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Abstract

We describe non-Abelian T-dualities for N = 2 two dimensional
gauged linear sigma model (GLSM). We start with the case of left
and right (2, 2) supersymmetry (SUSY), U(1) gauge group, and global
non-Abelian symmetries. Our analysis applies to the specialization of
the GLSM with the global group SU(2)×SU(2), whose original model
is the resolved conifold. We analyze the dual model and compute the
periods on the dual geometry, matching the effective potential for the
U(1) gauge field, and discuss the coincident singularity at the conifold
point. We further present the non-Abelian T-dualization of models
with (0, 2) SUSY, analyzing the case of global symmetry SU(2). In
this case the full non-Abelian duality can be solved. The dual geome-
tries with and without non-perturbative corrections to the superpoten-
tial coincide. The structure of the dual non-perturbative corrections
employed are determined based on symmetry arguments. The non-
Abelian T-dualities reviewed here lead to potential new symmetries
between physical theories.

1 Introduction

String theory possess symmetries and dualities, which relate several of its
corners. In particular, T-duality constitutes a discovery, first developed by
Buscher,1, 2 that relates a theory on a circle with radius R, with a theory on a
circle of radius α′/R. The spectrum of physical states is matched between T-
dual string theories, meaning that winding modes and momentum modes are
exchanged. There is a non-Abelian version of T-duality, when the compact
dimensions posses global non-Abelian symmetries. In the non linear sigma
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model (NLSM) i.e. string theory, the equations of motion are exchanged
with the Bianchi identities, leading to equivalent theories.3, 4 On the context
of NLSM non-Abelian T-duality is a more complex construction, and there is
still discussion on to what extend models obtained out of it are equivalent.4

In particular, is not possible in general to find dual models that posses the
global non-Abelian symmetries of the original model, and therefore is not
clear how to obtain the original model back. Some of these problems have
been adressed in the context of Poisson-Lie T-duality.5–7

On the other hand Mirror Symmetry (MS) enunciates that for each
Calabi-Yau (CY) variety, there is a dual geometry on which the complex
structure moduli space and the Kähler moduli space are exchanged.8 MS
maps type IIB string theory on a given CY manifold with type IIA string
theory on the mirror CY. As well the relation between MS and T-duality has
been explored, in the context of string theory9 and also by looking at the
UV description of strings, given by the GLSM.11, 12 It has been established
that Abelian T-duality in GLSMs leads to MS between target spaces in the
seminal works of Morrison and Plesser11 and Hori and Vafa.12 Employ-
ing the duality procedure of Roceck and Verlinde13 we have extended the
mentioned exploration12 by constructing general T-dual models in GLSMs
and in particular Non-Abelian T-dual models.14–17 One motivation is to
explore the wide group of T-dualities, and to develop tools that serve to de-
scribe MS and further symmetries for non Complete Intersection Calabi-Yau
(nCICY).21–23 The starting point of this exploration are Abelian GLSMs,
which possess non-Abelian global symmetries. In this article we review the
construction of non-Abelian T-duality originally performed in models with
two left SUSYs (NL) and two right SUSYs (NR) i.e. (NL, NR) = (2, 2)14

, and recently for (NL, NR) = (2, 0) SUSY.17 We explain the equations of
motion that lead to the dual theories, on the examples analyzed so far.
As a new development, we describe how one can compute the periods in
te dual geometries, and we do so for the non-Abelian dual of the resolved
conifold. We also discuss our plan to test further these new potential string
symmetries.

In Section 2 we present the basics of supersymmetric (2, 2) GLSMs, Sec-
tion 3 is devoted to implement the Abelian T-duality procedure in (2, 2)
GLSMs, Section 4 is devoted to non-Abelian T-duality in (2, 2) GLSMs,
Section 5 is devoted to analyze the non-Abelian dualization of the resolved
conifold GLSM, Section 6 is devoted to (0, 2) GLSMs T-duality and in Sec-
tion 7 we analyze a (0, 2) non-Abelian dual example with SU(2) symmetry.
We conclude in Section 7, summarizing the status of GLSMs T-dualities and
tracing the plan for future explorations.
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2 T-duality in the GLSM

In this section we describe GLSMs in 2d with (2, 2) SUSY and gauge group
U(1). We present the superfields and the Lagrangians, then we construct the
Abelian T-duality procedure. Our method consists on determining the group
of global symmetries of the action, and then construct a vector superfield
which takes values on this group, promoting the global symmetry to be
local, and adding Lagrange multipliers fields. This work has been carried
out in collaboration with A.Mart́ınez-Merino, L.Pando-Zayas and R.Santos-
Silva14 This is we arrive to a master Lagrangian, that upon integration of the
Lagrange multiplier fields leads to the original model, and upon integration
of the vector gauged fields leads to the dual model. We present the example
that reproduces MS for the CP

N−1 model.
The dimensional reduction to 2d of an N = 1 4-dimensional (4d) SUSY

U(1) gauge field theory gives rise to a N = 2, (2, 2) theory. The N = 1
superfield language is employed to describe chiral superfields (csf) Φ satisfiy-
ing D̄α̇Φ = 0, antichiral superfields (acsf) Φ̄ satisfiying DαΦ̄ = 0 and vector
superfields (vsf) that fulfill the reality condition V † = V . The derivatives
Dα and D̄α̇ constitute supersymmetric covariant derivatives. Twisted-chiral
superfields(tcsf) satisfy the conditions D+X = D̄−X = 0 and twisted-anti
chiral superfields (tacsf) satisfy instead D̄+X̄ = D−X̄ = 0.

We start with the Lagrangian of a GLSM with gauge group U(1) with
vsf V0 and N csfs Φi with charge Qi , it can be written as10

L0 =

∫
d4θ

(
N∑

i=1

Φ̄ie
2QiV0Φi −

1

2e2
Σ̄0Σ0

)
− 1

2

∫
d2θ̃tΣ0 + c.c., (1)

where t = r − iθ. The parameters of the previous Lagrangian are the U(1)
gauge coupling e, the Fayet-Iliopoulos(FI) term r and the Theta angle θ.
These models lead to CY varieties as target space, when a superpotential
depending on csf is added. In the crucial work of Witten10 the different
phases of these models, for different values of r were described. We imple-
ment T-dualities in GLSM14 by a different method than Hori and Vafa,12

that for a particular Abelian case leads to the same results, i.e. MS between
dual models. This is due to the fact that the existence of a global symmetry
is the origin of the duality. Chiral superfields have the following expansion
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Table 1: R-charge transformations for the dual tcsf with expansion gven in
(2).

Field φi ψi± Fi va0,3 σa λ̄a+ λa− Da

(qV , qA) (qV , 0) (qV − 1,∓1) (qV − 1, 0) (0, 0) (0, 2) (−1, 1) (1, 1) (0, 0)

in terms of components:

Φi = φi(x) +
√
2
(
θ−ψ+

i (x)− θ+ψ−
i (x)

)
+ 2θ−θ+Fi(x) (2)

− iθ−θ̄−∂+03φi(x)− iθ+θ̄+∂−03φi(x)

+
2i√
2
θ+θ−

(
θ̄−∂+03ψ

−
i (x) + θ̄+∂−03ψ

+
i (x)

)
+ θ+θ−θ̄+θ̄−∂203φi(x).

The component fields are a scalar φi, a fermion ψ±
i and an auxiliary field

Fi. On the other hand the vector superfield component expansion reads:

V a = θ+θ̄+(va0 − va3) + θ−θ̄−(va0 + va3)−
√
2θ+θ̄−σa −

√
2θ−θ̄+σ̄a + 2iθ̄+θ̄−

×(θ+λ−a − θ−λ+a) + 2iθ+θ−(θ̄−λ̄+a − θ̄+λ̄−a) + 2θ−θ+θ̄+θ̄−Da. (3)

The components are the vector fields va0,3, the scalar σa, the fermions λ±a

and the auxiliary field Da. This expansion is valid for a single U(1) replacing
the index a by 0, as well as for multiple U(1)s or for the components on
the adjoint representation of a non-Abelian vector superfield, where the
index a enumerates the generators Ta. The GLSM has a number of global
symmetries. Let us mention the R-symmetries. The sub-index V denotes
the vector R-symmetry and the sub-index A denotes the axial-vector R-
symmetry. The R-charges of the original fields components are given in
table 1. This is obtained by noticing that under U(1)V the transformation is:
(θ±, θ̄±)→ (e−iαθ±, eiαθ̄±) and under the U(1)A vector the transformation
is: (θ±, θ̄±)→ (e∓iαθ±, e±iαθ̄±).12

For the case of a U(1) (2,2) GLSM with multiple chiral superfields Φi, i =
1, ..., N + 1 there are generically U(1)N global symmetries. If some of the
charges coincide, this group of symmetries can be bigger, and in general it
has the structure U(n1)×U(n2)×...×U(nk)..., where nk denotes a set of csfs
with equal charge. We will consider a case on which under the U(1)i global

symmetry the csf Φi transform as: U(1)i : Φi → eiQ̂iΛaΦi, ∀j 6=iΦj → Φj

and ΦN+1 is uncharged under the global U(1)s. This is we have N global
U(1)s. Here Λi is the parameter of the transformation and Q̂i is the charge
of the field i under the transformation. The gauging of these symmetries
leads to the master Lagrangian
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L =

∫
d4θ

(
N∑

i=1

Φ̄ie
2QiV0+2Q̂iViΦi −

1

2e2
Σ̄0Σ0 +

N∑

i=1

(ΨiΣi + Ψ̄iΣ̄i)

)
(4)

+

∫
d4θ

(
Φ̄N+1e

2QN+1V0ΦN+1

)
− 1

2

∫
d2θ̃tΣ0 + c.c.,

where Lagrange multiplier fields Ψi have been added for every gauged U(1)i
symmetry. The vector superfields Vi constitute the gauged fields of the local
U(1)i gauged symmetries. Integrating out the Lagrange multipliers one gets
the pure gauge condition Σi = 0, including the zero vector superfield Vi
solution and therefore recovering the original model (1). The original model
here has target space CP

N−1, for the set of vacua with zero vev of φN+1.
Therefore the duality that we are implementing should lead to the MS model,
which in this case is the AN−1 Toda variety.12

Integrating the vector superfields Vi we go to the dual models. The
equation of motion obtained by making the variation of the action (4) w.r.t
to Vi as

δS
δVi

= 0 is given by

Φ̄ie
2QiV0+2Q̂iViΦi =

Λi + Λ̄i

2Q̂i

, (5)

with Λi = 1
2D̄+D−Ψi. This integration of the Vis leads to the dual La-

grangian

Ldual =

∫
d4θ

(
−

N∑

i=1

Λi + Λ̄i

2Q̂i

ln

(
Λi + Λ̄i

2Q̂i

)
+ Φ̄N+1e

2QN+1V0ΦN+1 −
1

2e2
Σ̄0Σ0

)

+
1

2

∫
d2θ̃

(
N∑

i=1

ΛiQi/Q̂i − t
)
Σ0 +

1

2

∫
d2 ˜̄θ

(
N∑

i=1

Λ̄iQi/Q̂i − t̄
)
Σ̄0. (6)

Let us write now the component of the dual twisted chiral superfield.
This is:

Λi(X̃) = yi +
√
2θ+χ̄i,+ + θ̄−χi,− + 2θ+θ̄−Gi + ... (7)

where we have omitted the derivatives of the component fields, represented
by the three dots. The R-charges for the dual field components are given in
table 2. The U(1)A symmetry posses an anomaly, and only a discrete parrt
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of it survives, which is relevant in the analysis of the dual geometry.12, 15

Let us point out that here we have obtained the same result known for the
mirror symmetric model of CPN−1, this is, after including non-perturbative
corrections what we are obtaining is the AN−1 Toda variety, as described
in the usual formulation of MS in GLSMs.12 This can be seen because we
obtain an identical Lagrangian to the one in the mentioned reference.

Table 2: R-charges of the dual tcsf with expansion in (7). This is obtained
by noticing the θ± and θ̄± transformations under the U(1)V and U(1)A.

12

Field yi Gi χi,±
(qV , qA) (0, 0) (0,2) (−1,∓1)

To be have a more detailed description let us take as a particular example
the theory with three chiral superfields Φ1,Φ2,Φ3, where 1 and 2 are equally
charged, and 3 is denoted an spectator field. This denomination implies that
it will not take part in the T-duality procedure. The original GLSM has
as a part of its vacua the space CP

1. This is a nice example because it is
illustrated how our procedure can be employed to obtain the mirror models.
The dual Lagrangian is given by:

Ldual = Lmirror +

∫
dθ4Φ̄3e

2Q0,3V0Φ3. (8)

This is the specialization of previous Lagrangian (6). We select the Higgs
branch, determined by giving zero vevs for the scalar components of the U(1)
vsf σ0 and the spectator superfield y3. The U(1) field can be integrated out
giving an effective potential:

Ueff = 2e2|t− y1 − y2|2.

In the infrared(IR) the resulting theory is obtained by integrating the
gauge field strength Σ0 and is given by the condition Y1 + Y2 = t. The
twisted superpotential for the non perturbative contributions in the dual
theory can be written as W̃ = e−Y1 + e−t+Y1 . Recall that this structure
was derived by symmetry properties, and later checked to give the correct
correlation functions for fermions.12

What we have obtained here is the mirror symmetric theory, originally
obtained with Hori-Vafa’s procedure. This is a Landau-Ginzburg model
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with twisted superpotential W̃ , giving rise to the A1 Toda supersymmetric
field theory. Let us notice an important fact here, the full global symmetry
group of the initial model is U(1) × U(1). So to obtain the mirror model,
we dualize along two Abelian directions, as in Hori-Vafa procedure. But
there is of course the freedom of dualizing only one U(1) direction, what
would have lead to a different geometry. This is an illustration that our
explorations contain MS, but they can lead to target geometries related
beyond the mirror map, these explorations have been carried out by the
author and collaborators.14

3 Non-Abelian T-duality in the GLSM

In this section we present non-Abelian T-dualities for a (2, 2) SUSY U(1)
GLSM. The action can have non-Abelian global symmetries; we gauge these
symmetries, promoting them to be local. By integrating the new vector
superfield V we obtain non-Abelian T-dual models. We specify to the case
of a single SU(2) global symmetry. The results of this section were obtained
in.14

We start presenting local non-Abelian transformations for the different
superfields. The non-Abelian global group G has generators denoted by Ta,
such that a chiral superfield Φ transforms as

Φ′ = eiΛΦ, Λ = ΛaTa, D̄α̇Λ = 0, (9)

with the transformation Λ satisfiying a csf condition, to preserve Φ as csf.
Λ is in the adjoint representation of the group. A vsf transforms under
the local symmetry as eV

′

= eiΛ̄eV e−iΛ, with V = V aTa. The twisted chiral
gauge field strength can be computed in terms of gauge covariant derivatives:
Σ = 1

2{D̄+,D−} and it transforms as Σ→ eiΛΣe−iΛ. One obtains a master
Lagrangian, by implementing the gauged symmetry and adding a Lagrange
multiplier Ψ in the adjoint representation of G, it reads in this case

L2 =

∫
d4θ

(
∑

k

Φ̄k,i(e
2QkV0+V )ijΦk,j + tr(ΨΣ) + tr(Ψ̄Σ̄)

)
.

−
∫
d4θ

1

2e2
Σ̄0Σ0 +

1

2

(
−
∫
d2θ̃tΣ0 + c.c.

)
. (10)

Integrating out Ψ we obtain a pure gauge configuration, which has as a solu-
tion the original action. However there could be subtleties in this process.5–7
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By integrating out V one goes to the dual action. The equation of motion
for V is given by

0 = (D+D̄−Ψ̄a +D−D̄+Ψa + {χ,D+Ψa}+ {χ̄, D̄+Ψ̄a}
+ (Φ̄e2QV0eV TaΦ))∆Va, (11)

where a denotes the index of the generator Ta, χ = e−VD−eV and ∆V =
e−V δeV is a gauge invariant vector superfield variation. The equations of
motion can be simplified if one considers the following definition: Xa =
D+D̄−Ψa + {χ,D+Ψa}, to give

(Φ̄e2QV0eV TaΦ) = Xa + X̄a. (12)

In general the last term in the definition is non zero, but a particular case
with {χ,D+Ψa} = 0 leads to a restriction on Xa giving a twisted chiral
superfield (tcsf) representation. Here X̄a constitutes an atcsf. The vsf can be
written as V = |V |naσa, with fields na satisfiying the condition

∑
a n

2
a = 1.

This gives tr(ΨΣ) = 1
2Xana|V |.

Let us specify to the group G = SU(2), here there are three generators
a = 1, 2, 3, this example was developed in our first work on this subject.14

Integrating out V , and simplifying the kinetic term of (10) one gets 1:

e2QV0Φ̄ie
V
ijΦj =

√
(X1 + X̄1)2 + (X2 + X̄2)2 + (X3 + X̄3)2, (13)

|V | = 2QV0 + ln 2|Φ1|2 + ln(K(Xi, X̄i, nj)).

The total dual Lagrangian can be written as

Ldual =

∫
d4θ
√

(X1 + X̄1)2 + (X2 + X̄2)2 + (X3 + X̄3)2 + (14)

+
1

2

∫
d4θXana ln(K(Xi, X̄i, nj)) + c.c.

+ 2Q

∫
dθ̄−dθ+

(
Xana −

t

4

)
Σ0 + c.c.

+
2Q

4

∫
dθ̄−dθ+

(
XaD̄+na

)
D−V0 + c.c. −

∫
d4θ

1

2e2
Σ̄0Σ0.

The dual effective scalar potential is obtained by selecting the Higgs branch
and integrating the U(1) gauge field, it is given by:

1One has to implement a semi-chiral condition on the fields na in order to solve the
equations of motion.
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U = 2Q2e2|xana − t/(2Q)|2 +Ba(xa + x̄a),

where xa are the scalar components of the tcsf, and the Ba depend on the
vsf components. Fixing the gauge the new vacuum is given by the 2d space:

∑

a

xana =
t

2Q
− B1

2An1
, x2 + x̄2 = x3 + x̄3 = 0.

The tcsf Xa, a = 1, 2, 3 possess classical R-charges 0, as it has been sum-
marized for the components in the corresponding table 2, and as it can
be read from the equation of motion (13). However they present an ax-
ial anomaly.12,15 At the quantum level there is the surviving symmetry
xa → xa+

2πika
2naQ

, ka ∈ Z coming from the periodicity of the parameter t (the
so called θ symmetry), this symmetry can be checked already in the dual
Lagrangian (14). This symmetry is crucial at the time of analyzing the dual
geometry. The vacua gives as a dual target space the 2d torus T 2.

For an Abelian direction inside SU(2) with na = const the non-perturbative
corrections on the dual theory are identified as W̃ = e−Xana, these play the
same role that the instanton vortex solutions on the dual model.12 The
original and the dual models posses the same effective superpotential for
the U(1) gauge field; this constitutes an important match of both theo-
ries. For a pure non-Abelian direction we still have to obtain what are the
non-perturbative corrections to the superpotential.

4 Duality in a non compact CY

Let us now consider a (2, 2) SUSY GLSM with G = SU(2) × SU(2) global
symmetry. We will review the dualization procedure for this model, as well
we will discuss the geometry. First we dualize an Abelian direction inside
G, then we will consider a non-Abelian dualization. The results presented
here are based on the work in collaboration with Y.Jimenez-Santana and
R-Santos-Silva.16 We add new content on the discussion of the periods of
the dual geometry.

The model consists of two pairs of csf with equal charge under U(1) gauge
symmetry. Therefore one has SU(2)×SU(2) global symmetry. Gauging the
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global symmetry gives rise to the master Lagrangian:

Lmodel =

∫
d4θ

(
Φ̄i(e

2QV0+V1)ijΦj + Φ̄l(e
2QV0+V2)lmΦm

)
(15)

+

∫
d4θ (tr(Ψ1Σ1) + tr(Ψ2Σ2) + c.c)

−
∫
d4θ

1

2e2
Σ̄0Σ0 −

1

2

(∫
d2θ̃tΣ0 + c.c.

)
,

with i, j = 1, 2 and l,m = 1, 2, indices for SU(2) doublets for chiral and
anti-chiral superfields. Integrating out the Lagrange multipliers Ψ1,Ψ2 the
original action is obtained. While by integrating the vector superfields V1
and V2 one obtains the dual model.

The original action consists of two csf Φ1,Φ2 with charge 1 and two csf
Φ3,Φ4 with charge -1 under the U(1). The locus of the zero scalar potential
reads:

|φ1|2 + |φ2|2 − |φ3|2 − |φ4|2 = t. (16)

The φi represent the scalar components of the Φi csf. By modding out the
U(1) symmetry the resulting geometry is the one of the resolved conifold.
Integrating in (15) the gauged vector fields V1 and V2 the dual model gives
two copies of the same Lagrangian

Ldual,0 =

∫
d4θ



√∑

a

(Xa + X̄a)2 +

√∑

a

(Ya + Ȳa)2


 (17)

+

∫
d4θ(Xan̂a ln(K(Xi, X̄i, nj)) +Xam̂a ln(K(Yi, Ȳi, nj))) + c.c.

+
1

2

∫
dθ̄−dθ+ (2QXana − 2QYama − t)Σ0 + c.c.,

+
1

2

∫
dθ̄−dθ+

(
QXaD̄+na −QYaD̄+ma

)
D−V0 + c.c.

−
∫
d4θ

1

2e2
Σ̄0Σ0 −

1

2

(∫
d2θ̃tΣ0 + c.c.

)
.

Here as in Mirror symmetry: The csf Φi are exchanged by twisted csf Xa

and Ya. The charges can be selected to be Q = 1. The Langrangian has the
quantum symmetry
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Im(Xa)→ Im(Xa) +
πikIa

Q
, kIa ∈ Z,

Im(Ya)→ Im(Ya) +
πikIIa

Q
, kIIa ∈ Z,

coming from the t periodicity, that can be observed from the dual action
(17). It gives rise to the scalar potential

U = 8e2(t+Q(−n1X1 − n2X2 − n3X3 +m1Y2 +m2Y2 +m3Y3))×
(t̄+Q(−n1X̄1 − n2X̄2 − n3X̄3 +m1Ȳ2 +m2Ȳ2 +m3Ȳ3)).

One has the gauge freedom to fix the gauge to be

X2 + X̄2 = X3 + X̄3 = Y2 + Ȳ2 = Y3 + Ȳ3 = 0.

The SUSY vacuum is given by the set of six real equations:

Q(−n1Re(X1)− n2Re(X2)) = −t1. (18)

Q(−n1Im(X1)− n2Im(X2)− n3Im(X3)) (19)

+ Q(m1Im(Y2) +m2Im(Y2) +m3Im(Y3)) = −t2.

At a perturbative level the dual model geometry is given by: T 5 × R. But
non perturbative effects as instanton corrections have to be considered in
the dual model, for the case of na = const, because in the original model
has vortex solutions.12

One important check is to compute the effective twisted superpotential
for the U(1) gauge field in both models. In the original model one obtains

Weff (Σ0) =
∑

i

−Σ0Qi

(
ln

(
QiΣ0

µ

)
− 1

)
− tΣ0. (20)

This serves to propose an Ansatz for the non perturbative effects, corre-
sponding to the original model instanton corrections: W̃np = (e−Xana +
e−Yama); those are included in the dual Lagrangian as:

Ldual = Ldual,0 + 2µ

∫
d2θ̃(e−Xana + e−Yama) + c.c.

This proposal is valid for an Abelian direction inside the non-Abelian duality.
This twisted superpotential in the dual theory gives the correct effective
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superpotential for the U(1) vector field, and the dual geometry is still: T 5×
R. For the case of non-Abelian duality we still have to investigate the
appropriate non-perturbative corrections.

Moreover a trivial deformation on the infrared can be added to give
another model, by following the approach presented in.18 The motivation
is to obtain a geometry that has the same number of dimensions, in this
case 3 complex dimensions. Adding an irrelevant quadaratic change on the
twisted superpotential ∆W̃ = u2, with a new field u we obtain the locus:

W̃ = x1x2x3

(
1 + e−t/2

)
+ u2 = 0. (21)

The change of variables xa = e−Xana (without summation) is in place. This
change of variables maps the periodic variables Xa to the space (C×)3. This
zero locus constitutes a threefold geometry. This is a cubic polynomial in
(C×)3 × C with the coordinates (x1, x2, x3, u). Notice that for e−t/2 = −1
we have a singularity, which is satisfied by t/2 = (2k + 1)πi, k ∈ Z. The set
of critical points is the whole space (C×)3 for the coordinates (x1, x2, x3).
This can also be seen from (21), when the first term is zero the solution is
u = 0. For this case r = 0 the original theory is the singular conifold. Thus
both models show a singularity for the same value of the parameters.

The match between the original and dual theory has as a first observable
the matching of this U(1) field effective potential, additionally one can read
that in the parameter t also posses a singularity at the conifold point in
the original model. Is as well possible to compute the periods in this dual
geometry employing the prescription of Hori and Vafa. The period integral
reads:

Π =

∫
dX1dX2dX3dY1dY2dY3δ(2Xana − 2Yama − t)exp (−W ) (22)

We eliminate the variable Y3 by integrating:

Π = − 1

2m3

∫
dX1dX2dX3dY1dY2exp (−W ) (23)

W = e−Xana + e−Xana+t/2.

The periods read:

Π = − 1

n1n2n3

(∫
dY1dY2

)∫
dx1dx2dx3
x1x2x3

exp
(
−(1 + et/2)x1x2x3

)
.(24)

We can take the cycle S1 × S1 × S1, to obtain a period Πa = const.
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If we make the derivative of the period integral with respect to t, one
gets:

∂Π

∂t
=

et/2

n1n2n3

(∫
dY1dY2

)∫
dx1dx2dx3exp

(
−(1 + et/2)x1x2x3

)
(25)

=
et/2

n1n2n3(1 + et/2)

(∫
dY1dY2

)∫
dx2dx3
x2x3

× (26)

×
∫
d((1 + et/2)x1x2x3)exp

(
−(1 + et/2)x1x2x3

)
.

If we can now have x2 and x3 in S1 × S1, and v = (1 + et/2)x1x2x3 from 0
to ∞ then we have:

∂Πb

∂t
∼ et/2

(1 + et/2)
, (27)

Πb ∼ log(1 + et/2) = log(1 +
1√
z
) (28)

= −Li1(
−1√
z
),

with z = e−t. Thus we encounter two period solutions for the dual geometry,
the constant and −Li1(−1√

z
). The result is the same for the deformation by

an irrelevant term in the IR as in equation (21). These periods can be
compared with those ones in a more recent version of.16

5 T-Dualities in 2d (0,2) GLSMs

In this section we will review more recent work, carried out in collaboration
with R.Dı́az-Correa and H.Garćıa-Compeán.17 This is the formulation of
the current T-duality procedure in GLSMs with (0, 2) SUSY. We consider
here (0, 2) models which come from a (2, 2) reduction or pure (2, 0) models.

Let us analyze the first case. We start with a Lagrangian with n chi-
ral superfields Φi, ñ Fermi superfields Γi and m U(1)a, a = 1...m, gauge

13



symmetries with vector superfield components Va,Ψa and field strength Υa:

L =

∫
dθ+dθ̄+

{ m∑

a=1

1

8e2a
ῩaΥa −

n∑

i=1

i

2
Φie

2
∑m

a=1
Qa

i Ψa

(
∂−− + i

m∑

a=1

Qa
i Va

)
Φi

+

∫
dθ+dθ̄+

{ n∑

i=1

i

2
Φi(
←−
∂ −− − i

m∑

a=1

Qa
i Va)e

2
∑m

a=1 Q
a
i ΨaΦi

}

−
∫

dθ+dθ̄+
{ ñ∑

i=1

1

2
e2

∑
a Q̃a

i ΨaΓiΓi

}

+
∑

a

ta
4

∫
dθ+Υa|θ̄+=0.

The fields Φi and Γi have charges Qa
i and Q̃a

i under the U(1)a gauge
symmetry group. Let us further assume that there are global symmetries;
those are generically n−m U(1)s for the chiral superfield sector, and ñ−m
U(1)s for the Fermi superfield sector. Let us gauge the global symmetries
of the chiral sector, obtaining an associated field strength Υb and adding
Lagrange multipliers Λb for each one, this leads to the master Lagrangian:

L =

∫
dθ+dθ̄+

{ m∑

a=1

1

8e2a
ῩaΥa

−
∫

dθ+dθ̄+
k∑

i=1

i

2
Φie

2
∑m

a=1
Qa

i Ψa+2
∑k̃

b=1
Qb

1iΨ1b

(
∂−− + i

m∑

a=1

Qa
i Va + i

k∑

b=1

Qb
1iV1b

)
Φi

+

∫
dθ+dθ̄+

{ k∑

i=1

i

2
Φi

(←−
∂ −− − i

m∑

a=1

Qa
i Va − i

m∑

a=1

Qb
1iV1b

)
e2

∑
a Qa

i Ψa+Qb
1iΨ1bΦi

}

−
∫

dθ+dθ̄+
{ ñ∑

i=1

1

2
e2

∑
a Q̃a

i Ψa+2
∑

c Q̃
c
1iΨ1cΓiΓi

}

+
∑

a

ta
4

∫
dθ+Υa|θ̄+=0 +

k∑

b=1

∫
dθ+dθ̄+ΛbΥb +

k+ñ∑

c=k+1

∫
dθ+dθ̄+ΛcΥc + c.c.

− i

2

∫
dθ+dθ̄+

n∑

i=k+1

{
Φie

2
∑

a Qa
i Ψa(∂−− + i

∑

a

Qa
i Va)Φi

− Φi

(←−
∂ −− − i

∑

a

Qa
i Va

)
e2

∑
a Qa

i ΨaΦi

}
.
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Integrating the Lagrange multipliers, one goes to pure gauge configura-
tions, that allow to recover the original model. Performing the variation
of the Lagrangian with respect to the vector superfield component Ψ1b we
obtain:

V1b = A−1
bd (−

i

2
∂−Y

d
− −Rd), (29)

Abd =

k∑

i=1

|φi|2Qd
1iQ

b
1i,

Rd =

k∑

i=1

(
− i
2
Φ̄iδ−ΦiQ

d
1i + |Φi|2

m∑

a=1

Qa
i VaQ

d
1i

)
,

with the dual field Y c
± = iD̄+Λ

c ± iD+Λ̄
c; and with the definition δ− =

∂− −
←−
∂ −. Notice as well the relevant definitions Rd and Abd, which are

paremeters depending on the original chiral superfields, and have to be fixed
by the gauge freedom. The vector superfield components V1b are determined
in function of those parameters. Performing the variation of the Lagrangian
with respect to V1b one has:

ψ1b = A−1
bd (−

i

2
∂−Y

d
+ − Sd), (30)

Abd =
k∑

i=1

|φi|2Qd
1iQ

b
1i,

Sd =
k∑

i=1

|Φi|2Qd
1i + 2

m∑

a=1

|Φi|2Qd
1iQ

a
1iψa.

Notice that now the vector superfield components ψ1b are given in terms
of the parameters Abd and Sd, which also need to be fixed by the gauge
freedom. For the component ψ1d we have:

Qd
1jΓ̄jΓj = −i∂−Y d

− → Γ̄jΓj = −Q−1
1jd∂−Y

d
−.

The dual models can be obtained by solving these equations of motion for
the vector superfield.

Building block example

In the following we start from a simple (0, 2) model coming from a (2, 2)
reduction, with a single chiral superfield, and a single Fermi superfield of
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equal charges. This duality is the building block of the mirror map described
in.19 The original model gives rise to a point with |φ|2 = r and E0 = J0 = 0.
One can gauge the global U(1) symmetry to obtain the Lagrangian:

L =

∫
dθ+dθ̄+

{
− i

2
Φe2(Ψ0+Ψ1)

[
∂−− + i(V0 + V1)

]
Φ (31)

+
i

2
Φ
[←−
∂ −− − i(V0 + V1)

]
e2(Ψ0+Ψ1)Φ+

∫
dθ+dθ̄+

1

8e2
Ῡ0Υ0

− 1

2
e2(Ψ0+Ψ1)ΓΓ + ΛΥ1 +Υ1Λ+ χẼ1 + Ẽ1χ

}
+
t

4

∫
dθ+Υ0|θ̄+=0 + h.c.+ ...

Integrating the Lagrange multipliers Λ and χ one obtains the original model.
Integrating the gauge fields V1 and Ψ1, the dual Lagrangian:

Ldual =

∫
dθ+dθ̄+

{
− i

2

Y−∂−−Y+
Y+

+
|Φ|2F̃F̃
Y+

− (ΛΥ0 +Υ0 + χE0 + E0χ)

}

+
t

4

∫
dθ+Υ0|θ̄+=0 + h.c.+

∫
dθ+dθ̄+

1

8e2
Ῡ0Υ0.

This is the building block of the description of mirror symmetry for (0, 2)
models arising from a supersymmetric reduction as discussed by Adams,
Basu and Sethi.19

6 Non-Abelian T-duality of 2d (0, 2) GLSM

In this section we construct non-Abelian dual 2d (0, 2) models.17 This is
part of a recent collaboration work.17 We obtain the dual Lagrangian, and
specify for the global symmetry group SU(2), finding the dual model.

Let us start by a master Lagrangian, which has the gauged symmetry
G = SU(n1)× ...× ...SU(ns) and Lagrange multipliers ΛI :
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L =

∫
dθ+dθ̄+

{ m∑

a=1

1

8e2a
ῩaΥa (32)

−
∫

dθ+dθ̄+
s∑

I=1

i

2
ΦIe

2
∑m

a=1
Qa

IΨa+2Ψ1I (∂−− + i
m∑

a=1

Qa
IVa + iV1I)ΦI

+

∫
dθ+dθ̄+

{ s∑

I=1

i

2
ΦI(
←−
∂ −− − i

∑

a

Qa
IVa − iV1I)e2

∑
a Qa

I
Ψa+2Ψ1IΦI

}

−
∫

dθ+dθ̄+
{ s∑

I=1

1

2
(ΓI + Γ1I)e

2
∑

a Qa
I
Ψa+2Ψ1I (ΓI + Γ1I)

}

+
∑

a

ta
4

∫
dθ+Υa|θ̄+=0 +

s∑

I=1

∫
dθ+dθ̄+Tr{ΛIΥI}+ c.c.

+

s∑

I=1

∫
dθ+dθ̄+χ̄IẼI + c.c.

This master Lagrangian has been obtained by gauging global symmetries
in a (0, 2) U(1)n GLSM with chiral and Fermi superfields. The ΦI =
(ΦI1, ...ΦInI

) are vectors of chiral superfields, with I = 1...s. nI denotes the
number of chiral superfields with equal charges under U(1)n. V1I = VIbTb,
Ψ1I = ΨIbTb are vector superfields for each gauged group SU(nI). The
gauging of global non-Abelian symmetries has been performed on a model
coming from a reduction of a (2, 2) SUSY; where the Fermi fields coincide
in number with the chiral fields and have coincident charges. In principle
the group of global symmetries of the original model is bigger, with the
structure: G̃ = U(n1)× ...× ...U(ns), but we select only the special sector of
the unitary groups. These wider duality group can be explored elsewhere.2

The original model is obtained by obtaining the equations of motion for the
Lagrange multipliers ΛI and χ̄I .

On the other hand, if we want to obtain the dual model, we have to
integrate the vector superfield components. The dual fields are: F̃I =
eΨID+χI and the following definitions are given: aabI := Φ†

I{T a,T b}ΦI ,

eI := 1I + 2
∑m

α=1Q
α
IΨα, Z

a
I := Φ†

IT aΦI . The variations with respect to

2We thank David Tong for pointing out this important difference for the (2, 2) SUSY
case.
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gauge fields V c
1I , Ψ

c
1I and Γc

1I give:

δV c
1I
S = 0 : Ψa

1Ia
ca = −Y+IaTr(T aT c)− eIZc

I := Kc
I

δΨc
1I
S = 0 : V b

1Ia
bc
I + 2Qβ

I VβZ
c
I − iΦ†

IT cδ−ΦI + i∂−Y−aITr(T aT c)

− (Γ†
I + Γa†

I T a)T b(ΓI + Γc
IT c) = 0

δΓc
1I
S = 0 : −1

2
(Γ†

I + Γa†
1IT a)(eI + 2Ψb

1IT b)T c −
√
2

2
F̃a†
I T aT c = 0.

Thus for the group g = g1 × g2 × · · · × gs the dual Lagrangian becomes:

Ldual =
s∑

I=1

∫
dθ+dθ̄+

{
− i

2
eIΦ

†
Iδ−ΦI +Φ†

IΦIeIQ
β
I Vβ + F̃†

IX
−1
I F̃I

+

√
2

2
(F̃†

IΓI + Γ†
IF̃I) (33)

× [−iΦ†
Iδ−T aΦI + 2Qβ

I VβZ
a
I ][−Y+IbTr(T bT c)− eIZc

I ]bac

}
,

where we have the definitions XI := eI + 2T aKa
I = eI − 2T aeIZ

c
Ib

ca −
2T aY+bTr(T bT c)bca and bac = (aac)−1. One has to perform gauge fixing to
remove the original chiral fields Φ. Next we will discuss a simple example,
explored in the work summarized in this section.17

Example of an SU(2) dual

Now let us look at a dualization example. Consider a (0, 2) U(1) GLSM
obtained from reduction of a (2, 2) U(1) GLSM with two chiral fields and
two Fermi fields, such that E = iQ

√
2Σ′Φ′ and Σ′ = Σ|

θ−=θ
−

=0
, and Φ′ =

Φ|
θ−=θ

−

=0
.19 Gauging the global SU(2) symmetry one can obtain the dual

Lagrangian:

Ldual =
s∑

I=1

∫
dθ+dθ̄+

{
QβV

β
[
eI − eI

ZaZa

Z0
− Y a

+Z
a

Z0

]
(34)

+ F̃†
(
eIId −

T a

Z0
(eIZ

a
I + 2Y a

+)
)−1
F̃

+

√
2

2
(F̃†

IΓI + Γ†
IF̃I)

}
+
t

4

∫
dθ+Υ|θ̄+=0,
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we have the definitions eI := 1I +2
∑m

α=1Q
α
IΨα, XI := eIId−T a eIZ

a
I +2Y a

+

|ΦI |2 ,

Za
I := Φ†

IT aΦI and F̃I . The original model gives rise to the CP
1 target

space with: |φ1|2 + |φ2|2 = r and E0 = J0 = 0. The dual model in (34) has
target given by the surface:

e

2
(ℑ(t)− ya+Za)

2 + (Ē1 Ē2)A

(
E1

E2

)
= 0, (35)

with the matrix A =
−2yb+yb+
1−ucuc

(
u3 − 1 u12
ū12 −1− u3

)
. We have ua = 2

ya+
Z0

+ Za

Z0
,

with Z0 = Φ1Φ1+Φ2Φ2. We take a gauge with the Za = const in particular
Z0 = 1.

An analysis of the geometry leads to a disk for the case of a positive
definite scalar potential.17 As we have three real variables y1+, y

2
+, y

3
+, then

the vacua consist of a two-dimensional surface. For a semi-definite positive
potential and the surface ya+Za = ℑ(t) we have a plane inside the sphere,
this is a disk D. The parameter r = ℑ(t) determines the size of the disk
and its position. Also if r /∈ [−1, 0] this disk is empty. For the case outside
the sphere one has a surface given by the locus (35).

Non perturbative corrections to the superpotential, which match the
original model instanton contributions, can be argued to have the form:
W = βeα

bYb . These can be derived from the reduction of (2, 2) SUSY. One
can also obatin them in the pure (0, 2) model by following the argument of
Hori and Vafa12 to determine the shape of the Ansatz of non-perturbative
twisted-superpotential contributions. This is an argument based on: holo-
morphicity in t, periodicity in θ, R-symmetry and the asymptotic behaviour.
One important point is that the superpotential has axial R-symmetry with
charge 2. When these non-perturbative corrections are included, the only
change of the model of this subsection is a shift of the holomorphic function
E. Therefore we also have the same dual geometry as in the previous case.
Obtaining that for the CP

1 2d (0, 2) GLSM the dual model target space is
a disk D17 .

7 Discussion and conclusions

In this work we review a method to construct T-duality in supersymmetric
2d GLSMs, for the Abelian and the non-Abelian symmetries.14–17 First
we have studied the (2, 2) SUSY case14 and more recently the (0, 2) SUSY
case.17 For (2, 2) SUSY, the Abelian T-duality for models with CICY target
spaces gives rise to the mirror symmetric models studied in the seminal work
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of Hori and Vafa.12 As well for (0, 2) SUSY the Abelian T-duality gives rise
to the mirror models obtained as reduction by Adams, Basu and Sethi19 .
Therefore our procedure is able to recast mirror symmetry for the case of
Abelian T-duality, for an specific choice of charges. However our procedure
also casts a wider group of Abelian T-dualities.

Furthermore, our techniques serve to investigate correspondences be-
yond MS. We have developed the construction of non-Abelian T-dualities
in GLSMs, obtaining dual geometries, and so far we have analyzed various
examples. The first example of T-duality computed for the non-Abelian
case was the dual of the (2, 2) GLSM with SU(2) global symmetry, which
original model leads to the CP

1 model. Here we observe, that the duality
for an Abelian subgroup inside SU(2) gives the dual geometry of T 2, with
and without non-perturbative corrections. Furthermore a truly non-Abelian
simplified version of the duality, without non-perturbative corrections leads
also for the dual geometry T 2. This is the first example where we observe
this fact.

We have reviewed as well the implementation of non-Abelian T-duality
for (2, 2) 2d U(1) GLSMs with with SU(2)× SU(2) global symmetry, this is
the first example of a non-compact CY manifold.16 In a simplified version
for the duality, for an Abelian direction inside SU(2) × SU(2), without non
perturbative terms one obtains as the dual geometry: T 5×R. Incorporating
non perturbative corrections the same geometry is preserved, as in the pre-
vious case of a single SU(2). When we consider a truly non-Abelian duality,
it also leads to the same geometry. To match the dimensionality, of the dual
model, we have added a deformation to the superpotential irrelevant in the
IR,18 to obtain a three-fold which corresponds to the dual geometry of the
resolved conifold. The new content here, is that we compute the periods on
the dual model,12 obtaining two independent solutions. This is done for the
dual model without deformation and it coincides with the period calculation
for the dual model with the deformation, which can be found in a recent ver-
sion of the work.16 Let us emphasize that the correspondence, for the case
of a direction inside the non-Abelian group, is supported by the calculation
of the effective potential for the U(1) gauge field, which matches in both
models, once that non-perturbative contributions are taken into account.
Additionally the t parameter possess a singularity in the original and in the
dual description.16

We review the extension of the method to describe T-duality, Abelian
and non-Abelian, in supersymmetric (2, 0) 2D GLSMs for models coming
from a reduction of the (2, 2) case and for the general case, developed in.17

As an example we analyze the case of SU(2) global symmetry, where the
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original geometry is CP
1, obtaining as a dual geometry a two dimensional

surface, which for the positive definite potential leads to a disk. The main
advance of this investigations with respect to the (2, 2) case is that the
we don’t require to specify an Abelian direction inside the duality group.
Here it is possible to solve the equations of motion fully. An important
observation is that by considering non-perturbative corrections in the dual
models, the geometry of the duals is preserved. This coincides with what
we have observed for the (2, 2) dualities.

The main goal of the work is to explore the whole group of T-dualities
in GLSMs, and to identify to which geometric correspondences these may
lead. These could be connected to Mirror Symmetry, or extensions of it. For
this purpose there are aspects to be explored, which we summarize next:

• For (2, 2) SUSY models we need to solve the total non-Abelian T-
duality. As mentioned, in contrast, for (0, 2) SUSY models we were
able to solve the equations of motion generically. One direction planned,
is to consider the equations of motion leading to the dual (2, 2) Non-
Abelian model for any gauged group, working in the components lan-
guage, instead of the superfield language described here.

• In the (2, 2) case the non-perturbative effects in the full non-Abelian
dual models have to be studied. Currently, these corrections are es-
tablished for an Abelian direction inside the non-Abelian group.

• As well for (2, 2) SUSY it would be relevant to compute the partition
function on S2 of the non-Abelian dual models with localization tech-
niques, to compare them with the partition function of the original
GLSMs24–27 putting the duality in solid grounds.20

• The geometrical interpretation for dual target spaces of the non-Abelian
T-duality is a fundamental question in our work. In particular we
plan to study the connection between the non-Abelian T-duality in
the GLSMs to MS in examples of CY varieties, possibly determinantal
varieties.21,22 There are already descriptions of MS for these models,
with which it would be relevant to compare.28–31

• We also plan to explore target compact manifolds considering a super-
potential in the original theory for both SUSY cases.

• We would like as well to extend the duality to other (2, 2) SUSY rep-
resentations as semi-chiral superfields, which give rise to geometries
with torsion.
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• We also plan to develop the non-Abelian T-dualities described here
in the context of Non-Abelian GLSMs explored by Hori and Tong,23

where there could be interesting dynamics arising.

To summarize, the main goal of the explorations presented here, is to
obtain new geometric and physical correspondences for string theory on CY
manifolds.
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