy spectrum. A modern approach to model building, which invokes bundle structures,

does not insist that the Euler characteristic χ = ±6 and is perhaps physically more appealing

for string phenomenology as we can work with manifolds with a small number of moduli [6–

10]. For reviews on the matter see, e.g., [11, 12].

Viewed in this more general framework, the standard embedding is the case in which the

vector bundle V is taken to be the tangent bundle of the Calabi–Yau compatification TX ,
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i.e., the holomorphic sheaf of vector fields on X whose connection solves the Hermitian Yang–

Mills equations. The standard embedding provides fertile ground for study and is particularly

amenable to numerical analysis. We start here as an initial step.

By virtue of the Calabi–Yau manifold admitting a Ricci-flat metric in each Kähler class,

compactification of the heterotic theory on such a geometry preserves N = 1 supersymmetry

in the four-dimensional effective field theory. The Calabi–Yau threefold X is as well an SU(3)

holonomy manifold. The commutant of SU(3) in E8 is E6, which embeds generations of the

particle spectrum of the Standard Model in its 27 and 27 representations. An important

question then is to determine the Yukawa couplings that describe how strongly the low-

energy fields interact. The (27)3 couplings are topological (without the worldsheet instantons

included), whereas the (27)3 couplings require knowledge of the complex geometry of the

Calabi–Yau space [13, 14]. In this paper, we focus on the latter set of couplings, expressed in

terms of forms resident in H2,1(X), which we now turn to. (For more details, see [2].)

The Calabi–Yau condition is also equivalent to the existence of a nowhere vanishing

holomorphic top form

Ω(3,0) =
1

3!
Ωµνρ dz

µ ∧ dzν ∧ dzρ , (1.1)

which provides for the isomorphism H2,1(X)
Ω≈ H1(X,TX). For a given (2, 1)-form, we can

write an equivalent (0, 1) TX -valued form as

1

2!
ωµνσ dz

µ ∧ dzν ∧ dzσ ←→ dzσ(ωσ
µ = Ω

µνρ
ωνρσ)∂µ . (1.2)

Schematically, the (27)3 couplings are

κ =

∫

X
Ω ∧ ωµ ∧ ων ∧ ωρΩµνρ . (1.3)

These are the unnormalized Yukawa couplings: the integral depends only on the cohomology

class of ω and not the actual representative. The normalized Yukawa couplings, corresponding

to the physical couplings of the model, demand a diagonalization of the kinetic terms. In

general, calculating the normalized couplings requires using the Ricci-flat Calabi–Yau metric

in order to choose particular harmonic representatives.

This complication is circumvented in the standard embedding V ∼= TX . In this case,

the deformations of V correspond one-to-one to the complex structure deformations of the

base Calabi–Yau manifold, and the metric on the h2,1-dimensional space of deformations is

the Weil–Petersson metric. The crucial fact is that the Weil–Petersson metric on the moduli

space can be calculated without recourse to the Ricci-flat Calabi–Yau metric [15]. This is

sufficient to calculate the normalized Yukawa couplings.
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This effort is part of a program to improve numerical results in string phenomenology.

These developments have been revived because machine learning provides good approxima-

tions for Ricci-flat Calabi–Yau metrics [16–23] and more recently facilitates the computation of

the spectrum of harmonic forms [24–27] that enter into the calculation of Yukawa couplings.

In this work, we use numerical integration techniques to compute the field normalizations

and the normalized Yukawa couplings for various heterotic compactifications in the standard

embedding. Furthermore, we use a similar implementation as the one underlying the spec-

tral neural network construction [22] in order to obtain harmonic, tangent bundle valued

(0, 1)-forms. The explicit computation of the normalization for those objects requires of the

Ricci-flat Calabi–Yau metric. Our aim is to demonstrate that those normalization agree with

the Weil–Petersson results.

We consider two one-parameter Calabi–Yau threefolds, the intersection of two cubics in

P5, the quintic hypersurface in P4 (and their mirrors) as well as the complete intersection

Tian–Yau manifold. We shall compute the Weil–Petersson metric in two different ways: (i)

via a Kodaira–Spencer map for all cases considered, and (ii) via the calculation of period

integrals for Calabi–Yau spaces with h2,1 = 1 only.1 In particular, we check that for the

examples with h2,1 = 1 the Kodaira–Spencer and the period computations agree. This a

form of validation for the Kodaira–Spencer algorithms implemented. These calculations are

compared to each other and found to match the canonical computation, using the Ricci-flat

Calabi–Yau metric that is calculated numerically using machine learning.

The organization of the paper is as follows. In Section 2, we sketch the general compu-

tation of Yukawa couplings associated to H(2,1)(X). Recalling that tangent bundle valued

(0, 1)-forms are dual to (2, 1)-forms and that these span the massless degrees of freedom

transforming as 27 under E6, we construct polynomial representatives for the (0, 1)-forms.

In Section 3, we discuss the Kodaira–Spencer map and its use in the computation of the field

normalizations (see Section 3.1). In Section 4, we present numerical results. For the mirror of

the intersection of two cubics in P5, we compare the period integral result with the numerical

integration that produces the Weil–Petersson metric and demonstrate the agreement of both

methods. We also compute the Yukawa coupling for this example and show that it agrees

with the period result for any value of the modular deformation. In addition, we consider

a Z5 × Z5 quotient of the Fermat quintic and the Z3 quotient Tian–Yau manifold. For the

Fermat quotient, we compare the normalized Yukawa couplings to the conformal field theory

computations [29] and show that the Kodaira–Spencer normalization produces the correct

results. Similarly, for the Tian–Yau quotient, we contrast our computation with the unnor-

malized Yukawa couplings of [30]. For this case, we obtain the normalized couplings as well

1When h2,1 > 1, the analogous calculation requires solving Picard–Fuchs partial differential equations and

is more complicated than the h2,1 = 1 case, where we essentially have an ordinary differential equation [28].
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as their behavior along a modulus direction. Our methods are general and can be readily

applied to the standard embedding of any complete intersection Calabi–Yau manifold. In

Section 5, we discuss the method employed to search for the harmonic representatives and

the direct computation of the normalizations which makes use of machine learned Ricci-flat

metric. We discuss our implementation for the quintic and the bicubic. Finally, in Section 6,

we present conclusions and prospects for future work.

The numerical implementation of the Weil–Petersson metric as well as the calculation

of approximate Ricci-flat Calabi–Yau metrics are part of a JAX [31] library called cymyc

(Calabi–Yau Metrics, Yukawas, and Curvature) [32], to be released soon.

2 Heterotic Yukawa couplings

Let us begin by considering the E8×E8 heterotic string compactified on a Calabi–Yau three-

fold X. The compactification breaks E8 × E8 to a smaller subgroup. In order for N = 1

supersymmetry to be preserved in the resulting four-dimensional effective theory, the struc-

ture group H of a principal bundle V over X must be embedded into E8 × E8. The matter

in four dimensions can be obtained from the corresponding decomposition of the E8 × E8

adjoint representation.

For simplicity, consider a subgroup G in a single E8 with G the commutant of H in E8,

so that the effective gauge symmetry in four dimensions is G×E8. The matter in the visible

sector is then supplied by the decomposition of the 248-dimensional adjoint representation of

E8,

248 = AdjE8
→ (AdjH ,1) ⊕ (1,AdjG)

⊕

i

(R
(i)
H ,R

(i)
G ) , (2.1)

where R
(i)
H and R

(i)
G are suitable representations of H and G. More specifically, matter in the

representation R
(i)
G of the effective gauge group is represented by harmonic (0, 1)-forms a(i)

that take values in a vector bundle Vi,
2 i.e., a(i) ∈ H1(X,Vi).

We discuss computation of the trilinear interaction terms. The holomorphic Yukawa cou-

plings λ(a(i), b(j), c(k)) may be nonzero provided the tensor product R
(i)
G ⊗R

(j)
G ⊗R

(k)
G contains

a G-invariant, and may be computed, generalizing (1.3), as

κ(a(i), b(j), c(k)) =

∫

X
Ω ∧ Ω̃

(
a(i), b(j), c(k)

)
, (2.2)

where Ω is the holomorphic (3, 0) form and Ω̃(a(i), b(j), c(k)) is the appropriate contraction

with the (0, 1)V -valued forms, with Ω̃ a suitable deformation of the standard Ω as long as Vi

2The index i denotes different bundles, such as V , V ∗, and V ⊗ V ∗.
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is a rank-3 deformation of TX . The couplings (2.2) only become the physical ones once we

know the Kähler potential for the matter fields, which yields the corresponding kinetic terms.

The low-energy effective action of an N = 1 theory is written as

Seff =

∫
d4x

[∫
d4θ K

(
Φa,Φb

)
+

1

4g2

(∫
d2θ trWαWα +

∫
d2θ W (Φa)

)
+ h.c.

]
, (2.3)

where Φa are chiral superfields and Wα is the gauge field strength associated to the vector

superfield. The superpotentialW (Φa) is a holomorphic function of the superfields and is gauge

invariant with R-charge 2. The Yukawa couplings originate from this term in the effective

action. The Kähler potential, which is explicitly not holomorphic, contains the kinetic terms:3

K
(
Φa,Φb

)
⊃ Nab Φ

aΦb + . . . . (2.4)

The entries of the normalization matrix Nab are proportional to the inner product

Nab ∼ (a, b) =

∫

X
a ∧ ⋆̄V b , (2.5)

between the harmonic representatives a, b of their respective classes in H1(X,Vi). Equipped

with this inner product, starting from a given basis {a(i)k }
h1(Vi)
k=1 , we may obtain an orthonor-

mal basis {a(i)′k }
h1(Vi)
k=1 via diagonalization of the normalization matrix induced by (2.5) and

rescaling by the square root of the eigenvalues, i.e., the normalizations Na′k
of each eigen-

form a
(i)′
k . This change of basis converts the holomorphic Yukawa couplings into the physical

Yukawa couplings, computed as

Y
(
a(i) ′, b(j) ′, c(k) ′

)
=

∫
X Ω ∧ Ω̃

(
a(i) ′, b(j) ′, c(k) ′

)
∫
X Ω ∧ Ω

. (2.6)

Reflecting on what we have discussed so far, we emphasize the following two points.

• The computation of the holomorphic Yukawa couplings in (2.2) does not require knowl-

edge of the harmonic representatives in H1(X,Vi), i.e., the unnormalized couplings are

the same when computed using elements in the cohomology classes [a(i)], [b(j)], and

[c(k)]. The calculation of λ is quasi-topological [35, 36].

• This is not the case for the normalization (2.5), since the Hodge star ⋆V between har-

monic bundle-valued forms requires knowledge of the Ricci-flat metric on X and the

Hermitian structure on V . The calculation of κ requires geometric input.

3From the underlying worldsheet quantum field theory, this kinetic term normalization metric emerges as a

two-point correlation function defining (the appropriate generalization of) the Zamolodchikov metric [33]. In

the special case when Vi = TX , this equals the Weil–Petersson metric [34].
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Here we briefly note that one requires geometric computations involving the metric to

utilize the Ricci-flat representative for the Kähler class being considered in order for the

metric on the Calabi–Yau complex structure moduli space to be Kähler, an argument we will

make more precise in the discussion after Lemma 2.

Let us now specialize to the case where H = SU(3), for which the adjoint decomposition

takes the form

248→ (78,1)⊕ (1,8)⊕ (27,3)⊕ (27,3) . (2.7)

As E6 × SU(3) is a maximal subgroup of E8, we identify E6 as the GUT gauge group G.

The number of 27 multiplets are counted by h1(V ) while the number of 27 multiplets are

counted by h1(V ∗) = h2(V ). There might also be additional singlet fields corresponding to

bundle moduli; these are counted by h1(V ⊗ V ∗). In the standard embedding, the role of

the holomorphic vector bundle V is played by the tangent sheaf TX , whose structure group

is indeed SU(3). Setting V = TX implies that the difference between the number of massless

27 and 27 representations is an index, half of the Euler characteristic. It also motivates the

following lemma (see Appendix A for a detailed proof):

Lemma 1. Let X be a Calabi–Yau manifold, then: H1(X,TX) ≃ Hn−1,1

∂
(X) and the

isomorphism is given by:

[α] 7−→ [Ω(α)] , (2.8)

where Ω ∈ Hn,0

∂
(X) is nowhere zero.

For the particular case of Calabi–Yau threefolds, this implies the well-known isomor-

phism H1(X,TX) ≃ H2,1(X). Recall further that for this particular case, the pairing (2.5)

becomes the Weil–Petersson metric on the Calabi–Yau complex structure moduli space (see

also Definition 1 below),

(a, b) =

∫

X
a ∧ ⋆̄gb def

= ⟨a, b⟩WP . (2.9)

This may be computed by exploiting the existence of the Ricci flat metric without its

direct invocation, owing to special geometry, as we shall see in the sequel.

We are interested in the computation of Yukawa couplings of the form (27)3 which involve

only elements in H1(X,TX). In this case, the pairing introduced in (2.2) can be written as

Ω̃(a, b, c)
def
= aµ ∧ bν ∧ cρΩµνρ , (2.10)

where the (3, 0)-form Ω acts by contraction on the
∧3 TX -valued (0, 3)-form to give an or-

dinary, C-valued (0, 3)-form. If we take an orthogonal basis {ak}h
1(TX)
k=1 the corresponding
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normalized Yukawa couplings take the form

Yijk =

∫

X
Ω ∧ Ω̃(ai, aj , ak)

√
NiNjNk

∫

X
Ω ∧ Ω

. (2.11)

3 Physical Yukawa couplings via the Kodaira–Spencer map

3.1 Computing normalizations

In order to discuss the computation of the canonical normalization matrix via the Weil–

Petersson metric (2.9), we briefly recall some facts on the metric on the complex structure

moduli of a Calabi–Yau manifold X with Kähler class [ω] ∈ H1,1

∂
(X). We shall mostly follow

the notation of [37]. Let us start by considering a complex analytic family (in the sense of

Kodaira and Spencer [38], for more details see: [39]) (X , B,ϖ) of Calabi–Yau manifolds over

a base B such that 0 ∈ B ⊆ CdimH1(X,TX) with projection map ϖ : X → B and Xt := ϖ−1(t)

with X := X0. Recall that the Weil–Petersson metric ⟨−,−⟩WP on the moduli space T0B of

complex deformations ofX can be written as a Kähler metric such thatX0 = X and [ωt] = [ω].

We shall refer to this family as a polarized complex analytic family, with polarization induced

by [ω].

Definition 1. Let gt ∈ [ω] denote the unique Ricci-flat metric on Xt ∈ X in the polarized

complex analytic family (X , B,ϖ). The Weil–Petersson metric is then defined as:

⟨a, b⟩WP =

∫

Xt

ρ(a) ∧ ⋆gtHρ(b) , (3.1)

where ρ : TtB → H1(X,TX) is the Kodaira–Spencer map [38, 39] and H : Hp,q

∂
(X) →

Hp,q
∂

(X) is the harmonic projection.

The Kodaira–Spencer map can be defined in the following manner: Let {Uj} be a finite

cover of Xt with local coordinates {z1j , . . . , znj } such that for every Uj ∩ Uk ̸= ∅ the gluing

maps are given by fjk : B × Uk → Uj . Then, the Kodaira–Spencer map is defined as follows:

ρ

(
∂

∂t

)
=

[{
∂fµjk(zk, t)

∂t

∂

∂zµj

}]
, where zk = fkj(zj , t) . (3.2)

Note that from [37] we have im ρ ⊆ H1(X,TX)ω where H1(X,TX)ω is the subspace of

polarization preserving deformations: [ϕ] ∈ H1(X,TX)ω if [ω(ϕ)] = 0. It can be shown that

if ϕ ∈ [ϕ] is harmonic, then gt(ϕ) = 0 identically [40]. This leads to the following lemma:
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Lemma 2. Let Ω ∈ Hn,0

∂
(Xt) where n = dimXt, be non-zero, then:

⟨a, b⟩WP = −

∫

Xt

Ω(Hρ(a)) ∧ Ω(Hρ(b))
∫

Xt

Ω ∧ Ω

∫

Xt

volgt . (3.3)

Proof. See Appendix A or Refs. [37, 41].

At first glance, it may seem that evaluation of (3.1) requires the metric gt on Xt, which

also induces a metric on Ω0,1(TXt). However, the Ricci-flatness consequence volgt ∝ Ωt ∧ Ωt

ensures (2.5) may be expressed in terms of the standard cup product on Hp,q

∂̄
(Xt) with

p+ q = n.

Since our numerical methods use representatives of the Kodaira–Spencer classes ρ(a) ∈
H1(X,TX) which are not necessarily harmonic, the polarization-preserving condition gt(ϕ) =

0 is not necessarily guaranteed to hold. We therefore show explicitly, at the level of forms,

that the Weil–Petersson metric may be computed with arbitrary representatives. We shall

first briefly recall the explicit construction of the Kodaira–Spencer class:

Recall that for any t, t′ ∈ B, we have Xt ≃ Xt′ diffeomorphic as real manifolds. For

simplicity, let t′ = 0, and denote the diffeomorphism by:

ζt : X
≃−→ Xt . (3.4)

Then, the corresponding infinitesimal deformation ξ to ζt at t = 0 is a set of non-holomorphic

vector fields: ξ = {ξj}j defined on a finite open cover {Uj}j of X. Then, we may construct

Kodaira–Spencer class corresponding to ξ using Čech co-cycle defined by:

[{∂ξj}j ] ∈ Ȟ1(X,TX) ≃ H1(X,TX) . (3.5)

From the results of [37, 41], the ⟨−,−⟩WP is shown to be a Kähler metric with the local

Kähler potential given by the canonical intersection pairing on Hn,0

∂
(X). We shall show that

such identification can also be computed with arbitrary representatives without application of

harmonic projections. In particular, let Ω(t) be a holomorphic n-form on the total space which

is smoothly varying with respect to the deformation parameter t ∈ B of the polarized complex

analytic family (X , B,ϖ) and restricts to a non-zero holomorphic (n, 0) form Ωt ∈ Hn,0

∂
(Xt)

on each fibre. Then one has the following decomposition:

dΩt
dt

∣∣∣∣
t=0

= Ω′ +Ω(ϕ) ∈ Γ(X,Ωn,0)⊕ Γ(X,Ωn−1,1), respectively, (3.6)
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where ϕ ∈ H1(TX) is a representative of Kodaira–Spencer class. The arguments of [37, 40,

41] apply the harmonic projection to ϕ to show that Ω′ is holomorphic. Since the general

numerical methods that we consider do not compute harmonic representatives, we show that

the result holds true for arbitrary choice of the representatives, when Ω′ is not necessarily

holomorphic.

Theorem 1. The identification of ⟨−,−⟩WP with the Kähler metric using (3.6) is true

for an arbitrary choice of representatives of the Kodaira–Spencer class.

Proof. Let (−,−) denote the intersection pairing on Hp,q

∂
(X) with p+ q = n:

(α, β) =

∫

X

α ∧ β . (3.7)

Then, without loss of generality, we shall show that:

⟨a, a⟩WP∫

X

volg

=

(
dΩt

dt

∣∣∣∣
t=0

,
dΩt

dt

∣∣∣∣
t=0

)

(Ω,Ω)
+

∣∣∣∣
(
Ω,

dΩt

dt

∣∣∣∣
t=0

)∣∣∣∣
2

(Ω,Ω)2
, (3.8)

where the decomposition (3.6) is arbitrary and a ∈ T0B such that ρ(a) = [ϕ]. This implies that

the terms in (3.8) due to the Γ(X,Ωn,0) component of the decomposition (3.6) are not necessarily

zero. Recall that closure is a topological condition; we have: dΩt = 0 for all t, which implies:

∂Ω′ + ∂Ω′ + ∂(Ω(ϕ)) = 0 . (3.9)

Note that deg ∂Ω′ = (n+ 1, 0) whereas deg ∂Ω′ = deg ∂(Ω(ϕ)) = (n, 1), thus ∂Ω′ = 0 due to the

Hodge decomposition. Let ψ ∈ Γ(X,Ωn−1,0) be such that:

Ω(ϕ) + ∂ψ = HΩ(ϕ) , (3.10)

whose existence is guaranteed by the Hodge theorem. Then, by combining (3.9) and (3.10) we

obtain:

∂Ω′ + ∂(Ω(ϕ)) + ∂∂ψ − ∂∂ψ = ∂(Ω′ + ∂ψ) + ∂H(Ω(ϕ)) = 0 . (3.11)

However, using Kähler identities, we have: ∂H(Ω(ϕ)) = 0, thus Ω′ + ∂ψ = cΩ for some constant

c ∈ C by compactness. Thus, to show that (3.8) is true, it remains to compute the intersection

products. In particular, we have:

(
dΩt

dt

∣∣∣∣
t=0

,
dΩt

dt

∣∣∣∣
t=0

)
= (Ω′,Ω′) + (Ω(ϕ),Ω(ϕ)) , (3.12)

where the (Ω′,Ω′) can be decomposed as:

(Ω′,Ω′) = (cΩ− ∂ψ, cΩ− ∂ψ) = |c|2(Ω,Ω) + (∂ψ, ∂ψ) , (3.13)
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where we have used ∂Ω = 0. Note that (∂ψ, ∂ψ) is not necessarily zero. Similarly, we may

decompose (Ω(ϕ),Ω(ϕ)) as:

(Ω(ϕ),Ω(ϕ)) = (HΩ(ϕ)− ∂ψ,HΩ(ϕ)− ∂ψ) = (HΩ(ϕ),HΩ(ϕ)) + (∂ψ, ∂ψ) , (3.14)

where we have used the harmonicity condition. A simple integration by parts argument and ap-

plication of Stokes’ theorem gives: (∂ψ, ∂ψ) = −(ψ, ∂∂ψ) and (∂ψ, ∂ψ) = −(ψ, ∂∂ψ) = (ψ, ∂∂ψ),

thus, we have:
(
dΩt

dt

∣∣∣∣
t=0

,
dΩt

dt

∣∣∣∣
t=0

)
= |c|2(Ω,Ω) +

(
HΩ(ϕ),HΩ(ϕ)

)
. (3.15)

Finally, we have:
(
dΩt

dt

∣∣∣∣
t=0

,Ω

)
= (Ω′,Ω) = (cΩ− ∂ψ,Ω) = c(Ω,Ω) . (3.16)

From this, direct calculation shows that:

−

(
dΩt

dt

∣∣∣∣
t=0

,
dΩt

dt

∣∣∣∣
t=0

)

(Ω,Ω)
+

∣∣∣∣
(
Ω,

dΩt

dt

∣∣∣∣
t=0

)∣∣∣∣
2

(Ω,Ω)2
= −

(
HΩ(ϕ),HΩ(ϕ)

)

(Ω,Ω)
. (3.17)

The result then follows from the statement of Lemma 2, where we have used the fact that

H(Ω(ϕ)) = Ω(Hϕ), which follows from Ricci–flatness of Xt. [41].

3.2 Constructing the Kodaira–Spencer map

In this section we shall briefly review the method described in [42] and show that it naturally

generalizes to Calabi–Yau complete intersections. The main idea described in [42] is to find

explicit form of the decomposition: (3.6) and then apply numerical integration techniques to

compute the canonical intersection pairings (3.17). As described in the Section 3.1, the (n, 0)-

terms in the decomposition (3.6) are now contributing non-trivially to the Weil–Petersson

metric, thus both components must be computed explicitly.

First, let us briefly set up the notation defining the complete intersection Calabi–Yau X.

Recall that the information defining X can be given as a configuration matrix:

X =




n1
...

nm

q11 . . . q1K
...

. . .
...

qN1 . . . qNK


 , (3.18)

where, after fixing the point in the complex structure moduli, the defining equations are

given by polynomials: {pj}Kj=1 of appropriate degrees specified by (3.18). To describe the

deformations of X, we may identify H1(TX) with a quotient [43]:

H1(TX) ≃
K⊕

l=1

H0(X,OX(ql))
/
∼ ∋ F . (3.19)
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Thus, suppose ζt : X −→ Xt denotes diffeomorphism induced by the deformation F in (3.19),

then, we have pj(ζt) + tFj(ζt) = 0 for all j ∈ {1, . . . ,K}. Let {Zj}Mj=1 for M = n1 + · · ·+ nN

be the set of local coordinates on the ambient space: A = Pn1 × · · · × PnN . Let ξ ∈ TX be

the generator of the diffeomorphism, corresponding to F . Note that ξ is a non-holomorphic

section of TA that satisfies:

∂pj
∂Zk

ξk + Fj = 0, for all j ∈ {1, · · · ,K} . (3.20)

From above it follows that the solution for ξ is not unique. In [14, 42] the authors give

examples of particular solutions to (3.20). We shall instead derive a general solution. Let

Jac(p) denote the matrix {∂pj/∂Zk}j,k. Then, after fixing a metric g on the ambient space,

it suffices to compute Moore–Penrose pseudoinverse with respect to metric g and kernel of

Jac(p). Explicitly, the right pseudoinverse Jac(p)+ with respect to g is given by:

Jac(p)+ = Jac(p) ·
(
Jac(p) · Jac(p)

)−1
. (3.21)

Where all inner products are induced by the metric g. Thus, a general solution to (3.20) is

given by:

ξk = (Jac(p)+)kjFj +
∑

i

ciχ
k
i , for ci ∈ C . (3.22)

Where C{χi}i = ker Jac(p). Note that the expressions given in [14, 42] correspond to the

coefficients ci = 0 (3.22), but they differ by the choice of the metric g on the ambient space.

From the non-holomorphic vector-field ξ corresponding to the deformation F , we may

compute the Kodaira–Spencer class using the method described in Section 3.1 as:

ρ

(
∂

∂t

)
=
[
∂ξ
]
. (3.23)

Which allows us to compute unnormalized Yukawa coupling using the Kodaira–Spencer map

in the following manner, let ξi be the vector field corresponding to ρ(∂/∂ti), then, the unnor-

malized Yukawa coupling κijk is given by the following integral:

κijk =

∫

X
Ωαβγ

∂ξαi
∂zµ

∂ξβj
∂zν

∂ξγk
∂zδ

Ω ∧ dzµ ∧ dzν ∧ dzδ (3.24)

Thus, what remains to compute is the decomposition (3.6). In the case of hypersurfaces,

this has been done in [42]. We show that this naturally generalizes to arbitrary complete

intersections with codim > 1. This can be done by differentiating the Poincaré residue

equation. First, note that for a sufficiently small t > 0, the vector field ξ in TA induces an
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automorphism of the ambient space A:

A At

X Xt

ζ̌t

ζt

(3.25)

Let Ut ⊂ At be some open set, and pick local coordinates (Z1
t , . . . , Z

M
t ) on Ut, such that

Zj0 = Zj for all j, where M = dimAt. Using the adjunction formula, we may relate canonical

bundles of Xt and At as: KXt = KAt ⊗ det
{
NXt|At

}∣∣
Xt
, which leads to:

Ωt ∧ dp1t ∧ · · · ∧ dpKt = dZ1
t ∧ · · · ∧ dZMt , (3.26)

where Ωt ∈ Γ(Xt,KXt). Following [42], we consider perturbation of (3.26) at t = 0 in the

direction ξ ∈ TA. In particular, we have:

d

dt

(
dZ1

t ∧ · · · ∧ dZMt
) ∣∣∣∣
t=0

=
d

dt
det

(
δjk + t

∂ξj

∂Zk

)

j,k

∣∣∣∣
t=0

dZ1 ∧ · · · ∧ dZM+ (3.27)

+

M∑

j,k=1

∂ξj

∂Z
k
dZ1 ∧ · · · ∧ d̂Zj ∧ dZ

k ∧ · · · ∧ dZM .

Furthermore, note that:

d

dt
(dpjt )

∣∣∣∣
t=0

= d

(
∂pj

∂Zk
ξk + F j

)
= 0 , (3.28)

where we have used (3.20). This implies that: dp1t ∧ · · · ∧ dpKt = dp1 ∧ · · · ∧ dpK . Thus, the

derivative (3.6) satisfies the following relation:

dΩt
dt

∣∣∣∣
t=0

∧ dp1 ∧ · · · ∧ dpK
∣∣∣∣
X

= Tr Jac(ξ) dZ1 ∧ · · · ∧ dZK
∣∣∣∣
X

+ (3.29)

+

M∑

j,k=1

∂ξj

∂Z
k
dZ1 ∧ · · · ∧ d̂Zj ∧ dZ

k ∧ · · · ∧ dZM
∣∣∣∣
X

.

Let α ∈ Γ(X,Ωn,0) and β ∈ Γ(X,Ωn−1,1) be the (n, 0) and (n− 1, 1) terms in the decompo-

sition (3.6), respectively. Then, the forms can be expanded as:

α = f(Z)dZ1 ∧ · · · ∧ dZn, β =

n∑

j,k=1

gjk(Z)dZ
1 ∧ · · · ∧ d̂Zj ∧ · · · ∧ dZn ∧ dZ

k
. (3.30)

Combining (3.30) and (3.26) and solving for f(Z) we obtain:

f(Z) = Tr Jac(ξ)
/
det
( ∂pj

∂Zn+k

)K
j,k=1

. (3.31)
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Similarly, solving for gjk(Z), we obtain:

gjk(Z) =
(−1)n−j

det
( ∂pj

′

∂Zn+k′

)K
j′,k′=1

[
∂ξj

∂Z
k
+

K∑

l=1

∂ξj

∂Z
n+l

∂Z
n+l

∂Z
k

]
, (3.32)

where we have applied pullback i : X ↪→ A as:

i∗dZ
n+l

=
n∑

k=1

∂Z
n+l

∂Z
k

dZ
k
. (3.33)

Combining the results, we see that (3.31) and (3.32) are natural generalizations of the results

of [42] in the case of K > 1.

4 Numerical results

Here we compute the Weil–Petersson metric using the Kodaira–Spencer map, and thereby

obtain the physical Yukawa couplings, for a range of different complete intersection Calabi–

Yau manifolds. This requires the numerical evaluation of integrals over the Calabi–Yau fibres

Xt, which are approximated by Monte Carlo integration over Xt,

∫

Xt

volgtf ≃
1

N

N∑

k=1

f(p
(t)
k ). (4.1)

Where the distribution of the random points {p(t)k }Nk=1 is chosen to be uniform with

respect to the Fubini–Study metric on the embedding space Pn1 × · · · × PnK ⊃ Xt [44, 45].

Here N = 250, 000 in all experiments unless stated otherwise. All computations are performed

using our JAX library [22] and some make use of the point sampling package of cymetric [21].

4.1 Mirror of P5[3, 3]

Consider the Calabi–Yau threefold X belonging to the deformation space P5[3, 3] via the

following system of defining equations:

x30 + x31 + x32 − 3ψ x3x4x5 = 0 , x33 + x34 + x35 − 3ψ x0x1x2 = 0 . (4.2)

This space has h2,1 = 73 and h1,1 = 1 and it is a member of the one parameter family of

Calabi–Yau manifolds considered, e.g., in [46]. Its mirror, X̃ (with swapped Hodge numbers),

is constructed as a blowup of a finite quotient of this same zero-locus. That way, the complex

structure parameter ψ in the description of X one-to-one corresponds to the Kähler class
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of the mirror, X̃. Note however that the limit ψ → 0 makes the intersection of the two

quadrics (4.2) (as well as their finite quotient) singular along a network of curves. This

singularization of both X and X̃ gives rise to the pole-singularity at ψ → 0 seen in the plots

in Figure 1 and Figure 2.

The grid of points in Figure 1 in corresponds to the Kodaira–Spencer computation and

we observe good agreement between the two methods. The modulus dependent Yukawa

coupling is presented in Figure 1(b) where we again obtain a matching of the results from

both techniques.

Re(ψ)

0.0
0.5

1.0
1.5

2.0

Im
(ψ

)

−2.0

−1.5

−1.0

−0.5

0.0

W
P

(ψ
)

0.0

0.2

0.4

0.6

0.8

WP using periods
Numerical WP

(a) Weil–Petersson metric

Re(ψ)

0.0 0.5 1.0 1.5 2.0

Im
(ψ

)

−2.0

−1.5

−1.0

−0.5

0.0

W
P

(ψ
)

0

1

2

3

4

5

Yukawa using periods
Numerical Yukawa

(b) Normalized Yukawa coupling

Figure 1: Comparison of the Weil–Petersson metrics (a) and the normalized Yukawa couplings

(b) on a uniform grid in (r, θ) on the disc {z ∈ C | |z| ≤ 2}, computed using periods with the

method described in Section 3.2.

4.2 Quintic and the Gepner model Y4;5

One of the simplest exactly soluble models is given by a Gepner model Y4;5 [29, 47–49], which

corresponds to a specific point in the moduli of the quintic threefold P4[5]. It has been shown

in [29] that the normalized Yukawa couplings can be expressed as powers of a constant κ

given by a ratio of Γ-functions:

κ =

[
Γ(3/5)3Γ(1/5)

Γ(2/5)3Γ(4/5)

]1/2
≈ 1.09236 . (4.3)
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Figure 2: Comparison of the period (solid blue line) vs. the Kodaira–Spencer computation

for the WP on the intersection of two cubics (4.2) using points between (0.01, 2) along the line

Im(ψ) = 0. The red vertical line indicates the logarithmic singularity at ψ = 1.

In particular, in the model Y4;5, we consider a quintic threefold X defined as a zero locus

of Fermat quintic Z5
0 + · · · + Z5

4 = 0 under quotient G = Z5 × Z′
5. The resulting Calabi–

Yau manifold has h1,1(X/G) = 1 and h2,1(X/G) = 5 and Euler number −200/(5 × 5) = −8
(see: [50, 51]) hence a heterotic string compactification with standard embedding will yield

four chiral generations. One can show that the group G is freely acting, with its generators

being

Z5 : zj → αjzj , (4.4)

Z′
5 : zj → zj+1 , (4.5)

The monomial representatives of the H2,1(X/G) ≃ H1(TX/G) are shown in Table 1.

The Yukawa couplings for the Gepner model Y4;5 were already computed in [29]. We want

to employ the method described in Section 3.2 in order to make a direct comparison. We first

show that monomial families in Table 1 indeed form an orthogonal basis. In the basis of 1, the

Weil–Petersson metric entries are given in the grayscale grid of Figure 3. Evidently, the off-

diagonal components vanish, wherefore the Yukawa couplings can be computed using (2.11).
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Family Monomial F Comment

1 Z2
i Z

3
j i ̸= j

2 ZiZjZ
3
k i ̸= j ̸= k

3 ZiZ
2
jZ

2
k i ̸= j ̸= k

4 ZiZjZkZ
2
l i ̸= j ̸= k ̸= l

5 Z0Z1Z2Z3Z4 –

Table 1: Monomial representatives of H1(TX/G) under identification (3.19).

1 2 3 4 5

1

2

3

4

5
0.000

0.002

0.004

0.006

0.008

0.010

Figure 3: Numerical values of the normalization matrix Nij = ⟨bi, bj⟩WP.

Using numerical integration techniques, we compute the 95% confidence intervals of the

values for the normalized Yukawa couplings for the quintic quotient model. In Figure 4 we

contrast our results with those of [29].

Y1,1,2 Y1,2,3 Y1,3,4 Y2,2,2 Y2,2,3 Y2,3,3 Y2,3,4 Y2,4,4 Y3,3,4 Y3,3,5 Y3,4,4 Y4,4,4 Y4,4,5 Y5,5,5

1.0

1.2

1.4

1.6

Numerical Yijk
Expected Yijk

1.190

1.195

Y2,4,4

Figure 4: Comparison of the numerical normalized Yukawa couplings of quintic with the exact

results in [29]. The error bars indicate the 95% confidence interval.
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As can be observed in Figure 4, the numerical values computed using the methods de-

scribed in the Section 3.2 are within the margin of the error of the exact results computed in

the work [29].

Finally, note that the coupling corresponding to the family 5 in Table 1 matches the

coupling of the mirror quintic X̃ which has h2,1(X̃) = 1. In particular, recall that the

invariant/normalized Yukawa coupling defined in [52] attains value of κ5 at Landau–Ginzburg

point in the complex structure moduli of X̃. From Figure 4, the numerical value corresponding

to this family is:

Y5,5,5 = 1.550± 0.002 , (4.6)

which is close to the exact value of κ5 ≈ 1.555.

4.3 Tian–Yau quotient

We start with a complete intersection in P3 × P3 given by the following configuration matrix

X =

[
3

3

3 1 0

0 1 3

]
. (4.7)

All manifolds in this deformation class have Hodge numbers h1,1 = 14 and h1,2 = 23, and so

χ = −18. To be specific, we choose the defining polynomials to be of the form

p1 = 1
3

(
x30 + x31 + x32 + x33

)
= 0 , (4.8a)

p2 = x0y0 + x1y1 + x2y2 + x3y3 = 0 , (4.8b)

p3 = 1
3

(
y30 + y31 + y32 + y33

)
= 0 , (4.8c)

where, following the notation of [30] we take x and y to denote coordinates in the first and

second P3s respectively. The manifold (4.8) has a freely acting Z3 symmetry specified as

follows {
(x0, x1, x2, x3) → (x0, α

2x1, αx2, αx3) ,

(y0, y1, y2, y3) → (y0, αy1, α
2y2, α

2y3) ,
(4.9)

with α = e2πi/3. The Tian–Yau manifold is constructed by quotienting out the freely acting

Z3 symmetry (4.9), yielding a quotient Calabi–Yau manifold with χ = −6 [3, 53].

Similarly as in the case of the quintic threefold discussed in Section 4.2, we consider

the orthogonal basis of H1(TX/Z3
) specified by the corresponding monomial representatives

shown in Table 2, constructed by Gram-Schmidt orthogonalization using the inner product

defined by the Weil–Petersson metric.
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Family Monomial F

λ1 x0x1x2 e1

λ2 x0x1x3 e1

λ3 y0y1y2 e3

λ4 y0y1y3 e3

λ5 x3y3 e2

λ6
1√
8
(x3y3 + 3x2y2) e2

λ7

√
3

8
(x0y0 − x1y1) e2

λ8 x2y3 e2

λ9 x3y2 e2

Table 2: Monomial representatives of H1(TX/Z3
) considered in [30] under identification (3.19).

The eigenmodes λ6 and λ7 are normalized with respect to the Weil–Petersson metric.

In Table 2 we have chosen {ej}j to be such that NX|P3×P3 ≃ O(3, 0) e1 ⊕ O(1, 1) e2 ⊕
O(0, 3) e3. Using the numerical method discussed in Section 3.2, we compute the unnormal-

ized Yukawa couplings:

κijk =

∫

X/Z3

Ω ∧ Ω(λi, λj , λk) , (4.10)

and verify the results by comparing the ratios to the Table 3 of [30]. In particular, the values

of κ̂ijk
def
= κijk/κ111 computed numerically using (4.10) and compared to [30] are shown in

Figure 5. Where we observe an exact match of the results4

Before computing the normalized Yukawa couplings, we first verify that the basis specified

in Table 2 is indeed orthogonal. In particular, we plot the numerical values of the Weil–

Petersson metric Nij := ⟨λi, λj⟩WP in Figure 6. As it can be observed on Figure 6, the

basis {λj}j of H1(TX/Z3
) is indeed orthogonal. This then allows us to use (2.11) to compute

normalized Yukawa couplings. We show the numerical results in Figure 8.

Further we compute the moduli dependent normalized and unnormalized Yukawa cou-

plings. Consider the following deformation of p2 (cf., (4.8b) above, following [54, Eq. (1)]):

p2 = x0y0 + x1y1 + (1 + ϵ)(x2y2 + x3y3) = 0 , ϵ ∈ R . (4.11)

In Figure 8, we present the ϵ-dependent couplings κaaa, using the basis of [54] and focusing

on 0 ≤ ϵ ≤ 2; note that this basis differs from the one shown in Table 2. The couplings

(κ111, κ222, κ333, κ444) and (κ777, κ888) are respectively degenerate while the others vanish, in

4Except for κ246, which is incorrectly given in [30] to be 0, when it should equal
√
8µ in their notation.
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κ̂1,1,1 κ̂2,2,2 κ̂3,3,3 κ̂4,4,4 κ̂5,5,5 κ̂6,6,6 κ̂7,7,7 κ̂8,8,8 κ̂9,9,9 κ̂1,3,5 κ̂1,3,6 κ̂1,3,7 κ̂2,4,5 κ̂2,4,6 κ̂2,4,7 κ̂1,4,9 κ̂2,3,8 κ̂6,6,5 κ̂7,7,5 κ̂7,7,6 κ̂5,6,7
0

1

2

3 Numerical κ̂ijk
Expected κ̂ijk

0.98

1.00

1.02

κ̂9,9,9

Figure 5: Comparison of the unnormalized Yukawa couplings of Tian–Yau manifold with the

results of [30]. The error bars indicate the 95% confidence interval.
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Figure 6: Numerical values of the normalization matrix Nij = ⟨λi, λj⟩WP of the Tian–Yau

manifold (4.7).

Y1,1,1 Y2,2,2 Y3,3,3 Y4,4,4 Y5,5,5 Y6,6,6 Y7,7,7 Y8,8,8 Y9,9,9 Y1,3,5 Y1,3,6 Y1,3,7 Y2,4,5 Y2,4,6 Y2,4,7 Y1,4,9 Y2,3,8 Y6,6,5 Y7,7,5 Y7,7,6 Y5,6,7

0

1

2

3
Unnormalized Yijk
Normalized Yijk

Figure 7: The changes induced by the numerical normalization on the Yukawa couplings of the

Tian–Yau manifold (4.7) are indicated by the red arrows.

agreement with the results in [54]. In Figure 9, we plot the absolute value of the normalized

Yukawa couplings on a logarithmic scale.5

5Plotting absolute values shows an artificial “crossover” near ϵ ≈ 0.20: In fact, Y888 and Y555 have op-

posite signs and never coincide. In turn, the physical normalization moves the actual Y222/Y555 “crossover”

coincidence from ϵ ≈ 0.15 in Figure 8 to ϵ ≈ 0.05 in Figure 9.

– 19 –



0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

ε

−1

0

1

2

3

4
κ̂222(ε)

κ̂555(ε)

κ̂888(ε)

ϵ

Figure 8: Nonzero ‘cubic’ Yukawa couplings, κ̂aaa = κaaa/κ111 for the Tian–Yau manifold using

128 points in moduli space uniformly distributed between (0.01, 2) along the line 0 ≤ ϵ ≤ 2. Solid

lines denote expected results from [54], while dotted points represent our numerical computation.

Post-normalization, we note that as ϵ increases, a hierarchy between Y5 = Y555 and

the other couplings develops, and they appear to converge to different values in the large-ϵ

regime. Looking at the logarithmic plot of the absolute values for the normalized Yukawa

couplings we identify a hierarchy of 102 in the couplings. We defer a further analysis of the

phenomenological implications of this large-ϵ hierarchy, as well as the κ̂222/κ̂555“crossover”

near ϵ ≈ 0.15 in Figure 8 to a later effort; for an early phenomenological discussion at the

level of the unnormalized Yukawa textures, see also [54].

5 Machine learning harmonic representatives

5.1 Preliminaries

Given a Calabi–Yau (X, g, ω), we wish to obtain an expression for forms which are harmonic

with respect to the unique Ricci-flat metric gt in each Kähler class. Consider the complex

analytic family (X , B, π) such that π−1(0)
def
= X0 = X. Any two fibres in this family are

diffeomorphic as real manifolds, X0 ≃ Xt. The corresponding generator ξ, of the infinitesimal

diffeomorphism is a non-holomorphic section of TX0 . In what follows we let (E,G) denote

a holomorphic vector bundle over X equipped with a Hermitian structure, which may be

considered the data of a smoothly varying Hermitian inner product G on each fibre Ex.

Recall ∂̄E : Ωp,q(E) → Ωp,q+1(E) is the natural generalisation of the Dolbeault operator to

holomorphic bundle-valued forms Ωp,q(E). For the case where E is the holomorphic tangent
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Figure 9: Normalized Yukawa couplings, smoothed using the Savitzky–Golay filter of window

size 8 and polynomial order 3 to remove noise due to numerical integration in the computation of

the Weil–Petersson metric. Notice the onset of a large-ϵ hierarchy.

bundle TX , the Kähler metric g plays the role of the fibre metric G. In what follows we

identify E with TX , although in principle our method may be reproduced for an arbitrary

holomorphic vector bundle if the Hermitian inner product G is known.

We may obtain a basis for TtB ≃ H1(X,TX) by first computing ξ(z, z̄) in local holomor-

phic coordinates {zi}ni=1 on U ⊂ X0. Then one obtains a representative of the corresponding

Kodaira–Spencer class as ϕ = ϕµν dz̄
ν ⊗ ∂

∂zµ
def
= ∂̄Eξ ∈ H1(X,TX), where ϕ

µ
ν dz̄

ν = ∂̄ξµ. Note

[ϕ] ̸= 0 as ξ is not globally defined. By Hodge theory, every cohomology class contains a

unique harmonic representative η, related to ϕ through an ∂̄E-exact correction:

η = ϕ+ ∂̄E s ∈ H0,1

∂̄
(X,TX) , s ∈ C∞(TX) . (5.1)

Where s is a non-holomorphic section of TX . Note that ∂̄E η = 0 locally by construction

and thus the harmonicity condition reduces to ∂̄†Eη = 0, which we encode numerically.

5.2 Harmonic objective

To recover the (0, 1) TX -valued forms which are harmonic with respect to gt, there are a range

of possibilities to pursue, owing to the rich interplay between geometry, topology and analysis

realized in Hodge theory. Here η is obtained through a straightforward two-stage process.

First, we approximate the Ricci-flat metric for a given choice of complex structure on X.

Secondly, we fix the learned metric on Xt and parameterize the sections sθ corresponding to
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the basis for TtB using a neural network with parameters θ. Noting that ∂̄†Eη ∈ C∞(TX), we

use the natural objective for training:

ℓ(θ) :=
(
∂̄†Eηθ, ∂̄

†
Eηθ

)
=

∫

Xt

∂̄†Eηθ ∧ ⋆̄E ∂̄
†
Eηθ , (5.2)

=

∫

Xt

gµν(∂̄
†
Eηθ)

µ(∂̄†Eηθ)
νvolgt . (5.3)

Note the expression for the Weil–Petersson metric (3.17) simplifies to the pairing between

the interior product of the respective harmonic representatives with the holomorphic (n, 0)

form if the Kodaira–Spencer representative is chosen to be harmonic. For the case of a general

gauge bundle where a representative of the H1(X,E) cohomology may not be available, one

would have to enforce the closure condition ∂̄Eη = 0 in addition to the co-closure condition.

Note that the Ricci-flat metric gt does double duty in the case of the standard embedding

as it naturally induces a metric on Ω0,1(TXt). To find harmonic bundle-valued representatives

for a general holomorphic vector bundle V using the objective (5.2), one must compute the

Hermitian metric on the fibres of V in addition to the metric gt.

As an example, we consider the mirror X̃ of X = P5[3, 3], described in Section 4.1,

parametrized by the complex structure parameter ψ. We first find explicit harmonic rep-

resentatives of the Kodaira–Spencer class [∂ξ] via the objective (5.2) using a standard fully

connected neural network with four layers with intermediate dimensions [64, 32, 32, 48] and the

Gaussian error linear unit activation function. We used the Adam optimization algorithm

with a learning rate of 10−4 in all experiments. We empirically observed that the results

were insensitive to the choice of hyperparameters considered. We subsequently compute the

Weil–Petersson metric gψψ on an independent validation set consisting of 250,000 fibre points

for each point in moduli space. We plot gψψ obtained using the intersection pairing valid

for harmonic representatives (3.17), together with the numerical values obtained for general

representatives by the Kodaira–Spencer approach, as well as the exact period computation

across discrete points in complex moduli space.

We observe that the harmonic forms computed using the approximate Ricci-flat metric

as input are able to recover the value of the Weil–Petersson metric away from the singularities

in moduli space. This supplies an additional reassurance similar in spirit to the topological

computations from local geometry in [55] — that numerical approximations to the Ricci-flat

metric are able to yield physically meaningful data. While we have restricted our attention

to the standard embedding, these results are an encouraging step towards conducting similar

computations for more general gauge bundles to extract relevant effective field theory param-

eters. Our method provides an improved approximation to the Weil–Petersson metric over

the non-harmonic representatives even near points in moduli space close to the singularity at
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Figure 10: Weil–Petersson metric computed for the mirror of the intersection of two cubics (4.2)

along Im(ψ) = 0, obtained from the Kodaira–Spencer map, the period integral and the machine-

learned harmonic representative method; cf. Figure 2. Red points indicate computation of the

intersection pairing (3.17) using only the non-harmonic ’reference’ representatives of the Kodaira-

Spencer class.

ψ = 0, and continues to yield the expected result near logarithmic singularities such as ψ = 1.

However, the fidelity of approximation degrades as one approaches the ψ = 0 singularity; we

aim to address this issue in ongoing work.

6 Discussion and outlook

The as yet unrealized dream of string phenomenology is to start from a construction involving

higher dimensional geometry and objects such as strings and branes to obtain an effective four-

dimensional theory satisfying all known particle physics and cosmological constraints from real

world experiments and observations. Plausibly, we must look for Standard Model or beyond

the Standard Model physics as an N = 0 (non-supersymmetric) quantum field theory in a

de Sitter background. With our current understanding of string theory, there is no obvious

direct attack for achieving this goal in one fell swoop. A more tractable initial step is to obtain

a four-dimensional N = 1 theory that includes the Standard Model spectrum and interactions

and has Yukawa couplings commensurate with observed mass hierarchies in a three generation

model. In order to perform this set of calculations within a heterotic compactification on a

Calabi–Yau threefold, we require knowledge of the Ricci-flat metric in a given Kähler class
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as a function of the complex structure moduli. This is necessary ab initio for normalizing

the kinetic terms in the Kähler potential and ultimately for addressing more complicated

issues such as moduli stabilization, incorporating α′-corrections, and breaking supersymmetry.

Perhaps the most straightforward laboratory for studying the problem invokes the “standard

embedding,” wherein the holomorphic vector bundle is the tangent bundle on the Calabi–Yau

manifold. The important technical simplification that occurs within this setting is that the

normalized Yukawa couplings can be computed directly using the Weil–Petersson metric on

the complex structure moduli space. In this work, we have performed the analysis for several

Calabi–Yau geometries and calculated the normalized Yukawa couplings.

The Kodaira–Spencer approach [42] we have used applies to Calabi–Yau geometries with

arbitrary h2,1(X). Moreover, we can generalize these techniques to Calabi–Yau threefolds

realized as hypersurfaces in toric varieties, namely those geometries obtained from applying

Batyrev’s procedure [56] to the Kreuzer–Skarke list [57] of four-dimensional reflexive poly-

topes.

In particular, we are performing analogous computations of Yukawa couplings in multi-

parameter families and for various three generation models such as [3, 58, 59]. The results are

compared to Yukawa coupling calculations reliant on machine learned harmonic representa-

tives using the Ricci-flat Calabi–Yau metric. This work is forthcoming [60]. We as well intend

to adapt these methods to non-standard embeddings, for which the number of generations

of particles in the low-energy spectrum need not be given by the Euler characteristic of the

Calabi–Yau base space.

Accompanying this work and our earlier paper [22], we aim to release our code base, the

software library cymyc [32], written in JAX, to compute Calabi–Yau Metrics, Yukawas, and

Curvature. On complete intersection Calabi–Yau manifolds, the spectral networks we employ

supply, to date, the most efficient tool for numerically approximating the Ricci-flat metric

using ∼ 105 or ∼ 106 points.6

The numerical calculation of the Weil–Petersson metric for arbitrary number of complex

structure moduli will also be useful for studying the swampland distance conjecture [61].

Recently there has been some progress in this direction, by employing the Kodaira–Spencer

method [42] for studying the moduli metric on Fermat quintic [25].

A synoptic view of this research places it in the broader context of a Big Data approach

to string phenomenology and the vacuum selection problem. We envision a systematic search

through the estimated mole of Standard Model-like string constructions [10] arising from

complete intersection Calabi–Yau geometries and the heptagoogol moles (10700+23) of toric

6The point selection follows the prescription of Shiffman–Zelditch [44]. Preliminary experiments indicate

that computational performance may be improved with different point selection schemes.
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ones so as to find “the needle in the haystack,” which is us, living in our Universe. To make

progress, we must incorporate some combination of the algebro-geometric and analytic meth-

ods into the mechanized algorithm. Each configuration is an entire (continuous) deformation

space of models, so it seems important to obtain the physically normalized Yukawa couplings

as functions of the complex structure deformation parameters and the Kähler class of the

metric. Ideally, we would input a Calabi–Yau geometry and ask whether there exists a point

in its moduli space that recovers a quantum field theory with desired phenomenological prop-

erties and if so to deduce its low-energy effective action upon compactification. We suspect

that string Standard Models with hierarchies in the Yukawa couplings are extremely rare, as

at a generic point in moduli space, most of these will be of O(1). Finding special points in

moduli space where this expectation is dashed poses a central challenge for obtaining realistic

models of particle physics. Given the vastness of potential compactification geometries, it

must be the case that if we find one model with the correct physics, there will be hugely

many.

More ambitiously, the question of whether Calabi–Yau compactifications (a priori, with

Minkowski spacetime) can be uplifted to accommodate our asymptotically de Sitter space-

time may well depend “Goldilocks” style, delicately on nearly-but-not-quite/almost-conifold-

singular Calabi–Yau manifolds [55, 62]. Our earlier machine learning investigations scanning

for curvature clumping on singular K3 surfaces [22] (generalized to Calabi–Yau threefolds),

should provide a solid stepping stone in searching for such models.
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A Proofs of lemmas

For completeness, we provide proofs of Lemma 1 and Lemma 2. We recall that we have

used Lemma 1 to establish that H1(X,TX) ≃ H2,1(X) and Lemma 2 to describe the Weil–

Petersson metric.

Lemma 1 Let X be a Calabi–Yau manifold, then: H1(X,TX) ≃ Hn−1,1

∂
(X) and the iso-

morphism is given by:

[α] 7−→ [Ω(α)] , (2.8′)

where Ω ∈ Hn,0

∂
(X) is non-zero.

Proof. We shall first show the isomorphism is a consequence of Serre duality. For brevity we shall

suppress the reference to the manifold X. Then, by multiple applications of Serre duality, we obtain:

H1(TX) ≃ H0,1(TX) ≃ Hn,n−1(T ∗
X)∗ ≃ Hn−1(Ωn ⊗ T ∗

X)∗ . (A.1)

However, since Ωn = KX ≃ OX and T ∗
X ≃ Ω, we have:

Hn−1(Ωn ⊗ T ∗
X)∗ ≃ H1,n−1(OX)∗ ≃ Hn−1,1(O∗

X) ≃ Hn−1,1(OX) , (A.2)

thus proving the claim H1(TX) ≃ Hn−1,1

∂
(X). We shall now show that the isomorphism is given by

the interior product. It is trivial to see that the interior product gives an isomorphism on the sections:

Γ(X,Ωn−1,1) ≃ Γ(X,Ω0,1(TX)) [37], thus what remains to show is that the map preserves kernels

and images of ∂. Let p ∈ X and pick local coordinates (z1, . . . , zn) centered at point p. Suppose

that [α] = 0 in H1(TX), then, α = ∂ϕ for some non-holomorphic vector field ϕ ∈ Γ(X,TX). Let

Ω = f(z)dz1 ∧ · · · ∧ dzn in the local coordinates defined above, where f(z) is holomorphic. Then, the

interior product is given explicitly by:

Ω(∂ϕ) =

n∑

µ=1

(−1)µ−1f αµ
ν dz

ν ∧ µ̂ =

n∑

µ=1

(−1)µ−1f
∂ϕ

∂zν
dzν ∧ µ̂ , (A.3)

where we abbreviated µ̂
def
= dz1 ∧ · · · ∧ d̂zµ ∧ · · · ∧ dzn. That above is exact follows immediately from

the fact that f is holomorphic, thus ∂f = 0. Similarly, let α be ∂-closed, then:

∂Ω(α) =

n∑

µ=1

(−1)µ−1f
∂αµ

ν

∂zσ
dzσ ∧ dzν ∧ µ̂ = 0 . (A.4)

Lemma 2 Let Ω ∈ Hn,0

∂
(Xt) where n = dimXt, be non-zero, then:

⟨a, b⟩WP = −

∫

Xt

Ω(Hρ(a)) ∧ Ω(Hρ(b))
∫

Xt

Ω ∧ Ω

∫

Xt

volgt . (3.3′)
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Proof. The result follows from direct calculation in local coordinates. Let p ∈ Xt and consider local

coordinates (z1, . . . , zn) centered at p. Let α = Hρ(a) and β = Hρ(b), then:

Ω(α) =

n∑

µ,ν=1

(−1)µ−1αµ
ν f dz

ν ∧ µ̂ , (A.5)

where α = αµ
ν dz

ν ⊗ ∂µ and Ω = f(z) dz1 ∧ · · · ∧ dzn. Combining the results for both deformations

yields the following:

Ω(α) ∧ Ω(β) =

n∑

µ,µ′,ν,ν′=1

(−1)µ+µ′ |f |2 αµ
ν β

µ′

ν′ dz
ν ∧ µ̂ ∧ dzν

′ ∧ µ̂′ . (A.6)

It is easy to see that the only non-vanishing terms have indices µ = ν′ and µ′ = ν, which leads to the

following expression:

Ω(α) ∧ Ω(β) =

(
n∑

µ,ν=1

(−1)µ+ναµ
ν β

ν
µ (−1)µ+ν−1

)
Ω ∧ Ω = −αµ

ν β
ν
µ Ω ∧ Ω . (A.7)

Finally, since α and β are both chosen to be harmonic, using the results of [40] (or Lemma 3), it

is immediate that αµ
ν β

ν
µ = gµν g

σδ αµ

δ
βν
σ where (see Definition 1) gt = gµν dz

µ ∧ dzν . Furthermore,

noting that the flat metric on compact Xt solves the Monge–Ampère equation: volgt = κΩ ∧ Ω for

some constant κ ∈ C, we obtain:
∫

Xt

Ω(α) ∧ Ω(β) = − 1

κ

∫

Xt

α ∧ ⋆gtβ . (A.8)

After identifying κ with
∫
Xt

volgt
/ ∫

Xt
Ω ∧ Ω, the result follows.

We also note that there exists a method of computation of the harmonic representative

which avoids the use of the computationally expensive derivatives of the Ricci–flat metric.

The result follows from the following lemma.

Lemma 3. Let X be Calabi–Yau with Kähler class [ω] ∈ H1,1(X)∩H2(X) and α ∈ Ω0,1(TX)

is closed, then the following are equivalent:

1. α is harmonic with respect to Ricci-flat metric in the Kähler class [ω].

2. α is polarization preserving with respect to [ω] and ∂Ω(α) = 0.

In statement 2, polarization preserving is in the sense of [37, 40].

Proof. That 1 ⇒ 2 is proved in [40] and depends on Ricci-flatness of the metric. Conversely, to

show that 2 ⇒ 1, pick an open set U ⊂ X and local coordinates (z1, . . . , zn) on U such that Ω =

f(z)dz1 ∧ · · · ∧ dzn. Locally, we may expand ∂Ω(α) as:

∂Ω(α) = ∂

(
n∑

µ=1

(−1)µ−1f(z)αµ
ν dz

ν ∧ µ̂
)
,

=

n∑

µ=1

∂

∂zµ
(
f(z)αµ

ν

)
dzν ∧ dz1 ∧ · · · ∧ dzn = 0 ,

(A.9)
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where µ̂ := dz1 ∧ · · · ∧ d̂zµ ∧ · · · ∧ dzn. Similarly, the polarization preserving condition, at the level of

forms, can be written as:

gµρ g
σν αµ

ν = ασ
ρ . (A.10)

Finally, using the local Monge–Ampère equation, det g = κ|f(z)|2, we obtain:

∂

∂zµ
(
gσν g

µρ ασ
ρ det g

)
dzν = κ

∂

∂zµ
(
|f(z)|2gσν gµρ ασ

ρ

)
dzν ,

= κf(z)
∂

∂zµ
(
f(z)αµ

ν

)
dzν = 0 .

(A.11)

Equivalently, extending the results globally to X, we have: ∂
†
α = 0 and since ∂α = 0 by definition,

we see that α is indeed harmonic.

References

[1] P. Candelas, G. T. Horowitz, A. Strominger and E. Witten, Vacuum configurations for

superstrings, Nucl. Phys. B 258 (1985) 46–74.
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