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Abstract. The presence of temporal correlations in random movement trajectories

is a widespread phenomenon across biological, chemical and physical systems. The

ubiquity of persistent and anti-persistent motion in many natural and synthetic systems

has led to a large literature on the modelling of temporally correlated movement paths.

Despite the substantial body of work, little progress has been made to determine the

dynamical properties of various transport related quantities, including the first-passage

or first-hitting probability to one or multiple absorbing targets when space is bounded.

To bridge this knowledge gap we generalise the renewal theory of first-passage and

splitting probabilities to correlated discrete variables. We do so in arbitrary dimensions

on a lattice for the so-called correlated or persistent random walk, the one step non-

Markovian extension of the simple lattice random walk in bounded and unbounded

space. We focus on bounded domains and consider both persistent and anti-persistent

motion in hypercubic lattices as well as the hexagonal lattice. The discrete formalism

allows us to extend the notion of the first-passage to that of the directional first-passage,

whereby the walker must reach the target from a prescribed direction for a hitting event

to occur. As an application to spatio-temporal observations of correlated moving cells

that may be either repelled or attracted to hard surfaces, we compare the first-passage

statistics to a target within a reflecting domain depending on whether an interaction

with the reflective interface invokes a reversal of the movement direction or not. With

strong persistence we observe multi-modality in the first-passage distribution in the

former case, which instead is greatly suppressed in the latter.

1. Introduction

Advances in tracking sensors for animals [1], cells [2] and particles [3] have made

conspicuous the importance of quantifying the spatio-temporal dynamics of movement.

To this end, two fundamental frameworks, the lattice random walk (LRW) [4, 5, 6],

and its continuous counterpart, the Brownian walk [7], have been widely employed to

model and analyse Markovian trajectories, that is when the dynamics arise from history

independent random processes.
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Much of the versatility of the two frameworks, comes from the analytic description

of diffusive processes, the quintessential example of a Markovian system. The exact

mathematical representation of diffusion has in fact contributed to its widespread

application across disciplines, from cell biology [8] and ecology [9] to social sciences [10]

and economics [11]. However, the increased resolution of modern tracking technologies

has made apparent the approximate nature of the diffusive paradigm and is highlighting

the need to model accurately the non-Markovian statistics within movement paths.

One such example of non-Markovian features in spatio-temporal trajectories is

persistence or anti-persistence in the movement steps, that is by having, respectively,

a higher tendency to continue in the same direction or to reverse it. Although both

movement statistics have been observed, persistent motion is more common and has

been observed at small scales, e.g., bacteria undergoing run and tumble dynamics [12],

as well as being seen at large scales, e.g., animals foraging [13] and pedestrians in

dense crowds [14], while anti-persistent motion has been reported in hemocytes [15],

cell extracts [16], telomeres of bone osteosarcoma cells [17] through to the evolution of

the score difference in a game of basketball [18]. Persistent motion also plays a central

role in the exciton coherence question [19, 20].

The ubiquity of persistent motion in many natural and artificial phenomena has

generated a wealth of literature on the subject. Within the space-time continuous

description much is known about the one-dimensional occupation probability [21, 5, 22,

23, 24]. However, unlike the case of Brownian walks, with correlation in the motion, the

standard renewal theory approach [4, 25, 26] to find the first-passage is not sufficient

to determine the temporal dependence of transport related quantities such as the first-

passage or first-hitting statistics to one or multiple absorbing targets. While advances

have been made in bounded space, these studies are limited to one dimension [27, 28]

or can only access the mean first-passage time [29].

The main issue with a continuous spatial description in higher dimensions relates to

the need to track the previous movement direction as an internal degree of freedom. In

two or higher dimensions the turning angle (relative to the previous movement direction)

is a continuous variable and it thus requires an infinite number of internal states [30, 31].

Moreover, as the absorption property of a target needs to be specified for each direction

in which it can be reached, formalising first-passage processes in continuous space in

higher dimensions remains a challenge.

By employing a discrete spatial description [4, 6] it is possible to overcome this

limitation. To do that we use the so-called correlated random walk (CRW), proposed

for the first time in the 1920s [32, 33], as the natural non-Markovian extension to the

LRW. For the CRW, instead of prescribing a probability to move in a given direction

as in the standard LRW, the movement steps are determined by the probability that

the walker continues in the same direction as the previous step [5, 21]. In other words,

with one parameter one creates persistence, or positive correlation, if the walker is more

likely to continue and anti-persistence, or negative correlation, if backtracking is more

likely.
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Despite the long modelling history of persistent motion in the spatially discrete

literature, the only major work on the CRW first-passage dynamics has appeared very

recently [34]. That study considers an unbounded lattice both in one and two dimensions

under the assumption that the walker moves its first step in one predetermined direction.

With this simplification the one-dimensional problem may be reduced to a known

first-passage quotient [35] and the exact first-passage dynamics to a single target is

derived, while in two dimensions the dynamics are obtained asymptotically. Despite

this recent progress, determining the general first-passage time dependence to one or

multiple targets has remained an elusive task, with insights for the one target case in

the bounded space relying exclusively upon studies of the global mean first-passage time

in periodically bounded space [36].

In this paper, we generalise the discrete renewal equation and develop a general

theory to determine the first-passage probability to a finite number of targets for a CRW

in bounded and unbounded domains of arbitrary dimensions. Focusing on bounded

space, we first find the analytic representation of the CRW occupation probability when

space is bounded by periodic and reflective boundaries in hypercubic lattices and by

periodic boundaries in a six-sided hexagonal lattice. We derive a general form of the

first-passage probability and elucidate that with persistence, even in one-dimensional

domains, the first-passage probability can be multi-modal. Furthermore, we extend the

notion of first-passage time to the directional first-passage time, which we define as the

probability that the walker reaches a target site from a specific direction for the first

time.

As an application to flagellated bacterium that may be attracted or repelled by

solid walls [37], we present an iterative process to extract occupation and first-passage

probabilities with arbitrary boundary conditions. With this method we study the effect

of two different reflecting boundary conditions, namely whether the boundary invokes a

change of direction on various transport statistics, and show that is the former, which

aids a searching walker at intermediate times.

The contents of the rest of the paper is laid out as follows. Section 2 treats the

formulation of the unbounded problem. The bounded propagators or Green’s function

of the occupation probability in one dimensional domains are derived in Sec. 3, while

their higher dimensional counterparts, together with the case of the hexagonal lattice,

which we use to model chiral peristent motion, are treated in Sec. 4. In Sec. 5 we turn

our attention to the placement of absorbing traps and discuss the relationship between

their location and the imposition of absorbing boundary conditions on the lattice. It is

here that we generalise the discrete renewal equation to correlated motion. In Sec. 6, we

derive the first moments of these distributions, then in Sec. 7, we display the iterative

method for calculating transport statistics for cases where the analytic solutions are not

known. Concluding remarks and possible future avenues are then discussed in Sec. 8.
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Figure 1. (Colour Online). Schematics of the two internal state representation of a

persistent or anti-persistent movement process in one dimension. A spatial site consists

of two states, m = 1, 2 shown, respectively, in green (upper circle) and blue (lower

circle). Allowed steps are drawn with arrows and the parameters of their corresponding

jump probabilities are shown next to the corresponding arrows. In (a), the periodic

and unbounded lattices are displayed together, because the transition probabilities are

identical, with the only difference arising as the wrapping between sites 1 and N in the

periodic case. In panel (b) the absorbing state is drawn in red, while panels (c) and

(d) represent the two types of reflection, which we label ‘bounced’ and ‘bunched’ due

to the different interaction at the boundary. In the former, as a walker tries to move

out of the domain, it reverses its movement direction, while in the latter it does not.

2. Unbounded Propagator

Although the CRW is a one-step non-Markov process, its dynamics can be represented

by a set of coupled second-order Markov equations [38], as amply shown across the

literature both in continuous [39, 24, 40] and discrete time [34]. For the latter, in one

dimension it is given by

Q(n, 1, t+1)=fQ(n−1, 1, t)+bQ(n−1, 2, t)+cQ(n, 1, t), (1)

Q(n, 2, t+1)=bQ(n+1, 1, t)+fQ(n+1, 2, t)+cQ(n, 2, t),

where Q(n,m, t) is the occupation probability at time t to be at site n and state m. The

state (or internal degree of freedom) represents the direction the walker may enter the

site, namely a walker in state 1 must have arrived from the left, while a walker in state 2

from the right (see schematic in Fig. 1). The parameter f is the probability of continuing

forward in the direction last travelled while b is the probability of backtracking away

from the previous direction travelled. c = 1 − (f + b) is the so-called lazy or sojourn

parameter whereby 0 < f + b ≤ 1, with f + b = 1 corresponding to a walker that

moves at every time step. When f > b the walker is in the persistent regime, while
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for f < b the walker is subject to anti-persistence. When f = b, one recovers the

diffusive dynamics modelled by the LRW. The effect of the lazy parameter is akin to a

rescaling of the velocity in the continuous limit of the CRW, the telegrapher’s equation

(see supplementary material [41] for details).

To solve Eq. (1), it is convenient to write it in matrix form as

Q(n, t+ 1) = A ·Q(n− 1, t) + B ·Q(n+ 1, t) + C ·Q(n, t), (2)

where Q(n, t) = [Q(n, 1, t), Q(n, 2, t)]⊺, A =
[
f b
0 0

]
, B =

[
0 0
b f

]
, and C =

[
c 0
0 c

]
with the

dot operator representing matrix multiplication.

We assume that the walker enters its initial site from the left with some arbitrary

probability α1 and from the right with α2 = 1 − α1, such that the initial condition is

written as Q(n, 0) = δn,n0Um0 where Um0 = [α1, α2]
⊺, i.e., the probability of starting in

state m01 = α1 while the probability of starting in state m02 = α2, and the propagation

is symmetric if α1 = α2. Using known procedures for random walks with internal

degrees of freedom [42, 35] (outlined in Sec. II of the supplementary Material [41] for

convenience), the generating function, f̃(z) =
∑∞

t=0 f(t)z
t, solution of Eq. (2), the so-

called lattice Green’s function or unbounded propagator, can be obtained analytically

as a column vector of the occupation probability in each internal state:

Q̃n0(n, z) =
1

2π

∫ π

−π

e−iξ(n−n0)
[
I− zλ(ξ)

]−1 ·Um0dξ, (3)

where I is the identity matrix and

λ(ξ) =

(
feiξ + c beiξ

be−iξ fe−iξ + c

)
, (4)

is the so-called structure function with ξ the Fourier variable. The (i, j)-th element

of λ(ξ) governs the movement from state j to state i, for example, the element

λ1,2(ξ) encodes moving from state 2 to state 1, which is achieved only via a

backtracking, which increases the coordinate n. λ(0) allows to verify the normalisation(∑2
i=1 λi,j(0) = 1, j ∈ {1, 2}

)
, as expected from a stochastic matrix. The associated

expression in arbitrary dimensions may be found in ref. [41], where we show a

generalisation of the known unbounded propagator [43].

The integral in Eq. (3) can be evaluated exactly (see [41]), and after summing over

the internal states Q̃(n, z) =
∑2

i=1 Q̃(n, z)i, one obtains, as a generating function, the

unbounded occupation probability for the entire site as

Q̃n0(n, z) =
1

(1− 2cz)
√

(1 + δz2)2 − 4ε2z2

[
1− cz

r(z)|n−n0|
+
α1(b− f)z

r(z)|n−n0+1| +
α2(b− f)z

r(z)|n−n0−1|

]
,

(5)

where r(z) = 1+δz2

2εz

(
1 +

√
1− 4ε2z2

[1+δz2]2

)
, ε = f(1 − cz)(1 − 2cz)−1 and δ = (f 2 −

b2 + c2)(1 − 2cz)−1, and where the appearance of the higher order z terms in Eq.
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(5) makes conspicuous that the system contains internal degrees of freedom. Using

the relation f + b + c = 1, the scaling term in Eq. (5) can be rewritten as

[(1− z)[1− z(1− 2b)][1− z(1− 2f)]{1− z[1− 2(f + b)]}]−1/2. In the limit z → 1,

as the remaining terms of Eq. (5) give the constant 2b, we obtain Q̃n0(n, z) ∼
b/
√

2fb(f + b)(1− z), alternatively the time dependence through Tauberian theorems

is Qn0(n, t) ∼ b/
√
2πfb(f + b)t for t→ ∞. As expected, this scaling is the same as the

one of the diffusive LRW, and to which it reduces when f = b = q/2. It is in fact a

straightforward exercise to show that when f = b, irrespective of the values of α1 and

α2, Eq. (5) reduces to the known solution of the symmetric unbounded walk [6].

3. Bounded Propagators

We now consider a CRW confined to a bounded domain of size N (n ∈ [1, N ]) and

seek the dynamics of the occupation probability in the case of periodic and reflecting

boundaries. Below we use the superscript notation p and r, respectively, to distinguish

them and will use the letter P to denote a bounded propagator compared to Q for the

infinite case.

3.1. Periodic Boundary

For the periodic domain, the boundary condition is imposed in the same way as for the

standard Pólya walk [4, 6] making it straightforward to find the periodic propagator via

the method of images (see [41] Sec. III) as

P (p)
n0

(n, t)=
1

N

N−1∑
κ=0

e
−2πiκ(n−n0)

N λ

(
2πκ

N

)t

·Um0 , (6)

where λ(·)t denotes the matrix power. Diagonalising λ
(
2πκ
N

)
to take the matrix power

explicitly and performing a summation over the states, one finds the site occupation

probability P
(p)
n0 (n, t) =

∑2
i=1P

(p)
n0 (n, t)i, and when α1 = α2 =

1
2
we obtain

P (p)
n0

(n, t)=
1

2N

N−1∑
κ=0

cos

(
2πκ(n− n0)

N

)[
f(κ, t) + h(κ, t)

]
, (7)

where

f(κ, t)=λt++λ
t
−, h(κ, t)=

b cos
(
2πκ
N

)[
λt+−λt−

]√
f 2cos2

(
2πκ
N

)
+b2−f 2

, (8)

and

λ± = c+ f cos

(
2πκ

N

)
±

√
f 2 cos2

(
2πκ

N

)
+ b2 − f 2, (9)

are the eigenvalues of the matrix structure function λ(2πκ
N

). The non-symmetric case is

less compact and we give it explicitly in Eq. (S23) of the supplementary material [41].
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In the diffusive limit, where f = b = q
2
, Eq. (6), reduces to the expression

for the propagator for the LRW on a one-dimensional periodic lattice [6], while

in the f = 1, limit one has P
(p)
n0 (n, t) = N−1

∑N−1
κ=0 {α1 cos [2πκ(n− n0 + t)/N ] +

α2 cos [2πκ(n− n0 − t)/N ]}, which shows a superposition of two weighted ballistic

waves travelling in opposite directions. In the other limit (b = 1), corresponding

to the perfectly anti-persistent case, the walker constantly hops between the initial

condition, which it visits on even time steps, and the lattice sites on either side

at odd time steps, as one may see from the resulting expression: P
(p)
n0 (n, t) =

(2N)−1
∑N−1

κ=0 exp[−2πiκ (n− n0) /N ]
{
[1 + (−1)t] − [−1 + (−1)t][α1 exp(2πiκ/N) +

α2 exp(−2πiκ/N)]
}
.

3.2. Reflective Barrier

When the correlated particle is confined within a reflecting box, there are two classes

of boundary interactions that one might consider as displayed in panel (c) and (d) of

Fig. 1. More specifically, one must choose whether the direction of persistence is flipped

upon hitting the boundary or not. When the persistence direction is not flipped then

an accumulation of particles appears at the boundary, which is reflected in the increase

in the magnitude of the steady state probability at the boundary [24, 44]. We call

this accumulation a ‘bunching’. In contrast, when the boundary induces a change of

direction, which we call a ‘bounce’, there is no accumulation. It is the ‘bouncing’ case

we consider here and we find the propagator via two different methods, viz. the method

of images [6] and the so-called squeezing method [45], which allow, respectively, for two

variations on this boundary condition. We treat the ‘bunched’ case later in Sec. 7 and

provide a comparison of the transport statistics with the ‘bounced’ case.

The Method of Images The method of images is a dimensionally scalable method that

allows to include the effects of interfaces or boundary conditions on the walker dynamics

from the knowledge of the dynamics in the absence of boundaries [46]. To account for

the change in movement direction caused by a reflection, we ensure that the bounded

walker changes state upon interacting with the boundary. To achieve this, one must

specify boundary conditions for each internal state. More specifically, we require that

P (r)(1, {2, 1}, t) = P (r)(0, {1, 2}, t), and P (r)(N, {1, 2}, t) = P (r)(N + 1, {2, 1}, t), where
the compact notation {i, j} implies pairing the left index i (right index j), on the LHS

of the equation, to the left index (right index) on the RHS. In this way, by allowing

the image of state two to interact with the dynamics on state one, and vice versa,

the persistent walker trying to leave the boundary will be reflected back and continue

its journey in the opposite direction (see Appendix A for further discussion). With

the boundary conditions set, before applying the method of images, we need to ensure

that the transport process is spatially symmetric, which we accomplish by imposing

α1 = α2 =
1
2
.

By taking the state level boundary conditions given above, and performing a
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summation over the internal states, one finds the boundary condition for the entire

lattice site. Upon doing so, one find the boundary condition to be P
(r)
n0 (1, t) = P

(r)
n0 (0, t),

P
(r)
n0 (N, t) = P

(r)
n0 (N + 1, t), which, as expected [47], is the same boundary condition as

the diffusive random walker. Since the image set for this boundary condition has been

derived recently [6], one can find the reflective propagator as P
(r)
n0 (n, t) =

∑2
i=1P

(r)
n0 (n, t)i

where

P (r)
n0

(n, t) =
1

N

N−1∑
κ=0

βκ cos

(
πκ(n− 1

2
)

N

)
cos

(
πκ(n0 − 1

2
)

N

)
λ
(πκ
N

)t
·Um0 , (10)

with βκ = 1 when κ = 0, else βκ = 2 (see Sec. IV of the supplementary material [41]

for a full derivation).

From Eq. (10), and similarly in Eq. (6), one may notice that, in contrast to the

unbounded dynamics in Eq. (5), within periodic and reflecting domains we are able to

keep separate the spatial and temporal components of the propagator. In doing so, one

realises that, as expected, the respective spatial dependence in the symmetric α1 = α2

case coincides with the one obtained for the so-called lazy Pólya’s walk in finite domains

[6] and the structure function pertains in both solutions as the boundary condition does

not impact the individual jump probabilities in the bulk of the domain. Since the

structure of the two propagators is analogous, one can also expand Eq. (10) via the

same procedure as the periodic case to find explicitly P
(r)
n0 (n, t). The semi-bounded

bounced propagator can also be found via the method of images and, for completeness,

we have presented it in the supplementary material [41].

The Squeezing Method We exploit an alternate procedure to bound the propagator in

a reflective box, which uses only the properties of the periodic propagator [45, 48, 49].

While being less scalable to higher dimensions, when compared to the method of images,

it is simple to construct analytically in one-dimensional systems. This technique is

particularly convenient to analyse the case when α1 ̸= α2, since the use of an image set

in a periodic geometry wraps upon itself, which avoids the interplay between the two

independent image sets used to derive Eq. (10).

We follow ref. [45] and squeeze a torus into a reflecting lattice. More specifically, we

transform a periodic domain withM ∈ 2Z sites into a reflective one with N = (M+2)/2

sites (N ≥ 2) by summing the probabilities of the sites a distance l on either side of the

1st and N th site (see Fig. 1b in [45] or Fig. 1 of the present supplementary material

[41] for a schematic representation). In doing so, we impose the boundary condition as

implemented orignally by Chandrasekhar for the LRW [50], which states that the walker

attempting to escape from N is bounced back to N − 1 with certainty, and similarly for

site n = 1. The reflective propagator with this condition is [45]

P (rs)
n0

(n, t) = P (p)
n0

(n, t) + µ(n)P (p)
n0

(M + 2− n, t), (11)

where we indicate with the superscript rs that the reflecting domain has been accounted

by squeezing a periodic one, and where µ(n) = 0 when n = 1 or N , and µ(n) = 1,
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Figure 2. (Colour Online). The occupation probability in a one-dimensional reflecting

domain of length N = 51 found via the method of images, Eq. (10), and the squeezing

technique, Eq. (12). Panel (a) shows the evolution of the occupation probability of

both propagators, with the method of images (r) solution plotted in purple and the

squeezed solution (rs) displayed in blue, for the symmetric α1 = α2 = 0.5 case. For

clarity, as there is no differences between the dynamics of the two propagators before

boundary interaction, we omit in the legend the entries for the method of images

solution at short times. The dynamics seen are with f = 0.7, b = 0.1 and n0 = 35.

Panel (b) depicts the occupation probability of the squeezed propagator at t = 23 with

n0 = 25, f = 0.8, b = 0.1. Here we examine the effect of changing α1 and α2 = 1−α1.

The dots on some curves across the two panels represent the ensemble average of 106

stochastic simulations.

otherwise. We note that by construction, in this instance, one should not think of the

states as being representative of the direction of motion previously travelled, since the

baseline propagator on the torus, from which Eq. (11) is built, considers trajectories

that may enter each lattice site from either direction.

Using Eqs. (6) and (11), and after some algebra, the reflective propagator is given

explicitly by

P (rs)
n0

(n, t) =
1

2N − 2

2N−3∑
κ=0

[
exp

(
−πiκ(n− n0)

N − 1

)
+ µ(n) exp

(
−πiκ(2N − n− n0)

N − 1

)]
λ

(
πκ

N − 1

)t

·Um0 .

(12)

In Fig. 2(a), we plot the reflecting propagator found via both methods (Eqs. (10) and

(12)). For times small enough that no boundary interaction has occurred, one cannot

distinguish between the two representations, as expected. However, after boundary

interaction, the occupation probability differs slightly due to the no-waiting scheme

at the boundary that Eq. (12) obeys. Since these sites can be viewed as ‘slippy’,

i.e., the chance of leaving the site is higher than the rest of the domain, the steady

state distribution shows a bench-like structure, with these boundary sites having a

lower probability of being occupied. In fact, it can be shown (see Appendix B) that

when f and b are not identically one, P
(rs)
n0 (n, t → ∞) = 1

(N−1)
(n ̸= {1, N}) while
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P
(rs)
n0 (1, t→ ∞) = P

(rs)
n0 (N, t→ ∞) = 1

2(N−1)
.

In Fig. 2(b), we display the effect of the weightings over the internal states in the

initial condition. When α1 ̸= α2, the propagation is clearly asymmetric, as the higher

weighting of trajectories that started right are likely to continue heading right.

4. Propagators in Higher Dimensions

As mentioned in the introduction, in continuous space modelling persistence in higher

dimensions requires the inclusion of an infinite number of internal variables [30]. A

discrete representation, on the other hand, requires only Z internal variables, where Z

is the coordination number of the lattice. In dimensions larger than one, we require

a third parameter, ℓ, to govern the probability of turning, which we define as a

change of movement direction in any direction except turning back. For simplicity,

we first assume the probability of moving in any lateral direction, to be uniform,

although this can be relaxed with no additional mathematical burden, as we will

show below with the hexagonal lattice. Moreover, in the d dimensional hypercubic

lattice we demand f + b + dℓ + c(d) = 1, where d is the number of permissible lateral

movements, defined as d = Z − 2 and c(d) is the sojourn probability. The initial

condition must also account for the higher number of movement directions, meaning

that Qn0(n, 0) =
∏d

i=1

(
δni,n0i

)
Um0 , where Um0 = [α1, ..., α2d]

⊺.

4.1. Hypercubic Lattices

We again start by writing a Master equation to govern the unbounded dynamics. In d

dimensions, this takes the form of 2d coupled equations, which we have written explicitly

for the d = 2 case in the supplementary material [41]. Akin to the d = 1 case, it is

convenient to re-write the coupled equations in matrix form, and for arbitrary dimension

d, we obtain

Q(n, t+1) =
d∑

i=1

{
A(i)

2d ·Q(n−ei, t)+B(i)
2d ·Q(n+ei, t)

}
+ C2d ·Q(n, t), (13)

where ei is a unit vector along dimension i. A(i)
2d , B

(i)
2d are 2d× 2d matrices that govern

the movement probabilities along either direction of the ith axis, which is encoded via

elements along (2i−1)th and 2ith rows, respectively, while all other rows in A(i)
2d and B(i)

2d

are identically zero. C2d governs the sojourn probability and is of the form C2d = c(d)I.
The method of images allows us to find the periodic and reflective propagator in

arbitrary dimensions. Following the supplementary material [41], we find the propagator

in arbitrary dimensions again as a summation of column vector of state probabilities

P
(γ)
n01,...,n0d(n1, ..., nd, t) =

∑2d
m=1 P

(γ)
n01,...,n0d(n1, ..., nd, t)m, where
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P (γ)
n01,...,n0d

(n1, ..., nd, t)=
1

Nd

N1−1∑
κ1=0

...

Nd−1∑
κd=0

[
d∏

i=1

g(γ)κi
(ni, n0i)

]
λ
(
πN (γ)

κ1
, ..., πN (γ)

κd

)t ·Um0 ,

(14)

and γ = p or r. The function g
(γ)
κi (ni, n0i) is the spatial dependence of the periodic

or reflective bounded domain, given by g
(p)
κj (nj, n0j) = exp[−2πiκj(nj − n0j)/Nj] and

g
(r)
κj (nj, n0j) = βκj

cos[πκj(nj−1)/(Nj)] cos[πκj(n0j−1)/(Nj)], and whereN (p)
i = 2κi/Ni,

while N (r)
i = κi/Ni. We note that, similarly to the d = 1 case, the image method

demands that when γ = r the initial weighting over the states to be uniform.

The 2d×2d matrix λ
(
πN (γ)

κ1 , ..., πN
(γ)
κd

)
maintains a simple structure regardless of

the dimension and also allows straight forward calculation of the uniform steady state

for both γ = p or r (see Appendix B). Explicit analytical expressions of the scalar

propagator for the site occupation probability depends on the analytical determination

of the eigensystem of λ
(
πN (γ)

κ1 , ..., πN
(γ)
κd

)
. We discuss some of these analytic cases

starting from the fully correlated or anti-correlated limits. In those cases many elements

of λ
(
πN (γ)

κ1 , ..., πN
(γ)
κd

)
reduce to zero. When b, ℓ = 0, the matrix is diagonal, so it is

trivial to take the matrix power explicitly and the propagator is simply the sum of the

matrix diagonal elements weighted according to Um0 . Furthermore, when f, c, ℓ = 0,

the structure function reduces to a generalised permutation matrix, which one may also

take to arbitrary power in closed form.

As
∑∞

t=0 z
tλ(·)t = [I − zλ(·)]−1 in employing generating functions, it may become

more convenient to take a matrix inverse than calculating the eigensystem to determine

the propagator in time. To illustrate this aspect, we consider the simplified cases

discussed in [51, 36], whereby the authors make the assumption that the probability

of a lateral movement is equivalent to that of a backward movement, which corresponds

to setting b = ℓ in our notation. We display the generating function of the occupation

probability for this case in Sec. V of ref. [41].

Furthermore, carrying out the same procedure, but now setting f = ℓ, one obtains

a structure function matrix where the eigenvalues can be calculated explicitly (see [41]).

Following this, the propagator for the entire site probability can in fact be determined

in the time domain as

P̃ (γ)
n01 ,n02

(n1, n2, t) =
1

2N2

N−1∑
κ1=0

N−1∑
κ2=0

[
2∏

i=1

g(γ)κi
(ni, n0i)

][
f(κ1, κ2, t) +

1− 2ℓ

2ℓ
g(κ1, κ2, t)

]
,

(15)

where

f(κ1, κ2, t) = ψ+(κ1, κ2)
t + ψ−(κ1, κ2)

t, (16)

g(κ1, κ2, t) =
σ(κ1, κ2) [ψ+(κ1, κ2)

t − ψ−(κ1, κ2)
t]√

σ(κ1, κ2)2 + 1− 4ℓ
, (17)
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ψ±(κ1, κ2) = σ(κ1, κ2)±
√
σ(κ1, κ2)2 + 1− 4ℓ, (18)

and

σ(κ1, κ2) = ℓ
(
cos
[
πN (γ)

κ1

]
+ cos

[
πN (γ)

κ2

])
. (19)

Figure 3. (Colour Online). Correlated motion in hexagonal lattices. Panels (a)-(c)

show the occupation probability from Eq. (20) at time t = 11 in a hexagonal domain

with circumradius R = 8 (Ω = 217) and initial condition at the origin (shown via

the red circles) with Um0 = (1, 1, 1, 1, 1, 1)
⊺
/6. The boundary condition is taken as

the right-shift periodic boundary condition, and we provide further details of how

this impacts the dynamics in ref. [41]. In panel (a) the walker is ballistic (f = 1)

and there is no steady state. There are instead probability pulses of magnitude 1
6

that travel around the domain for all time. In panel (b) f = 0.6, b = 0.06 and

ℓ{1,2,3,4} = 0.085, while in panel (c) f = 0.8, ℓ1 = 0.2 (b = ℓ{2,3,4} = 0). Panel (d)

depicts a sample trajectory, with the same movement probabilities as panel (c). The

trajectory is over 2000 timesteps and the colour of the trajectory indicates the time,

with light red indicating short times and dark red indicating long times. The domain

is of size R = 700, which is chosen so the walker does not interact with the boundary,

and we omit the boundary for visual ease. The initial condition is shown by the orange

circle at (0,0,0) and the coordinate axes for the hexagonal lattice are shown via the

black arrows.

4.2. Hexagonal Lattice

There has been some attempts in the past to study correlated motion in a hexagonal

setting. The steady state of a run and tumble model which can change direction by a

rotation of 60◦ was studied analytically in [52], while the path of a persistent photon

with varying angles of incidence is studied as a 12th order Markov chain in a reflecting

hexagonal geometry in [53], where long time diffusion constants and moments are

derived. Moreover, the CRW on a hexagonal lattice has been used in [13] to determine

optimal search strategies for central place foragers.

When considering the hexagonal lattice, it is convenient to use Her’s three axis

coordinate system [54] where each coordinate is represented by three linearly dependent

coordinates (n1, n2, n3) such that n1 + n2 + n3 = 0. The finite domain is six-sided,

with the number of lattice points Ω = 3R2 + 3R + 1 governed by the circumradius

of the hexagon R. As the coordination number in this case is Z = 6, we require
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f + b +
∑4

j=1 ℓj + c(4) = 1 and Um0 is a 6 × 1 column vector. Each lateral movement

direction is defined in relation to the previous movement step where ℓ1 governs the

probability of a 60◦ rotation anticlockwise, ℓ2 a 120◦ anticlockwise rotation, ℓ3 a 120◦

clockwise rotation and ℓ4 that of a 60◦ clockwise rotation (see [41] (Fig. 2) for pictorial

representation). With these parameters, we find the propagator for correlated motion

in a periodic hexagonal geometry as (see [41])

P (H)
n0

(n, t) =

{
λ(H)(0, 0)t

Ω
+

1

Ω

R−1∑
r=0

3r+2∑
s=0

e
2πiκ·(n−n0)

Ω λ(H)
(
κ(r, s)

)t
+ e

−2πiκ·(n−n0)
Ω λ(H)

(
− κ(r, s)

)t} ·Um0 , (20)

with the vector κ(r, s) = 2π[κ1(r, s), κ2(r, s)]/Ω having components κ1(r, s) = R(s +

1) + s − r and κ2(r, s) = R(2 − s + 3r) + r + 1 [55] and with λ(H)(·, ·) defined in Eq.

(S45) of the supplementary material [41].

In a periodic hexagon the non-orthogonality of the coordinates leads to a shift as

the walker crosses the domain boundaries [55]. In the context of this present work, if

a ballistic walker traverses across the upper boundary it will continue its path via the

bottom edge, but shifted along one coordinate. One can choose which way to shift the

walker, and we have arbitrarily chosen the right shift here. For such a case, in Fig. 3(a),

we display the probability when the dynamics are ballistic, where one observes pulses

of probability with magnitude 1/6, which originally travelled from the origin to the six

corners, have traversed the boundary and are no longer on their original axis. Since

each side of the hexagon is shifted in the same way, the rotational symmetry remains,

which is also seen in a less persistent case in panel (b).

An interesting feature of this boundary condition is that the ballistic walker

in the periodic hexagonal lattice is guaranteed to visit every site, which we show

mathematically in Sec. VI of the supplementary material [41]. In contrast, in the

square lattice, either periodic or reflecting, the ballistic walker is confined to a genuine

sublattice, i.e. only the coordinates [(1, n02), ..., (N, n02), (n01 , 1), ..., (n02 , N)], which can

be evinced as when b and s are identically zero,
[
I− λ

(
πN (γ)

κ1 , πN
(γ)
κ2

)]−1

is singular

away from κ1 = κ2 = 0, which occurs only when the walk is confined to a genuine

sublattice [56]. This has interesting implications on the search time of the walkers in

these lattices. Clearly, when the target is away from the coordinates of the sublattice, the

search time of the walker in the square lattice becomes increasingly longer as persistence

is increased [36] until the probability of a first-passage event ever taking place becomes

zero. However, on the hexagonal lattice, the ballistic walker will, with probability one,

hit the target in t ≤ Ω timesteps making an increase of persistence a good search strategy

with the periodic hexagonal boundary condition.

Chiral Motion By relaxing the assumption that all lateral movement directions are

uniformly distributed, we introduce the possibility of looping patterns into the
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movement. We present this as a discrete alternative to the model of ‘chiral’ persistent

motion [30, 57, 58, 59], where an angular bias is introduced into the turning angle, which

is of interest as a model of a charged particle subjected to soft scattering by aligned

magnetic domains [30] and particles driven by microscopic torques such as active colloids

[60] and spermatozoa [61], and chlamydomonas [62]. While chiral motion appears at

first to lend itself to a continuous space representation, it is known that even the two-

dimensional case leads to an analytical intractable Fokker-Planck equation [30], meaning

occupation probabilities and further transport quantities are difficult to obtain. On the

other hand, in the discrete paradigm, to create looping, one merely alters the movement

probabilities in λ(H)(·, ·) allowing to obtain with ease the occupation probability.

We create this motion, with anti-clockwise loops, by first setting c(4) = 0 and

then f, ℓ1 > b, ℓ{2,3,4}, i.e. the probability of either continuing forward or turning 60◦

is much larger than any other movement direction. For this chiral example, using the

parameters f = 0.8, ℓ1 = 0.2, we plot the occupation probability in Fig. 3(c) and a

sample trajectory in Fig. 3(d) in a large domain so that no boundary interaction takes

place. The single trajectory displays periods of persistent motion before making loopy

turns, which are anti-clockwise in most cases. To control these loops, one may either

employ a larger ℓ1, while decreasing f , so that their frequency increases, or one may

increase ℓ2 at the expense of ℓ1, to tighten loops. To create clockwise loops, one instead

places the turning probability into ℓ3 or ℓ4 instead.

5. Absorbing Traps and First-Passage Processes

In the presence of absorbing traps, the one-dimensional boundaries to be imposed on

the equation governing the occupation probability for the persistent random walk are

known [39]. As shown pictorially in Fig. 1(b) for the one dimensional case, to constrain

entirely the domain between sites n = 1 and n = N , the Master equation needs to satisfy

the boundary condition P (a)(N, 1, t) = P (a)(1, 2, t) = 0, where now the superscript a

indicates the presence of absorbing boundaries.

In two and higher dimensions, the constraints to represent a fully absorbing domain

can be understood by considering, for simplicity, the square lattice. Here, with Z = 4

the states 1,2,3 and 4 represent, respectively, a walker that has moved West, East, North

and South in the last movement step. In this case, the walker can reach the West of

the domain only by increasing its n1 coordinate, thus reaching any site with coordinate

n1 = N in state 1, the north of the domain by increasing its n2 coordinate, thus reaching

site n2 = N in state 3, etc. As such, there is only one movement direction the walker

can undertake which results in an absorption at each boundary, leading to the boundary

condition P (a)(N, n2, 1, t) = P (a)(1, n2, 2, t) = P (a)(n1, N, 3, t) = P (a)(n1, 1, 4, t) = 0.

One may extend this logic to any lattice, that is, to create a fully absorbing boundary

traps need to be placed in only the one state in each of the boundary sites that

corresponds to the movement direction into that boundary.

On the other hand, in the cases when the traps are not complete along the
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domain boundaries, are partially absorbing, or more generally, when traps are away

from boundary sites, one needs to consider all the states in a site to make it fully

absorbing. To do that one must choose an appropriate absorption free propagator.

While the method of images solution in a periodic domain is amenable to placing traps,

the reflective method of images solution is hardly useful when extracting first-passage

distributions. To explain why, recall, as shown in Sec. 3.2 (and Appendix A), that

the construction of the reflective propagator is reliant on the interplay between the

symmetric propagation in state one (two) and its oppposite image in state two (one).

Hence, once a trap is placed on an individual state, which stops movement along one

direction, the dynamics with the trap in site one (two) is no longer symmetric with

its image counterpart representing movement along state two (one). To overcome this

issue, in this Section we use the squeezed propagator viz. Eq. (10), for the reflective

occupation probability, which requires no symmetry between individual image sets, since

it is built using periodic propagators.

We are interested in studying first-passage processes both when a single target

consists of a subset of the i = 1, ...,M internal degrees of freedom or all of them (the

entire site), in the cases where the initial probability is shared between any or all of

the internal states in n0. Since the set of trajectories that originate in state n0,mi are

independent of those starting in n0,mj and those terminating in s,msi are independent

of those terminating in s,msj (i ̸= j), it suffices to consider them separately and sum

the result. Furthermore, when there are multiple targets, the summation is carried out

over both the internal states and the site location.

In the presence of an unordered set of absorbing traps S = {(s,ms)i, ..., (s,ms)S}
(S is the cardinality of the set), where each element represents a trap in the internal

state at (si,msi), we obtain (see Appendix C for the details) the following propagator

generating function

P̃ (a)
n0

(n, z) = P̃n0(n, z)−
M∑

m=1

M∑
j=1

S∑
i=1

αmsi
P̃s,msi

(n,m, z)
det[H(i)(n0,m0j , z)]

det[H(z)]
, (21)

where H(z)l,k = αmsk
P̃sk,msk

(sl,msl , z), H(z)k,k = αmsk
P̃sk,msk

(sk,msk , z)

and H(i)(n0,m0, z) is the same, but with the ith column replaced with

αm0j

[
P̃n0,m0j

(s1,ms1 , z), ..., P̃n0,m0j
(sS,msS , z)

]⊺
. The notation αm0j

Pn0,m0j
(n,m, t) =

αm0j
e⊺
m ·Pn0(n, t) ·em0j

, is the occupation probability that the walker occupies site and

state (n,m) given its initial position was (n0,m0j), which is weighted by αm0j
.

To help elucidate the notation we note that while the site-state pair defining the

trap location is unique, it is possible to have multiple states within one site containing

traps. For example, consider the case of a fully absorbing trap in site s in a two-

dimensional square lattice. Since a trap in state ms = 1 of site s absorbs a walker

reaching s from the left (movement along the West direction) only, traps must also be

placed in sites ms = 2, 3 and 4 to absorb a walker entering the site from any direction.

Hence, for this case S = {(s, 1), (s, 2), (s, 3), (s, 4)}.
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First-Passage and Splitting Dynamics

Knowledge of the occupation probability for the absorbing propagator allows us to

study other transport statistics such as the first exit or first-passage time [25, 26].

By performing a spatial summation, we find the generating function of the survival

probability, namely S̃n0(z) =
∑

n P̃
(a)
n0 (n, z), and from the known relation F̃n0(n, z) =

1− (1− z)S̃n0(z), we obtain the generating function for the first-passage probability to

an arbitrary number of target states as

F̃n0(S, z) =
M∑
j=1

S∑
i=1

αmsi

det[H(i)(n0,m0j , z)]

det[H(z)]
. (22)

With multiple targets (S > 1), the theory also allows the determination of the so-called

splitting probability, that is the probability of reaching sk and not any of the other

targets in S. Following ref. [63], one finds

F̃n0(sk|s1; ...; sk − 1; sk + 1; ...; sS, z) = αmsk

∑M
j=1 det[H(k)(n0,m0j , z)]

det[H(z)]
. (23)

Equations (22) and (23) are the sought-after quantities. They are the solution

for the multi-target first-passage and splitting problems, respectively, for random walks

with internal degrees of freedom, of which the focus of this study, the CRW, is one such

example. The expressions are general and accounts for an arbitrary distribution over

Um0 with any number of target states, which may be located in one or multiple lattice

sites.

Depending on the problem Eq. (22) can be simplified to more compact expressions.

The simplest case is the one target state for the one-dimensional unbounded CRW. In

such a scenario, if the target state is located at site s > n0, one may put the target at

(s, 1) since the walker may only arrive at s from the left, as one can evince by looking

at Fig. 1(b). With a single target state, Eq. (22) can be written as

F̃n0,m0(s,ms, z) =

∑M
j=1 αm0j

P̃n0,m0j
(s,ms, z)

P̃s,ms(s,ms, z)
, (24)

which can be further reduced to the known first-passage quotient for random walks with

internal degrees of freedom F̃n0,m0k
(s,ms, z) =

P̃n0,m0k
(s,ms,z)

P̃s,ms (s,ms,z)
[35, 34] when the initial

condition is localised at state m0k .
For the bounded one-dimensional lattice, where the walker may enter from either

direction, the case with two target states at the same spatial site, e.g., S = {(s, 1), (s, 2)},
is particularly relevant. Here, Eq. (22) can be expanded out (see Sec. VII of ref. [41])
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Figure 4. (Colour Online). First-passage probability in a finite one dimensional

domain of size N = 22 with initial condition n0 = 8 and a target at s = N obtained

via a numerical z-inverse transform [64, 65] of Eq. (25), with the periodic propagator,

Eq. (6), used for panel (a) and the squeezed reflective propagator, Eq. (12), used for

panel (b). We note here the use of the two state first-passage in the squeezed reflective

propagator is needed as it is constructed via the periodic dynamics. In the main figure

of panel (a) and (b) we use α1 = α2 = 1/2, f = 0.65 and we vary b, while in the

insets we set b = 0 and vary f . In (c) we fix f = 0.82, b = 0.08 and study how the

first-passage probability changes as we change α1. The lines are again obtained from

Eq. (25) with the appropriate propagator. Across all three panels the dots represent

the ensemble average of 106 stochastic simulations.

to find

F̃n0(s, z) =

α1

(
P̃n0,1(s, 1, z)

[
P̃s,2(s, 2, z)−P̃s,1(s, 2, z)

]
+P̃n0,1(s, 2, z)

[
P̃s,1(s, 1, z)−P̃s,2(s, 1, z)

])
P̃s,1(s, 1, z)P̃s,2(s, 2, z) − P̃s,1(s, 2, z)P̃s,2(s, 1, z)

+
α2

(
P̃n0,2(s, 1, z)

[
P̃s,2(s, 2, z)−P̃s,1(s, 2, z)

]
+P̃n0,2(s, 2, z)

[
P̃s,1(s, 1, z)−P̃s,2(s, 1, z)

])
P̃s,1(s, 1, z)P̃s,2(s, 2, z) − P̃s,1(s, 2, z)P̃s,2(s, 1, z)

,

(25)

where we have lightened the notation with F̃n0(s, z) = F̃n0({(s, 1), (s, 2)}, z),
αm01

= α1 and similarly for the second state weighting. The alternative derivation

via a generalised renewal equation of Eqs. (24) and (25) can be found in Sec. VII of

ref. [41].

A prominent feature of the first-passage probability for a bounded CRW is the

appearance of multiple peaks. While in periodic domains bi-modal [66, 67, 68] and

multi-modal [69] first-passage distributions for Markov LRWs have been reported, in

those cases the appearance of multiple peaks is a consequence of the periodicity of the

boundaries and the presence of a bias for which there are repeated occasions when a

fraction of the trajectories may hit a target. This is not the case for the CRW, as we

observe multiple peaks with periodic as well as reflecting domains.

With correlated motion we may in fact identify trajectories that travel both towards

and away from the target. With the existence of two peaks documented in Fig. 4, the
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first peak corresponds to those trajectories, which travel persistently towards the target

and the second peak represents those that travel away and later come back via, either,

a bouncing reflection or the periodic boundary. Since the peaks correspond to the two

sets of trajectories, the initial weighting controls which peak contains larger probability,

while the overall level of persistence governs their collective height. Furthermore, for a

given domain size, the path that reaches the target via the periodic boundary is always

shorter than the path that bounces back via the reflective boundary. Hence, the time

at which the second peak occurs is always lower in periodic domains when compared to

its reflective counterpart, which may also be seen by comparing panels (a) and (b).

In panel (c), the effect of the individual weighting on the height of the peaks is seen

explicity, where we have placed the target at s = 22 and the walker intially at n0 = 8.

With a smaller proportion of trajectories set to move in the right direction at t = 0

(α1 = 0.2), the periodic case has a large peak at short time, which correspond to the

larger fraction of trajectories that move towards the target via the left boundary. The

smaller peak at later times is due instead to those walker paths that first headed right. In

contrast, with a reflecting boundary at n = 1 we do not see a peak until those trajectories

that initially headed right reach the target, with a second smaller peak appearing later

once the trajectories initially travelling left are reflected back from n = 1. In contrast,

we observe a very different dynamics when we weigh heavily the walker trajectories

so that the majority starts moving right (α1 = 0.99). In such a case we see far less

deviation between the two boundary conditions as most persistent trajectories do not

encounter the left boundary. We note also that the oscillatory behaviour at short times

seen in panels (a) and (c) is a simple consequence of a low sojourn probability as in

c = 0 limit, one creates parity issues [70]. While here, we are away from this limit, with

a low c in short times the chance of being on an even site at even times (given an even

initial condition) is still higher. The oscillations dampen with time as the probability

of undertaking a sojourn (which breaks the parity) increases.

We now turn our attention to the periodic square lattice and study the probability

that the walker reaches a site for the first time moving in a specific direction, and we call

this quantity the directional first-passage probability. This may be useful in a context

where the target is only visible from a certain direction and is obtained by placing a

target in only one specific state in a lattice site. We show, in Fig. 5(a), the cases in

which the walker reaches the target travelling in each of the four directions. We note

that the directional first-passage is a normalised probability distribution as it does not

exclude trajectories that first reach the target via an alternate direction. One may ask

for the probability of reaching a site for the first time travelling in a specific direction

conditioned on the walker having not first reached for the first time from any other

direction via the splitting probability in Eq. (23).

With the initial condition at site n0 = (4, 2), to reach s = (7, 3) for the first time

at t = 4 or t = 5, the walker has to enter the site travelling either North or West.

However, travelling West gives a higher directional first-passage at these times because

the walker travelling North into the target at t = 4 must have made a left-hand turn
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Figure 5. (Colour Online). First-passage probabilities of correlated random walks

in two-dimensional periodic domains. In panel (a), through a numerical inversion

of Eq. (24), we plot the directional first-passage probability for each of the four

movement directions in a square periodic lattice of length N = 8 to a single site

at s = (7, 3). For example, in order to reach (s,m
s

= 1) the walker has to travel

West, to reach (s,ms = 3) the walker has to travel North, etc. The initial condition

is at n0 = (4, 2) with equal probability to move in any direction and with f = 0.42,

b = 0.04 and ℓ = 0.18. Panel (b) depicts results on a hexagonal lattice and shows, via

a numerical inversion of Eq. (22), the first-passage probability to a set S of one, two,

and three targets in a periodic hexagon of circumradius R = 4 (Ω = 61) at locations

s1 = (−3, 3, 0), s2 = (4,−1,−3) and s3 = (−3,−1, 4), which we add sequentially

starting from s1. Since the walker can enter from any direction, all the internal states

in si are targets. The initial condition in this case is just off centre at n0 = (0, 1,−1)

and f = 0.80, b = 0.02, ℓ = 0.01. The approximate location within the domain of the

initial condition and target sites are shown via the schematic in the inset, with the

initial condition a red open circle and the targets shown with crosses. Dots in (a) and

(b) are the result of 5 · 106 and 106 stochastic simulations, respectively.

from n = (7, 2) at the preceding time. In contrast, to access the site travelling West

at an identical time, the walker has three possible trajectories. After t = 4, the West

directional first-passage probability sees a sharp decrease, which is a consequence of this

timescale being dominated by unlikely trajectories that have had to make a sojourn or

an even number of backtracks between the intial condition and the target. Thus, it

is here that the Eastern directional first-passage becomes more likely as this timescale

coincides with the time in which the Eastern travelling persistent trajectories are able

to reach the target.

To analyse an example with multiple absorbing targets (Fig. 5(b)), we consider

the hexagonal lattice and place the walker initially in the site n0 = (0, 1,−1), just to

the South-West of the centre of the domain, with uniform initial weighting αi = 1/6

for i = 1, ..., 6. We place three targets, the first to the West of the initial condition,

the second to the South-East and the third to the North (see the caption of Fig. 5 for

the exact coordinates). Since the walker can enter any target via all six directions, the

three target case requires 18 target states.
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The sustained oscillations, which have only been seen in a small number of systems,

including quantum walks [71], biased random walks in hexagonal domains [69] and other

non-Markov systems [72] are the natural, higher-dimensional analogue of the bimodality

seen in the one-dimensional systems, where again, the peaks correspond to the timescales

for which the walker moves away from the target as well as those trajectories that

miss the target and must travel round the entire domain. Naturally, as the indirect

trajectories take over and more and more trajectories reach the targets, the oscillations

dampen and decay to zero [69].

While the multi-modal dynamics is present with one, two and three targets, the

placement of targets has a strong effect on the height and location of the peaks. In

Fig. 5(c), since the initial condition is slightly off-centered, the high persistence of

the walker means the first target (placed directly along the horizontal circumradius) is

likely bypassed leading to low search success until a trajectory, which first set off in the

opposite direction traverses the boundary. When a second and third target are added

just away from the circumradius, the shift imposed by the boundary condition aids the

persistent walker in exploring new sections of the domain, which leads to the emergence

of the large peak in the two and three target cases. Finally, the third target then kills

the second peak since the placement of the third target blocks the route many persistent

trajectories took to s1, subsequently increasing the height of the first peak.

6. Summary Statistics and the Mean First-Passage Time

With the generating function of the first-passage time distribution to multiple targets,

it becomes an algebraic exercise to extract the nth moments, and in particular its first

moment, the mean first-passage time (MFPT), Fn0→{S} =
∂F̃n0 (S,z)

∂z

∣∣∣
z=1

.

When the initial condition is uniformly distributed across the site, the structure of

Eq. (22) is very similar to the Markov first-passage expression for multiple targets [63],

and one differentiates F̃n0(S, z) to find

Fn0→{S} =
det[T0]

det[T1]− det[T]
. (26)

The matrices in Eq. (26) are made up of the MFPT between localised sites

Fn0,m0→si,msi
. More precisely, Ti,i = 0, Ti,k = Fsk,msk

→si,msi
(i ̸= k), T0i,k = Ti,k −

(2d)−1
∑2d

j=1Fn0,m0j
→si,msi

and T1i,k = Ti,k − 1. To find these quantities one evaluates

expressions of the form Fn0,m0→si,msi
= ∂

∂z

P̃n0,m0 (s,ms,z)

P̃s,ms (s,ms,z)

∣∣∣
z=1

, and we give details and

explicit quantities in Sec. VIII of ref. [41]. Performing a summation of Eq. (26) over n0

yields the global mean first-passage time (GMFPT) [35], which we denote as G{S}. In

such a case, one replaces T0 withG whereGi,j = Ti,j−(2dN)−1
∑

n0

∑2d
j=1Fn0,m0j

→si,msi
,

while T and T1 are unaffected by the summation. We discuss this quantity further in

ref. [41].

In Fig. 6(a), we plot the MFPT for anti-persistent walkers (f < b) as a function of f ,

and a given b. The increase of f has two effects on the walker’s ability to spread, namely
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Figure 6. (Colour Online). First-passage probabilities to a single target site and their

related mean first-passage times in one-dimensional lattices with periodic (orange) and

reflecting (green) boundary conditions. The meaning of the colours, given explicitly

in the legend of panel (a), extends over all three plots. In panel (a) we study the

MFPT in an N = 35 lattice for a walker starting at n0 = 30 with equal weighting of

the states in the anti-persistent regime (b > f) with the target at N = s, by fixing

b = 0.6 and varying f . Dots represent Eq. (26) evaluated with Eq. (S74) of ref.

[41], for the periodic lattice, and Eq. (S75) of ref. [41], for the reflecting lattice.

Crosses represent the result of 106 stochastic simulations. For the same domain and

initial conditions, panel (b) shows the full first-passage probability when f = 0.22 and

b = 0.6. The solid lines are a numerical inversion of Eq. (24), the dots are the result of

106 stochastic simulations and the corresponding MFPTs are shown with the arrows.

The inset of panel (b) is a blown-up look at the first-passage probabilities in the tails

for t ∈ [2000, 5000]. Panel (c) displays the first-passage probability in the persistent

regime (f = 0.86, b = 0.06) where N = s = 19 and n0 = 14. Solid lines are generated

from the numerical inversion of Eq. (24), the dots are obtained from 106 stochastic

simulations and the arrows indicate the MFPT.

it decreases both the chance of a sojourn and the probability of turning backwards. This

leads to an exponential decrease in the mean search time as the dynamics approaches

the diffusive regime. Even though the target is placed only five lattice sites away from

the initial condition, the walker takes, on average, 13651 time steps to complete its

search in the strong anti-persistent regime (f = 0.02). This is due to, in part, those

trajectories that have moved far from the target and subsequently have got ‘stuck’ in

cycles of constant backtracking.

It is in panel (b) that one further sees the effect of those trajectories that get stuck

far from the target as we display the first-passage probability in another anti-persistent

regime where (f = 0.22, b = 0.6). Since, the initial condition is close to the target and

the exploration is extremely slow, there is little difference between periodic and reflecting

domains at short and intermediate times. Differences surface at long times since in the

periodic domain those walkers that have explored the domain in its entirety may find

a short route back to the target, while in the reflective domain walkers are forced to

travel back the whole length of the domain. It is these trajectories that contribute to

longer tails in the first-passage probability and subsequently the larger MFPT in the

reflective case. We note that, similarly to the persistent case, the local minima (and

subsequent kinks) seen at short times is again due to the low sojourn probability making
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the probability of a first-passage event at even times lower.

Figure 6(c) draws attention to the importance of studying the entire first-hitting

distribution in the presence of persistent motion (f > b). When first-passage processes

display multiple peaks in their time-dependent probability, the MFPT may in fact

provide misleading values of the time it takes to hit a target. An extreme example

is the ballistic limit, which has two distinct and narrowly defined hitting times given

at, for example, F
(rs)
n0→s = s − 1 (s > n0), F

(rs)
n0→s = N − s (s < n0) (for α1 = α2). In

such a case the MFPT would give a temporal value in between the two during which

the probability of a first-passage event is identically zero. As shown in panel (c), this

aspect may also appear away from the ballistic limit, in the regime of high persistence.

7. Iterative Procedure and Comparison Between Reflective Interactions

In the preceding sections we have exploited the analytical expressions of propagator

generating functions. For the cases in which propagators are not known in closed

form we present an iterative procedure to find the first-passage probability. While

the procedure is valid in arbitrary dimensions, for notational ease we present it here

explicitly for the one-dimensional case, and use it as a tool to make comparisons between

the two forms of reflection mentioned in Sec. 3.2. We differentiate between the two

reflections based on whether an interaction with the boundary invokes a reversal in

the direction of movement, which we call the ‘bouncing’ case, or if the movement

direction persists, which we call the ‘bunching’ case (see panels (c) and (d) in Fig.

1 for pictorial comparison). For an in depth appreciation of the differences between the

two boundary conditions we also compare here the occupation probability and the mean

square displacement (MSD) in the two cases.

We begin by rewriting the Master equation, Eq. (2), for a finite system using

transition matrices that describe the possible movement between lattice sites and link the

different internal states. In other words we represent spatial jumps for which the internal

state does not change as well as those for which changes between internal states occur.

Noting that the probability across the entire site is given by Pn0(t) = Pn0(1, t)+Pn0(2, t),

where Pn0(1, t) is an N × 1 column vector of the occupation probabilities of state 1 in

each lattice site at time t, we have the Master equation

Pn0(1, t+ 1) = D · Pn0(1, t) + E · Pn0(2, t),

Pn0(2, t+ 1) = F · Pn0(1, t) +G · Pn0(2, t),
(27)

where D represents the transition probabilities from state 1 to state 1, E from state 2

to state 1, F from state 1 to state 2 and G encoding the transitions from state 2 to

state 2. Due to the finite space, each matrix is of size N ×N and as each matrix only

governs a subset of the movement possibilities, they are spars and have the following

forms: Di,i = c, for i ̸= 1, N , Di,i+1 = a and D1,1 = δ + c, DN,N = σ + c; Ei,i+1 = b

and E1,1 = ω; Fi,i−1 = b and FN,N = ω and Gi,i−1 = a and G1,1 = σ + c, GN,N = δ + c,

where δ, σ, ω are dependent on the chosen boundary conditions. With initial conditions
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Pn0(n, 1, 0) = α1, Pn0(n, 2, 0) = α2, that is Pn0(1, 0) = α1en0 and Pn0(2, 0) = α2en0 , it

is an iterative task to find the occupation probability at time t.

For the ‘bunched’ case, δ = b, σ = a, ω = 0, while for the ‘bouncing’ case, δ = b,

ω = a and σ = 0. To include absorbing traps one sets the outgoing probabilities of a trap

state (s,ms) as (1−ρs,ms)A(s,ms, n,m) where ρs,ms is the partial absorption probability

at (s,ms) and with A(s,ms, n,m) representing the elements of the transition matrix

encoding movement out of (s,ms). As an illustration, consider a trap at site s = N and

state ms = 1. In such a case we multiply the N th column of D and F by (1 − ρN,1),

and the first-passage is obtained via Fn0(n, t) = Sn0(t− 1)− Sn0(t) with Fn0(n, 0) = 0,

where Sn0(t) =
∑N

n=1 Pn0(n, t).

In Fig. 7(a), we plot the occupation probability for the bouncing and bunching

reflective boundary conditions at varying time steps with uniform initial weighting

α1 = α2 = 1/2. Even at short times one sees higher probability accumulating at

the boundaries in the ‘bunched’ case, with the asymmetry in heights due to the initial

condition being placed slightly to the right. At longer times, with the chance of more

boundary interaction, the differences become more stark, which pertains until we recover

the expected steady states, i.e., uniform probability for the ‘bouncing’ case and increased

probability at the boundaries for the ‘bunched’ [24].

In panel (b), we compare the MSD, ∆(t) = ⟨(n(t) − n0)
2⟩, with ⟨·⟩ denoting the

ensemble average, of a walker confined between either boundary. In the diffusive limit,

both boundary conditions are equivalent, which is confirmed by the identical MSD in

this case. However, with increasing persistence one sees striking differences between

the MSD after boundary interactions have occurred. As predicted from the continuous

space-time equivalent analysis for the bouncing case [73], with high positive correlation

the MSD shows oscillatory dynamics. In the ballistic limit, these oscillations persist

for all times as the walker is guaranteed to return to its initial condition periodically

every N timesteps. However, with non-zero backtracking probability, the MSD displays

oscillations at short times, which subsequently decay as the result of the different times

at which trajectories return to the starting location. Then, due to the uniform steady

state when b ̸= 0 the MSD eventually saturates to N2/12. In contrast, the bunching case

sees a clear maxima before quickly lowering to a saturation value, which is dependent on

the level of persistence in the system. Since the shape of the steady state is dependent

on the level of persistence in the system (where higher persistence levels leads to larger

values of the steady state at the boundary [24]), the MSD saturates at higher value for

larger f − b with the maximal displacement remaining for all times in the ballistic limit.

In panels (c) and (d), we study the first-passage and as expected, as we increase

the possibility of the walker interacting with the boundary, more differences emerge

in the first-passage dynamics. To illustrate, in the fully absorbing case, seen in panel

(c), differences in the dynamics emerge only at intermediate times when the ‘bouncing’

walkers display a much higher second peak compared to the ‘bunching’ ones as they

are allowed to reverse their trajectory back towards the target. Instead, in panel (d),

where the target is partially absorbing and away from the boundary, the walker may
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Figure 7. (Colour Online). A comparison of the CRW dynamics between two forms

of reflective boundaries, the ‘bunching’ and ‘bouncing’ interaction. Across all four

panels, the blue-green colours represent the ‘bunching’ boundary condition, while the

red-purple colours represent the ‘bouncing’ condition. All lines are found via iteratively

solving Eq. (27), while crosses are obtained using the analytic propagator in Eq.

(10) and all dots are the result of 106 stochastic simulations. Panel (a) displays the

occupation probability at varying time steps with f = 0.75, b = 0.12 with n0 = 16 and

N = 30, and panel (b) shows the MSD for a variety of persistence levels with (b = 1−f)

in an N = 19 lattice with n0 = 10, that is with the initial condition in the middle of

the domain. Panel (c) shows the first passage distribution to site s = N = 30, while its

inset is a close up of the region of discrepancy between the two boundary conditions

when f = 0.75, b = 0.12. Panel (d) shows the first-passage probability to a partially

absorbing target placed at s = N − 5 (N = 30), with initial condition n0 = 12 and

f = 0.75, b = 0.12. The inset displays the same type of information, but the movement

probabilities are now f = 0.8 and b = 0.04.

now interact with both the left and right boundary and two timescales emerge where

differences occur. The first timescale is due to the trajectories overcoming the target

and subsequently being reflected from the right boundary, while the second results from

the trajectories that are reflected from the left. Thus, it is the second timescale that is

present for all values of ρ (including ρ = 1), while the first only emerges for a smaller

absorption probability. As we lower ρ further and enter the reaction limited regime

(when the timescale for a reaction to occur is much higher than the transport time to

reach the target [74]) the two timescales lengthen and begin to merge. For example,

when ρ = 0.05, one sees a sustained region where the ‘bouncing’ case has a higher

first-passage probability as the walker subject to this boundary condition continuously

passes over a target with low adsorption many times.
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8. Conclusion

First-passage processes in Markovian LRWs have been studied extensively over the last

few years in a multitude of settings [75, 76, 77, 66, 55, 6, 78, 79, 80, 81]. On the other

hand, for non-Markovian LRWs a general formalism to derive the first-passage dynamics

has been lacking. The simplest non-Markovian LRW extension, the CRW, has received

attention, but much of the analysis on first-passage statistics has relied either on time-

consuming computational methods [13] or on the global MFPT [36], with very few

results known analytically. Here, we have constructed a general formalism to determine

the CRW first-passage probability with partially or fully absorbing sites. Furthermore,

by deriving closed form expressions for the occupation probability in some instances, we

have been able to obtain the first-passage probability generating function analytically.

For those cases for which the occupation probability is not known in closed form, we

have constructed an iterative procedure to obtain the first-passage probability avoiding

the use of computationally burdening stochastic simulations.

While there have been generalisations of renewal processes with continuous variables

in the past, e.g., to non-Markovian dynamics [29] and ageing processes [82], they are

limited by their analytic tractability, for example, obtaining only moments or asymptotic

expansions. Our study instead generalises the renewal formulation in discrete space and

time presented by Erdös, Feller and Pollard in 1949 and allows us to link analytically the

occupation probability to the first-passage probability for persistent and anti-persistent

walks with one or multiple targets. Our formalisms have highlighted the natural

appearance of multiple modes in the first-passage dynamics when CRWs with strong

persistence occur within finite periodic and reflecting domains. We have also quantified

the directional first-passage statistics, that is the first-hitting dynamics based on the

direction from which a walker reach a target.

We have obtained analytically the MFPT to one or multiple targets in periodic and

reflecting domains, and found a general expression for the GMFPT, which was previously

only known for periodic domains [36]. By comparing the first-passage dynamics with

its respective MFPT, we find that the multi-modality of the first-passage may lead to

cases where the mean actually falls between two modes in a temporal range with a very

low chance for a first-passage event to occur.

The theory presented here is rather flexible. It can be extended to biased-correlated

random walks [83, 84, 85], may cope with the inclusion of resetting [75, 68] and inert

spatial heterogeneities [77] such as permeable barriers [86, 87, 88] or different media

[76], and may also be used to account for the dynamics in random environments [89].

We wish also to draw the readers’ attention to its applicability to other processes that

are conveniently modelled using random walks with internal states such as walks over

non-Bravais lattices [55, 35], double-diffusivity [90, 91], dimer migration on a crystalline

surface [92, 40] and chromatographic processes [5].

Our findings may also open up the possibility to analyse, the dynamics of active

particles in high spatial dimensions [51], encounter statistics [63] of persistent walkers,
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exclusion processes [93, 94, 95], cover times [96], record statistics [97] and walks with

longer range memory such as the so-called alzheimers [98] and the elephant random walks

[99, 100]. Finally, owing to the connection between the two-step CRW and quantum

random walks [101], this work in the classical paradigm could help provide tools for its

quantum counterpart.
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Appendix A. Reflective Boundary Conditions

To employ the method of images, we note the following. Since a walker moving right

(left) must enter into state m = 1, (m = 2), at the right (left) boundary, it is only the

contribution in state m = 1 (m = 2) that needs to be matched by an image. Then

to model the ‘bouncing’, we invoke a change of state to allow propagation back in the

opposing direction by allowing the image of the other state to take over. In Fig. A1,

we show this interaction where in the bottom panel, in the succeeding time step, the

trajectories that continue left over boundary will be replaced by those in state m = 1,

indicating the change in direction.

Figure A1. (Colour Online). The interplay between the bounded domain (shown

between the two red dotted lines) and the images in three neighbouring domains at

timestep t = 1 (left) and t = 4 (right) found by plotting the scalar expansion of Eq.

(10). The occupation probability of state one is shown in green while that of state two

in blue. In both panels f = 0.8 and b = 0.2.

This boundary conditions are generalisable to higher dimensions, e.g. the case
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d = 2 requires
P (r)(1, n2, {2, 1}, t) = P (r)(0, n2, {1, 2}, t),

P (r)(N1, n2, {1, 2}, t) = P (r)(N1 + 1, n2, {2, 1}, t),
P (r)(n1, 1, {4, 3}, t) = P (r)(n1, 0, {3, 4}, t),

P (r)(n1, N2, {3, 4}, t) = P (r)(n1, N2 + 1, {4, 3}, t),

(A.1)

whose sum over the entire site gives, P (r)(n1, {1, N2}, t) = P (r)(n1, {0, N2 + 1}, t) and

P (r)({1, N1}, n2, t) = P (r)({0, N1 + 1}, n2, t). This allows one to see that the boundary

conditions along either axis are independent of the other, which allows the easy use of

the methods of images (see details in the supplementary Material [41]).

Appendix B. The Structure Function

The structure (or characteristic) function is the discrete Fourier transform of the

individual step probabilities of the walk [102, 4], which allows for easy inspection of the

transport properties of the walk [56]. In systems with no internal degrees of freedom

the structure function is scalar, while the inclusion of internal states makes necessary

the generalisation to matricial functions of size n× n, where n is the number of internal

states.

Presently, the matrix λ
(
πN (γ)

κ1 , ..., πN
(γ)
κd

)
is of size 2d × 2d and has a common

structure for all the lattices we have considered here. Namely, the probability of

remaining at the same state, i.e. persisting in the direction of the previous movement

step or sojourning, is encoded in the diagonal elements, the probability of backtracking

is given on the upper and lower diagonal in alternating rows, while all the remaining

elements relate to the option of turning laterally. These features are evident in Eq. (4)

for the d = 1 case, and are seen explicitly also for the two-dimensional hypercubic lattice

when we write out the matrix

λ
(
πN (γ)

κ1
, πN (γ)

κ2

)
=


feiπN

(γ)
κ1 + c(2) beiπN

(γ)
κ1 ℓeiπN

(γ)
κ1 ℓeiπN

(γ)
κ1

be−iπN (γ)
κ1 fe−iπN (γ)

κ1 + c(2) ℓe−iπN (γ)
κ1 ℓe−iπN (γ)

κ1

ℓeiπN
(γ)
κ2 ℓeiπN

(γ)
κ2 feiπN

(γ)
κ2 + c(2) beiπN

(γ)
κ2

ℓe−iπN (γ)
κ2 ℓe−iπN (γ)

κ2 be−iπN (γ)
κ2 fe−iπN (γ)

κ2 + c(2)

.
(B.1)

As mentioned in the main text (Sec 2), the (i, j)-th element of λ
(
πN (γ)

κ1 , ..., πN
(γ)
κd

)
represents the movement that may occur from state mj to mi. The elements of one

row, which have identical exponents in the exponentials, represent the one (unique)

permissible movement direction of the walker entering the state mi. For example,

iπN (γ)
κ1 in the first row indicates that to enter state m1, the walker must increase its n1

coordinate, that is by travelling West, −iπN (γ)
κ1 in the second row shows that to enter

m2 a decrease in the n1 coordinate occurs by moving East, etc.

From the structure function one may also gain information about the steady state

of the system. When f, b ̸= 1, for hypercubic lattices and hexagonal lattices, in the
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limit t → ∞, one has, respectively, λ
(
πN (γ)

κ1 , ..., πN
(γ)
κd

)t
= 0 and λ(H)

(
κ
)t

= 0

when κ ̸= 0, while limt→∞ λ (0, ..., 0)t = (2d)−1J, and λ(H)
(
0, 0
)t

= (6)−1J, where J
is the all ones matrix. Therefore, P

(γ)
n01,...,n0d(n1, ..., nd, t → ∞) = (2d)−1N−d[1, ..., 1]⊺

and P
(H)
n0 (n, t → ∞) = (6Ω)−1[1, ..., 1]⊺, which means that P

(γ)
n01,...,n0d(n1, ..., nd, t →

∞) = N−d for γ ∈ {p, r} and P
(H)
n01,n02(n1, n2, t → ∞) = Ω−1 as expected from an

irreducible (ergodic) aperiodic finite Markov chain with doubly stochastic transition

matrices. When γ = rs, that is the squeezed reflecting propagator, in the same

limit λ
(

πκ
N−1

)t
= 0 for κ ̸= 0 and λ (0)t = 2−1J. Hence, the steady state in this

case can be found as P
(rs)
n0 (n, t → ∞) = (N − 1)−1[α1, α2]

⊺ (n ̸= {1, N}) while

P
(rs)
n0 (1, t → ∞) = P

(rs)
n0 (N, t → ∞) = [2(N − 1)]−1[α1, α2]

⊺. In contrast, when either

f or b equals 1, λ
(
πN (γ)

κ1 , ..., πN
(γ)
κd

)
and λ(H)

(
κ
)
reduce to generalised permutation

matrices, which makes clear that no steady state will be reached.

When f = 1, in the periodically bounded domain, one can show that the walker

will be at n0 with certainty every t = cN steps (c ∈ N ∪ {0}), that is the system is a

Markov chain with periodicity N . To do so, let us consider the one-dimensional case (the

analysis is readily extended to arbitrary dimensions), where λ
(
2πκ
N

)
=
(

e
2πiκ
N 0

0 e
−2πiκ

N

)
.

Consequently, P
(p)
n0 (n, t) = N−1

∑N−1
κ=0 exp

(
−2πiκ(n−n0)

N

)(
e
2πiκt
N 0

0 e
−2πiκt

N

)
·
[
α1

α2

]
. Upon

inspection, one clearly sees that when t = cN and n = n0, the propagator reduces

to P
(p)
n0 (n, t) =

[
α1 α2

]⊺
, such that P

(p)
n0 (n0, cN) = 1.

Appendix C. Defect Technique in Correlated Random Walks

We consider the (unordered) set S = {(si,msi), ..., (sS,msS)} of S localised targets. To

begin, we write, in arbitrary dimensions and with arbitrary numbers of internal degrees

of freedom, the Master equation for the state level dynamics

P (n,m, t+ 1) =
∑
n′

M∑
m′=1

[
A(n,m,n′,m′)P (n′,m′, t)+ (C.1)

S∑
i=1

δn,siδm,msi
(1− ρsi,msi

)A(si,msi ,n
′,m′)P (n′,m′, t)

]
,

(C.2)

where A(n,m,n′,m′) is the transition probability from state n′,m′ to state n,m, and

ρbi,mbi
, (0 < ρsi,msi

≤ 1) governs the probability of getting absorbed at defect bi,mbi

where ρsi,msi
= 1 represents perfect trapping efficiency at that site. To proceed, one

first considers the ρsi,msi
̸= 1 case.

Assuming
∑S

i=1 δn,siδm,msi
(1 − ρsi,msi

)A(si,msi ,n
′,m′)P (n′,m′, t), for any m, as

a given known function the formal solution of Eq. (C.2) is the convolution in space

and time of the absorbing propagator with the known terms [63] and proceeding in the
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z-domain (i.e., taking the generating function) we find

P̃ (a)(n,m,z) =
∑
n′

0

M∑
m′

0=1

P̃n′
0,m

′
0
(n,m, z)P (n,m, 0)

− z
∑
n′

0

M∑
m′

0=1

P̃n′
0,m

′
0
(n,m, z)

S∑
i=1

ρsi,msi

∑
n′

M∑
m′=1

A(si,msi ,n
′,m′)P̃ (n′,m′, z).

(C.3)

By rearranging, and substituting the z-transform of the second term on the RHS

of Eq. (C.2) into the second term of Eq. (C.3) the generating function of the formal

solution of Eq. (C.2) is found as

P̃ (a)(n,m, z) =
∑
n′

0

M∑
m′

0=1

[
P̃n′

0,m
′
0
(n,m, z)P (n,m, 0)

+
S∑

i=1

ρsi,msi

ρsi,msi
−1

P̃si,msi
(n,m,z)

[
P̃ (a)(s,msi ,z)−P (a)(s,msi , 0)

]]
. (C.4)

where we have used P̃n0,m0(n,m, z) to denote any valid (see the main text) defect free

propagator.

An initial condition spatially localised over site n0 is given by P (a)(n, 0) =

δn,n0

∑M
m=1 P

(a)(n,m, 0), where the contribution by each state is P (a)(n,m, 0) =

δm,m0αm0

[
(1− ρsi,msi

)δ(n0,m0)∈S + δ(n0,m0)/∈S
]
. Substitution of this initial condition into

Eq. (C.4) leads directly to

P̃ (a)
n0,m0

(n,m, z) = αm0P̃n0,m0(n,m, z)

+
S∑

i=1

ρsi,msi

ρsi,msi
− 1

αmsi
P̃si,msi

(n,m, z)P̃ (a)
n0,m0

(s,msi , z). (C.5)

and following the standard defect technique procedure (see the Supplementary Material

[41] for further discussion) i.e., solving via Cramer’s rule [63] and taking ρsi,msi
→ 1 for

all (si,msi), we find

P̃ (a)
n0,m0

(n,m, z) = αm0P̃n0,m0(n,m, z)−
S∑

i=1

αmsi
P̃s,msi

(n,m, z)
det[H(i)(n0,m0, z)]

det[H(z)]
,

(C.6)

where H(z)l,k = αmsk
P̃sk,msk

(sl,msl , z), H(z)k,k = αmsk
P̃sk,msk

(sk,msk , z)

and H(j)(n0,m0, z) is the same but with the jth column replaced with

αm0

[
P̃n0,m0(s1,ms1 , z), ..., P̃n0,m0(sS,msS , z)

]⊺
, i.e, they are all known propagators via

αm0P̃n0,m0(n,m, z) = αm0e
⊺
m · P̃n0(n, z) · em0 .

Since P̃
(a)
n0 (n, z) =

∑M
m=1

∑M
j=1 P̃

(a)
n0,m0j

(n,m, z), and P̃
(γ)
n0 (n, z) =∑M

m=1

∑M
j=1 αm0j

P̃
(γ)
n0,m0j

(n,m, z), where there is no αm0 multiplier on the absorb-

ing case as it is already implemented via the initial condition in Eq. (C.5), one may
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perform the double summation over both sides of Eq. (C.6) to arrive at Eq. (21) of the

main text.
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