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Abstract

Normal matrices, or matrices which commute with their adjoints, are of fundamental importance in pure and
applied mathematics. In this paper, we study a natural functional on the space of square complex matrices whose
global minimizers are normal matrices. We show that this functional, which we refer to as the non-normal energy,
has incredibly well-behaved gradient descent dynamics: despite it being non-convex, we show that the only critical
points of the non-normal energy are the normal matrices, and that its gradient descent trajectories fix matrix spectra
and preserve the subset of real matrices. We also show that, even when restricted to the subset of unit Frobenius norm
matrices, the gradient flow of the non-normal energy retains many of these useful properties. This is applied to prove
that low-dimensional homotopy groups of spaces of unit norm normal matrices vanish; for example, we show that
the space of d × d complex unit norm normal matrices is simply connected for all d ≥ 2. Finally, we consider the
related problem of balancing a weighted directed graph—that is, readjusting its edge weights so that the weighted in-
degree and out-degree is the same at each node. We adapt the non-normal energy to define another natural functional
whose global minima are balanced graphs and show that gradient descent of this functional always converges to a
balanced graph, while preserving graph spectra and realness of the weights. Our results were inspired by concepts
from symplectic geometry and Geometric Invariant Theory, but we mostly avoid invoking this machinery and our
proofs are generally self-contained.

1 Introduction
A matrix A is called normal if it commutes with its conjugate transpose: AA∗ = A∗A. The set of d×d complex normal
matrices, which we denote asNd ⊂Cd×d , is a fundamental object in linear algebra; for example, the Spectral Theorem
characterizes Nd as the set of unitarily diagonalizable matrices:

Nd = {UDU∗ ∣D ∈Dd ,U ∈U(d)},

whereDd ⊂Cd×d is the set of diagonal matrices and U(d) is the group of unitary matrices. Moreover, normal matrices
are especially well-behaved from a numerical analysis perspective. Indeed, the Bauer–Fike Theorem [5] implies that
the eigenvalues of a normal matrix are Lipschitz stable under perturbations, which motivates the approximation of
transfer matrices by normal matrices in classical control theory [13, 14]. In the literature on dynamics on complex
networks, it has also been observed that directed networks whose weighted adjacency matrices are not normal exhibit
distinctive dynamical features which can confound classical spectral methods [2,3,41]. Based on these considerations,
the closest normal matrix problem—that is, the problem of finding a closest point in Nd to an arbitrary matrix in
Cd×d—has been thoroughly studied [19, 22, 46, 48].

This paper studies Nd from a geometric perspective, with a view toward optimization tasks such as the closest
normal matrix problem. Our results are largely derived from the simple observation that Nd is the set of global
minima of the function

E ∶Cd×d →R, defined by E(A) = ∥AA∗−A∗A∥2, (1)

where ∥ ⋅ ∥ is the Frobenius norm. Despite the fact that the function E, which we refer to as the non-normal energy,
is not quasiconvex (see Remark 2.5), it is surprisingly well-behaved from an optimization perspective: we prove in
Theorem 2.3 that the only critical points of E are normal matrices, hence gradient descent along E gives an approximate
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solution to the closest normal matrix problem. We derive several related results, which are described in more detail
below in Section 1.1; in short, we show that gradient descent preserves interesting features of the initializing matrix,
such as its spectrum or the realness of its entries. We also consider the restriction of non-normal energy to the space
of matrices with unit Frobenius norm and show that its gradient flow is also quite well-behaved. This has immediate
topological implications, as we explain in more detail in Section 1.1.

The properties of the non-normal energy which we exploit in this paper are predictable from a high-level per-
spective: E is the squared norm of a momentum map associated to a Hamiltonian action of SU(d) on Cd×d (see
Proposition 2.2). This terminology comes from the field of symplectic geometry, where the behavior of functions of
this form is well-understood [34, 37]. Our work in this paper is heavily inspired by Mumford’s Geometric Invariant
Theory (GIT) [40] (see [50] for a nice introduction or [39] for applications to similar matrix optimization problems)
and Kirwan’s work relating GIT and symplectic geometry [34]; there are also strong connections to Ness’s paper [45].
One of our goals in writing this paper was to make our arguments—especially the fundamentally elementary ones—as
accessible as possible, so we have mostly avoided explicitly invoking GIT in what follows, but it was very much on
our minds as we were working on this paper. Connections to GIT and symplectic ideas are explained throughout.

As our results on Nd are rooted in powerful general theory, it should not be surprising that our techniques are
more broadly applicable. Indeed, we also apply our geometric approach to the graph balancing problem: given a
weighted, directed graph G, one wishes to determine a new set of edge weights which balances the graph in the sense
that the weighted in-degree is the same as the weighted out-degree at each node. If the latter condition is met, we
say that the graph is balanced. An example of our gradient flow-based approached to graph balancing, as is described
below, is shown in Figure 1. This problem is natural from an applications perspective; for example, in the case that
the underlying graph represents a road network and that the weights are roadway capacities, that the graph is balanced
corresponds to the feasibility of traffic flow through all intersections. As such, the graph balancing problem is well-
studied in the operations research literature [23, 30, 47].

Representing a graph G on d nodes by a matrix A ∈Cd×d containing the square roots of the entries of the weighted
adjacency matrix of G, the balanced graphs are exactly the global minima of the unbalanced energy function,

B ∶Cd×d →R, defined by A↦ ∥diag(AA∗−A∗A)∥2, (2)

where diag is the linear map which zeros out all off-diagonal entries. The unbalanced energy is similar in structure
to the non-normal energy—in fact, it is also the squared norm of a momentum map—and we derive similar results
regarding its gradient flow. We show in Theorem 4.1 that the critical points of B are exactly the balanced matrices and
refine this result to show that gradient flow preserves geometric features of the underlying graph. We describe these
results more precisely in the following subsection.

1.1 Main Contributions and Outline
We now summarize our main results in more detail.

• Gradient flow of non-normal energy: Section 2 considers properties of the non-normal energy (1), with a focus
on properties of its gradient descent dynamics in relation to normal matrices. Although the non-normal energy
is not convex (Remark 2.5), we show in Theorem 2.3 that the only critical points of E are normal matrices; i.e.,
its global minima. It follows easily that its gradient descent has a well-defined limiting normal matrix for every
choice of initial conditions; we additionally show in Theorem 2.6 that the gradient descent trajectories of the
non-normal entries preserve spectra and realness of matrix entries. We derive estimates of the distance traveled
under gradient flow, which give new interpretations of concepts in the literature on the closest normal matrix
problem (Corollary 2.8 and Proposition 2.10).

• Restriction to unit norm matrices and topological consequenes: In Section 3, we consider the restriction
of the non-normal energy to the space of matrices with unit Frobenius norm. We prove in Theorem 3.1 that if
gradient descent is initialized at a non-nilpotent unit norm matrix, then it converges to a normal matrix, and that
if the initialization has real entries then so does its limit. As an application, we show that the low-dimension
homotopy groups of the spaces of complex and real unit norm normal matrices vanish in Theorem 3.9 and
Theorem 3.13, respectively. In particular, the space of d ×d unit norm complex normal matrices is connected
for all d and simply connected for d ≥ 2, whereas the space of unit norm real normal matrices is connected for
d ≥ 2 and simply connected for d ≥ 3.
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Figure 1: Balancing a graph, starting at left with a random weighted, directed multigraph with 6 vertices and 15
edges and ending with a balanced graph with the same edges and vertices on the right. The thickness of each edge is
proportional to its weight.

• Graph balancing via unbalanced energy: The unbalanced energy (2) and its applications to graph balancing
are studied in Section 4. Theorem 4.1 shows that the only critical points of the unbalanced energy are its global
minima; that is, matrices representing balanced digraphs. Gradient descent converges to a balanced digraph
representation, and we show in Theorem 4.3 that it preserves spectra and realness of entries. Moreover, this
theorem shows that if the entries of a real matrix are positive then this property is also preserved, and that if an
entry in the initial matrix is zero then it stays zero along the gradient descent path—in terms of graphs, gradient
descent does not create any edges that were not present at initialization. We also consider the restriction of the
unbalanced energy to unit norm matrices (which represent digraphs with a fixed total edge capacity) and derive
similar useful properties of its gradient flow in Theorem 4.5. Finally, we observe in Theorem 4.10 that the
spaces of complex and real balanced unit norm matrices are homotopy equivalent to spaces of real and complex
normal matrices, respectively.

2 Normal Matrices and Optimization
Recall from the introduction that the non-normal energy E ∶Cd×d →R is the function

E(A) = ∥AA∗−A∗A∥2 = ∥[A,A∗]∥2.

Throughout this paper we use [⋅, ⋅] to denote the matrix commutator: [A,B] = AB−BA.
The goal of this section is to derive properties of the gradient descent dynamics of E. In particular, we will show

that we can normalize any square matrix by sending it to its limit under the negative gradient flow of E.

2.1 Background
The map E has a long history in the problem of finding the closest normal matrix to a given matrix, going back at least
to Henrici [27], who proved the following:

Proposition 2.1 (Henrici [27]). For any A ∈Cd×d ,

inf
M∈Nd

∥A−M∥ ≤ (d3−d
12

E(A))
1/4

.

In other words, the distance from A to Nd is bounded above by a quantity proportional to E(A)1/4. One virtue of
this estimate is that E(A) is relatively easy to compute.

We now give an interpretation of E in terms of symplectic geometry, where we consider Cd×d ≈Cd2
as a symplectic

manifold with its standard symplectic structure. This interpretation is not necessary for most of the paper, and is
mainly included for context. As such, we give a somewhat informal treatment and avoid explicit definitions of any of
the standard terminology from symplectic geometry. In our previous papers, we give short and elementary overviews
of the necessary concepts from symplectic geometry, with a view toward understanding similar spaces of structured
matrices (e.g., spaces consisting of unit norm tight frames); we refer the reader to [42, Section 2] and [43, Section 2.1]
for more in-depth exposition.
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Consider the action of the unitary group SU(d) on Cd×d by conjugation. Let su(d) denote the Lie algebra of
SU(d)—that is, the traceless, skew-Hermitian d×d matrices—and let su(d)∗ denote its dual. It will be convenient to
identify su(d)∗ with the space H0(d) of d×d traceless Hermitian matrices via the isomorphism

H0(d)→ su(d)∗

Y ↦ (X ↦ i
2

Tr(XY)).

Then we have the following interpretation of E. Throughout the paper, we use brackets to denote the matrix commu-
tator,

[A,B] ∶= AB−BA.

Proposition 2.2. The conjugation action of SU(d) on Cd×d is Hamiltonian, with momentum map

µ ∶Cd×d →H0(d) ≈ su(d)∗ (3)
A↦ [A,A∗]. (4)

The non-normal energy E is therefore the squared norm of a momentum map.

We omit the proof of Proposition 2.2, which is a straightforward calculation. In light of this result, one should
expect the non-normal energy to have nice properties—see, e.g., work of Kirwan [34] and Lerman [37]. However, the
specific properties of E (and related functions) that we derive below do not follow directly from the general theory.

2.2 Critical Points of Non-Normal Energy
Obviously, the global minima of the non-normal energy E are exactly the normal matrices. In fact, we now show that
these are the only critical points. Throughout the paper, we use ⟨⋅, ⋅⟩ to denote the real part of the Frobenius inner
product on Cd×d ,

⟨A,B⟩ ∶=Retr(B∗A),
and we use DF(A) to denote the derivative of a map F ∶Cd×d →R at A ∈Cd×d .

Theorem 2.3. The only critical points of E are the global minima; that is, the normal matrices.

Proof. We claim that
∇E(A) = −4[A,[A,A∗]]. (5)

Indeed, since E is the square of a momentum map (Proposition 2.2), this follows by general principles of symplectic
geometry—see, e.g., [34, Lemma 6.6] or [45, Lemma 6.1]. Let us additionally give an elementary derivation of this
fact. Writing E = N ○µ , where µ is the momentum map (3) and N ∶Cd×d →R is the norm-squared map N(A) = ∥A∥2,
we have, for any A,B ∈Cd×d ,

⟨∇E(A),B⟩ =DE(A)(B) =DN(µ(A))○Dµ(A)(B) = ⟨∇N(µ(A)),Dµ(A)(B)⟩ = ⟨Dµ(A)∨∇N(µ(A)),B⟩,

where we use Dµ(A)∨ to denote the adjoint of Dµ(A) with respect to the inner product ⟨⋅, ⋅⟩. It follows that

∇E(A) =Dµ(A)∨∇N(µ(A)).

A straightforward calculation then shows that the adjoint is given by the formula

Dµ(A)∨(C) = [C+C∗,A]. (6)

It is also easy to show that ∇N(C) = 2C, so we conclude that

∇E(A) = [2µ(A)+2µ(A)∗,A] = −4[A,[A,A∗]].

Therefore, we have a critical point of E exactly when

0 = [A,[A,A∗]];
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Figure 2: The graph of E restricted to the collection of real matrices of the form [0 x
y 0].

that is, when A and [A,A∗] commute. By Jacobson’s Lemma (stated below as Lemma 2.4), this implies that [A,A∗] is
nilpotent. But [A,A∗] is Hermitian, so it is nilpotent if and only if it is the zero matrix, which happens precisely when
A is normal.1

Lemma 2.4 (Jacobson [31]; see also [33]). If A and B are d × d matrices over a field of characteristic 0 and A
commutes with [A,B], then [A,B] is nilpotent.

Remark 2.5. Theorem 2.3 might lead one to suspect that E is convex, but it is not. To see this, consider the normal
matrices

A0 = [
0 1
−1 0] and A1 = [

0 1
1 0] .

Since they are normal, E(A0) = 0 = E(A1). However,

E((1− t)A0+ tA1) = 32t2(1− t)2 > 0

for all 0 < t < 1, so the interior of line segment connecting A0 and A1 consists entirely of non-normal matrices, and
hence E is not even quasiconvex, let alone convex. See Figure 2. Of course, we can pad A0 and A1 by zeros to get an
analogous example for any d > 2.

On the other hand, Theorem 2.3 together with a theorem of Craven and Glover [12] (see also [6]) shows that E is
an invex function; this class of functions was first defined by Hanson [24] and named by Craven [11].

2.3 Gradient Flow of Non-Normal Energy
Consider the negative gradient flow F ∶Cd×d × [0,∞)→Cd×d defined by

F(A0,0) = A0,
d
dt
F(A0,t) = −∇E(F(A0,t)). (7)

Since E is a real polynomial function on the real vector space Cd×d , the gradient flow cannot have limit cycles or other
bad behavior [53], so Theorem 2.3 implies that, for any A0 ∈ Cd×d , the limit A∞ ∶= limt→∞F(A0,t) of the gradient
flow is well-defined and normal.

From (5), we see that

∇E(A) = −4[A,[A,A∗]] = −4(A[A,A∗]− [A,A∗]A) = 4( d
dε
∣
ε=0

eε[A,A∗]Ae−ε[A,A∗]) = 4( d
dε
∣
ε=0

eε[A,A∗] ⋅A) . (8)

Since [A,A∗] is traceless, eε[A,A∗] ∈ SLd(C) for any ε , so the negative gradient flow lines F(A0,t) produced by any A0
stay within the conjugation orbit of A0. In particular, A∞ must have the same eigenvalues as A0. Since real matrices
are invariant under gradient flow, we have thus proved:

1The equivalence of A being normal and A commuting with [A,A∗] appears as #73 in Elsner and Ikramov’s list [16]; they attribute it to [38,
4.28.5].
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Theorem 2.6. For any A0 ∈ Cd×d , the matrix A∞ = lim
t→∞
F(A0,t) exists, is normal, and has the same eigenvalues as

A0. Moreover, if A0 is real, then so is A∞.

If A0 and A∞ are as in the theorem and λ1, . . . ,λd are their common eigenvalues, then the normality of A∞ implies
that

∥A∞∥2 =
d

∑
i=1
∣λi∣2.

This immediately implies the following corollary.

Corollary 2.7. If A0 is non-nilpotent, then its gradient flow (7) is bounded away from zero. On the other hand, if A0
is nilpotent, then the limit of gradient flow A∞ is the zero matrix.

A widely-used statistic for describing the extent to which a matrix is non-normal is the Henrici departure from
normality [27]. For a matrix A ∈Cd×d with eigenvalues λi, this is the quantity2

Hen(A) = ∥A∥2−
d

∑
i=1
∣λi∣2.

Corollary 2.8. Let A0 ∈Cd×d and let A∞ be its limit under the gradient flow (7). The change in scale along gradient
flow is equal to Henrici departure from normality,

∥A0∥2−∥A∞∥2 =Hen(A0).

2.4 Bound on the Distance to the Limit of Gradient Flow
We now show that A∞ is not too much further from A0 than the closest normal matrix, despite the fact that A∞
preserves features (spectrum, realness) that the closest normal matrix may not. We do so by a standard argument
starting from a Łojasiewicz inequality.

Since E is the squared norm of a momentum map (Proposition 2.2), a result of Fisher [17] gives us the desired
inequality:3

Proposition 2.9 (Fisher [17, Theorem 4.7]). There exist constants ε,c > 0 so that for all A ∈Cd×d with E(A) < ε ,

∥∇E(A)∥ ≥ cE(A)3/4.

Now we follow a standard argument (see, e.g., Lerman [37]) to get bounds on the distance from A0 to A∞. Certainly
this distance is no larger than the length of the gradient flow path:

∥A0−A∞∥ ≤ ∫
∞

0
∥ d

dt
F(A0,t)∥dt = ∫

∞

0
∥∇E(F(A0,t))∥dt. (9)

So long as E(F(A0,t)) < ε ,

− d
dt
(E(F(A0,t)))1/4 = −

1
4

E(F(A0,t))−3/4DE(F(A0,t)))(−∇E(F(A0,t)))

= 1
4

E(F(A0,t))−3/4∥∇E(F(A0,t))∥2 ≥
c
4
∥∇E(F(A0,t))∥,

where the last inequality follows since Proposition 2.9 implies E(F(A0,t))−3/4∥∇E(F(A0,t))∥ ≥ c.
Combining this with (9) yields:

∥A0−A∞∥ ≤ ∫
∞

0
∥∇E(F(A0,t))∥dt ≤ −4

c ∫
∞

0

d
dt
(E(F(A0,t)))1/4dt = 4

c
E(A0)1/4.

Therefore, we have proved:
2Note that some authors, including Henrici, define the departure from normality to be the square root of this quantity.
3Similar results appear in Neeman [44, Theorem A.1], Woodward [52, Lemma B.0.6], and Lerman [37]; both Woodward and Lerman credit

Duistermaat with proving a version of this result in unpublished work, as do Mumford, Fogarty, and Kirwan [40, p. 166, footnote 58].
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Figure 3: Left: We generated 10,000 initial matrices A0 ∈C20×20 by letting the real and imaginary parts of each entry be
drawn from a standard Gaussian and then normalizing so that A0 has Frobenius norm 1. We computed the closest nor-
mal matrix Â using Ruhe’s algorithm [48]4and A∞ = lim

t→∞
F(A0,t) using a very simple gradient descent with fixed step

sizes, and then plotted the point (∥Â−A0∥2,∥A∞−A0∥2). The ratios ∥A∞−A0∥
2

∥Â−A0∥2
were all in the interval [1.028,1.161].

Center: The same computations and visualization, except the initial matrices A0 were all 20× 20 real matrices. In

this case the ∥A∞−A0∥
2

∥Â−A0∥2
were all in the interval [1.023,1.196]. Right: The same computations and visualization, but

with nearly normal initial matrices A0 ∈C20×20. More precisely, we generated B ∈C20×20 by normalizing a matrix of
standard complex Gaussians, found the closest normal matrix B̂, then added an N (0,0.0075) random variate to the
real and complex parts of each entry of B̂, and let A0 be the normalization of this matrix, so that A0 has Frobenius

norm 1 and is already close to being normal. In this case the ∥A∞−A0∥
2

∥Â−A0∥2
were all in the interval [1.009,1.036]. In all

three plots, the solid line has slope 1 and the dashed line has slope 1.3. Code for these experiments is available on
GitHub [49].

Proposition 2.10. There exist constants ε,c > 0 so that, if E(A0) < ε , then

∥A0−A∞∥ ≤
4
c

E(A0)1/4.

Comparing to the Henrici estimate (Proposition 2.1), we see that, at least when E(A0) is small, the normal matrix
A∞ we get by doing gradient descent is not much further from A0 than the closest normal matrix is, even though A∞
has the same spectrum as A0 and is real if A0 is.

Remark 2.11. The closest normal matrix to a given A0 ∈Cd×d can computed explicitly by Ruhe’s algorithm [48], but
the actual closest normal matrix does not have the same spectrum as A0 and may be complex even if A0 is real (see
discussion in Chu [10] and Guglielmi and Scalone [22]). This suggests that the gradient descent approach to finding
a nearby normal matrix may be useful in situations where one is interested in preserving structural properties of the
initialization. These observations are born out by numerical experiments, and indeed A∞ gets relatively closer to the
closest normal matrix when A0 is almost normal to begin with: see Figure 3.

3 Unit Norm Normal Matrices
We have seen in Corollary 2.8 that the gradient flow of E does not preserve the Frobenius norm. If we want a flow that
preserves the norm, we should consider the restriction of E to the space Ud of d ×d matrices with Frobenius norm 1.
Geometrically, Ud is just the (2d2−1)-dimensional unit sphere in Cd×d .

Let E ∶ Ud →R be the restriction of E to Ud and let F ∶ Ud × [0,∞)→ Ud be the associated gradient flow; i.e.,

F(A0,0) = A0
d
dt
F(A0,t) = −gradE(F(A0,t)),

where grad is the Riemannian gradient on Ud .

4Note that, as Higham points out [28], there is a missing minus sign before the determinant in the definition of θ in step 2 of the published
version of Ruhe’s Algorithm J.
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3.1 Gradient Flow of Restricted Non-Normal Energy
The normal matrices in Ud are exactly the global minima of E; the goal is to show that almost every matrix in Ud flows
to a normal matrix under the gradient flow:

Theorem 3.1. For any non-nilpotent A0 ∈ Ud , the matrix A∞ ∶= lim
t→∞
F(A0,t) exists, is normal, and has Frobenius

norm 1. Moreover, if A0 is real, then so is A∞.

Remark 3.2. In GIT terms, we are looking at (a linearization of) the projective adjoint action of SL(d) on P(sl(d)∗),
and the fact that we have to assume A0 is non-nilpotent in Theorem 3.1 is equivalent to the fact that the non-nilpotent
matrices are exactly the semi-stable points with respect to this action [35] (see [40, Proposition 4.4]).

Since E is a polynomial function defined on a real-analytic submanifold of Euclidean space, it will have a Łojasiewicz
exponent (cf. [7, Corollary 4.2]), and hence the gradient flow will have a single limit point [53], proving the existence
of A∞.

Since the non-nilpotent matrices form an open, dense subset of Ud , Theorem 3.1 implies that almost every member
of any neighborhood of a non-minimizing critical point will flow to a normal matrix; that is, a global minimum of E.
Hence, the non-minimizing critical points of E cannot be basins of attraction. Since E has a Łojasiewicz exponent, an
argument analogous to [1, Theorem 3] shows that all local minima must be basins of attraction. Hence we have the
following corollary.

Corollary 3.3. Every local minimum of E must be a global minimum; that is, a normal matrix.

We have already shown that the gradient flow of E converges to a single limit point A∞. The remainder of this
subsection will be devoted to proving the remaining statements of Theorem 3.1 through several supporting results.
The strategy for proving the rest of the first sentence of Theorem 3.1 is to show that the gradient flow preserves non-
nilpotency, and that all non-minimizing critical points must be nilpotent. As with Theorem 2.6, the last sentence will
follow because the real submanifold of Ud is invariant under the gradient flow.

Proposition 3.4. The intrinsic gradient of E on Ud is

gradE(A) = −4([A,[A,A∗]]+E(A)A).

Proof. Geometrically, gradE(A) is the projection of ∇E(A) onto the tangent space TAUd = span({A})�:

gradE(A) =∇E(A)− ⟨∇E(A),A⟩A.

We know from (5) that ∇E(A) = −4[A,[A,A∗]], so the fact that [A,A∗] is Hermitian implies

⟨∇E(A),A⟩ = −4Retr([A,[A,A∗]]∗A) = −4Retr([A,A∗]A∗A−A∗[A,A∗]A)
= 4Retr([A,A∗][A,A∗]) = 4∥[A,A∗]∥2 = 4E(A) (10)

by the linearity and cyclic invariance of trace, and the result follows.

Since [A,A∗] is traceless, notice that

gradE(A) = 4
d
dt
∣
t=0

e−tE(A)et[A,A∗]Ae−t[A,A∗] = 4
d
dt
∣
t=0
(et[A,A∗],e−tE(A)) ⋅A

is tangent to the SLd(C)×C×-orbit of A, where the action of SLd(C)×C× on Cd×d is defined by (g,z) ⋅A ∶= zgAg−1.
We could use this to show that the negative gradient flow preserves non-nilpotency, but extending to the limit poses

challenges, so we adopt a different approach. For A ∈Cd×d , define

s(A) ∶=
d

∑
i=1
∣λi∣2,

where λ1, . . . ,λd are the eigenvalues of A. The nilpotent matrices are precisely the vanishing locus of s.
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Lemma 3.5. For any A ∈ Ud ,
⟨−gradE(A),grads(A)⟩ = 8s(A)E(A),

where grads(A) is the intrinsic gradient of s in Ud .

Proof. Note, first of all, that ⟨A,grads(A)⟩ = 0, since grads(A) ∈ TAUd = span({A})�. Therefore,

⟨−gradE(A),grads(A)⟩ = ⟨−∇E(A)+4E(A)A,grads(A)⟩
= ⟨−∇E(A),grads(A)⟩
= ⟨−∇E(A),∇s(A)− ⟨∇s(A),A⟩A⟩
= −⟨∇E(A),∇s(A)⟩+ ⟨∇s(A),A⟩⟨∇E(A),A⟩
= −⟨∇E(A),∇s(A)⟩+4⟨∇s(A),A⟩E(A),

using (10) in the first and last equalities.
We know from (8) and the following sentence that ∇E(A) lies in the conjugation orbit of A. But this means that

∇E(A) must be tangent to the level set of s passing through A, since conjugation preserves eigenvalues, and hence
fixes s. Therefore, ⟨∇E(A),∇s(A)⟩ = 0 and we have shown that

⟨−gradE(A),grads(A)⟩ = 4⟨∇s(A),A⟩E(A).

By definition of the gradient, the inner product is a directional derivative,

⟨∇s(A),A⟩ =Ds(A)(A) = lim
t→0

s(A+ tA)− s(A)
t

= lim
t→0

(1+ t)2s(A)− s(A)
t

= 2s(A),

completing the proof.

Proposition 3.6. If A0 ∈ Ud is non-nilpotent, then so is At ∶=F(A0,t) for all t ∈ [0,∞) and so is A∞ ∶= lim
t→∞
F(A0,t).

Proof. For any A ∈ Ud , Lemma 3.5 implies that

⟨−gradE(A),grads(A)⟩ = 8s(A)E(A) ≥ 0.

Therefore, s(A) must be non-decreasing along the negative gradient flow lines of E, so s(At) ≥ s(A0) > 0 for all
t ∈ [0,∞), and in the limit we also have s(A∞) ≥ s(A0) > 0. Hence, At and A∞ must be non-nilpotent.

In other words, gradient flow preserves non-nilpotency, including in the limit, so we have completed the first step
in our strategy for proving Theorem 3.1. We now proceed with the second step.

Proposition 3.7. All non-minimizing critical points of E are nilpotent.

Proof. By Proposition 3.4, A is a critical point of E if and only if

0 = [A,[A,A∗]]+E(A)A.

If A is a non-minimizing critical point, then A is not normal, so E(A) ≠ 0 and

A = − 1
E(A)

[A,[A,A∗]].

In other words, A = [A,B] with B = − 1
E(A)
[A,A∗]. But then A certainly commutes with [A,B], so Jacobson’s Lemma

(Lemma 2.4) implies that [A,B] is nilpotent. Since A = [A,B], we conclude that A is nilpotent.

Proof of Theorem 3.1. If A0 ∈ Ud is not nilpotent, then the limit A∞ = lim
t→∞
F(A0,t) exists and, by Proposition 3.6,

is not nilpotent. A∞ must be a critical point of E and, by Proposition 3.7, must be a global minimum, and hence
normal.

It is possible to prove an analogous statement to Proposition 2.10 in this setting as well, so gradient descent of E,
even though it preserves norms and (when applicable) realness, produces a limiting normal matrix A∞ which is not
much further from A0 than the closest normal matrix. Again, this conclusion is supported by numerical experiments:
see Figure 4
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Figure 4: This is the same experimental setup as in Figure 3, except that now A∞ = lim
t→∞
F(A0,t). Left: A0 ∈C20×20;

all ∥A∞−A0∥
2

∥Â−A0∥
2 ∈ [1.060,1.198]. Center: A0 ∈ R20×20; all ∥A∞−A0∥

2

∥Â−A0∥
2 ∈ [1.046,1.253]. Right: A0 ∈ C20×20 is a small

perturbation of a normal matrix; all ∥A∞−A0∥
2

∥Â−A0∥
2 ∈ [1.010,1.031]. In all three plots, the solid line has slope 1 and the

dashed line has slope 1.3. Code for these experiments is available on GitHub [49].

3.2 Topology of Unit Norm Normal Matrices
The space of normal matrices Nd is a cone in Cd×d and hence topologically trivial. However, the space UNd can
potentially have interesting topology. Friedland [18] argues that UNd is irreducible and the quasi-variety of its smooth
points is connected. However, this is not quite enough to imply that UNd is connected, since irreducible real varieties
can have connected components consisting entirely of non-smooth points (see, e.g., [9, Figure 2]). In this subsection,
we show that UNd is connected and, in fact, that many of its low-dimensional homotopy groups vanish.

The key fact that we use when studying the topology of UNd is that it is closely related to the topology of the
space of all non-nilpotent matrices in Cd×d . For the rest of this subsection, we use Pd to denote the space of nilpotent
matrices in Cd×d and we let Md = Cd×d ∖Pd . The relationship between the topologies of UNd and Md is made
precise by the following result.

Corollary 3.8. The space UNd is a strong deformation retract ofMd .

Proof. As the function µ ∶A↦ ∥[A,A∗]∥2 is the norm squared of a momentum map (Proposition 2.2), with set of critical
points exactly equal toNd (Theorem 2.3), it follows by a more general result of Duistermaat (see the expository work
of Lerman [37]) that gradient descent gives a strong deformation retract of Cd×d onto Nd . One can also deduce this
from the work above: by Theorem 2.6, we have a well-defined function F ∶Cd×d × [0,∞]→Nd induced by gradient
descent, which obviously fixes Nd , and the arguments in [37] show that the map is continous. Moreover, this restricts
to a strong deformation retract Md × [0,∞]→ Nd ∖ {0}, by Corollary 2.7. As Nd ∖ {0} is a cone over UNd , the
former also strong deformation retracts onto the latter. Concatenating these two strong deformation retracts gives a
strong deformation retractMd → UNd .

In particular, UNd is homotopy equivalent toMd , so our goal of characterizing the topology of the former space
reduces to understanding that of the latter space. From such an understanding, we will deduce the main theorem of
this subsection, stated below. In the following, we use πk(X ,x0) to denote the kth homotopy group of a space X
with respect to a basepoint x0 ∈ X , and write πk(X ) in the case that X is path connected (in which case the result
is independent of basepoint, up to isomorphism)—we refer the reader to [25, Chapter 4] for basic terminology and
properties. We say that X is k-connected if πk(X ,x0) is the trivial group.

Theorem 3.9. The space UNd is k-connected for all k ≤ 2d−2.

Remark 3.10. In particular, UNd is connected for all d. Moreover, UNd is simply connected (i.e. π1(UNd) is also
trivial) for all d ≥ 2.

The proof will use two auxiliary topological results. The first follows from more general results on nilpotent
cones, which are classical. We use [32] as a general reference and explain how to deduce this particular result from
the general results therein.

Lemma 3.11. The space Pd of nilpotent matrices in Cd×d is an irreducible variety of complex dimension d(d−1).
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Proof. We apply the general nilpotent cone theory to the Lie group of invertible matrices GLd(C), in which case the
nilpotent cone is exactly Pd . Then the fact that Pd is an irreducible variety is [32, Lemma 6.2]. By [32, Theorem
6.4], the dimension of Pd is twice the dimension of the maximal unipotent subalgebra of the Lie algebra Cd×d , namely
the subalgebra of strictly upper triangular matrices (i.e., with zeros on the diagonal). This subalgebra has complex
dimension 1+2+⋯+(d−1) = 1

2 d(d−1).

The following is a standard application of transversality (see [36, Chapter 6] and [29, Chapter 3]). Special cases
of the result appear in, e.g., [20, Theorem 2.3] and [15, Theorem 1.1.4]. We give a proof sketch here for the sake of
convenience.

Lemma 3.12. Let X be a connected smooth manifold and let Y ⊂X be a union of smooth submanifolds, Y =Y1∪⋯∪
Yℓ, such that each Y j has codimension greater than or equal to m in X . Then πk(X ∖Y) is isomorphic to πk(X ) for
all k ≤m−2.

Proof. We will show that the inclusion map ι ∶X ∖Y ↪X induces a bijection between homotopy groups.
To establish surjectivity, we will show that any map f ∶ Sk →X is homotopic to a map Sk →X ∖Y . To do so, we

apply the Whitney Approximation Theorem [36, Theorem 6.26] to homotope f to a smooth map. By the version of
the corollary of the Transversality Theorem given in [29, Theorem 2.5], together with the argument in the proof of the
Transversality Homotopy Theorem [36, Theorem 6.36], the resulting map is then homotopic to a map Sk →X which
is transverse to each submanifold Y j. By the codimensionality constraint, this is only possible if the image of Sk is
disjoint from each Y j. This shows that f is homotopic to a map whose image is disjoint from Y .

Next, we show that the map induced by ι is injective. That is, if maps f0, f1 ∶ Sk →X are homotopic, and, without
loss of generality (by the above), f0(Sk)∩Y = f1(Sk)∩Y = ∅, then they are homotopic in X ∖Y . This is done by
applying similar arguments to the above to the homotopy f ∶ Sk×[0,1]→X ; in particular, this map may be homotoped
without destroying transversality at the boundary Sk ×{0,1} [29, Ch. 3, Theorem 2.1].

Proof of Theorem 3.9. By Corollary 3.8, it suffices to show thatMd is k-connected for all 2d −2. By a theorem of
Whitney, the algebraic variety Pd can be expressed as a disjoint union of smooth manifolds [51, Theorem 2], and, by
Lemma 3.11, each of these has real codimension at least

dim(Cd×d)−dim(Pd) = 2d2−2d(d−1) = 2d.

The theorem then follows from Lemma 3.12, since Cd×d is k-connected for all k.

3.3 Topology of Real Unit Norm Normal Matrices
Let UNR

d denote the space of real, normal d×d matrices with Frobenius norm equal to one (so UNR
d ⊂UNd). Adapting

the arguments from the previous subsection, we will show the following.

Theorem 3.13. The space UNR
d is k-connected for all k ≤ d−2.

Remark 3.14. It follows from the theorem that UNR
d is path connected for d ≥ 2 and simply connected for d ≥ 3.

These results are tight:

• UNR
1 ≈ {±1} is not path connected.

• UNR
2 is not simply connected. This is illustrated in Figure 5.

The proof of the theorem follows the same general steps as that of Theorem 3.9. Let PR
d denote the d × d real

nilpotent matrices, and letMR
d =Rd×d ∖PR

d denote the set of non-nilpotent matrices. By the same arguments used in
the previous subsection, MR

d deformation retracts onto UNR
d , so it suffices to prove thatMR

d is k-connected for all
k ≤ d−2.

The main difference in the real case is that an analogue of Lemma 3.11 does not follow from general facts of nilpo-
tent cones described in [32], as the results therein are valid over algebraically closed fields. We obtain a decomposition
of PR

d in analogy with the Whitney decomposition used in the proof of Theorem 3.9 from results of [26] and [8].

Lemma 3.15. The set of nilpotent matrices PR
d is a union of smooth submanifolds of Rd×d , each of which has codi-

mension at least d.
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Figure 5: Consider the space UR
2 of 2×2 real matrices with Frobenius norm 1. Since UR

2 is a copy of the 3-sphere, we
can stereographically project to R3. The image under this projection of the unit-norm nilpotent matrices is shown in
blue, and the image of UNR

2 is shown in pink. Specifically, the pink plane (which is the y = z plane) is the image of

the symmetric matrices and the pink loop is the image of the normal matrices of the form [ a b
−b a].

Proof. It follows from a general theory of real reductive Lie group actions developed in [26] that Rd×d ∖{0} decom-
poses as a union of GLd(R)-invariant (with respect to the conjugation action) smooth submanifolds S0 ∪S1 ∪⋯∪Sk,
where S0 is exactly the open submanifold MR

d —see also [8, Section 1] for a short exposition of these ideas. It is
shown in [8, Section 1.2] that (for the specific example of the conjugation action on Rd×d) the remaining submanifolds
Si, i > 0, are parameterized by Jordan canonical forms of nilpotent matrices. That is, fixing such a Jordan matrix J, we
consider the corresponding set of nilpotent matrices as the homogeneous space GLd(R)/stab(J), where stab(J) is the
stabilizer of J under the conjugation action. To complete the proof, it suffices to show that the dimension of such a
homogeneous space is at most d2−d, i.e., to show that the stabilizer of any such Jordan matrix is at least dimension-d.

Let us now establish the claim made above. A nilpotent Jordan matrix J necessarily has all zeros on its diagonal,
and is therefore characterized by the pattern of ones in the super diagonal (i.e., by the size of its Jordan blocks). An
invertible real matrix A = (ai j)di, j=1 lies in the stabilizer of J if and only if AJ = JA. This matrix equation gives several
constraints in the entries of A, and the number of independent constraints determines the dimension of the stabilizer.

In particular, since we aim to determine a lower bound on codimension, it suffices to consider the Jordan matrix
which produces the largest number of constraints: that is, when J is the matrix whose superdiagonal consists of all
ones (i.e., it has a single Jordan block). It is a standard fact (see, e.g., [21, Theorem 9.1.1]) that, for this J, solutions of
the equation AJ = JA must be upper triangular Toeplitz matrices. In other words, elements of stab(J) are of the form

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 a2 a3 ⋯ ad−1 ad
0 a1 a2 ⋯ ad−2 ad−1
0 0 a1 ⋯ ad−3 ad−2
...

...
...

. . .
...

...
0 0 0 ⋯ a1 a2
0 0 0 ⋯ 0 a1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Clearly, then, dim(stab(J)) = d. This implies that the codimension of the associated submanifold is d. Since this is
the submanifold of smallest codimension, this completes the proof.

Proof of Theorem 3.13. By the discussion above, it suffices to prove thatMR
d is k-connected for all k ≤ d−2. In light

of Lemma 3.15, the same transversality argument as was used in the proof of Theorem 3.9 can be used here.
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4 Balanced Matrices and Weighted Digraphs
As was described in the introduction, the techniques and results that we have developed for normal matrices can
be adapted to the setting of weighted digraphs. The naturality of such an application follows from the following
observation. Notice that the diagonal entries of µ(A) = [A,A∗] are of the form ∥Ai∥2−∥Ai∥2, where Ai is the ith row of
A and Ai is the ith column. Hence, if A ∈Cd×d is normal, then ∥Ai∥2 = ∥Ai∥2 for all i = 1, . . . ,d. This suggests a certain
balancing condition, as we expand on below.

Suppose that G is a weighted, directed graph and Â is its associated adjacency matrix; that is, the (i, j) entry of Â
is the (non-negative) weight of the directed edge from vertex i to vertex j if such an edge exists, and zero if there is no
such edge. In particular, the entries of Â are non-negative real numbers. If A is the matrix whose entries are the square
roots of the entries of Â, then ∥Ai∥2 = ∥Ai∥2 says that the ith vertex vi of G is balanced: the sum of the weights of the
edges coming into vi equals the sum of the weights of the edges leaving vi. In other words, every real normal matrix
A corresponds to a balanced, weighted, directed (multi-)graph5 G by interpreting the component-wise square of A as
the adjacency matrix of G. Moreover, the gradient descent procedures described in the previous sections give ways of
balancing a given weighted, directed graph.

However, balancing a graph by gradient descent of E or E has some undesirable features. First, the condition that
A is normal is stronger than the condition that G is balanced;6 second, the gradient flow is not guaranteed to ensure
that a zero entry in the adjacency matrix will stay zero, so the limiting balanced graph may have sprouted new edges
(and even loop edges) not present in the initial graph.

For applications to balancing graphs, then, the natural energy to consider is not the non-normal energy E, but rather
the unbalanced energy B ∶Cd×d →R defined by

B(A) = ∥diag(AA∗−A∗A)∥2 =
d

∑
i=1
(∥Ai∥2−∥Ai∥2)2 ,

where we use Ai for the ith row of A and Ai for the ith column. We will say that A is balanced if B(A) = 0.
We now describe this function from the perspective of symplectic geometry and GIT. Following a general theme

of the paper, these observations are not really essential in what follows, but they provided inspiration, especially in
light of Kirwan’s fundamental work [34]. Let DSU(d) be the subgroup of SU(d) consisting of diagonal matrices.
Then DSU(d) ≈U(1)d−1 is the standard maximal torus of SU(d). The restriction of the conjugation action of SU(d)
on Cd×d gives a Hamiltonian action of DSU(d) on Cd×d with momentum map µ∆ ∶ Cd×d → Rd given by composing
the momentum map µ of the SU(d) action with orthogonal projection to dsu(d)∗ ⊂ su(d)∗ (see, e.g., [4, Proposi-
tion III.1.10]). Under the identification of su(d)∗ with the traceless Hermitian matrices, dsu(d)∗ corresponds to the
traceless, diagonal, real matrices, so we have

µ∆(A) = diag(µ(A)) = diag([A,A∗])

and B(A) = ∥µ∆(A)∥2. The GIT version of the foregoing is that the diagonal subgroup DSLd(C) ⊂ SLd(C) has an
algebraic action by conjugation on Cd×d (or, in Section 4.2, on P(Cd×d)).

4.1 Balancing Matrices by Gradient Descent
As in the case of E, all critical points of B are global minima:

Theorem 4.1. The only critical points of B are the global minima; that is, the balanced matrices.

Proof. We first show that the gradient of the balanced energy is given by

∇B(A) = −4[A,diag([A,A∗])]. (11)

We write B =N ○diag○µ , where µ is the momentum map (3), we consider the diagonalization operator as a linear map
diag ∶Cd×d →Cd×d , and N is the norm-squared map, as in the proof of Theorem 2.3. Following the logic of that proof,
we then have that

∇B(A) =Dµ(A)∨diag∨∇N(diag○µ(A)),
5If A has nonzero entries on its diagonal, the resulting graph will have loop edges at the corresponding vertices.
6For example, in the case when all weights are 1, normality of A implies that every pair of vertices (not necessarily distinct) has the same number

of common out-neighbors as common in-neighbors.
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where the superscripts once again denote adjoints with respect to ⟨⋅, ⋅⟩. It is not hard to show that the map diag is
self-adjoint and idempotent. Then

∇B(A) =Dµ(A)∨diag(2 ⋅diag○µ(A)) = 2Dµ(A)∨diag(µ(A))
= 2[diag(µ(A))+diag(µ(A))∗,A] = −4[A,diag([A,A∗])].

The above shows that we have a critical point of B exactly when

0 = [A,diag([A,A∗])].

Since the entries of [A,diag([A,A∗])] are of the form

ai j ((∥Ai∥2−∥Ai∥2)−(∥A j∥2−∥A j∥2)) , (12)

this means that ∥Ai∥2−∥Ai∥2 = ∥A j∥2−∥A j∥2 for all i and j such that ai j ≠ 0.
In other words, A is a critical point of B if and only if ∥Ai∥2−∥Ai∥2 is independent of i. However, since

d

∑
i=1
(∥Ai∥2−∥Ai∥2) =

d

∑
i=1
∥Ai∥2−

d

∑
i=1
∥Ai∥2 = ∥A∥2−∥A∥2 = 0,

this can only happen if all ∥Ai∥2−∥Ai∥2 = 0; that is, if A is balanced.

Remark 4.2. Theorem 4.1 shows that B is an invex function, but considering the values of B along the straight-line
path between the matrices A0 and A1 from Remark 2.5 shows that B is not quasiconvex.

As in the case of E, we can find global minima of B by gradient descent. Specifically, let F ∶Cd×d ×[0,∞)→Cd×d

be the negative gradient flow of B:

F (A0,0) = A0
d
dt

F (A0,t) = −∇B(F (A0,t)).

Since B is a real polynomial function on Cd×d , Theorem 4.1 implies that limt→∞F (A0,t) is always well-defined and
normal. Since the real matrices stay real under gradient flow, this limit will be real whenever A0 is.

Moreover,

∇B(A) = −4[A,diag([A,A∗])] = 4( d
dε
∣
ε=0

eε diag([A,A∗]) ⋅A) (13)

is tangent to the orbit of the diagonal subgroup DSLd(C) ≤ SLd(C) acting by conjugation on Cd×d . In particular,
flowing A0 by the gradient flow of B preserves not just the eigenvalues of A0, but also all principal minors of A0,
including the diagonal entries of A0.

From the expression (12) for the entries of − 1
4∇B(A) we see that, if there is t0 ≥ 0 so that the (i, j) entry in

F (A0,t0) vanishes, then the (i, j) entry of F (A0,t) will vanish for all t ≥ t0. In graph terms, the gradient flow of B
cannot sprout new edges in the graph. This also means that if A0 is real, its entries cannot change sign under gradient
descent of B. Thus, we have proved:

Theorem 4.3. For any A0 ∈ Cd×d , the matrix A∞ ∶= lim
t→∞

F (A0,t) exists, is balanced, has the same eigenvalues and

principal minors as A0, and has zero entries wherever A0 does. If A0 is real, then so is A∞, and if A0 has all non-
negative entries, then so does A∞.

When we take A0 to be the entrywise square root of the adjacency matrix of some weighted, directed graph
G0 = (V0,E0,w0), then we can sensibly interpret A∞ = lim

t→∞
F (A0,t) as the entrywise square root of the adjacency

matrix of some balanced, weighted, directed graph G∞ = (V∞,E∞,w∞) with V∞ = V0 and E∞ ⊆ E0. In other words,
gradient descent of B balances G0 without introducing any new edges.

Remark 4.4. An important consideration in the applied literature on graph balancing is that algorithms are local,
in the sense that iterative updates are only performed based on node-level information [23, 30, 47]. This is due both
to practical constraints on data acquisition, as well as the need for parallelizability in computation. Observe from
the structure of the gradient of the unbalanced energy that the gradient descent approach to graph balancing is not
local in the sense described above, but is semi-local in the sense that updates only depend on edge-level information.
While this paper is concerned with theory and makes no claims to efficiency or practicality of the algorithm, the useful
properties of the gradient flow of B suggest that it may be interesting to explore its viability in real world applications.
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In the case of gradient descent of E, we saw that all nilpotent matrices flowed to the zero matrix. We see the same
phenomenon here: if G0 is a weighted, directed, acyclic graph (DAG), then its adjacency matrix is nilpotent, as is the
entrywise square root A0. The gradient flow F (A0,t) will limit to the zero matrix, which makes sense: the only way
to balance a weighted DAG is by driving all the weights to zero.

4.2 Preserving Weights
Weighted DAGs provide an extreme example of the general phenomenon that gradient descent of B decreases the
Frobenius norm. In graph terms, if A0 is the entrywise square root of the adjacency matrix of a weighted, directed
graph G0, then the squared Frobenius norm

∥A0∥2 =∑
i, j
∣ai j ∣2 =∑

i, j
a2

i j

is precisely the sum of the weights in G0. If the weights correspond to, e.g., mass traversing between nodes in a
network, then it may not make sense to balance the flows in the network by reducing the total mass in the system.

In order to preserve the sum of weights on G0, we consider B ∶ Ud →R, the restriction of B to Ud , and its gradient
descent F ∶ Ud × [0,∞)→ Ud given by

F (A0,0) = A0
d
dt

F (A0,t) = −gradB(F (A0,t)).

Theorem 4.5. For any non-nilpotent A0 ∈ Ud , the matrix A∞ ∶= lim
t→∞

F (A0,t) exists, is balanced, has Frobenius norm
1, and has zero entries wherever A0 does. If A0 is real, so is A∞, and if A0 has all non-negative entries, then so does
A∞.

In graph terms, if A0 is the entrywise square root of an adjacency matrix for G0 with total weight 1, then A∞ is
the entrywise square root of the adjacency matrix for a balanced graph G∞ with total weight 1 whose vertices are the
same as the vertices of G0 and whose edges are a subset of the edges of G0. That is, gradient descent of B balances G0
without introducing any new edges and without losing any overall weight.

The strategy for proving Theorem 4.5 is the same as for Theorem 3.1. The existence of a unique limit point A∞
follows from the fact that B is a polynomial function on Ud , and hence has a Łojasiewicz exponent. The bulk of the
argument is in showing that the gradient flow preserves non-nilpotency and that the non-minizing critical points are
nilpotent. The rest of the theorem will follow from the structure of gradB and the fact that the real submanifold of Ud
is invariant under gradient flow.

First, we compute the intrinsic gradient of B, which follows the same pattern as gradE:

Proposition 4.6. The intrinsic gradient of B on Ud is

gradB(A) = −4([A,diag([A,A∗])]+B(A)A).

Proof. We know that
gradB(A) =∇B(A)− ⟨∇B(A),A⟩A,

so the key is to use (11) and the fact that the diagonal of [A,A∗] is real to compute

⟨∇B(A),A⟩ = −4Retr([A,diag([A,A∗])]∗A) = −4Retr(diag([A,A∗])A∗A−A∗diag([A,A∗])A)
= 4Retr(diag([A,A∗])[A,A∗]) = 4Retr(diag([A,A∗])diag([A,A∗])) = 4∥diag([A,A∗])∥2 = 4B(A)

using the linearity and cyclic invariance of trace.

Each entry of gradB(A) is a scalar multiple of the corresponding entry of A, so the fact that the negative gradient
flow F preserves zero entries and cannot change the sign of real entries follows immediately.

Next, we prove an analog of Lemma 3.5. Recall that s(A) =∑ ∣λi∣2 is the sum of the squares of the absolute values
of the eigenvalues of A.

Lemma 4.7. For any A ∈ Ud ,
⟨−gradB(A),grads(A)⟩ = 8s(A)B(A).
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Figure 6: Balancing a larger graph by the flow F , with A0 on the left and A∞ = lim
t→∞

F (A0,t) on the right. The
thickness of each edge is proportional to its weight. The underlying graph is a random planar graph with 100 vertices
and 284 edges, constructed as the 1-skeleton of the Delaunay triangulation of 100 random points in the square; to
make the visualization more comprehensible, the graph that is shown is a spring embedding, so the vertices are not at
the locations of the original random points in the square.

Proof. The proof exactly parallels the proof of Lemma 3.5 by substituting B, B, and (13) for E, E, and (8), respectively.

Since ⟨−gradB(A),grads(A)⟩ = 8s(A)B(A) ≥ 0, s(A) must be non-decreasing along the negative gradient flow
lines of B, so we have proved:

Proposition 4.8. If A0 ∈ Ud is non-nilpotent, then so is At ∶=F (A0,t) and so is A∞ ∶= lim
t→∞

F (A0,t).

We know the balanced matrices are exactly the global minima of B. Proposition 4.6 implies that A is a critical
point of B if and only if

0 = [A,diag([A,A∗])]+B(A)A.
When A is a non-minimizing critical point, B(A) ≠ 0 and the same Jacobson’s Lemma argument as in Proposition 3.7
shows that A is nilpotent, proving:

Proposition 4.9. All non-minimizing critical points of B are nilpotent.

This completes the proof of Theorem 4.5.
Figure 1 shows an application of this approach to balancing graphs, and Figure 6 shows a much larger example.

In both cases, up to an overall normalization to ensure ∥A0∥ = 1, the non-zero entries in the starting matrix A0 were
populated by the absolute values of standard Gaussians.

4.3 Topology of Unit Norm Balanced Graphs
Let UBd denote the space of balanced d × d matrices of unit Frobenius norm, and let UBRd denote the subspace of
balanced matrices with real entries. The topology of these spaces is tied to the topology of the relevant spaces of
normal matrices, as we record in the following theorem.

Theorem 4.10. The spaces UNd and UBd are homotopy equivalent. Similarly, the spaces UNR
d and UBRd are homo-

topy equivalent.

Proof. By Theorem 3.1 and Theorem 4.5, respectively, UNd and UBd are both deformation retracts of the space of
non-nilpotent unit norm matrices. The same theorems give the result in the real case.
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[33] Irving Kaplansky. Jacobson’s Lemma revisited. Journal of Algebra, 62(2):473–476, 1980. ↑5

[34] Frances Kirwan. Cohomology of Quotients in Symplectic and Algebraic Geometry, volume 31 of Mathematical
Notes. Princeton University Press, Princeton, NJ, USA, 1984. ↑2, ↑4, ↑13

[35] Bertram Kostant. Lie group representations on polynomial rings. American Journal of Mathematics, 85(3):327,
1963. ↑8

18



[36] John M. Lee. Introduction to Smooth Manifolds. Number 218 in Graduate Texts in Mathematics. Springer, New
York, NY, USA, second edition, 2013. ↑11

[37] Eugene Lerman. Gradient flow of the norm squared of a moment map. L’Enseignement Mathématique, 51:117–
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