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Abstract: The continuum of holographic dual gravitational charges is recovered out of

the discrete spectrum of U(N) N = 4 SYM on R × S3 . In such a limit, the free energy

of the free gauge theory is computed up to logarithmic contributions and exponentially

suppressed contributions. Assuming the supergravity dual prediction to correctly capture

strong-coupling results in field theory, the answer is bound to encode a complete low-

temperature expansion of the Gibbons-Hawking gravitational on-shell action, valid well

beyond the vicinity of supersymmetric black hole solutions. The formula recovers the long

awaited Schwarzian contribution at low enough temperatures. The computed mass-gap

matches the conjectured strong-coupling result obtained by Boruch, Heydeman, Iliesiu and

Turiaci in supergravity. The emergent reparameterizations, broken by the Schwarzian,

correspond to redefinitions of the relevant cutoff scale. Observations are made regarding

the existence of 1
8 -BPS black holes and how this is in tension with BPS inequalities. The

RG-flow procedure leading to these results opens the way to understanding the emergence

of chaos in gauge theories and its relation to non-extremal and non-supersymmetric black

hole physics.
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1 Introduction

In a quantum system with a semi-positive Hamiltonian ∆ ≥ 0 and a discrete spectrum with

degeneracies d(∆) the Taylor expansion of the partition function

Z[β] = Tre−β∆ = e−F [β] (1.1)

at zero temperature β =∞ is trivially equal to the number of ground states. 1 Equivalently,

the Taylor expansion of the free energy F at zero temperature β = ∞ is trivially equal

to minus the logarithm of the number of ground states. 2 If the discrete system has a

holographic dual description [1–4][5] such that in an RG flow procedure 3 – denoted as Λ→
1This is because every finite-temperature correction to the partition function beyond the vacuum degen-

eracy d(0), Z = d(0) + d(∆min)e
−β∆min + . . . is exponentially suppressed.

2F“ = ”− log d(0) .
3Very much in the mathematical spirit of [6, 7][8, 9].
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∞ in this introduction – 4 it reduces to a semiclassical theory of gravity with black hole

solutions at arbitrary Bekenstein-Hawking temperature 1/β [10–17][18, 19], then one reaches

a contradiction, as the gravitational free energy Fg

F →
Λ→∞

Fg (1.2)

of any such black hole is bound to have a non-trivial perturbative expansion around β =

∞ . For example, the Gibbons-Hawking gravitational on-shell action [20] of rotating and

electrically charged black holes in AdS5 [21, 22], and in particular its low temperature

expansion, has been recently studied, with varied motivations, for example, in [23–29]. The

first goal of this paper is to solve this apparent contradiction.

That F [β] , the free energy of the fundamental theory has a trivial Taylor expansion

at zero temperature while Fg[β] , the free energy of the infrared effective theory has a non-

trivial one, strongly suggests that the RG-flow procedure Λ → ∞ , which must be applied

before expanding in low-temperatures β → ∞ , 5 should map the discrete spectrum of the

fundamental theory (and its stringy dual formulation) to a continuum spectrum in the

infrared.

In the grand-canonical ensemble (with fixed chemical potentials), we will find that the

operation Λ → ∞ corresponds to localizing the free energy F of the fundamental system

to a 1
Λ -vicinity of its singular locus. By localization, we mean discarding exponentially

suppressed contributions at large values of the scaling parameter Λ, in the spirit of [30].

In a generic gauge theory there are several such singularities, 6 and disconnected families

of them are expected to correspond to inequivalent Λ→∞ RG-flow procedures. It is also

expected that they correspond to different saddle points [35–54][55, 56] which may or may

not be intersected by the complex contour one wishes to integrate over in order to work at

fixed and large charges. In this paper, we will focus on one such leading singularity, that is,

one that corresponds to the potentially most dominant saddle point(s). 7 The test theory

will be U(N) N = 4 SYM on R × S3 where there is convincing evidence that such a leading

saddle point determines the analytic part of the asymptotic expansion of the free energy

in the Λ → ∞ RG flow procedure at zero temperature β =∞. This is, of the free energy

of the superconformal index [30]. We will further confirm that a smooth deformation of it

continues to dominate the perturbative expansion around Λ→∞ at β 6=∞.

This leading localization procedure may seem abstract at first. It has a clear physical

meaning though. In the microcanonical ensemble it amounts to ignoring charge eigenval-

ues that are larger than a certain large energy scale Λn+1Rn , where R is the radius of

4To make contact with supergravity N ≫ 1 is also required. The scale Λ, whose meaning we will explain

below, is a conceptually different scale than N (first of all it is dimensionful). Whenever we connect with

the theory obtained in the RG-expansion Λ → ∞ to supergravity it is implicitly assumed that N → ∞ in

a particular way. For N = 4 SYM the scaling with N will be given in the main body of the paper. In this

introduction to keep the presentation simple, we avoid explicitly mentioning the scaling of N to match with

supergravity.
5As it corresponds to a semiclassical gravitational limit with black hole solutions at any temperature.
6For example, already at β = ∞, for the superconformal index of N = 4 SYM, this is known to be the

case [30, 31] [32–34].
7These dominating saddle points come in representations of discrete groups [45, 48][57].
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the S3 . Then requiring Λ to be much larger than 1
R , implies that the spacing among con-

tiguous eigenvalues δE = 1
R becomes infinitesimally small compared to the hierarchy of

eigenvalues explored δE
E ∼ 1

(ΛR)n+1 ≪ 1, and one effectively obtains a continuum spectrum.

The integer power n may be conveniently selected depending on the landing point of the

selected ΛR → ∞ limit. The effective theory associated with such a continuum spectrum

is called the gravitational infrared theory or simply the infrared theory.

Using this procedure, the complete analytic part of the asymptotic expansion of F
around a reference 1

16 -BPS locus located at α0 = 0 8 will be computed at any value of N . 9

The answer takes the form (n = 2)

F∞ = β0 E0 +
n∑

p=−1

4∑

q=0

∞∑

r=0

(ΛR)p Lp+1;q,r[ϕv, ϕw, u]
Fp;q;rα

q
0

(β0)rω1,0ω2,0
, (1.3)

10 where β0 = βΛ. More details on this formula will be given in section 3, equation (3.28),

here we just notice that it includes terms that range from low-temperature corrections in-

cluding Casimir-energy like contributions of order O(β), and arbitrary high positive powers

of temperature 1
β . (1.3) will be called the free energy of the holographic infrared theory or

simply the infrared free energy. Assuming supergravity predictions are correctly capturing

strong-coupling results in field theory, and in virtue of analyticity, (1.3) is bound to recover

a complete low-temperature expansion of the Gibbons-Hawking onshell action of the black

holes of [58], valid even well beyond the vicinity of supersymmetric black hole solutions. 11

In this paper by low-temperature expansion we mean an expansion that takes us to

zero-temperature and that precisely at zero-temperature, it reduces the partition function

to a superconformal index located as α0 = 0 . 12 There are as many such families of

expansions as independent superconformal indices (sectors) in N = 4 SYM and each such

family is defined by a set of boundary conditions or precisely linear constraints upon chemical

potentials. 1
4 ,

1
8 and 1

16 -BPS boundary conditions and their corresponding expansions are

all encoded in (1.3).

Given an index, there are infinitely many ways to reach it as ΛR → ∞ . The repa-

rameterization group invariance that the Schwarzian breaks [64–66][67] is one that gener-

ates motion within the family of limits leading to the reference index. It corresponds, as

well, to a set of chemical potential-dependent redefinitions of the cutoff Λ 7→ Λ′(Λ) such

that Λ
Λ′(Λ) → 1 as ΛR→∞ .

8Sometimes it will be called the perturbative part.
9We will not pay attention to chemical potential independent O((ΛR)0) contributions, such as those

coming from counting the number of equally contributing saddle points like the ones mentioned in footnote 7.
10The sum over powers of temperature

∑∞
r=0 can be solved analytically as a rational function of β0. We

will not report such expressions here because they are too large, but their complete form can be found

in the shared Mathematica notebook. Many of the function coefficients denoted as Fp;q;r vanish trivially,

for example, Fp;0;r≥1 = Fp;q≥1;0 = 0 . Also, as it will be elaborated upon in due time there is implicit

dependence on ΛR in the auxiliary chemical potentials, {β0, α0, ω1,0, ω2,0} .
11Using their 1

16
-BPS solutions [59, 60] as reference point for the expansion [23, 61–63].

12Thus, the β → ∞ limits studied in this paper are not counting ground states but BPS gauge invariant

states in N = 4 SYM.
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To test (1.3) the goal will be to derive the free energy of the Schwarzian theory. For

this we will select to work in a near 1
8 -BPS sector, and in a near- 1

16 -BPS sector.

The first Schwarzian contribution we will study, the one localized around a 1
8 -BPS sec-

tor, and infinitely many other higher low-temperature corrections upon it, will be shown

to be protected by superconformal symmetry. The second Schwarzian contribution we will

study, the one localized around a 1
16 -BPS sector, cannot a priori be argued to be pro-

tected by superconformal symmetry. 13 For both the protected and the a priori unprotected

Schwarzian contributions the mass gap will be computed.

The protected contributions are bound to compute exact finite-temperature corrections

of the gravitational onshell action of AdS5 solutions [58, 68, 69] about their 1
8 -BPS locus. 14

From this protected infrared limit we will learn something about near 1
8 -BPS black

holes. For near-18 -BPS black holes with at least two almost-equal electric charges Q1 ≈ Q3

(but unequal), it will be shown that semipositivity bounds of the fundamental theory imply

that the mixed-ensemble free energy of the infrared theory should come solely from the

semiclassical Schwarzian contribution. Thus, it scales bilinearly with temperature T and a

chemical potential (α− 1
2) . 15 This result strongly suggests that these black hole solutions

have a near-vanishing horizon area, a conclusion that resonates with the results of [25] (in

gravity) and of [74, 76, 77] (in field theory).

The Schwarzian contributions which we cannot argue (a priori) to be protected against

coupling corrections are the ones corresponding – at strong coupling – to the breaking

of re-parameterizations of the time coordinate in the near-horizon AdS2 geometry of black

holes [58, 68, 69] that are near- 1
16 -BPS, but not near 1

8 -BPS. These include the ones studied

in [28] in the context of minimally gauged five-dimensional supergravity.

Remarkably, the free-field theory computation of the Schwarzian mass gap will ex-

actly match the gravitational result obtained in reference [28]. In this near- 1
16 -BPS case

logarithmic divergencies will be understood to come from the reference superconformal in-

dex (α0 = 0) confirming the absence of log T/Tbreakdown corrections, as expected from the

supergravity perspective [28][29]. 16

The RG-flow procedure leading to these results opens the way to realize, analytically,

how chaos may emerge [78–80] within higher dimensional non-averaged systems, such as

four-dimensional N = 4 SYM [81, 82][83].

This paper focuses on N = 4 SYM, but the proposed RG-flow procedure can be applied

13At least we do not see a clean way of doing so, although we do see hints of an underlying anomaly

protection argument, which currently we do not understand.
14The solutions of [58, 68, 69] include 1

16
-BPS black holes [59, 60] [23, 35, 36] but also horizon-less solutions

such as BPS solitons [58, 68]. So, even in the case 1
8
-BPS black holes do not exist, this point may have a

physical meaning, i.e., a dual horizonless geometry. 1
16

-BPS rotating solitons have been already found in,

e.g., [58, 70]. Examples of 1
8
-BPS solitons with electric charge and no rotation have been already found

in [71]. Other horizonless geometries, such as LLM geometries [72] have been shown to correspond to the
1
2
-BPS sector [73–75]. So, more general horizonless geometries may very well correspond to the 1

4
- and

1
8
-BPS sectors.
15This is the chemical potential controlling the limit to the supersymmetric locus [23].
16For the near- 1

8
-BPS case there may be subtleties that spoil this last conclusion. We leave for the future

to study that case.
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to any other example of superconformal gauge theories with a known discrete spectrum.

Thinking not only in the context of gauge/gravity dualities, this way of triggering a flow

between the discretruum and the continuum can be applied to any gauge theory with

a known discrete spectrum, which can be enforced by placing the theory in a box with

appropriate boundary conditions, for example. It can also be applied to systems that are

already known to be realized in nature.

The content of this paper is organized as follows. Section 2 revisits the computation

of the partition function of four-dimensional U(N) N = 4 SYM on R × S3 at zero gauge

coupling and sets up conventions. Special emphasis is put on illustrating the constraints

(boundary conditions) that reduce the partition function to 1
16 -BPS indices and 1

8 -BPS

indices. Section 3 introduces the RG flow procedure that maps the discrete field theory

spectrum to the continuum of charges in supergravity. It also summarizes the derivation

of the infrared free energy (1.3), and explains its relation to the Gibbons-Hawking on-shell

action well beyond supersymmetry and extremality. Section 4 proceeds to compute the

Schwarzian contribution around the 1
8 -BPS locus and predicts its mass gap. Section 5

proceeds to compute the Schwarzian contribution around the generic 1
16 -BPS locus and its

mass gap. It also compares results against the conjectured supergravity duals. Section 6

ends the main body of the article with a summary of the results, open questions, and

observations. Some technical details and results are relegated to the Appendices.

2 The partition function

The space of states of N = 4 SYM on S3 can be constructed with a set of 16 raising and

lowering operators and an auxiliary vacuum state |0〉 [84]. These operators can be divided

into 8 bosons and 8 fermions. The bosons, which we will denote as a±, a±, b±, b± form an

8-dimensional spinoral representation of the conformal group in four-dimensions SO(2, 4).

The fermions, which we will denote as f1,2,3,4 , f1,2,3,4 , form an 8-dimensional spinorial rep-

resentation of the R-symmetry group SO(6) . These operators obey canonical commutation

rules,

[aη, aγ ] = δηγ ,
[
bη̇, bγ̇

]
= δη̇γ̇ , {fn, fm} = δnm ,

η, η̇ , γ ,γ̇ = −,+ n,m = 1, 2, 3, 4 .
(2.1)

The Fock vacuum is defined by the conditions

a± |0〉 = 0 , b± |0〉 = 0 , f1 |0〉 = 0 , f2 |0〉 = 0 , f3 |0〉 = 0 , f4 |0〉 = 0 . (2.2)

The f1,2 are lowering operators and the f3,4 are rising operators. Operators with supraindices

are complex conjugated to operators with subindices . The scalar single-states operators in

the theory X1, X2, X3, X1, X2, and X3 are isomorphic to the states 17

X1 ↔ f1f2f
3f4|0〉 , X1 ↔ |0〉 ,

X2 ↔ f1f
4|0〉 , X2 ↔ f2f

3|0〉 ,
X3 ↔ f2f

4|0〉 , X3 ↔ f1f
3|0〉 .

(2.3)

17For more details of this construction please refer to [85] and [84]. In this section, we will use conventions

which are closely related to the ones in Appendix A of [84].

– 5 –



The symmetry generators in this theory, e.g. dilations E, the two independent angular

momenta J1 and J2 and R-charges R1, R2 and R3

{E, J3
1 , J

3
2 , R1, R2, R3} (2.4)

can be expressed as quadratic combinations of oscillators a, b and f . 18 In particular, the

32 supercharges of the theory are

Qn,± = f̃na±, Sn,± = f̃na
±, Qn,±

= f̃nb± , Sn,± = f̃nb± . (2.5)

where

f̃n = fn if n = 1 , 2 ,

f̃n = fn if n = 3 , 4 .
(2.6)

The †-operation raises/lowers indices of single oscillators f, a and b . Thus Sn,± = (Qn,±)† ,

Sn,± = (Qn,±
)† . In our conventions the R-charge generators are

R1 := f̃2̃f
2 − f̃1̃f

1 ,

R2 := f̃3̃f
3 − f̃2̃f

2 ,

R3 := f̃4̃f
4 − f̃3̃f

3 .

(2.7)

Using these expressions one obtains the R-charges of the scalar single states, which are

summarized in Table 1.

Scalars R1 R2 R3

X1 0 −1 0

X2 −1 +1 −1
X3 +1 0 −1

Table 1. R-charges of the scalar single-states X1,2,3. Barred scalars have opposite charges.

We will be interested in two sets of complex-conjugated supercharges. The first couple

Q := Q4,− , S := Q† = S4,− , (2.8)

whose anti-commutation relation, following from (2.1), is

∆ = 2{Q,S} = H − 2J3
1 − 2

3∑

k=1

k

4
Rk ≥ 0 . (2.9)

To obtain this commutation relation one must use the fact that the central element of the

oscillator algebra

C := b+b+ + b−b− − a+a+ − a−a− − f̃nf̃
n = −Z1 − B1 − 2 = −2 , (2.10)

18We will use the definitions of charges given in Appendix A of [84], equation (A.2), with the relations f̃n =

αn
there , (aη)here = (aη)there , (bη̇)here = (bη̇)there. Moreover, (Ra)here = (−Ra)there .
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equals −2 , and that the U(1)J and U(1)B charges [85]

−Z1 = Nb − Na , −B1 = −f̃nf̃n + 2 = Nβ − Nα , (2.11)

vanish on the physical states of the theory. 19 In our conventions, the number operators

are [85]

Nb = b+b
+ + b−b

− , Na = a+a
+ + a−a

− ,

Nβ = f3f3 + f4f4 , Nα = f1f
1 + f2f

2 .
(2.12)

Q and S will be the supercharges preserved by the BPS sector around which we want to

compute low-temperature corrections. The other two supercharges we will work with are,

either

Q2,+
, S2,+ = (Q2,+

)† , (2.13)

or

Q2,−
, S2,− = (Q2,−

)† , (2.14)

and their anticommutation relations are

2{Q2,+
,S2,+} = H + 2J3

2 +
R1

2
−R2 −

R3

2

= ∆+ := ∆ + ∆
(2)
+ ≥ 0

2{Q2,−
,S2,−} = H − 2J3

2 +
R1

2
−R2 −

R3

2

= ∆− := ∆ + ∆
(2)
− ≥ 0

(2.15)

where

∆
(2)
± := 2

(
J3
1 ± J3

2

)
+ R1 +R3 . (2.16)

The weights of these supercharges under the action of the bosonic symmetries (2.4) are

Q4,− →
{1
2
,−1

2
, 0, 0, 1

}
, Q2,± →

{1
2
, 0,±1

2
,−1,+1, 0

}
. (2.17)

For latter reference we note that the set of bosonic charges that commute simultaneously

with Q4,−, S4,−, Q2,+, and S2,+ is generated by

∆ , R1 +R2 , H + J3
1 − R2/2 , + J3

2 − R2/2 . (2.18)

The set of those that commute simultaneously with Q4,−, S4,−, Q2,−, and S2,− is generated

instead by

∆ , R1 +R2 , H + J3
1 − R2/2 , − J3

2 − R2/2 . (2.19)

19For example, these contraints imply that at the level of eigenvalues f̃4̃f
4 = −∑3

n=1 f̃n f̃
n + 2 . The

oscilators f̃n are the ones denoted as αn in reference [84].
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2.1 The matrix integral at zero gauge coupling

In the language of the N = 1 superconformal symmetry corresponding to the U(1) R-charge

generator

R3 (2.20)

the fundamental field content of the theory organizes in a vector, three chiral and three

anti-chiral multiplets. The vector multiplet is composed of a vector field with R3 = 0

and flavour charges R1 = R2 = 0, and a gaugino with a chiral (and antichiral) components

with R3 = +1 (and −1) and flavour charges R1 = R2 = 0 . The R-charges of the chiral

multiplets can be found in table 2. The R-charges of the anti-chiral multiplets take the

opposite values.

chiral mutliplet I R1 R2 R3

1 0 −1 0

2 −1 +1 −1
3 +1 0 −1

Table 2. R-charges of the chiral multiplets. The same ones as their corresponding scalar com-

ponents quoted in table 1. The antichiral multiplets have opposite charges. The scalars in the

chiral(antichiral)-multiplets have the same R-charges as their multiplets. The fermions in the chi-

ral(resp. antichiral)-multiplets have the same charges as the scalars under R1 and R2. Their charge

under R3 increases by +1 (resp.−1) with respect to the R-charge of the scalar in the same multiplet.

For later use we note that

(−1)F = eπi(R1+R3) . (2.21)

After a straightforward computation the partition function Z of the free theory [86]

Z = e−F = Z[x, u, v, w, t, y] := TrHx
∆u−R1−R3v−R1w−R2t2(H+J3

1 )y2J
3
2 (2.22)

reduces to

Z = e−F =

∫
[DU ]e−F∞

sl
[x,u,v,w,t,y;U ] (2.23)

where

−FΛ
sl [x, u, v, w, t, y;U ] :=

Λn+1∑

j=1

1

j

(
fBos[x

j , uj , vj , wj , tj , yj ]

+ (−1)j+1fFer[x
j , uj , vj , wj , tj , yj ]

)
TrU jTrU †j ,

(2.24)
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and

fBos := f
(V )
Bos +

3∑

I=1

f
(I)
Bos

= − t6y2
(
u2x4

(
v
(
u2v + w2

)
+ w

)
+ x2

(
u2v(vw + 1) + w2

))

u2vw (t3 − y) (t3y − 1) (tx2 − y) (tx2y − 1)

+
t5y
(
2t3x4y − 2t2x2

(
y2 + 1

)
+ ty − 2x4

(
y2 + 1

))

(t3 − y) (t3y − 1) (tx2 − y) (tx2y − 1)

+
t4u2vwx2

(
y2 + 1

)2
+ t2y2

(
u4v2x2 + u2

(
v2w + vwx2

(
w + x2

)
+ v + wx2

)
+ w2

)

u2vw (t3 − y) (t3y − 1) (tx2 − y) (tx2y − 1)
,

(2.25)

fFer := f
(V )
Fer +

3∑

I=1

f
(I)
Fer

=
t3y
(
x2
(
u2v

(
t2(−v) + vw + 1

)
+ w

(
w − t2(vw + 1)

))
+ vw

)

uvw (t3 − y) (t3y − 1) (tx2 − y) (tx2y − 1)

+
t2y
(
t4(−v)y

(
u2x2 + w

)
− t3u2vwx4 + t2y

(
v
(
u2v + w2

)
+ w

)
+ u2v2x2y

)

uvw (t3 − y) (t3y − 1) (tx2 − y) (tx2y − 1)

(2.26)

+
t2x2y2

(
−
(
t4
(
u2v2 + w

))
+ t2

(
u2 − 1

)
v + vw + 1

)

uv (t3 − y) (t3y − 1) (tx2 − y) (tx2y − 1)

+
t2y2

(
−t2x4

(
u2v(vw + 1) + w2

)
+ tvy

(
u2x2 + w

)
+ u2vwx4

)

uvw (t3 − y) (t3y − 1) (tx2 − y) (tx2y − 1)

− t3x2y3
(
t2
(
v
(
u2
(
v + wx2

)
+ w2

)
+ w

)
− w

(
u2v2 + w

))

uvw (t3 − y) (t3y − 1) (tx2 − y) (tx2y − 1)
.

(2.27)

Let us give some details on how this expressions above were derived. The contributions

coming from vector multiplets are

f
(V )
Bos =

∞∑

j=1

j+1
2∑

j31=− j+1
2

j−1
2∑

j32=− j−1
2

(x∆+t2(ǫ
(1)
j +j31)y2j

3
2u−R1−R3v−R1w−R2)

+
∞∑

j=1

j−1
2∑

j31=− j−1
2

j+1
2∑

j32=− j+1
2

(x∆−t2(ǫ
(1)
j −j31)y−2j32u+R1+R3v+R1w+R2)

(2.28)

and

f
(V )
Fer =

∞∑

j=1

j
2∑

j31=− j
2

j−1
2∑

j32=− j−1
2

x∆
+
t2(ǫ

( 12 )

j +j31)y2j
3
2u−R1−R3v−R1w−R2

+
∞∑

j=1

j−1
2∑

j31=− j−1
2

j
2∑

j32=− j
2

x∆
−

t2(ǫ
( 12 )

j −j31)y−2j32u+R1+R3v+R1w+R2 .

(2.29)
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The contributions coming from chiral+antichiral multiplets are

f
(I)
Bos =

∞∑

j=0

j
2∑

j31=− j
2

j
2∑

j32=− j
2

x∆
+
t2(ǫ

(0)
j +j31)y2j

3
2u−R1−R3v−R1w−R2

+
∞∑

j=0

j
2∑

j31=− j
2

j
2∑

j32=− j
2

x∆
−

t2(ǫ
(0)
j −j31)y−2j32u+R1+R3v+R1w+R2

(2.30)

and

f
(I)
Fer =

∞∑

j=1

j
2∑

j31=− j
2

j−1
2∑

j32=− j−1
2

x∆
+
t2(ǫ

( 12 )

j +j31)y2j
3
2u−R1−R3v−R1w−R2

+
∞∑

j=1

j−1
2∑

j31=− j−1
2

j
2∑

j32=− j
2

x∆
−

t2(ǫ
( 12 )

j −j31)y−2j32u+R1+R3v+R1w+R2 .

(2.31)

In these expressions we have used the following definitions

∆± = ǫj ∓ 2j31 ∓
1

2
R1 ∓R2 ∓

3

2
R3 , ǫ

(1)
j = j + 1 , ǫ

( 1
2
)

j = j +
1

2
, ǫ

(0)
j = j + 1 , (2.32)

where j31 and j32 are the eigenvalues of J3
1 and J3

2 respectively.

After resumming the series in these contributions above, and summing the result over

the R-charge values of the vector multiplet components, we obtain

f
(V )
Bos =

2t8x4y2 − 2t7x2y
(
y2 + 1

)
+ t6y2 − 2t5x4y

(
y2 + 1

)
+ t4x2

(
y2 + 1

)2
+ t2x4y2

(t3 − y) (t3y − 1) (tx2 − y) (tx2y − 1)

f
(V )
Fer =

t2y
(
−t4y − t3u2x4

(
y2 + 1

)
+ t2

(
u2 − 1

)
x2y + t

(
y2 + 1

)
+ u2x4y

)

u (t3 − y) (t3y − 1) (tx2 − y) (tx2y − 1)
.

(2.33)

After summing

f
(I)
Bos =

t2y2uR1+R3vR1wR2x
R1
2
+R2+

3R3
2

+1
(
1− t4x2

) (
u−2(R1+R3)v−2R1w−2R2x−R1−2R2−3R3 + 1

)

(t3 − y) (t3y − 1) (tx2 − y) (tx2y − 1)

f
(I)
Fer =

t2yu−R1−R3v−R1w−R2x
1
2
(−R1−2R2−3R3+1)

(
−t3x2

(
y2 + 1

)
+ t2y + x2y

)

(t3 − y) (t3y − 1) (tx2 − y) (tx2y − 1)

+
t3yu+R1+R3v+R1w+R2x

1
2
(+R1+2R2+3R3+3)

(
y
(
−t3 − tx2 + y

)
+ 1
)

(t3 − y) (t3y − 1) (tx2 − y) (tx2y − 1)
,

(2.34)

over the R-charges I = 1, 2, 3 reported in the table 2 and summing over contributions coming

from bosons and fermions in the vector multiplets, we obtain the total contributions from

bosons (2.25) and fermions (2.26) to FΛ
sl .
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For completeness, we report the translation to the writing of the partition function

given in equation (2.5) of [35],

e−βthere = x t2 , e−ω1there =
t

yx
, e−ω2there =

ty

x
,

e∆1there = xw , e∆2there = x
u2v

w
, e∆3there =

x

v
,

e2∆there = e∆1there+∆2there+∆3there = x3u2 .

(2.35)

Eventually, we will use the following definitions of rapidities in terms of chemical potentials

x̃2 :=
tx2

y
, x = e−β ,

t3

y
= e−ω1 , t3y = e−ω2 , t2v = e−ϕv ,

w

t2
= eϕw (2.36)

which can be equivalently written as follows

t = e−
1
6
(ω1+ω2) , y = e

ω1−ω2
2 , v = e

1
3
(ω1+ω2−3ϕv) , w = e−

1
3
(ω1+ω2−3ϕw) . (2.37)

The BPS locus α = ±1
2 Note that from (2.21) it follows that at

u := e2πiα = e±πi (2.38)

cancellations happen and the dependence on x dissapears in

fBos[x
j , . . .] + (−1)j+1fFer[x

j , . . .] = I4,−sl [vj , wj , tj , yj ] (2.39)

where

I4,−sl [v, w, t, y] := 1 −
(
t2v − 1

) (
t2

w − 1
)(

t2w
v − 1

)

(
t3

y − 1
)
(1− t3y)

. (2.40)

This implies that at the value of chemical potential (2.38) the partition function equals

Z[x, u = −1, v, w, t, y] = e−F [x,u=−1,v,w,t,y] = I4,−(v, w, t, y) , (2.41)

where

I4,− :=

∫
[DU ]e

∑∞
j=1

1
j
I4,−
sl

(vj ,wj ,tj ,yj)TrUjTrU†j

= TrH(−1)F x2{Q,S}v−R1w−R2t2(H+J3
1 )y2J

3
2 =: I1 ,

(2.42)

is the 1
16 -BPS superconformal index counting states in the cohomologies of Q = Q4,−

and S = S4,− = Q† , for which ∆ = 0 [84, 87][88–90]. States which are not in such

cohomology do not contribute to this index and thus I4,− does not depend on x , as it has

been explicitly shown in (2.40). We will also denote this index as I1.
Further imposing

w = vty or ϕw = −ϕv + ω1 + ω2 , (2.43)
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on (2.40) we find that

I4,−;2,+
sl [v, t, y] = 1−

(
1− t2v

) (
1− t

vy

)

1− t3

y

. (2.44)

Indeed, (2.43) implies, more generally, that

Z[x, u = −1, v, w = vty, t, y] = I4,−;2,+[v, t, y] . (2.45)

where

I4,−;2,+ :=

∫
[DU ]e

∑∞
j=1

1
j
I4,−;2,+
sl

(vj ,tj ,yj)TrUjTrU†j

= TrH(−1)F x2{Q,S}v−R1−R2t2(H+J3
1 )−R2y2J

3
2−R2

(2.46)

is the 1
8 -BPS superconformal index counting states in the cohomologies of Q = Q4,−, S =

S4,− , Q2,+ and S2,+ : the Macdonald index [91] associated to the latter four supercharges.

2.2 An index to compute higher order thermal corrections at strong coupling

To compute physical thermal corrections around the point at which supersymmetric can-

cellations occur

α =
1

2
(2.47)

one can define the following restriction of the fully refined partition function (2.23)

Z[x, u = e2πiα, e−2πi(α−1/2)ṽ, w = ṽty , t, y] = I2[x, e2πiα, ṽ, t, y] = e
−F 1

16near
1
8 . (2.48)

Equation (2.45) implies that at α = 1
2 the partition function I2 reduces to a 1/8-BPS index

I2[x,−1, ṽ, t, y] = I4,−;2,+[ṽ, t, y] . (2.49)

Remarkably, for any α 6= 1
2 , the restricted partition function I2 remains a superconformal

index. 20 That follows from the fact that the Taylor coefficients of (2.48) at α = 1
2

TrH(R3)
n(−1)Fx∆ṽ−R1−R2t2(H+J3

1 )−R2y2J
3
2−R2 (2.50)

are protected observables under the supercharges Q2,+ and S2,+ . 21 Indeed, starting from

the fully refined partition function (2.22) and using the definition (2.48), a straightforward

computation gives us

I2 =

∫
[DU ]e

∑∞
j=1

1
j
I2,sl(x

j ,e2πijα,ṽj ,tj ,yj)TrUjTrU†j

(2.51)

where

I2,sl(x, e2πiα, ṽ, t, y) = 1 +

(
1 + e−2iπαt2ṽ

) (
t
ṽy − 1

) (
1 + e2iπαx̃2

)
(
t3

y − 1
)
(x̃2 − 1)

. (2.52)

20That is why we have attached the subindex 1
16
near 1

8
to the free energy in equation (2.48).

21Not under Q and S because they do not commute with R3 (See (2.17)).
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Note that (2.52) is the known expression for the single-letter maximally refined supercon-

formal index. The interesting feature of (2.52) is that its rapidites depend explicitly on the

physical temperature 1
β of the system. For latter convenience we recall that

ṽ := e2πi(α−1/2)v =
e−ϕṽ

t2
, x̃2 :=

tx2

y
. (2.53)

2.3 Protected near-1/8-BPS low-temperature corrections

Let us explain what has just been found. If we define inverse temperature β as the chemical

potential dual to the twisted Hamiltonian obtained from the anticommutation of Q1 = Q
and its complex conjugated supercharge S1 = S , then states in the cohomology ofQ1 and S1
are zero-temperature states in the sense that their contribution to the partition function does

not depend on temperature. Indeed, the restricted partition function receiving contribution

only from states in the Q1 and S1-cohomology, which happens to be the superconformal

index I1 = I4,−, does not depend on β .

On the other hand, states in the cohomology of Q2 = Q2,+
and its complex conjugated

supercharge S2 = S2,+, which are not in the cohomology ofQ1 and S1, are finite-temperature

states in the sense that their contribution to the physical partition function depends ex-

plicitly on temperature. The latter finite-temperature corrections are protected by Q2,S2-
supersymmetry and thus are computed by another superconformal index I2 counting states

in the cohomologies of Q2 and S2 . Consequently, they do not receive corrections in the

gauge coupling and can be computed, exactly, at zero gauge coupling.

In virtue of AdS/CFT conjecture, this predicts that I2 encodes perturbatively low-

temperature corrections of the gravitational on-shell action of the solutions of [69], when

the latter family of solutions is expanded around its 1
8 -BPS locus (∆ = ∆+ = 0).

3 The holographic low-temperature expansion

As explained in the introduction, to obtain perturbative corrections in 1
b
= 1

βR
22 consistent

with the dual gravitational picture, it is necessary to implement an RG flow mechanism by

which the discrete spectrum of the gauge theory effectively becomes dense. Otherwise, the

Taylor expansion of F at b =∞ trivializes (as one can explicitly check from (2.23)).

This section defines such RG flow procedure to the continuum. It also derives the

infrared free energy emerging after such flow, and it explains why it is bound to encode

the low-temperature expansion of the Gibbons-Hawking onshell action of the black holes

of [58, 68] even well beyond their BPS locus [59, 60].

3.1 The expansion to the continuum

The discreteness of the spectrum of N = 4 SYM is controlled by the radius of the S3, R .

In the discussion above we have fixed R = 1 . The dependence in R can recovered by

22Meaning by b the dimensionful inverse temperature obtained by substituting β → b

R
in the previous

equations.
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substituting

β =
b

R
, ω1 =

w1

R
, ω2 =

w2

R
, α − 1

2
=

a

R
, (3.1)

in the partition function Z in (2.23) (after using the relations (2.37)).

The naive limit to the continuum, R → ∞ , with the dimensionless ratios in the left-

hand sides of (3.1) fixed and finite is not the limit we are looking for.

For reasons that were explained in the introduction and that we will comeback to

discuss below, we need another length scale, say 1/Λ . Then we define

b =:
β0[ΛR]

Λ
, a =:

α0[ΛR]

Λ
, w1 =:

ω1,0[ΛR]

Λ
, w2 =:

ω2,0[ΛR]

Λ
. (3.2)

The parameter functions in the numerators, from now on called auxiliary potentials,

µ := {µi} = {β0 , α0 , ω1,0 , ω2,0} (3.3)

are dimensionless, and around ΛR =∞ are assumed to behave as follows

µ[ΛR] = µ
(0)
i

(
1 +

∞∑

p=1

µ
(p)
i

(ΛR)p

)
. (3.4)

The functions

µ
(p)
i = µ

(p)
i [µ(0)] , p ≥ 1 , (3.5)

are meromorphic functions of the leading behaviors µ
(0)
i ,

µ
(p)
i = µ

(p)
i [µ(0)] . (3.6)

Different choices of functions µ
(p>0)
i represent different ways to RG-flow towards the con-

tinuum. Sometimes we will call these µ
(p>0)
i , moduli of the space of limits or of the space

of RG-flows.

For example, let us assume two choices of moduli

µ
(p>0)
i → µ

′(p>0)
i =⇒ µ→ µ′ := f(ΛR,µ) (3.7)

and define the invariant object

F = F [b, a,w1,w2] . (3.8)

Let us compute the expansions of the latter with both choices of moduli. From (3.2), (3.7),

and (3.8) one obains

F∞ = FΛ=∞[
µ

Λ
] ,

F ′
∞ = FΛ=∞[

µ′

Λ
] = FΛ=∞[

f(Λ, µ)

Λ
] ,

(3.9)
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where the subindex Λ = ∞ means asymptotic expansion around Λ = ∞ of the indexed

quantity. Then, if f(Λ, µ) does not generate isometries of F 23

F∞ 6= F ′
∞ . (3.10)

Different choices of (3.5) can generate the same form of infrared free energy. There is

redundancy in their choice. For example, all possible changes of F∞ can be generated by

redefinitions of one out of the two angular velocities, i = 3 or i = 4 . Namely, in complex

redefinitions of either

ω
(p)
1,0 [µ

(0)] or ω
(p)
2,0 [µ

(0)]. (3.11)

24 Alternatively, they can be generated by reparameterizations of the cutoff scale

Λ→ Λ
(
1 +

∞∑

p=1

Λ(p)[µ(0)]

ΛR

)
. (3.12)

at fixed µ(p) , i.e. , by redefinitions of the Λ(p)[µ(0)]’s, which are generic meromorphic func-

tions of the µ(0) . The physical conditions that fix the Schwarzian action, i.e. the reality

condition on charges and entropy, will happen to break part of these complex reparame-

terizations, loosely speaking their “imaginary" part. We will comeback to illustrate this in

section 5.

From now on and until the end of this section the implicit dependence of the µi’s, on

ΛR will be ignored. Thus, by expanding at large-ΛR it will be meant expanding in every

other dependence on ΛR, which is not the one implicit in the auxiliary potentials µ’s. An

important role in our discussion will be played by the following infinitesimal vicinities (at

large enough Λ)

b ∼ β0
Λ

, a ∼ α0

Λ
, w1 ∼

ω1,0

Λ
, w2 ∼

ω2,0

Λ
. (3.13)

They correspond, in the sense explained in the introduction, to the leading RG-flow proce-

dure to the continuum.

3.2 The RG flow procedure: the infrared free energy

Let us move on to compute the holographic low-temperature expansion of the free energy F .

To do so we follow the RG-flow procedure below:

23The problem of systematically classifying isometries of F or even simpler, of FΛ=∞, will be left for

future work.
24 In particular, there are choices of these functions that generate the same form of F∞ as the O(Λ0)

scalings of µ2 := α0 → Cα0s . For instance, the change ωa,0 → ωa,0(1+C1
α0

Λ
) with C1 being an O((ΛR)0)

meromorphic function of the physical chemical potentials {β, α, ω1, ω2} , generates the same change in F∞

as the change induced by keeping fixed the ωa,0 and scaling the α0 → Cα0 for some meromorphic O((ΛR)0)

function C. We will also use the latter kind of reparameterization, which is not of the kind (3.7), without

explicitly invoking the former one, which induces it, and it is of the kind (3.7).
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Step 1 Truncate F at a power LR which eventually we will assume to be Λn+1Rn+1 , e.g., n =

2 , as follows

F → FΛ := F (LR)
1

n+1

sl [x, u, v, w, t, y; e2πiui ] +
LR∑

j=1

∑

ρ 6=0

e2πijρ(u)

j
. (3.14)

FΛ
sl was defined in (2.24). The truncation (3.14) is justified because we are interested

in probing the physics of states with charges below the energy scale O(1)Λn+1Rn ,

as ΛR → ∞ , forgetting about heavier states. We will comeback below to further

illustrate the physical relevance of this truncation. 25

The ui’s, with i = 1, . . . , N , are the N gauge potentials. They are related to the N

eigenvalues Ui of the unitary matrix U as follows Ui = e2πiui . The term

LR∑

j=1

∑

ρ 6=0

e2πijρ(u)

j
(3.15)

is the truncated contribution coming from the Vandermonde determinant. ρ 6= 0 de-

notes the non-vanishing adjoint weights of U(N), namely
∑

ρ 6=0 =
∑N

i 6=j=1 and ρ(u) =

ui−uj . The goal is to compute the effective off-shell potential for the ui’s at large-ΛR .

The next step is to extremize the effective potential with respect to the ui’s and find

its leading saddle point. We already know that at any order in the low-temperature

expansion

ui = u⋆i = O
( 1

ΛR

)
. (3.16)

This is because the effective potential for the ui’s equals the one of the superconformal

index at very leading order in the 1
ΛR -expansion and all β , by definition. That is,

at ΛR =∞ , α = 1
2 and the partition function truncates to the index which does not

depend on β .

(3.16) is enough to obtain the saddle-point approximation to F at order O(ΛnRn−1)

and O(Λn−1Rn−2) . To compute the exact saddle point approximation to F at or-

derO(Λn−2Rn−3) it is necessary to compute the O( 1
ΛR) . We will develop all necessary

tools to compute all such perturbative corrections to the gauge saddle point. That

said, O(Λn−2Rn−3) corrections to F (and all its subleading analytic corrections), de-

pend on the choice of moduli µ
(p)
i , e.g., we can always choose a moduli representative

for which these corrections vanish. Thus, in order to compare to semiclassical gravity

the question we need to answer is whether there exists a limit that is isomorphic to

the one studied in supergravity [28]. To address that question, (3.16) is enough. To

25In concrete expansions it is convenient to think of the cutoff LR as independent of ΛR while expanding

the summand at large-ΛR . Then one obtains an effective potential for the ui ’s. Then one can extemize

such potential at LR ≫ 1 (at this stage it is already safe to take LR = ∞) and find all the perturbative

corrections to the saddle-point u⋆ in the 1
ΛR

-expansion. Corrections coming from the dependence of LR

on ΛR will be exponentially suppressed, not perturbatively suppressed, and thus for the purposes of this

paper they are not essential.
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find features of quantum gravity (beyond higher derivative corrections) within the

gauge theory, subleading analytic and non-analytic corrections to u⋆ at large ΛR are

needed. Computing those lies beyond the scope of this paper. We plan to address

this question in forthcoming work. For the present exposition it will be enough to

work with (3.16).

Step 2 Substitute the relation between chemical potentials and the scale Λ (3.2) in FΛ .

Step 3 Expand the summand around

(ΛR) = ∞ . (3.17)

(ignoring the implicit dependence on ΛR in the auxiliary potentials) and then expand

each term in the precedent expansion around

β0 = ∞ , (3.18)

keeping the other dimensionless quantities finite.

The result of this two-step expansion has the form 26

O((ΛR)n) + . . .+O((ΛR)0)

+O((ΛR)−1)

+ LiΛ1

(
1 +O( 1

ΛR
)
)
− contributions

+ LiΛp< 0

(
1 +O( 1

ΛR
)
)
− contributions

+ LiΛp< 0

(
x
)
− contributions .

(3.19)

where

LiΛp (z) :=
LR∑

j=1

zj

jp
. (3.20)

The monomials with powers of order

O((ΛR)n) , . . . ,O((ΛR)0) (3.21)

entering in this expansion we denote as Type I contributions. The monomials with

powers

O((ΛR)−1) . (3.22)

26Each individual (series) term in this expansion that may potentially diverge in the limit Λ → ∞ we

compute, whenever it is possible, in the region of its arguments {ϕv, ϕw, ui} where its limit converges,

and then we analytically extend such finite answer to the complex domain. Some singularities, like the

power-like or the log(Λ) ones will be physical and of course, it will not be possible to remove them using

the previous regularization trick. There is a more elegant and general way to compute this asymptotic

expansion, allowing to obtain also exact expressions at finite Λ, e.g., in the spirit of [92]. In this paper

we will not try to compute exponentially suppressed D-instantonic contributions, for us it will be enough

to use the pragmatic method above enunciated which leads to the analytic tail and allows to conclude

that the reminder is a combination of either logarithmic singularities (independent of temperature) and

exponentially suppressed terms. The finite-Λ completion of F − F∞ , will be addressed in future work.

– 17 –



we denote as Type II contributions. Type I and II contributions to F can be further

organized in powers of α0 . Their powers up to order O(α4
0) we collect in

F∞ := O((ΛR)n) + . . . + O((ΛR)−1) . (3.23)

In particular, the powers O(α3
0) are of order

O((ΛR)0) , O((ΛR)−1) . (3.24)

The powers O(α4
0) are only of Type II

O((ΛR)−1) . (3.25)

In this expansion of F , there are no powers of order higher or equal than O(α5
0)

entering in Type I and Type II contributions. All such contributions turn out to be

exponentially suppressed around ΛR =∞ . Indeed, we advance that all perturbative

contributions to F beyond Type I and Type II vanish in this expansion. This is, all

possible corrections to F beyond Type I and Type II are either logarithmic (i.e. non

meromorphic) or exponentially suppressed at ΛR =∞ , as we will proceed to explain

below. The conclusion will be that in the ΛR→∞ expansion

F = F∞ + log-corrections + exp-suppresed corrections . (3.26)

Before moving on to explain this, let us note that there are Casimir energy-like terms,

i.e. contributions that grow as β0 around β0 =∞ , in this expansion. We collect them

in a term denoted as

β0 E0 = βE , E : = ΛE0 . (3.27)

These contributions enclose Type I contributions of order O(α0Λ
0), and Type II con-

tributions of order O(α2
0Λ

−1) . There are no other contributions emerging at powers

higher that β0 around β0 =∞ in this expansion. 27

Summarizing, all Type I and Type II contributions can be organized in the form

(n = 2)

F∞ = β0 E0 +
n∑

p=−1

4∑

q=0

∞∑

r=0

(ΛR)p Lp+1;q,r[ϕv, ϕw, u]
Fp;q;rα

q
0

(β0)rω1,0ω2,0
(3.28)

where the Fp;q;r are N -dependent homogenous polynomials of order (−p−q+r+2) ≥
0 in the variables ω1,0 and ω2,0 . Some subsets of them vanish, e.g., F2;3;r = F1;3;r =

F2;4;r = F1;4;r = F0;4;r = 0 as it was noted in the previous paragraph. Also Fp;0;r≥1 =

Fp;q≥1;0 = 0 . The Lp+1;q;r denotes a linear and finite combination of regularized poly-

Logs LiΛp+1 of order p+1 combined symmetrically into periodic Bernoulli polynomials

27What happens is that all of them are exponentially suppressed, and are of the type IV and V to be

defined below.
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of the same order. 28 The details of formula (3.28) up to order O( 1β ) are reported in

equation (D.1). A Mathematica notebook testing the derivation of (3.28) has been

shared.

We note that all Type II contributions are proportional to linear combinations of

terms of the form

LiΛ0 (e
ϕ) + LiΛ0 (e

−ϕ) , (3.29)

which, after using analytic continuation, converge exponentially fast as Λ→∞ to

Li0(e
ϕ) + Li0(e

−ϕ) = −1 . (3.30)

Let us pause and reiterate an important partial conclusion:

– Contributions which are not organized in F∞ , are defined to be either Type

III, Type IV, or Type V. They are either logarithmic corrections or exponen-

tially suppressed corrections. This is, Type I and Type II contributions encode

all the possible perturbative corrections to FΛ in the large-ΛR expansion just

enunciated. 29 Let us proceed to explain this. The detailed answer is given in

appendix D.

The Type III-contributions

LiΛ1

(
1 +O( 1

ΛR
)
)
− contributions (3.31)

come only from O(α0
0) , i.e., from the superconformal index I1 . Some of these con-

tributions come from the N zero modes ρ = 0. When combined they become propor-

tional to a linear combination of terms of the form 30

LiΛ1
(
1− ω1,2

)
→ − logω1,2 , (3.32)

and half of

−LiΛ1
(
1− ω1 − ω2

)
→ + log

(
ω1 + ω2

)
, (3.33)

with ω1,2 =
ω1,2;0

ΛR . These are physical log(Λ) divergencies. They should correspond

to logarithmic quantum corrections in the bulk. As they come solely from O(α0)

contributions (the BPS ones) then they are independent on β . There are other loga-

rithmic divergencies associated to middle-dimensional walls of non-analyticities [31].

28For the superconformal index, r = q = 0, these truncation of the perturbative expansion in the large-Λ-

expansion up to logarithmic and exponentially suppressed contributions is implicit in previous results and

expectations, at least in the simplest case ω1 = ω2 [31, 32, 38, 45, 49]. (3.28) is the generalization of tis

previous observation from the index to the partition function.
29Recall that we are ignoring the arbitrary dependence on ΛR implicit in the auxiliary potentials. Such

dependence can generate infinitelly many subleading O( 1
ΛR

) corrections but at the moment we are ignoring

corrections coming in that way. They will be essential to consider in due time though.
30Their expressions, using a specific regularization scheme have been given in equations (3.64)+(3.65)

of [30].
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We will not study these logarithmic contributions in this paper, but we advance that

they are also independent of β , as expected.

The Type IV contributions

LiΛp< 0

(
1 +O( 1

ΛR
)
)
− contributions (3.34)

organize in linear combinations of terms of the form (y = O( 1
ΛR))

LiΛ−p(1 + y) + (−1)p LiΛ−p(1− y) , p ≥ 1 , (3.35)

which, using analytic continuation, converge exponentially fast as ΛR→∞ to

Li−p(1 + y) + (−1)p Li−p(1− y) = 0 . (3.36)

The Type V contributions organize in linear combinations of terms of the form

LiΛ−p(e
Φ) + (−1)p LiΛ−p(e

−Φ) , p = 0 , 1 , . . . (3.37)

which, using analytic continuation, converge exponentially fast as ΛR→∞ to

Li−p(e
Φ) + (−1)p Li−p(e

−Φ) = 0 , (3.38)

where Φ can be one of the elements in the list {ϕv , ϕw , −ϕv −ϕw } added to±2πiui ’s.

Step 3 Substitute the dimensionless auxiliary parameters back in terms of the physical quan-

tities

β0 → bΛ1 , α0 → aΛ2 , ω1,0 → w1Λ3 , ω2,0 → w2Λ4 . (3.39)

The obtained expression for the complete perturbative asymptotic expansion of the

free energy, in terms of the physical chemical potentials

F∞[
b

R
,
1

2
+

a

R
,
w1

R
,
w2

R
, . . .] = F∞[β , α , ω1, ω2 , . . .] , (3.40)

extends naturally to the physical low-temperature region

b

R
= β ≫ 1 . (3.41)

Step 4. The proposal: We propose that the holographic low-temperature expansion of the

Gibbons-Hawking free energy (in minimal gauged-supergravity) is F∞

Fg[βg , αg , ωg1, ωg2] ≡ F∞[β , α , ω1, ω2 , ϕv , ϕw;u
⋆]

+
(
λ =∞ meromorphic corrections

)
,

(3.42)

where ϕv = ϕv[β, α, ω1, ω2] = ϕw is fixed by the zero R-charge condition R1 = R2 =

0, and u⋆ = u⋆[β, α, ω1, ω2, ϕv, ϕw] is fixed by the Gauss-constraint. The expansion

of F∞ up to O( 1β ) is reported in (D.1).
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It should be recalled that there is an arbitrary implicit dependence on ΛR in the

auxiliary potentials µ entering in the {β, α, ω1, ω2} , as detailed in (3.2), and after

imposing the natural holographic dictionary relation 31

βg
·
= β , αg

·
= α , ωg1

·
= ω1 , ωg2

·
= ω2 . (3.43)

In the bulk, the infinitelly many choices of functions µ = µ[ΛR], which are implicit in

the right-hand side of (3.42), correspond to different ways to reach the BPS limit α =
1
2 [23]. We will comeback to comment on this below.

The identification ≡ is understood as an equality up to O((ΛR)0) ambiguities in

the choice of holographic renormalization scheme in the gravitational side [93] (the

left-hand side). These ambiguities include the holographic dual of the field-theoretic

Casimir factor (3.27). In the field theory side these ambiguities can be understood as

deformations of the moduli (3.5)

µ
(p)
i → µ

(p)
i = µ

(p)
i

(
1 +O( 1

ΛR
)
)
, p ≥ 1 , (3.44)

that generate O((ΛR)0) deformations of the free energy F∞. An explicit example will

be given in (5.11). There, the order O
(
(ΛR)0

)
Casimir energy prefactor (3.27) will

be removed by one such deformation.

Our goal in the following sections will be to compare the right hand side of this

proposal against the left hand side in the near-BPS region. One conclusion of our

analysis will be that the
(
λ =∞ meromorphic corrections

)
(3.45)

vanish in the near BPS region.

Gibbons-Hawking action from an effective free-field computation: super-

symmetry and analyticity Supersymmetry implies that the strong coupling cor-

rections (
λ =∞ meromorphic corrections

)
(3.46)

must be subleading in the 1
ΛR -expansion above introduced. Otherwise, the index I1

would receive λ = ∞ corrections, in order to match the BPS limit of the Gibbons-

Hawking onshell action [23, 35, 36]. The expansion of the gravitational onshell about

the BPS point has only meromorphic contributions. Thus, any strong coupling correc-

tion within it must be not only subleading in the 1
ΛR -expansion, but also meromorphic

in the chemical potentials.

On the other hand, any possible meromorphic and subleading corrections in the 1
ΛR -

expansion above is bound to be encoded in a change in the moduli space of limits to

the BPS locus

µ
(p)
i → µ

(p)
i,λ=∞ = µ

(p)
i

(
1 +O( 1

ΛR
)
)

(3.47)

31The symbol
·
= denotes equal up to periodic relation implied by quantization of charges i.e. relations

such as α ↔ α+ j for any integer j .

– 21 –



or equivalently, in a chemical-potential dependent redefinition of the cutoff Λ (3.11).

That is predicting that strong coupling corrections within the gravitational onshell

action are bound to be reproducible from an effective free-gauge theory computation,

where the effect of the coupling is to renormalize the chemical potentials 32

Fg[βg , αg , ωg1, ωg2] ≡ F∞[βλ=∞ , αλ=∞ , ωλ=∞
1 , ωλ=∞

2 ] , (3.48)

with

βλ=∞ = β(1 +O( 1

ΛR
)) , αλ=∞ = α(1 +O( 1

ΛR
)) , ωλ=∞

1,2 = ω1,2(1 +O(
1

ΛR
)) ,

and keeping the holographic dictionary, – the chemical potentials –, defined at zero-

gauge coupling, or equivalently, independent of the coupling. Relation (3.48), which is

bound to be true in virtue of analyticity and correcteness of the supergravity predic-

tions, calls for deeper understanding in the field theory side. In the following sections

we will test it at order O( 1β ) .

The continuum limit in microcanonical picture As previously announced, the

parameter Λ is the energy scale controlling the extension

L = Λn′

Rn′−1 (3.49)

of a domain of charges (states) that we are interested in doing physics at. When ΛR is

large enough, then the distance among contiguous charge eigenvalues:

δL =
1

R
(3.50)

becomes, necessarily
δL

L
= (ΛR)−n′ ≪ 1 (3.51)

and thus the spectrum becomes effectively continuous.

But, where is this proposed scaling of L with Λ coming from? In the spirit of the large-

charge localization approach discussed in [30], we can ask for the hierarchy of charges for

which the truncated free energy can be safely localized to its asymptotic behaviour within

the singular vicinity

β ∼ β0
ΛR

, α ∼ 1

2
+

α0

ΛR
, ω1 ∼

ω1,0

ΛR
, ω2 ∼

ω2,0

ΛR
, (3.52)

defined by the double expansion

ΛR ≫ 1 and β0 ≫ 1 , (3.53)

which is consistent with the hierarchy

Λ ≫ β0
R
≫ |α0|

R
,
|ω1,0|
R

,
|ω2,0|
R

, (3.54)

32Or equivalently, to a shift of source terms.
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and for which the following dimensionless quantities are kept finite

|α0| , |ω1,0| , |ω2,0| = O(1) ,
|α0|
|ω1,0|

= O(1) , |ω1,0|
|ω2,0|

= O(1) . (3.55)

In terms of the dimensionful chemical potentials (3.54) looks like

R ≫ b ≫ w1 , w2 , a . (3.56)

In the expansion (3.54) we will find (in the following sections) that the free energy happens

to scale as

ΛnRn−1 (3.57)

where the scaling power n = 1 or 2, is determined by the theory and by how much

supersymmetry is preserved by the states whose contributions to the partition function do

not cancel in the limit α → 1
2 . The charges, instead, scale as

Λn′

Rn′−1 (3.58)

where the positive integer n′ is fixed by demanding that the source-term of the corresponding

charge, scales as the free energy near its leading singularity. More concretely, if the charges

generate isometries in the S3 then n′ = n+ 1 , if not, then n′ = n . 33

For example, the n′’s associated to the charges

√
2J± := J3

1 ± J3
2 +

R1 +R3

2
+

∆

3
=

∆±

2
− ∆

6
, (3.59)

are fixed as n′ = n+1 by demanding that their source terms (in the ensemble described in

table 4)

ω1

√
2J− and ω2

√
2J+ (3.60)

scale as

δL
1
n′ L

n′−1
n′ ∼ L

ΛR
∼ ΛnRn−1 , (3.61)

in the continuum limit
δL

L
→ 0 . (3.62)

From the scaling of chemical potentials (3.52) and that of free energy as ΛR → ∞ (at

any R), there follows the definning properties of the hierarchy of charges associated to its

singularity (3.52)

√
2J± = O((ΛR)0)LJ± ,

R3 = O((ΛR)0)LJ± ,

R1,2 = O((ΛR)0)LR1,2 ,

∆ = O((ΛR)0)L∆ ,

(3.63)

33Recall that due to twisting some R-charges can also generate rotations in S3 .
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where the scales determining the extension of the truncations are

LJ± = N2 Λn+1Rn ,

LR1,2 = N2 ΛnRn−1 ,

L∆ = N2 |α0|
Λn+1Rn

β2
0

.

(3.64)

These are the image domains obtained by Legendre-dualizing the singular vicinity (3.52).

Namely, this will come from the computations presented in the forthcoming sections, fol-

lowing the Steps 1 to Step 4 above described.

Note that ∆ , the semi-positive charge that measures distance from the Q, and S
supersymmetric locus (∆ = 0), may be also large in the expansion (3.54), although much

smaller than J± . This means that the expansion (3.54) also probes states that are not

necessarily close to be Q and S-supersymmetric. 34

That said, we note that at first order in the auxiliary temperature O( 1
β0
) = O(ΛRβ )

L∆ = 0 . (3.65)

This implies that contributions at first order in temperature to the free energy can be

recovered working solely with the BPS partition function (∆ = 0). This is, with the

Hamiltonian trace definition of partition function withouth the (−1)F inserted over the

space of BPS states ∆ = 0 . 35 To go beyond O( 1β ) the complete non-BPS partition

function is necessary.

An alternative understanding of this RG flow proposal using the microscopic picture

just described, will be presented in upcoming work.

A comment on conventions Following the holographic dictionary we find natural to

identify [23]

R = ℓAdS5 =
1

g
. (3.66)

From now on we work in natural units and fix

R = 1 =⇒ b = β . (3.67)

The many ways to reach the BPS locus As explained before, there are infinitely

many ways to deform the RG-flow limits (3.52). These deformations correspond to changes

in the choice of functions (3.5) µ(p)[µ(0)] . This is, the auxiliary chemical potentials µ can

have arbitrary implicit dependence on Λ, as long as the µ obey the boundary conditions

34The large-charge expansion studied in [30] only supersymmetric states contribute (∆ = 0) .
35This confirms the expectations of [94] in AdS4/CFT3. Our analysis concerns AdS5/CFT4 but we

expect an analogous RG-flow reduction will be implemented in AdS4/CFT3 , eventually.
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declared in (3.4),

β0 → β̃0 (1 +
β̃(1)

Λ
+ . . .)

α0 → α̃0

(
C0,0 +

C1,0

β̃0
+

α̃0

β̃0
C1,1 + . . .

)

ωa,0 → ω̃a,0

(
1 +

ω̃
(1)
a

Λ
+ . . .

)

(3.68)

36 with

C0,0 = C0,0(ωa) = O(Λ0) ,

C1,0 = C1,0(ωa) = O(Λ−1) , C1,1 = C1,1(ωa) = O(Λ−1) ,
(3.69)

as Λ =∞ . As we will illustrate below, given

β =
β̃0
Λ

, α =
1

2
+

α̃0

Λ
, ω1 =

ω̃1,0

Λ
, ω2 =

ω̃2,0

Λ
, (3.70)

the dependence of the free energy F on the physical variables

β , α , ω1 , ω2 , (3.71)

in the large-Λ, large-β̃0 expansion at fixed {α̃0, ω̃1,0, ω̃2,0} (called Expansion 2) changes with

respect to one obtained via the large-Λ, large-β0 expansion (3.54) at fixed {α0, ω1,0, ω2,0}
(called Expansion 1).

Active transformation trick The same change in the choice of limits, in the sense

of (3.5) i.e. choices of µ(p)[µ(0)] , can be implemented also by redefining chemical potentials.

Take one of them, for instance α, and redefine it as follows

α = C (α̃− 1

2
) +

1

2
. (3.72)

Then localize the free energy which is at this point a function of the tilded chemical poten-

tials, around the small vicinities

β̃ ∼ β0
Λ

, α̃ ∼ 1

2
+

α0

Λ
, ω̃1 ∼

ω1,0

Λ
, ω̃2 ∼

ω2,0

Λ
, (3.73)

where C = C(α̃) is the origin preserving reparameterization defined as

C = C0,0 +
C1,0

β0
+

α0

β0
C1,1 + . . .

= C0,0 +
1

β̃
C1,0 +

(α̃− 1
2)

β̃
C1,1 + . . . ,

(3.74)

36Even the case C0,0 →
Λ→∞

c 6= 1 can be induced by a redefinition of the functions ω1,2 as explained in

footnote 24.
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(with the same functions Ci,j ’s as in (3.68)) and write its expansion in terms of the tilded

physical potentials. At last, replace back

α̃ → α , β̃ → β , . . . (3.75)

(i.e. drop the tildes). The answer obtained for F∞ after this procedure, as a function of

the variables without tildes {α, β, ω1, ω2} , is the same one obtained after implementing

the Expansion 2 in the physical chemical potentials {α, β, ω1, ω2} (i.e. without modifying

the background geometry, and the backgound flavour potentials, in which the field theory

is quantized).

This trick will be used to go from the results obtained with a reference large-Λ expan-

sion to the results obtained with another expansion. We stress, though, that the chemical

potentials of the fundamental theory will remain the ones to be identified with the gravita-

tional ones. The abstract object that changes with different choices is the way to approach

the BPS locus, not the identification of chemical potentials between the fundamental theory

and the near horizon (gravitational) one.

Expansions to roots-of-unity Before moving on we point out there are many possible

limits that we forsee may be relevant in forthcoming developments. They are limits to roots

of unity

β ∼ β0
Λ

+ r1 , α− 1

2
∼ α0

Λ
+ r2 , ω1 ∼

ω1,0

Λ
+ r3 , ω2 ∼

ω2,0

Λ
+ r4 , (3.76)

where

r1 , r2 , r3 , r4 ∈ Q , (3.77)

and, again, the auxiliary chemical potentials µ can have arbitrary implicit dependence on Λ,

as long as it respects the boundary conditions at Λ → ∞ imposed by the ansatz (3.4). In

those limits one also obtains Schwarzian contributions with mass gap parameter depending,

generically, on r1,2,3,4 . We leave the study of this for the future.

4 The near-1/8-BPS Schwarzian mass gap

As mentioned before the leading saddle-point of the Gauss-constraint is U ∼ e2πiu
⋆ × 1N×N

(details on this are presented in appendix A). Thus, from now on

TrUnTrU−n → N2 + O
(α0

Λ
,
β0
Λ
,
α0

β0
,
ω1,0

β0
,
ω2,0

β0

)
, (4.1)

where

O
(α0

Λ
,
β0
Λ
,
α0

β0
,
ω1,0

β0
,
ω2,0

β0

)
(4.2)

stands for corrections that are first-order in at least one of the small dimensionless param-

eters in the expansion (3.52).

To compute low-temperature corrections of the free energy F = F 1
16

near
1
8

we focus on

the asymptotic behaviour of its Taylor coefficients around the point of cancellations α = 1
2

F (p) :=
1

p!
∂p
αF
∣∣∣∣
α= 1

2

, p = 0 , 1 , 2 . (4.3)
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37 In the naive zero-temperature limit β → ∞ all the F (p≥1)
1
16

near
1
8

vanish exponentially fast.

Instead, in the holographic low-temperature expansion obtained after implementing (3.52),

or more precisely after following the Steps 1 to 4 in 3.1, we obtain 38

F (0)
1
16

near
1
8

= −N2 Λ

ω1,0
L2(ϕṽ) + O(Λ0) ∼ −N2 L2(ϕṽ)

ω1

F (1)
1
16

near
1
8

= πiN2 Λ2

β0ω1,0

(
1 + O

(ω1,0

β0
,
ω2,0

β0

))
L2(ϕṽ) + O(Λ)

∼ πiN2 1

β ω1

(
1 + O

(ω1

β
,
ω2

β

))
L2(ϕṽ) ,

F (2)
1
16

near
1
8

= π2N2 Λ2

β0ω1,0

(
1 +O

(ω1,0

β0
,
ω2,0

β0

))
L1(ϕṽ) + O(Λ)

∼ π2N2 1

βω1

(
1 +O

(ω1

β
,
ω2

β

))
L1(ϕṽ)

(4.4)

where

L1(ϕṽ) := −LiΛ1 (eϕṽ) + LiΛ1
(
e−ϕṽ

)
,

L2(ϕṽ) := − 2LiΛ2 (1) + LiΛ2
(
e−ϕṽ

)
+ LiΛ2 (eϕṽ) .

(4.5)

The equivalence relation ∼ indicates that the quantities in the left-hand and right-hand

sides are equal in the 1/Λ-expansion up to the lowest order in Λ obtained after expanding

the right-hand side, but it assumes nothing about the asymptotic behaviour in the large-β0
expansion. For completeness we note that the O(Λ0) term in F (1)

1
16

near
1
8

39 is proportional to

−L1(ϕṽ)

2
. (4.6)

For later reference we note that the O(Λ) term in F (1)
1
16

near
1
8

is

N2πiL1(ϕṽ)

2β
+

πiL1(ϕṽ)

ω1
. (4.7)

C was defined in (3.74). Below we will comment more on it. The term linear in temperature,

is essential to compute subleading corrections to the mass gap, not for the leading ones we

are looking to compute in this subsection. After extremization with respect to ϕṽ , the

contribution of this term vanishes exponentially fast as Λ→∞ .

The functions L2, and L1 can be recast as combinations of periodic Bernoulli poly-

nomials. Such representation can be straightforwardly recovered by expanding the most

general answer (D.1), evaluated at (3.16)) and

ϕw = ω1 − ϕv , ϕv = ϕṽ + 2πi(α− 1

2
) . (4.8)

37However, in the end they are irrelevant as they can be always removed by an allowed deformation of

the large-Λ expansion.
38These expansions can be computed directly by expanding (D.1). We have chosen to explain how they

can be derived from scratch. They can be also derived with the shared Mathematica file.
39Ignoring logarithmic contributions.
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at large Λ .

Collecting these expansions, we find that the free energy (2.48) grows as O(Λ1) and

(up to corrections of order O( 1
β2 ))

F 1
16

near
1
8
= F∞ = −N2 1

ω1
L2(ϕṽ)

+ πiN2C

(
α̃− 1

2

)

β ω1

(
1 + O

(ω1

β
,
ω2

β

))
L2(ϕṽ) + O(Λ0) ,

(4.9)

where C has been defined in (3.74). A more complete expression of (4.9) up-to quadratic

order in α̃− 1
2 and with C expanded as indicated in (3.74) is given in (B.22).

Note, that the first asymptotic correction in temperature to the free energy F 1
16

near
1
8

is

πiN2C

(
α̃− 1

2

)

β ω1

(
1 + O

(ω1

β
,
ω2

β

))
L2(ϕṽ) , (4.10)

which is, essentially, a Schwarzian contribution in grand-canonical ensemble. Let us show

this.

In the mixed ensemble defined by taking the Legendre transform, i.e., after extremizing

−F 1
16

near
1
8
+ (Some of the source terms in Table 3) (4.11)

with respect to the chemical potentials ϕṽ under the condition that the charge obtained

after such transform

Rṽ := −R1 −R2 = N2 δ

ω1
, δ ≈ 0 , δ 6= 0 (4.12)

remains independent of the chemical potentials {α̃ , β}, we obtain

ϕṽ ∼ ϕ⋆
ṽ

(
1 +

(
α− 1

2

)
(δC0,0)

β

)
+O

(
δ1
)

ϕ⋆
ṽ

2πi
=

1

2
mod 1 ,

(4.13)

where we assume

C0,0 =:
χ0

δ
, (4.14)

with χ0 a constant independent of δ.

As a result of the intermediate extremization just mentioned we obtain (keeping only

leading terms in the large-Λ and small-δ expansion)

−Feff := −F0 −
2(C0,0δ) i

(
α̃− 1

2

)

π
F0 −

C0,0πi
(
α̃ − 1

2

)

β
F0 −

C1,0 πi
(
α̃− 1

2

)2

β
F0

(4.15)

where

F0 := N2 π2

2ω1
. (4.16)
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Then we proceed to compute the mixed-ensemble free energy (up to order O(Λ0)) [28]

−IME(β, J+, J−, α̃) = S 1
16near

1
8

:= ext
ϕṽ ,ω1,ω2

(
−F 1

16
near

1
8
+ ω1

√
2J− + ω2

√
2J+ + ϕṽRṽ

)

= ext
ω1,ω2

(
−Feff + ω1

√
2J− + ω2

√
2J+

)
+ O(δ1) .

(4.17)

At leading order, this functional is independent of ω2 . This imposes a further constraint

on charges – on top of the ones declared in equation (3.60) –

√
2J+ := J3

1 + J3
2 +

R1 +R3

2
+

∆

3
=

∆+

2
− ∆

6
= − ∆

6
= 0 + O( 1

β2
) (4.18)

The next-to-last equation follows because by definition I2 only counts states with ∆+ = 0 .

The first corrections in ω2 come at the order we have reincorporated in the right-hand side.

Next, we enforce the physical charge

√
2J− := J3

1 − J3
2 +

R1 +R3

2
+

∆

3
=

∆−

2
− ∆

6
=

∆−

2
+ O

( 1

β2

)
(4.19)

to be

√
2J− =

√
2J⋆

− + O( 1

β2
), (4.20)

with J⋆
− being a fixed value independent of {α, β} . Under this constraint, the extremization

procedure (4.17) fixes

ω1 = ω⋆
1

(
1 − iπ

(
α− 1

2

)
C0,0

2β
+

i
(
α− 1

2

)
C0,0δ

π
+ O

(
(α̃− 1

2
)2
))

+ O(δ1) , (4.21)

where ω⋆
1 is a function of the extremal charges J⋆

± fixed by the auxiliary extremization

problem

ext
ω⋆
1

(
−F0[ω

⋆
1] + ω⋆

1

√
2J⋆

−

)
= ±
√
2π

√
−
√
2J⋆

− = −π2

ω⋆
1

. (4.22)

Collecting results we obtain (up to order O(Λ0))

S 1
16

near 1
8
= S0 + 2πiα̃R0 −

8π2

M

(
α̃− 1

2

)
+ O

(
(α̃− 1

2)
2
)

β
+ O

( 1

β2

)
, (4.23)

with

S0

N2
=

2π2

2ω⋆
1

− iπC0,0δ

2ω⋆
1

,

R0

N2
= −C0,0δ

2ω⋆
1

,

1

MN2
=

C0,0π

16iω⋆
1

.

(4.24)
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Now we move on to impose the reality conditions that select the physical near BPS-limit

Im(Rṽ) = Im(J−) = Im(S0) = Im(R0) = Im(M) = 0 . (4.25)

The semi-positivity condition

∆− ≥ 0 , (4.26)

implies (omiting O( 1
β2
0
))

−
√
2J− = −

√
2J⋆

− = −∆− ≤ 0 =⇒ Re
( 1

ω⋆
1

)
= 0 . (4.27)

Together with this identity,

Im(Rṽ) = 0 =⇒ Re(δ) = 0 . (4.28)

Together with the previous conclusions

Im(R0) = Im(M) = 0 =⇒ Im(C00) = Re(χ0) = 0 . (4.29)

Together with the previous conclusions

Im(S0) = 0 =⇒ χ0 = −2πi . (4.30)

Collecting conclusions, we obtain (at leading order in the large-Λ, large β0 expansion)

S0 = 0 ,

R0 = ∓N
√
2∆− ,

1

M
= ±

( π

4
√
2iδ

)
N
√
∆− = N2 4Rṽ

J−
.

(4.31)

The signs in the second and third line are correlated 40. If iδ > 0 (resp. < 0) we have

picked up the + (resp. −) in the third line, in such a way M > 0 , but the other choice

is a priori equally relevant, as it will become evident in the more general case that will be

analyzed in the following section. The two sign choices in (4.31) correspond to the two

saddle points of (4.22).

At last, we update (4.17) with S0 = 0 . Then substituting α̃ → α we obtain (up to

order-Λ0)

S 1
16

near 1
8
= 2πiαR0 −

8π2

M

(
α− 1

2

)
+ (α− 1

2)
2

β
+ O

( 1

β2

)
. (4.32)

This is the effective low-temperature infrared action consistent with reality of charges and

BPS entropy. The latter being constrained to vanish in this case.

In the last line of (4.32) we have reinstated the canonical O
(
(α − 1

2)
2
)

contribution

to S 1
16near

1
8

, up to order 1
β , which is subleading at large-Λ, i.e. O(Λ0) , and comes from a

repetition of the procedure above reported considering C1,0 6= 0 .
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Chemical potential Dual charge Source term

β ∆ +β∆

ω1 J3
1 − J3

2 + R1
2 +R2 +

R3
2 + ∆

3 +ω1 ·
(
J3
1 − J3

2 + R1
2 +R2 +

R3
2 + ∆

3

)

ω2 J3
1 + J3

2 + R1
2 + R3

2 + ∆
3 +ω̃2 ·

(
J3
1 + J3

2 + R1
2 + R3

2 + ∆
3

)

ϕṽ −R1 −R2 +ϕṽ · (−R1 −R2)

ωu = −2πiα −R3 +ωu · (−R3)

Table 3. The chemical potentials, charges and source terms that can be potentially added

to −F 1

16
near

1

8

.

Partial remarks (4.27) is predicting that in the region of charges (4.33) near-18 -BPS

black holes within the family of [69], have near vanishing horizon and entropy. This result

is consistent with recent expectations [76]. Our analysis, however, only covers the case 41

R1

R2
→ −1 . (4.33)

when two out of the three independent R-charges (the ones to be indentified with electric

charges of the dual gravitational solutions) Q1, Q2 , and Q3 (defined in (C.2)) are equal.

We do not see any complication though in repeating our analysis in the more general region

of charges, but we leave doing so for future work. Also, being fair, our analysis does not

exclude the existence of 1
8 -BPS black holes which can not be continuously recovered from

the 1
16 -BPS ones of [58, 69].

We should note also that the mass-gap of the Schwarzian mode goes to infinity in the

limit

M =
J−

4N2Rṽ
→ ∞ , Rṽ → 0 . (4.34)

Thus the Schwarzian becomes irrelevant signaling the vanishing of the horizon.

It would be interesting to test (4.34) in supergravity. Relatedly, it would be also

interesting to visualize what happens to the horizon of the dual gravitational solutions

in [69] when one approaches the vicinity

∆ , ∆+ , R1 +R2 = 0 (4.35)

of their moduli space. Note that the dual gravitational solutions relevant for this analysis

can not be embedded in minimally gauged supergravity in five dimensions because they

have two different electric charges.

As an unsurprising consistency check, in appendix B we recover the free energy (4.9)

starting from the more general near- 1
16 -BPS computation, which we move on to study next.

Such a match confirms the selection of the gauge saddle point (4.1). 42

40Top with top, and bottom with bottom.
41At δ = 0 this covers the case of two equal R-charges Q1 = Q3 and a different third one Q2, and the

case of three equal R-charges Q1 = Q2 = Q3 (using the definitions given in equation (C.2)).
42From these results ond should be able to understand whether the feature of vanishing mass gap continues

to hold if one approaches the 1
8

BPS locus in generic ways, not only along the index I2 . We postpone such

an analysis for future work and move on to study the generic near-BPS expansion with our proposal.
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5 The near-1/16-BPS Schwarzian mass gap

Let us test the proposed RG-flow procedure against known predictions in gravity. Let us

start from the maximally refined partition function (2.23)

Z[x , u = e2πiα , v , w , t, y] = e−F . (5.1)

At α = 1
2 this partition function reduces to the 1

16 -BPS index I1 . To compute corrections

of F , again, we focus on the asymptotic behaviour of its Taylor coefficients around the

point of supersymmetric cancellations α = 1
2

F (p) :=
1

p!
∂p
αF
∣∣∣∣
α= 1

2

, p = 0 , 1 , 2 . (5.2)

43 In the naive zero-temperature limit β → ∞ all the F (p≥1) vanish exponentially fast.

In the holographic low-temperature expansion obtained after implementing (3.52), or more

precisely after following the Steps 1 to 4. in 3.1, one finds 44

F (0) = −N2 Λ2

ω1,0ω2,0
L3(ϕv, ϕw) + O(Λ) ∼ −N2 L3(ϕv, ϕw)

ω1ω2

F (1) = πiN2 Λ3

β0ω1,0ω2,0

(
1 + O

(ω1,0

β0
,
ω2,0

β0

))
L3(ϕv, ϕw) + O(Λ2)

∼ πiN2 1

β ω1ω2

(
1 + O

(ω1

β
,
ω2

β

))
L3(ϕv, ϕw) ,

F (2) = π2N2 Λ3

β0ω1,0ω2,0

(
1 +O

(ω1,0

β0
,
ω2,0

β0

))
L2,0(ϕv, ϕw) + O(Λ2)

∼ π2N2 1

βω1ω2

(
1 +O

(ω1

β
,
ω2

β

))
L2,0(ϕv, ϕw) ,

(5.3)

where

L2,0(ϕv, ϕw) := +2LiΛ2 (1) + LiΛ2
(
e−ϕv

)
+ LiΛ2 (eϕv) + LiΛ2

(
e−ϕw

)
+ LiΛ2 (eϕw)

− 3LiΛ2
(
eϕv+ϕw

)
− 3LiΛ2

(
e−ϕv−ϕw

)

L3(ϕv, ϕw) := LiΛ3
(
e−ϕv

)
− LiΛ3 (eϕv) + LiΛ3

(
e−ϕw

)
− LiΛ3 (eϕw)

+ LiΛ3
(
eϕv+ϕw

)
− LiΛ3

(
e−ϕv−ϕw

)
.

(5.4)

The O(Λ) term in F (0) is

∼ N2 1

2

ω1 + ω2

ω1ω2
L2,1(ϕv, ϕw) (5.5)

and the O(Λ2) term in F (1) is

∼ −πiN2 1

ω1ω2
L2,0(ϕv, ϕw) − πiN2 ω1 + ω2

2βω1ω2
L2,1(ϕv, ϕw) + O

( 1

β2

)
(5.6)

43The other relevant coefficients p = 3, 4 contribute only at order O(Λ0) and O(Λ−1) and can be removed

by a trivial redefinition of limits.
44These expansions can be computed directly by expanding (D.1). We have chosen to explain how they

can be derived from scratch. They can be also derived with the shared Mathematica file.
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where

L2,1(ϕv, ϕw) := 2LiΛ2 (1) − LiΛ2
(
e−ϕv

)
− LiΛ2 (eϕv)− LiΛ2

(
e−ϕw

)
− LiΛ2 (eϕw)

+ LiΛ2
(
e−ϕv−ϕw

)
+ LiΛ2

(
eϕv+ϕw

)
.

(5.7)

The functions L3, L2,0 and L2,1 can be recast as combinations of periodic Bernoulli poly-

nomials. Such representation can be straightforwardly recovered by expanding the most

general answer (D.1) (evaluated at (3.16)) at large Λ .

With these expansions we find

F ∼ −N2 1

ω1ω2
L3(ϕv, ϕw) + πiN2C

(
α̃− 1

2

)

β ω1ω2

(
1 + O

(ω1

β
,
ω2

β

))
L3(ϕv, ϕw) , (5.8)

after substituting α by the re-parameterization choice (3.72). Subleading corrections in 1
Λ

expansion to F can be recovered reinstating the contribution coming from F (2) in (4.4),

and the order O(Λ2) contribution in F (1) in (5.3). Or equivalently, considering only leading

corrections and then applying the substitution rule

L3(ϕv, ϕw) → L3(ϕv, ϕw) −
ω1 + ω2

2
L2,1(ϕv, ϕw) + O(Λ−2) (5.9)

on (5.8). Ignoring logarithmic contributions and spurious c-numbers, the missing O(Λ0) to

the free energy, or the missing O(Λ−2) contributions in (5.9), have origin in

F (0) : N2πi
(
ω2
1 + ω2

2

)

12ω1ω2
+ . . . ,

F (1) : −N2 π2β

3ω1ω2
− N2π (ω1 + ω2) (8π − 3i (ϕv + ϕw))

3ω1ω2

− N2π
2
(
ω2
1 + 3ω2ω1 + ω2

2

)

12βω1ω2
+ . . . .

(5.10)

where the . . . denote contributions coming from the subleading analytic corrections to the

gauge saddle point values u⋆i . The contributions at order O(Λ0) induced by (5.10) on the

onshell action F∞ can be always removed by a convenient choice of representative in the

following family of redefinitions of limits to the BPS locus α = 1
2 , which for obvious reasons

we feel inclined to call a choice of counterterms 45

ω1,2 → ω1

(
1 +

γ1ω1ω2

2
+

γ2(α− 1
2)ω1ω2

2β
+

γ3
(
α− 1

2

)
β

2
+ γ4ω

2
2,1 +

γ5
(
α− 1

2

)
ω2
2,1

β

+γ6
(
α− 1

2

)
ω2,1 + γ7

(
α− 1

2

)
ω2,1 (ϕv + ϕw) + γ8 ω

3
2,1 + γ9 ω

2
2,1ω1,2

)
.

(5.11)

This reparameterization of the infrared limit only generates changes in the asymptotic form

of the free energy at order O(Λ0) and below. It will be used to fix a convenient reference

45Notice for instance that it may be used to remove a Casimir energy-like term like the one explicited

in (5.10).
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form for the O(Λ0) and O(Λ−1) contributions to F (up to order O(α− 1
2))

η1(ω
2
1 + ω2

2) + η2ω1ω2 + η3(ω
3
1 + ω3

2) + η4(ω
2
1ω2 + ω1ω

2
2)

ω1ω2

(
1 − πiC0,0

(
α̃− 1

2

)

β

)
. (5.12)

Coming back to (5.8). Note that the first correction in temperature to the asymptotic

expansion of F (5.8) is

πiN2C

(
α̃− 1

2

)

β ω1ω2

(
1 + O

(ω1

β
,
ω2

β

))
L3(ϕv, ϕw) , (5.13)

which is, essentially, a Schwarzian contribution in grand-canonical ensemble. Let us show

this.

Chemical potential Dual charge Source term

β ∆ +β∆

ω1 J3
1 − J3

2 + R1
2 + R3

2 + ∆
3 +ω1 ·

(
J3
1 − J3

2 + R1
2 + R3

2 + ∆
3

)

ω2 J3
1 + J3

2 + R1
2 + R3

2 + ∆
3 +ω2 ·

(
J3
1 + J3

2 + R1
2 + R3

2 + ∆
3

)

ϕv −R1 +ϕv · (−R1)

ϕw −R2 +ϕw · (−R2)

ωu = −2πiα −R1 −R3 +ωu · (−R1 −R3)

Table 4. The chemical potentials, charges and source terms to be added to −F before performing

extremization.

In the mixed ensemble defined by extremizing

−F + (Some of the source terms in Table 4) (5.14)

with respect to the chemical potentials (ϕv, ϕw) under the condition

R1 = R2 = 0 (5.15)

we obtain

ϕv = ϕw ∼ ±
2πi

3
+

1

3
(ω1 + ω2) + C

4πi

3

(
α̃− 1

2

)(
1− (ω1 + ω2)

4β

)
+ O

(
(α̃− 1

2
)2
)
.

(5.16)

As a result of such intermediate extremization and fixing

η1 = ∓
πi

9
, η2 = ∓2πi

9
, η3 = − 1

54
, η4 = − 1

18
, (5.17)

we obtain

−F∞ = −F0 − C

(
α̃− 1

2

)
F0,1 + πiC

(
α̃ − 1

2

)

β
F0 + O

(
(α̃− 1

2
)2
)

(5.18)

where

F0 = −N2 (±2πi + ω1 + ω2)
3

54ω1ω2
, F0,1 = −N2 4π3i

9ω1ω2
(5.19)
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and C was defined in (3.74). Then we proceed to evaluate [28]

−IME(β, J−, J+, α̃) = S

:= ext
ϕv ,ϕw,ω1,ω2

(
−F + ω1

√
2J− + ω2

√
2J+

)

= ext
ω1,ω2

(
−F∞ + ω1

√
2J− + ω2

√
2J+

)
,

(5.20)

by enforcing J± to be

√
2J− =

√
2J⋆

− + O(α2) + O( 1

β2
) ,

√
2J+ =

√
2J⋆

+ + O(α2) + O( 1

β2
) ,

(5.21)

where J⋆
± are fixed values, independent of {α, β} , as it was required in the near BPS limit

flow used in [28] (see appendix D in that reference). Under this constraint, the extremization

procedure (5.20) fixes (with the choice ± in (5.19))

ω1 = ω∗
1 ∓ C0,0

(
α̃− 1

2

)
ω∗
1 +

+

(
α̃− 1

2

)
ω∗
1

(
±1

6C0,0 (ω
∗
1 − 2ω∗

2 ∓ 2πi) +
iC1,0(ω∗

1−2ω∗
2 ±πi)

π

)

6β

+ O(Λ−2) ,

ω2 = ω∗
2 ∓ C0,0

(
α̃− 1

2

)
ω∗
2

+

ω∗
2

(
α̃− 1

2

)(
±1

6C0,0 (−2ω∗
1 + ω∗

2 ∓ 2πi) +
iC1,0(−2ω∗

1+ω∗
2±πi)

π

)

β

+O(Λ−2) ,

(5.22)

where the ω⋆
1 and ω⋆

2 are functions of the extremal charges J⋆
±. These functions are

fixed by the auxiliary minimal supergravity-like extremization problem (not to confuse

with (5.20)) [95]

ext
ω⋆
1 ,ω

⋆
2

(
−F0[ω

⋆
1, ω

⋆
2] + ω⋆

1

√
2J⋆

− + ω⋆
2

√
2J⋆

+

)

= ext
ω⋆

1,ω⋆
2

(
N2(±2πi + ω⋆

1 + ω⋆
2)

3

54ω⋆
1ω

⋆
2

+ ω⋆
1

√
2J⋆

− + ω2

√
2J⋆

+

)
.

(5.23)

Collecting the results so far we write down the onshell value of the physical functional (5.20)

in Schwarzian-like form

S = S0 + 2πiα̃R0 −
8π2

M

(
α̃− 1

2

)
+ O

(
(α̃− 1

2)
2
)

β
+ O

( 1

β2

)
, (5.24)
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with

S0 = ∓
(

iN2π(2π ∓ i(ω⋆
1 + ω⋆

2))
2

9ω⋆
1ω

⋆
2

)
−
(
2iN2π3

9ω⋆
1ω

⋆
2

)
C0,0

R0 = +

(
2N2π2

9ω⋆
1ω

⋆
2

)
C0,0

1

M
= ±N2(2π ∓ i(ω⋆

1 + ω⋆
2))

3

432πω⋆
1ω

⋆
2

C0,0 −
(

iN2π

18ω⋆
1ω

⋆
2

)
C1,0 .

(5.25)

The solution for the ω⋆’s as functions of J± can be written in the implicit form [23, 28]

ω⋆
1 =

2(1− a⋆)(b⋆ ∓ i
√
a⋆ + b⋆ + a⋆b⋆)π

2(1 + a⋆ + b⋆)
√
a⋆ + b⋆ + a⋆b⋆ ∓ 2i(a⋆ + b⋆ + a⋆b⋆)

,

ω⋆
2 =

2(1− b⋆)(a⋆ ∓ i
√
a⋆ + b⋆ + a⋆b⋆)π

2(1 + a⋆ + b⋆)
√
a⋆ + b⋆ + a⋆b⋆ ∓ 2i(a⋆ + b⋆ + a⋆b⋆)

,

(5.26)

for charges parameterized as follows [58]

√
2J⋆

− = −N2 (1 + a⋆)(1 + b⋆)(a⋆ + b⋆)

2(−1 + a⋆)2(−1 + b⋆)
,

√
2J⋆

+ = −N2 (1 + a⋆)(1 + b⋆)(a⋆ + b⋆)

2(−1 + a⋆)(−1 + b⋆)2
,

(5.27)

with the parameters a⋆ = a⋆(Λ) and b⋆ = O(Λ), being smooth real functions of Λ such

that 0 ≤ a⋆ , b⋆ < 1 and a⋆ − 1 = O( 1Λ) , b⋆ − 1 = O( 1Λ) at large Λ.

Next, we proceed to impose the three physical (reality) conditions

Im(S0) = Im(R0) = Im(M) = 0 . (5.28)

The first two conditions fix C0,0 = |C0,0|eiη0,0 with

|C0,0| =
9
√

(1 + a⋆)(1 + b⋆)(a⋆ + b⋆)2

2(a⋆ + b⋆ + a⋆b⋆) (1 + a⋆2 + 3a⋆(1 + b⋆) + b⋆(3 + b⋆))
= 1 + O( 1

Λ
) ,

η0,0 = arccos

(
∓
(
−1 + a⋆ + b⋆ + b⋆2 + a⋆2(1 + 2b⋆) + a⋆b⋆(5 + 2b⋆)√
(1 + a⋆)(1 + b⋆) (1 + a⋆2 + 3a⋆(1 + b⋆) + b⋆(3 + b⋆))

))

=
π

3
+ O

( 1
Λ

)
,

(5.29)

The last condition fixes a linear relation between the real (Y0) and imaginary (Y1) parts

of C1,0 = Y0 + iY1 that leads to an isomorphism relation between M = M(Y1) and Y1 . In

the language of appendix D of [28] we are in a path to the BPS locus defined by

ǫq = ǫa = ǫb = 0 (5.30)

This means that Y1 controls the relation between the variation created by a differential

change ǫr ∝ 1
βg

upon the gravitational charges {Rg, . . .} (as given in equation (3.25)-

(3.26) in [28]), and the variation created by our differential 1
β upon the field theory
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charges {R3, . . .} 46. At this point in the analysis, and up to order O( 1β = T ) , the only non

trivial variation of charges remaining to identify is

δR3 := R3 +
(∂α̃
∂α

)
R0 = − 1

2πi

(∂α̃
∂α

) ∂2S

∂α̃∂T

∣∣∣
T=0

T = +
(∂α̃
∂α

) 4πi +O
(
(α̃− 1

2)
)

M(Y1)
T .

(5.31)

In the holographic dual side, the analogous quantity (created by a variation of type (5.30))

is most easily computed by using equation (3.73) in [28]

−δRg := R⋆
g −Rg =

1

2πi

∂2IME,g

∂αg∂Tg

∣∣∣
Tg=0

Tg = −
4πi +O

(
(αg − 1

2)
)

MSU(1,1|1)
Tg . (5.32)

Then identifying our field theory chemical potentials 47

(α̃→ −α+ 1, β) , (5.33)

(α, β) with the gravitational chemical potentials (−αg, βg) . More generally,

(α, β, a⋆, b⋆, ω1,2)
·
= (−αg, βg, , a

⋆
g, b

⋆
g,−ω1,2;g) (5.34)

and

S
·
= − IME,g ,

R0
·
= −

(∂α
∂α̃

)
R⋆ ,

(5.35)

δR3
·
= δRg =⇒ R3

·
= Rg , (5.36)

fixes (Y0, Y1) to large expressions that are not entirely reported in here. For example, for

the choices ± in (5.23) they are

Y0 = ±
(
π(b⋆ − 1)

12
√
3
− 5π(b⋆ − 1)2

72
√
3

+O
(
(b⋆ − 1)3

))

± (a⋆ − 1)

(
π

12
√
3
− 2π(b⋆ − 1)

9
√
3

+
π(b⋆ − 1)2

8
√
3

+O
(
(b⋆ − 1)3

))

± (a⋆ − 1)2
(
− 5π

72
√
3
+

π(b⋆ − 1)

8
√
3
− π(b⋆ − 1)2

144
√
3

+O
(
(b⋆ − 1)3

))

+O
(
(a⋆ − 1)3

)
,

Y1 =

(
7

36
π(b⋆ − 1)− 5

72
π(b⋆ − 1)2 +O

(
(b⋆ − 1)3

))

+ (a⋆ − 1)

(
7π

36
− 17

216
π(b⋆ − 1)2 +O

(
(b⋆ − 1)3

))

+ (a⋆ − 1)2
(
−5π

72
− 17

216
π(b⋆ − 1) +

127π(b⋆ − 1)2

1296
+O

(
(b⋆ − 1)3

))

+O
(
(a⋆ − 1)3

)
.

46This will be eventually identified with the Bekenstein-Hawking temperature 1
βg

but for the moment it

is the field theory temperature.
47Here we use the active transformation trick once more.
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More importantly, this procedure fixes

1

M
=

N2(a⋆ + b⋆)2(3 + a⋆ + b⋆ − a⋆b⋆)

8(−1 + a⋆)(−1 + b⋆)(1 + a⋆2 + 3b⋆ + b⋆2 + 3a⋆(1 + b⋆))

·
=
(∂α
∂α̃

) 1

MSU(1,1|1)
,

(5.37)

and

S0 =
πN2 (a∗ + b∗)

√
a∗b∗ + a∗ + b∗

(a∗ − 1) (b∗ − 1)

·
= S⋆ ,

−
(∂α̃
∂α

)
R0 =

N2(a∗ + b∗)

(a∗ − 1)(b∗ − 1)

·
= R⋆ .

(5.38)

This means, summarizing, that

S = S0 +
(∂α̃
∂α

)
2πiαR0 −

(∂α̃
∂α

)8π2

M

(
α− 1

2

)
+
(
∂α̃
∂α

)
(α− 1

2)
2

β
+ O

( 1

β2

)
, (5.39)

where
(∂α̃
∂α

)
= −1 . (5.40)

Namely, S in (5.39) exactly matches the supergravity answer −IME in [28] upon the identi-

fication of chemical potentials and charges summarized in table 5 below. In (5.39) we have

reinstated the canonical O
(
(α − 1

2)
2
)

contribution to S, up to order 1
β , which comes from

a repetition of the procedure above reported considering C1,1 6= 0 .

Quantities Minimally gauged gravity Field-Theory

Angular velocities −ω1,2;g as in (3.14),(3.15) of [23] ω1,2

U(1) potential −α of [28] α

Charge dual to ω1 j1 of [28]
√
2J⋆

− :=
√
2 J−

∣∣∣
∆=0 , R1,2=0

Charge dual to ω2 j2 of [28]
√
2J⋆

+ :=
√
2 J+

∣∣∣
∆=0 , R1,2=0

U(1) charge R⋆ (resp.R) of [28] R0 (resp.R3)

Large BPS entropy S∗ of [28] S0

Mixed ensemble −IME of [28] S

Table 5. The identifications
·

= between gravity and field theory. Working in minimally gauged

supergravity corresponds to the choice of ϕv and ϕw reported in (5.16).

Recovering the perturbative expansion Once reality conditions are imposed on the

infrared theory up to order O( 1β ) and its Schwarzian physical form has been recovered, 48

48By this we mean the reality conditions on the expectation values of charges
√
2J±, which are propor-

tional to derivatives of the infrared free energy with respected to their dual chemical potentials ω1,2 up to,

and including O( 1
β
) . These reality conditions correspond to restricting the initial 2-complex plane (ω1, ω2)

to the middle-dimensional complex contour (5.26) spanned by the real values of parameters a and b ranging

between 0 and 1 , including 0 . Once reality conditions are imposed on
√
2J± the only remaining freedom in

reparameterization that is consistent with them is the set of real reparameterizations of the latter complex

curve, which corresponds to the infinitely many choices of smooth real functions (5.42). These residual

reparameterizations remain unbroken in the presence of the Schwarzian.
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there remains ambiguity in the choice of implicit dependence on Λ within the auxiliary

chemical potentials

ω1,0 = Λω1(a
⋆, b⋆), ω2,0 = Λω2(a

⋆, b⋆) . (5.41)

Up to order O( 1β ) this ambiguity is parameterized by the possible choices of smooth real

functions 0 ≤ a⋆0 < 1 and 0 ≤ b⋆0 < 1

a⋆ = a⋆0(Λ) , b⋆ = b⋆0(Λ) , (5.42)

which at large-Λ respect the boundary conditions

a⋆(Λ) − 1 = O(Λ−1) b⋆(Λ) − 1 = O(Λ−1) . (5.43)

Inverting the parametric expressions of the physical charges (5.27) in terms of a⋆ and b⋆

and substituting the result in the parametric representation of BPS entropy and BPS R-

charge (5.38), and mass gap (5.37), one obtains their unambiguous relations to physical

charges and entropy, respectively. Here we only show the explicit relation at leading order

at large-Λ and first order in the low-temperature expansion

S0 =
√
3π(N2J+J−)

1
3 , R0 = (N2J+J−)

1
3 ,

1

M
=

S0

12
√
3π

. (5.44)

This result could have been obtained directly using only leading expressions for the free en-

ergy at large Λ (and low temperature), indeed we have performed that simpler computation

independently, as a check.

The hierarchy of charges that this near-BPS RG-flow probes is

√
2J∓ = O(1)N2Λ3 ,

∆ = O(1)N2 |α0|
β2
0

Λ3 = O(1)N2

(
|α− 1

2 |
)

β2
Λ2 .

(5.45)

Notice that up to O( 1
β0
) only states with eigenvalues ∆ = 0 are probed (i.e. supersymmetric

states). Thus, the same results could have been obtained just starting from the truncated

partition function that counts 1
16 -BPS states (without (−1)F insertion). It also means that

if one wants to recover corrections starting from order O( 1
β2 ) then one has to consider a

truncation of the partition function that counts states within the hierarchy (5.45) which

includes states away from the BPS sector.

Four comments before concluding.

Recall that

J∓ =
1√
2

( 3∆∓ −∆

6

)
=
( ∆∓

2
√
2
+ O( 1

β2
0

)
)

=
β0→∞

∆∓

2
√
2
≥ 0 , (5.46)

Thus, in the limit ∆+ → 0 the S0 vanishes. This is consistent with the findings in the near-
1
8 -BPS expansion, which by definition is located at ∆ = ∆+ = 0 , and has S0 = 0 , (4.31). 49

49The 1
8
-BPS reference point used in the previous subsection only intersects with the 1

16
-BPS case in this

section at R1 = R2 = 0 .
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One natural extension of the analysis in this section corresponds to relaxing the minimal

gauged supergravity constraint

R1 = R2 = 0 ←→ Q1 = Q2 = Q3 =
R3

2
. (5.47)

A gravitational mass gap has not been computed yet in such regime (as far as we under-

stand). This would require a generalization of the analysis in [28] to non-minimally gauged

supergravities.

Without loss of generality, we have chosen to focus on the Schwarzian corresponding

to the winding sector nthere = j = 0 (in the notation of [28]). Our discussion trivially

generalizes to other sectors j 6= 0 , by expanding α around other integer shifts of α = ±1
2 .

Namely the result of those is obtained from (5.39) by substituting α→ ±α+j . Analogously,

the result obtained with the more general orbifold sectors mentioned in section 3.2 can be

obtained following analogous steps to the ones before summarized. The analysis of these

more general cases is left for future work.

It is necessary to compute small Yang-Mills (’t Hooft) coupling corrections to the mass-

gap M , and find a different explanation of why the free-field theory computation matches

the conjectured strong coupling result in the near-BPS region. As it was just explained,

kinematically, the here-proposed RG-flow procedure enforces that only states with ∆ = 0,

i.e., only BPS states contribute up to order O(T ) to the free energy. 50

6 Final remarks

Holographic low-temperature expansions were recovered from the free energy of four dimen-

sional maximally supersymmetric Yang-Mills theory. The analytic part of the free energy

associated to the infrared effective theory, (D.1) was computed. Assuming supergravity

predictions are correctly capturing strong-coupling results in field theory, and in virtue of

analyticity, the computed infrared free energy is bound to encode the Gibbons-Hawking free

energy of the dual gravitational solutions even well beyond their BPS locus. The formula

was tested at leading and next-to-leading order in the low-temperature expansion. Up to

such order the infrared free energy was shown to reproduce the long awaited Schwarzian

contributions with a small mass gap M scaling as a negative power of the energy scale Λ .

These low-temperature expansions, and in particular their Schwarzian vicinities, local-

ize around complexified values of chemical potentials where supersymmetric cancellations

happen and the physical partition function reduces to a superconformal index I1 . If I1
counts states preserving four supercharges, then the corresponding Schwarzian contribution

is protected against corrections in g2YMN . If these low-temperature expansions are appro-

priately directed accross the complexified space of chemical potentials 51 then all of its

50However, the BPS states in the free gauge theory are lifted by a small coupling [74, 96–100]. This

suggests that the explanation may be more subtle than that.
51By this we mean that the derivatives with respect to α, at α = 1

2
, equal traces over the Hilbert space

that receive contributions only from certain supersymmetric states. For examples, this would correspond

to the constraint γ = 1 in (B.14).
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terms, not just the Schwarzian contribution can be exactly computed using another super-

conformal index, I2 6= I1 . The new index I2 counts states preserving only two supercharges

out of the four ones preserved by the states counted by I1 .

Near-18 -BPS black holes with charges ∆ ≈ 0 , ∆+ ≈ 0 , R1 + R2 ≈ 0 and ∆− 6= 0 ,

were found to have near-vanishing horizon, and thus vanishing BPS entropy S0 , due to the

BPS contraint ∆− ≥ 0 . In these cases, the low-temperature corrections to the near-18 -BPS

mixed-ensemble free energy S was found to be dominated by the protected Schwarzian

contribution identified in subsection 4. This result suggests that near-18 -BPS gravitational

solutions within the family found in [69] have a near-vanishing near extremal horizon. It

also suggests that their horizon vanishes in the strict and smooth 1
8 -BPS limit. 52

The Schwarzian corrections already identified in the supergravity side of the duality [28]

were recovered from the partition function of free N = 4 SYM. The mass-gap predicted by

the free gauge-theory computation exactly matches the answer coming from supergravity.

We plan to compare higher order low-temperature corrections in the infrared free energy

against dual corrections obtained out of the Gibbons-Hawking onshell action of the solutions

of [58, 68, 69] about their BPS locus [59, 60] [23]. Namely, to test the formula (3.48), which

we reiterate, assuming the supergravity predictions are accurate at strong coupling are

trivially bound to be true, in virtue of analyticity. More importantly, it is necessary to

confirm formula (3.48) strictly using field theoretic tools.

Other interesting questions become tangible. For instance, one may try to develop

analytic tools to quantitatively understand the emergence of quantum chaos [78–80] in

gauge theories. In the case of N = 4 SYM one next obvious goal is to identify which is

the random matrix theory emerging in the infrared theory. We will address this question

in forthcoming work. Relatedly, one could also explore this possibility in simpler quantum

systems, possibly even in some systems already known to be realized in nature.

In N = 4 SYM this problem has been studied at β = ∞ [83]. The erratic behaviour

there identified in the spectral form factor (even at zero temperature), is closely related to

interference effects [55, 56][47] among complex phases associated to different saddle point

contributions of the superconformal index [31, 40–42, 46, 50]. The contribution of all

such saddles is encoded in subleading corrections within the RG-flow procedure this paper

focused on. The majority of them are e−N2
-suppressed at large N , but their contribution

is essential at finite N . There are also instantonic e−N -suppressed contributions [41, 50],

which come from D3-brane instantons [50]. Our result predicts – and calls for the study and

understanding of – the presence of analogous contributions away from the BPS locus. That

said, it is still unclear to us whether in order to identify the ramp/plateau feature in the

spectral form factor of N = 4 SYM it will be necessary to resort to these non-perturbatively

suppressed contributions.

Relatedly, it would be very interesting to promote the analytic formula for the infrared

52It would be interesting to understand how such near-horizon geometry meets the conclusions of [25].

Such reference identified BTZ geometries in the near-horizon region of near- 1
8
-BPS black hole solutions.

One may then wonder how the effective one-dimensional Schwarzian entropy relates (if they happen to be

related e.g. in the spirit of [101, 102]) to the conjectured two-dimensional conformal field theory computing

the entropy of such BTZ geometries [25].
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free energy F∞ into an “dual" formula for F equating the latter in any domain of chemical

potentials, not only around the 1
Λ -vicinity of its leading singularities. This improvement

would give us a tool useful for computing non-perturbative finite-temperature quantum

gravity effects.
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A The saddle point for gauge potentials

Discarding heavy enough states, the truncated version of the partition function (2.23) is

ZΛ[x, u, v, w, t, y] =

∫
[DU ]e

∑O(1)Λn′

n=1
1
n

(
fBos[x

n,un,vn, ...]+(−1)n+1fFer[x
n,un,vn, ...]

)
TrUnTrU†n

,

(A.1)

where the fBos and fFer were defined in (2.27).

ZΛ is as good as Z to compute (weighted) degeneracies at charges up to order O(1)Λn′
.

Let {e2πiui}i=1,...N. be the eigenvalues of U then integral (A.1) can be written in the

form

ZΛ[x, u, v, w, t, y] =
1

N !

∫ 1

0
du1 . . .

∫ 1

0
duNe−FΛ(ui) . (A.2)

Expanding, for instance,

ZΛ[x, u = e2πiα, e−2πi(α−1/2)ṽ, w = ṽty , t, y] = I2Λ[x, e2πiα, ṽ, t, y] (A.3)

at leading order in the low-temperature expansion (3.52) with finite gauge potentials ui’s

and recalling that

t = e−
1
6
(ω1+ω2), y = e

ω1−ω2
2 , ṽ = e

1
3
(ω1+ω2−3ϕṽ) , (A.4)

we find that at leading order at large Λ

−FΛ(ui) =
1

ω1

N∑

i,j=1

(
LiΛ2

(
e
2πi

(
uij−

iϕṽ
2π

))
+ LiΛ2

(
e
2πi

(
uij+

iϕṽ
2π

))
−

−2LiΛ2

(
e2πi(uij)

))
×
(
1 +

4πi

β
c

(
α̃− 1

2

)
+O

(
ω1,0

β2
0

))
(A.5)
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where uij := ui − uj and

LiΛp (z) :=

O(1)Λn∑

j=1

zj

jp
. (A.6)

One saddle solution of (A.5) is

ui = u⋆ , i = 1 , . . . , N . (A.7)

We note that even though in the limit Λ → ∞ SΛ(u) develops a cusp at (A.7) as it

was pointed out recently in [76], 53 the ansatz (A.7) is a well-defined saddle point of the

truncated partition function ZΛ at any finite value of Λ . This implies, as it will be shown

in the following appendix, around equation (B.21), that this saddle point is bound to

capture any potential growth in the number of-18 -BPS states with charges of order N2 at

leading O(N2) order.

For example, at this saddle point

−FΛ(ui = u⋆) ∼ N2
(
LiΛ2 (eϕṽ) + LiΛ2 (e−ϕṽ)− 2LiΛ2 (1)

)

ω1

×
(
1− πiC

(
α̃− 1

2

)

β
+ O

(ω1

β2

))
+O

(
(α̃− 1

2
)2
)
.

(A.8)

which is minus the low-temperature expansion of the free energy F 1
16

near
1
8

reported in (4.9).

B The generic near-1/8-BPS susceptibility is also protected

The generic refinement of the partition function

Z[x, u = e2πiα, v, w = e−ϕvty , t, y] = e
−F

near
1
8 . (B.1)

flows to the 1/8-BPS index I4,−;2,+ in the limit

α→ 1

2
, ϕ → 0 . (B.2)

If α = 1
2 and ϕ 6= 0 then it reduces instead to the 1/16-BPS index I1 . 54 For later reference

we note that

eϕ = e−ϕw
v y

t
, ϕ = ω1 − ϕv − ϕw . (B.3)

Our goal next is to show that the generic Schwarzian contribution (to free energy) about

(α, ϕ) = (12 , 0) is protected against gauge-coupling corrections, for example, if in the ex-

pansion (3.52)

ϕ =
ϕ0

Λ
, (B.4)

53This is because ∂uLiΛ2 (e
2πiu) + ∂uLiΛ2 (e

−2πiu) →
Λ→∞

4π2({u} − 1
2
) if u 6= 0mod 1 , and 0 if u = 0mod 1 .

{u} := u−⌊u⌋ . Here for simplicity we assumed real u, but the generalization to complex u of the previous

identity can be obtained straightforwardly.
54There are other possible restrictions that may have been chosen, but none more general than (B.1).
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with fixed ϕ0 and
|ϕ0|
|α0|

= finite and |α0| is small. (B.5)

The reason for such protectedness is that the first variation (susceptibility) of

F
near

1
8
= F [x, u = e2πiα, v, w = e−ϕvty , t, y] (B.6)

in the variables (α, ϕ) at the point (α, ϕ) = (12 , 0) ,

δ(1)F
near

1
8
:=
(
F (1)

near
1
8

∣∣∣
ϕ=0

)(
α− 1

2

)
+
(
∂ϕF (0)

near
1
8

∣∣∣
ϕ=0

)
ϕ , (B.7)

which is encoded in the derivatives

F (1)

near
1
8

= − 2πi TrH(R1 + R3)(−1)Fx∆v−R1−R2t2(H+J3
1 )−R2y2J

3
2−R2 ,

∂ϕF (0)

near
1
8

∣∣∣∣
ϕ=0

= TrHR2 (−1)F x∆v−R1−R2t2(H+J3
1 )−R2y2J

3
2−R2 ,

(B.8)

happens to be a linear combination of two Q1-protected

−TrH(R1,2)(−1)Fx∆v−R1−R2t2(H+J3
1 )−R2y2J

3
2−R2 (B.9)

and one Q2-protected

−TrHR3(−1)Fx∆v−R1−R2t2(H+J3
1 )−R2y2J

3
2−R2 (B.10)

traces. Namely, the linear differential (B.7) is a linear combination of three indices and

thus it is protected.

To compute the large-Λ expansion of the free energy (B.6), (B.8), we start from the

matrix integral representation (2.23) at zero gauge coupling. We extract the leading be-

haviour of such integral in the expansion (3.52), assuming the condition (B.4), and keeping

fixed ϕ0 and α0 , i.e., without imposing (B.5). In such expansion the leading saddle-point

for the gauge-singlet condition is U ∼ e2πiu
⋆ × 1N×N , and thus, again, we can substi-

tute TrUnTrU−n → N2 and obtain

F (0)

near
1
8

∣∣∣∣
ϕ=0

∼ −N2L2(ϕv)

ω1
= O(Λ1) .

F (1)

near
1
8

∼ πiN2
( −2
ω1ω2

+
ϕ+ ω2

β ω1ω2
+ O

( 1

β0
2

))
× L2(ϕv) = O(Λ2) .

∂1
ϕF (0)

near
1
8

∣∣∣∣
ϕ=0

∼ −N2L2(ϕv)

ω1ω2
= O(Λ2) .

F (2)

near
1
8

∣∣∣∣
ϕ=0

∼ − 2π2N2 L2(ϕv)

β ω1ω2
= O(Λ3) .

(B.11)

Again, ∼ means that the objects to the right-hand and left-hand sides have identical leading

asymptotic bevarior in the large-Λ expansion.
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Using (B.11) we obtain the leading asymptotic behavior of the free energy (2.48) (at

order O(Λ1))

F
near

1
8
∼ −N2 ϕ+ ω2 + 2πi(α− 1

2)

ω1ω2
L2(ϕv)

+ πiN2

(
ϕ+ ω2 + 2πi(α− 1

2)
)(
α− 1

2

)

β ω1ω2

(
1 + O

(ω1

β
,
ω2

β

))
L2(ϕv) .

(B.12)

In the right hand-side of this asymptotic relation only the quadratic contributions in (ϕ, α−
1
2)

πiN2

(
ϕ+ 2πi(α− 1

2)
)(
α− 1

2

)

β ω1ω2

(
1 + O

(ω1

β
,
ω2

β

))
L2(ϕv) (B.13)

may receive corrections in the gauge coupling. This follows from the protectedness argument

above. If on the right-hand side of (B.12) we assume α0 to be small and fix

ϕ = −2πiγ(α− 1

2
) = O

( 1
Λ

)
, (B.14)

with γ being a finite constant – which is equivalent to assuming (B.5) – , then we obtain

F
near

1
8
∼ F 1

16
near

1
8
− 2πiN2 (α− 1

2)L2(ϕv)

ω1ω2
− N2ϕL2(ϕv)

ω1ω2
+O

(
(α− 1

2
)ϕ, (α− 1

2
)2
)
.

∼ F 1
16

near
1
8
+ 2πiN2

(
γ − 1

)
(α− 1

2)L2(ϕv)

ω1ω2
+O

(
(α− 1

2
)ϕ, (α− 1

2
)2
)
.

(B.15)

This equation is implicitly saying that the first-order correction in temperature to the free

energy F
near

1
8

at order O( 1
β0
) is independent of γ (resp. ϕ) and equals the one computed

with F
near

1
8
.

Chemical potential Dual charge Source term

β ∆ +β∆

ω1 J3
1 − J3

2 + R1
2 +R2 +

R3
2 + ∆

3 +ω1 ·
(
J3
1 − J3

2 + R1
2 +R2 +

R3
2 + ∆

3

)

ω2 J3
1 + J3

2 + R1
2 + R3

2 + ∆
3 +ω2 ·

(
J3
1 + J3

2 + R1
2 + R3

2 + ∆
3

)

ϕv −R1 −R2 +ϕv · (−R1 −R2)

ϕ −R1 +ϕ · (−R1)

ωu = −2πiα −R1 −R3 +ωu · (−R1 −R3)

Table 6. The chemical potentials, charges and source terms to be potentially added to −F
near

1

8

before performing extremization.

The extra term, which is protected against coupling corrections because it is included

in the protected susceptibility δ(1)F
near

1
8

+2πiN2

(
γ − 1

)
(α− 1

2)L2(ϕv)

ω1ω2
∈ δ(1)F

near
1
8
, (B.16)
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captures the singularity associated to the growth of 1
16 -BPS states, 1

ω1ω2
, and it is bound to

match certain near-18 -BPS (thermodynamic) susceptibility of the AdS5 black hole solutions

found in [58, 69].

The near-18 -BPS expansion along I2 (4.9) is recovered from (B.12) upon the con-

traint γ = 1, as it has to be the case, due to consistency with the constraints that re-

duce Z[x, u, v, w, t, y] to I2[x, e2πiα, ṽ, t, y]

ϕv = ϕṽ + 2πi(α− 1

2
) , ϕ = −2πi(α− 1

2
) . (B.17)

B.1 Confirming the near-1/8-BPS saddle-point selection

It should be noted that the low-temperature expansion of the protected near-18 -BPS suscep-

tibility (B.7), which is implicit in the first-order differential in the right-hand side of (B.12),

is continuously recovered from the low-temperature expansion of F , (5.8), by substitut-

ing (B.4)

ϕ =
ϕ0

Λ
= O( 1

Λ
) , (B.18)

on the large-Λ expansion of the latter. Concretely, by using the relation

ϕw = ω1 − ϕv − ϕ (B.19)

and the identities

L3(ϕv,−ϕv) = 0 , ∂ϕwL3(ϕv, ϕw)

∣∣∣∣∣
ϕw=−ϕv

= −L2(ϕv) (B.20)

on the first-order Taylor expansion of (5.8) around ϕ, ω1 = 0, and the identity

L2,1(ϕv,−ϕv) = − 2L2(ϕv) (B.21)

on the zeroeth-order Taylor expansion around ϕ, ω1 = 0 of the O(Λ) (and large-charge

subleading) correction (5.5). In particular, this demonstrates that the free energy of the

near-18 -BPS phase, (4.9), is continuously recovered from the free energy of the 1
16 -BPS

phase, (5.8). This check also reaffirms the assumption that the saddle-point (4.1) determines

the free energy of the near-18 -BPS sector, (B.12).

Useful equation In this subsection we will use equalities instead of ∼ symbols. The

equalities should be always understood up to the order we used them in the analysis sum-

marized in the main body of the paper.

F 1
16

near 1
8
= −L2

(
ϕṽ

)
+ ω1

2 L1

(
ϕṽ

)

ω1
+ C

πi(α̃− 1
2)L1

(
ϕṽ

)

ω1
+

+ C
πi (α̃− 1

2)
(
L2

(
ϕṽ

)
+ ω1

2 L1

(
ϕṽ

))

βω1
+ C2π

2(α̃− 1
2)

2L1[ϕṽ]

βω1

= −L2

(
ϕṽ

)

ω1
+ C

πi(α̃− 1
2)L1

(
ϕṽ

)

ω1
+ C

πi (α̃− 1
2)L2

(
ϕṽ

)

βω1

+ C2π
2(α̃− 1

2)
2L1[ϕṽ]

βω1
+ . . . ,

(B.22)
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The dots denote terms that do not contribute to the leading behaviour at large-Λ . The

complete expression can obtained from (D.1) using the relations

ϕw = ω1 − ϕv , ϕv = ϕṽ + 2πi(α− 1

2
) . (B.23)

C BPS inequalities and conventions

In the conventions of charges we have used, the 16 semi-positivity conditions are –written

for instance in there –

Hthere −
3∑

I=1

sIQIthere −
2∑

i=1

tiJithere ≥ 0 , (C.1)

where sI = ±1, ti = ±1 and s1s2s3t1t2 = 1, are

H + 2J3
1 +

3R1

2
+R2 +

R3

2
≥ 0, H − 2J3

2 +
R1

2
+R2 +

3R3

2
≥ 0,

H + 2J3
2 +

R1

2
+R2 +

3R3

2
≥ 0, H − 2J3

1 +
3R1

2
+R2 +

R3

2
≥ 0,

H + 2J3
1 −

R1

2
+R2 +

R3

2
≥ 0, H − 2J3

2 +
R1

2
+R2 −

R3

2
≥ 0,

H + 2J3
2 +

R1

2
+R2 −

R3

2
≥ 0, H − 2J3

1 −
R1

2
+R2 +

R3

2
≥ 0,

H + 2J3
1 −

R1

2
−R2 +

R3

2
≥ 0, H − 2J3

2 +
R1

2
−R2 −

R3

2
≥ 0,

H + 2J3
2 +

R1

2
−R2 −

R3

2
≥ 0, H − 2J3

1 −
R1

2
−R2 +

R3

2
≥ 0,

H + 2J3
1 −

R1

2
−R2 −

3R3

2
≥ 0, H − 2J3

2 −
3R1

2
−R2 −

R3

2
≥ 0,

H + 2J3
2 −

3R1

2
−R2 −

R3

2
≥ 0, H − 2J3

1 −
R1

2
−R2 −

3R3

2
≥ 0 .

The relations between the charges used in here and the ones used in [35] is

Hthere = H, Q1there =
1

2
(R1 + 2R2 +R3), Q2there =

1

2
(R1 +R3),

Q3there =
1

2
(−R1 +R3) , J1there = J3

1 − J3
2 , J2there = J3

1 + J3
2 .

(C.2)

D The analytic effective potential for gauge variables

The complete analytic part of the infrared effective potential of gauge variables is 55

FL
sl +

LR∑

j=1

∑

ρ 6=0

e2πijρ(u)

j

7→
Λ→∞

F∞, sl = −
N∑

i≤ j=1

2∑

p=−1

(
Vp(uij) + Vp(uji) + O( 1

β2
)
)
,

(D.1)

55There is a possible O(Λ0) ambiguity coming from the ambiguity in choice of different branches of the

logarithmic contributions, but we can always choose to work in a branch where these contributions vanish.

Equivalently, we can always choose to approach the BPS point α = 1
2

in such a way such contribution

vanishes (e.g. the selection of couterterms like (5.11)). So, we assume that we work in such a branch.
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where

V2(u) :=
4π3

(
π
(
α− 1

2

)
+ iβ

) (
B3

[
−u− iϕv+iϕw

2π

]
+B3

[
−u+ iϕv

2π

]
+B3

[
−u+ iϕw

2π

])

3βω1ω2
,

V1(u) :=
π2

βω1ω2

(
π

(
α− 1

2

)
+ iβ

)
×
(
2π

(
α− 1

2

)(
−3B2

[
−u− i(ϕv + ϕw)

2π

]

+B2

[
−u+

iϕv

2π

]
+B2

[
−u+

iϕw

2π

]
+B2 [−u]

)

+ i(ω1 + ω2)

(
B2

[
−u− i(ϕv + ϕw)

2π

]

−B2

[
−u+

iϕv

2π

]
−B2

[
−u+

iϕw

2π

]
+B2[−u]

))
,

V0(u) :=
8π3

(
α− 1

2

) (
π
(
α− 1

2

)
+ iβ

) (
(α− 1

2)− iω1+iω2
4π

)
B1

[
−2πu+iϕv+iϕw

2π

]

βω1ω2

+



π
(
18iπ2

(
α− 1

2

)2
(2β − ω1 − ω2) + 24π3(α− 1

2)
3 − 3iβ

(
ω2
1 + 3ω2ω1 + ω2

2

))

18βω1ω2

−π2
(
α− 1

2

) (
12β2 − 20β (ω1 + ω2) + 3

(
ω2
1 + 3ω2ω1 + ω2

2

))

18βω1ω2

)
×

×
(
B1

[
−u− iϕv

2π
− iϕw

2π

]
+B1

[
−u+

iϕv

2π

]
+B1

[
−u+

iϕw

2π

])
,

V−1(u) := −
2π
(
α− 1

2

) (
π
(
α− 1

2

)
+ iβ

) (
2π
(
α− 1

2

)
− iω1

) (
2π
(
α− 1

2

)
− iω2

)

βω1ω2
.

(D.2)

Vp(u) is the contribution to the potential at order O(Λp) . We have reported here only the

expansion up to order O( 1β ) but the complete expansion in terms of rational functions of β

is presented in the shared Mathematica file.
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