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Abstract

The Riemann-Hilbert approach, in conjunction with the canonical Wiener-Hopf factorisa-
tion of certain matrix functions called monodromy matrices, enables one to obtain explicit
solutions to the non-linear field equations of some gravitational theories. These solutions
are encoded in the elements of a matrix M depending on the Weyl coordinates ρ and v, de-
termined by that factorisation. We address here, for the first time, the underlying question
of what happens when a canonical Wiener-Hopf factorisation does not exist, using the close
connection of Wiener-Hopf factorisation with Toeplitz operators to study this question. For
the case of rational monodromy matrices, we prove that the non-existence of a canonical
Wiener-Hopf factorisation determines curves in the (ρ, v) plane on which some elements of
M(ρ, v) tend to infinity, but where the space-time metric may still be well behaved. In the
case of uncharged rotating black holes in four space-time dimensions and, for certain choices
of coordinates, in five space-time dimensions, we show that these curves correspond to their
ergosurfaces.

Keywords: General Relativity, classical integrable systems, Riemann-Hilbert problems, Wiener-
Hopf factorisation, Toeplitz operators.

1 Introduction

It is a remarkable and rather surprising fact that a great variety of problems in mathemat-
ics, physics and engineering – in diffraction theory, elastodynamics, control theory, integrable
systems and, more recently, in the study of various compressions of multiplication operators
such as truncated and dual-band Toeplitz operators – can be reformulated as, or reduced to a
Riemann-Hilbert problem [15, 26, 17, 20, 10, 14, 9, 22, 23].

One field of application of the Riemann-Hilbert approach is the study of the solution space of
the Einstein field equations inD space-time dimensions. Building on the work of [4, 25], this field
of application has become the object of revived interest, see for instance [21, 12, 7, 11, 2, 30, 6]
and references therein. Here we study the cases of D = 4 and D = 5. The resulting PDE’s,
after reduction to two dimensions, form an integrable system [4, 25], i.e., they appear as a
compatibility condition for an auxiliary linear system, called a Lax pair [20]. The Lax pair that
underlies the work of [4, 25] is called Breitenlohner-Maison linear system. There exists another
Lax pair, called Belinski-Zakharov linear system, which has been shown to be equivalent to
the Breitenlohner-Maison linear system [16], and which is particularly well suited to obtain
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exact solutions of solitonic type from a seed solution by the inverse scattering method [3]. Even
though these two linear systems are equivalent, they originate different approaches to solving
the field equations. The approach based on the Breitenlohner-Maison linear system, which we
will follow here, does not require knowledge of a seed solution and has the advantage of making
use of the group structure that underlies the dimensionally reduced model.

The Breitenlohner-Maison linear system [4, 25] is a Lax pair depending on two real co-
ordinates which will be denoted by (ρ, v) (Weyl coordinates). It also depends on a complex
parameter τ that varies on an algebraic curve, called the spectral curve, that depends on (ρ, v).
The Riemann-Hilbert approach based on this Lax pair allows for the explicit construction of
solutions of the Einstein field equations by means of the canonical Wiener-Hopf factorisation of
monodromy matrices with respect to a contour Γ in the complex τ -plane, as proven in [2]. In
this factorisation, the coordinates (ρ, v) play the role of parameters.

This approach necessarily assumes the existence of a canonical Wiener-Hopf factorisation.
But does the latter always exist? And what happens if it does not?

Here we use for the first time the close connection of Toeplitz operators with Wiener-Hopf
factorisation to establish necessary and sufficient conditions for the factorisation of a rational
monodromy matrix to be canonical, and we show that a canonical Wiener-Hopf factorisation
may not exist on certain curves D(ρ, v) = 0.

Note that, due to the role of the spectral curve in the case that we are studying, the question
addressed here is different from the well studied question in factorisation theory, of when does
a general rational matrix in the variable τ have a canonical Wiener-Hopf factorisation. For
instance, it follows from a theorem in [11] that any monodromy matrix which can be reduced
to triangular form by multiplication by constant matrices admits a canonical Wiener-Hopf
factorisation, in sharp contrast with what happens with general triangular matrices [13, 27, 24,
1, 18].

When performing the canonical Wiener-Hopf factorisation of a monodromy matrix Mρ,v(τ)
with respect to a certain contour Γ, one of the factors that arise in the factorisation determines
the space-time solution. This is the factorM−

ρ,v(τ), see (12). The limit ofM−
ρ,v(τ) when τ → ∞,

M(ρ, v), encodes the space-time metric, which can be obtained from the elements of M(ρ, v) as
explained in [4, 12], see also Section 2 and Appendix A.

A natural question then is: what happens to M(ρ, v) when (ρ, v) approaches the points on
a curve D(ρ, v) = 0 where the monodromy matrix does not admit a canonical factorisation?
We show that elements in the matrix M(ρ, v) blow up when approaching such points. Since
the matrix M(ρ, v) determines the space-time metric, we study the behaviour of the latter for
(ρ, v) on the curve C defined by D(ρ, v) = 0. We show that in four dimensions this corresponds
to gtt, the component in the line element which is proportional to dt2, vanishing and, although
some elements of M(ρ, v) may tend to infinity as one approaches C, this does not imply that
the space-time metric is ill-behaved on that curve. In the case of the four-dimensional non-
extremal Kerr black hole in General Relativity it can be verified that the space-time metric is
well behaved for all (ρ, v) and that the locus D(ρ, v) = 0 corresponds to the ergosurface of the
black hole, where the norm of the Killing vector ∂/∂t vanishes. This is shown in Section 4,
where we also discuss the case of the five-dimensional rotating Myers-Perry black hole carrying
one angular momentum. We show that in this case the space-time metric is also well behaved
but now gtt may or may not vanish when (ρ, v) lies on the curve C, depending on the choice of
coordinates in five dimensions.

These results moreover shed new light on the relations between the matrix M(ρ, v) and the
corresponding space-time metric, showing that a singular behaviour in the elements of M(ρ, v)
may not be reflected in the space-time metric.

The paper is organised as follows. To keep it as self-contained as possible, in Section 2
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we briefly review the description of the dimensionally reduced gravitational field equations as
an integrable system associated with a Lax pair (the Breitenlohner-Maison linear system), and
we describe how to construct solutions to the field equations by means of canonical Wiener-
Hopf factorisations, if the latter exist. In Section 3, which contains the main results of the
paper, we use the close relation of canonical Wiener-Hopf factorisation with Toeplitz operators
to show that the canonical factorisation of a rational monodromy matrix may not exist on
certain curves in the (ρ, v) plane, and that elements of M(ρ, v) blow up there. We prove
this for general 2 × 2 monodromy matrices, but our approach can be extended to the case of
n × n rational monodromy matrices in a straightforward manner. In Section 4, we illustrate
the above with two examples. In the first example we discuss a 2 × 2 monodromy matrix,
whose canonical Wiener-Hopf factorisation with respect to a suitably chosen contour Γ yields
a space-time solution describing the exterior region of the four-dimensional non-extremal Kerr
black hole in General Relativity. We show that in this case the curve D(ρ, v) = 0 on which
the canonical Wiener-Hopf factorisation ceases to exist is the curve for the ergosurface of the
black hole. In the second example, we consider two 3× 3 monodromy matrices. In both cases,
their canonical Wiener-Hopf factorisation with respect to suitably chosen contours Γ yield the
same Myers-Perry solution, although written in different coordinates. This solution describes
the exterior region of a five-dimensional rotating black hole with one angular momentum. In
each of these cases, the canonical Wiener-Hopf factorisation ceases to exist on a certain curve.
It coincides with the ergosurface of the black hole in one case. In the other case, there is no
such correspondence, and we see that the choice of coordinates in five space-time dimensions
allows for a matrix M(ρ, v) which is well behaved on the ergosurface. Finally, in Appendix A
we give a few details of the canonical Wiener-Hopf factorisation of one of the 3× 3 monodromy
matrices mentioned above.

2 Solving the field equations by canonical Wiener-Hopf factori-
sation

The field equations of gravitational theories in D space-time dimensions form a system of
non-linear PDE’s for the space-time metric and matter fields. Due to their non-linear nature,
obtaining exact solutions to these PDE’s is a highly non-trivial task. By restricting attention
to the subclass of solutions that only depend on two of the D space-time coordinates, the
field equations become effectively two-dimensional, and in certain cases powerful methods for
constructing solutions to these field equations become available. This is the case of the gravita-
tional theories discussed in [29, 31, 25], whose two-step reduction to two dimensions yields the
following matricial non-linear field equation in two-dimensions,

d (ρ ⋆ A) = 0 , with A =M−1dM , (1)

where M ∈ G/H is a coset representative of the symmetric space G/H that arises in the two-
step reduction [5]. G/H is invariant under an involution ♮ called generalized transposition, i.e.
M ♮ =M , and M depends on two coordinates, denoted here by ρ and v, with ρ > 0 and v ∈ R,
called Weyl coordinates. In (1), ⋆ denotes the Hodge star operator in two dimensions; we have
that

⋆dρ = −λ dv , ⋆dv = dρ , (⋆)2 = −λ id , (2)

where λ = ±1 depending on whether (ρ, v) are both space-like coordinates (λ = 1) or whether
one of the two is time-like (λ = −1). When D = 4, a solution M to (1) yields a gravitational

3



solution whose four-dimensional space-time metric is given by

ds24 = −λ∆(dt+Bdϕ)2 +∆−1
(
eψ ds22 + ρ2dϕ2

)
, (3)

where ds22 = σdρ2+εdv2 with σε = λ, ∆ and B are functions of (ρ, v) determined by the solution
M(ρ, v) of (1) and ψ(ρ, v) is a scalar function determined from M(ρ, v) by integration [31, 25],
see also eq. (2.7) in [2]. As an example, consider the two-step reduction of the four-dimensional
Einstein-Hilbert action to two dimensions. The resulting coset is G/H = SL(2,R)/SO(2), the
involution ♮ is matrix transposition and the coset representative M takes the form

M =

(
∆+ B̃2/∆ B̃/∆

B̃/∆ 1/∆

)
, (4)

where B̃ is related with B through ρ ⋆ dB̃ = ∆2 dB [4].
The non-linear field equation (1) is the compatibility condition for an auxiliary linear system

of differential equations (a Lax pair) given by

τ (dX +AX) = ⋆ dX (5)

([25]) called the Breitenlohner-Maison linear system [4]. Here τ denotes a complex parame-
ter, called spectral parameter, associated through the following algebraic relation with another
complex variable ω and the coordinates (ρ, v),

ω = v +
λ

2
ρ
λ− τ2

τ
, τ ∈ C\{0} , (6)

which we will refer to as the spectral relation. The significance of the linear system (5) is
explained in [25, 2]. One powerful method to obtain a pair (X,A) where X is a solution to the
Lax pair (5) with input A = M−1dM , and M is a solution to the field equation (1), consists
in obtaining a canonical bounded Wiener-Hopf (WH) factorisation, also known as Birkhoff
factorisation, of a so-called monodromy matrix ([2]), defined as follows.

Let M(ω) be a ♮-invariant n× n matrix function of the complex variable ω and denote by
Mρ,v(τ) the matrix that is obtained from M(ω) by composition using the spectral relation (6),
i.e.,

Mρ,v(τ) = M
(
v +

λ

2
ρ
λ− τ2

τ

)
. (7)

We call Mρ,v(τ) a monodromy matrix.
Let now Γ be a simple closed contour in C, encircling the origin, and invariant under the

involution τ 7→ −λ/τ , and let D+
Γ and D−

Γ denote the interior and the exterior of Γ (including
the point ∞), respectively.

Definition 2.1. A bounded Wiener-Hopf (WH) factorisation of Mρ,v(τ) with respect to Γ is
a decomposition of the form

Mρ,v(τ) = M−
ρ,v(τ)D(τ)M+

ρ,v(τ) , τ ∈ Γ (8)

such that the n× n matrix functions M±
ρ,v(τ), as well as their inverses, admit an analytic and

bounded extension to D±
Γ , respectively, and D(τ) is a diagonal matrix with diagonal elements

of the form τki , i = 1, 2, . . . , n, with ki ∈ Z. If D(τ) = In×n, i.e. ki = 0 for all i = 1, 2, . . . , n,
then the factorisation

Mρ,v(τ) = M−
ρ,v(τ)M+

ρ,v(τ) , τ ∈ Γ (9)
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is said to be canonical.

We will use the abbreviated forms WH factorisation and canonical WH factorisation to
denote (8) and (9), respectively.

We will consider here only matrix functions which, for fixed (ρ, v) and variable τ , have
elements in the algebra Cµ(Γ) of all Hölder continuous functions on Γ with exponent µ ∈ ]0, 1[
([27]). It is well known that every matrix function in (Cµ(Γ))n×n, invertible in this algebra,
admits a WH factorisation with factors in the same algebra. If this factorisation is canonical,
then it is unique once one imposes the normalisation condition

M+
ρ,v(0) = In×n . (10)

With this normalisation condition, we denote

M+
ρ,v(τ) =: X(τ, ρ, v) . (11)

It was shown in Theorem 6.1 of [2] that, under very general assumptions, if a canonical WH
factorisation of Mρ,v(τ) with respect to a contour Γ (satisfying the conditions above) exists,
then a solution M to the field equation (1) is given by

M(ρ, v) := lim
τ→∞

M−
ρ,v(τ), (12)

while X(τ, ρ, v) is a solution to the linear system (5) with input A =M−1dM .
Two questions naturally arise at this point. The first is the question of existence of a

canonical WH factorisation. The second is the question of the behaviour of the solutionM(ρ, v),
obtained from a canonical WH factorisation, when (ρ, v) approaches a point (ρ0, v0) in the plane
of the Weyl coordinates for which a canonical WH factorisation of Mρ0,v0(τ) does not exist.
We address these two questions in the next section.

Note that, since every invertible matrix in (Cµ(Γ))n×n, in the variable τ , with determinant
equal to 1 (as will be our case), has a WH factorisation ([27]), for such a point (ρ0, v0) the
corresponding monodromy matrix will have a non canonical WH factorisation (8). However,
there is no point in determining the latter if one wants to answer the question of behaviour
of the solutions, since the factors (8) are not the limit, when (ρ, v) → (ρ0, v0), of those in a
canonical factorisation valid for points (ρ, v) in a neighbourhood of (ρ0, v0).

3 Toeplitz operators, Wiener-Hopf factorisation and ergosur-
faces

To address the fundamental question of existence of a canonical WH factorisation for a mon-
odromy matrix underlying all results obtained in the literature using the Breitenlohner-Maison
factorisation approach, we will use the close connection of WH factorisation with Toeplitz op-
erators. We start by briefly explaining this relation.

Let Γ be a simple closed curve Γ in the complex τ -plane encircling 0, positively oriented and
invariant under the involution τ 7→ −λ/τ . We call such a contour an admissible contour. Let
us denote by SΓ the singular integral operator with Cauchy kernel on L2(Γ),

(SΓf) (τ) =
1

πi
p.v.

ˆ
Γ

f(z)

z − τ
dz , τ ∈ Γ, (13)

where p.v. denotes Cauchy’s principal value. Then one can define two complementary orthogonal
projections

P±
Γ =

1

2
(I ± SΓ) . (14)
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The functions in H2
+ := P+

Γ L
2(Γ) have an analytic extension to the interior of Γ, while the

functions in H2
− := P−

Γ L
2(Γ) have an analytic extension to the exterior of Γ and vanish at ∞.

We can write

L2(Γ) = H2
− ⊕H2

+ , (15)

so every function in L2(Γ) admits a unique decomposition f = f− + f+ with f± ∈ H2
±. It may

be shown that SΓ maps Cµ(Γ) into Cµ(Γ) and Cµ+(Γ) := P+
Γ C

µ(Γ), Cµ−(Γ) := P−
Γ C

µ(Γ) ⊕ C
are closed subalgebras of Cµ(Γ). For this reason, Cµ(Γ) is called a decomposing algebra ([27]).
Every invertible element of Cµ(Γ) has a WH factorisation with factors in the same algebra,
and this result extends to matrix functions in (Cµ(Γ))n×n ([27]). However, the question of
determining whether or not this factorisation is canonical is a rather nontrivial one in general
for matrix functions. It turns out that this question may be formulated in terms of Toeplitz
operators.

Toeplitz operators are compressions of multiplication operators into the Hardy space H2
+

(or its vectorial analogue, in the matricial case). Concretely, given an n× n matrix function G
whose elements are bounded functions on Γ, the Toeplitz operator TG is defined by

TG = P+GP+|(H2
+)n : (H2

+)
n → (H2

+)
n. (16)

G is called the symbol of the operator TG. There exists a close connection between the study of
Toeplitz operators and the theory of WH factorisation. Indeed, the operator TG is Fredholm,
i.e. it has a closed range and finite dimensional kernel and cokernel, if and only if G admits
a WH factorisation; TG is invertible if and only if that factorisation is canonical (see [8]) and
references therein).

It follows from the above results on WH factorisation of matrix functions in (Cµ(Γ))n×n that,
if G is invertible in that algebra, TG is always Fredholm [13, 27, 24]. In that case, assuming
moreover that detG = 1, we have that

dimkerTG − codim ImTG = 0, (17)

i.e., the Fredholm index of TG is zero. Here kerTG denotes the kernel of TG, Im TG denotes its
range and codim Im TG = dim

(
(H2

+)
n/ImTG

)
. Therefore, TG is invertible if and only if it is

injective. As a consequence, G has a canonical WH factorisation if and only if kerTG = {0},
or, equivalently, the Riemann-Hilbert problem

Gϕ+ = ϕ− , with ϕ± ∈ (H2
±)

n, (18)

whose solutions ϕ+ constitute the kernel of TG, admits only the zero solution. We summarize
the above relations as follows.

Theorem 3.1. If Γ is an admissible contour in the complex plane and G ∈ (Cµ(Γ))n×n, µ ∈
]0, 1[, with detG = 1, then G has a canonical WH factorisation if and only if the Toeplitz
operator TG in (H2

+)
n is injective, i.e., if and only if (18) admits only the trivial solution

ϕ± = 0. In that case the factors G± in a canonical WH factorisation G = G−G+ belong to
(Cµ±)

n×n, as well as their inverses, and the ith column of G−1
+ (respectively G−) is given by the

solution ψ+ (respectively ψ−) of the Riemann-Hilbert problem

Gψi+ = ψi− with ψi± ∈ (Cµ±)
n (19)

satisfying the conditions ψ+(0) = [δij ]
T
j=1,...,n.
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Remark 3.2. Note that, although formally similar, (18) and (19) are different Riemann-Hilbert
problems, since we seek their solutions in different spaces. In particular we have that ϕ−(∞) = 0,
while ψi−(∞) ̸= 0 for every i = 1, . . . , n.

We now apply these results to monodromy matrices obtained from rational matrix functions
M(ω) of the form

M(ω) =
1

q(ω)

(
p11(ω) p12(ω)
p12(ω) p22(ω)

)
, (20)

where q, p11, p12, p22 denote polynomials of degree n, k11, k12, k22, respectively, and detM = 1,
i.e.,

q2 = p11p22 − (p12)
2 . (21)

Note that M must be a symmetric matrix, since ♮ is matrix transposition in this case and we
must have M = M♮. For simplicity, and taking the applications into account, we also assume
that the zeroes of q are all of order 1 and λ = 1.

Remark 3.3. It is easy to see that the approach presented in this section to address the ques-
tions formulated at the end of Section 2 can be extended to the case of n × n rational matrix
functions (examples will be given in Section 4.2 for 3 × 3 monodromy matrices) and does not
depend on the order of the zeroes of q nor on the particular value of λ.

Let us denote the right hand side of (6), with λ = 1, by ωτ,ρ,v. Any non-trivial polynomial
p(ω) of degree k, upon composition with ω = ωτ,ρ,v, becomes a product of k factors of the form

ωτ,ρ,v − ω0 =
−ρ

2 τ
2 + (v − ω0) τ +

ρ
2

τ
. (22)

The numerator of the right hand side of (22) is a polynomial of degree 2 in τ , which does not
vanish for τ = 0, with simple zeroes at

v − ω0 ±
√
(v − ω0)2 + ρ2

ρ
. (23)

These zeroes appear in pairs, of the form

{τ0,−
1

τ0
} ; (24)

from each pair we will choose one of the elements. Suppose that the latter is denoted by τi;
then the other element, −1/τi, will be denoted by τ̃i. Note that, for any admissible contour Γ,
if τi does not belong to Γ then neither does τ̃i, and we necessarily have one of the points in D+

Γ

and the other in D−
Γ ([2]).

With this in mind, for any polynomial pk(ω) of degree k, let us use the representation (upon
composition with ωτ,ρ,v)

pk(ωτ,ρ,v) =
p2k(τ)

τk
, (25)

where we omit the dependence of the numerator on (ρ, v). With this notation, the monodromy
matrix associated with (20) takes the form

Mρ,v(τ) =
τn

q2n(τ)
M̃ρ,v(τ) with M̃ρ,v(τ) =

(
p̃2k11 (τ)

τk11

p̃2k12 (τ)

τk12
p̃2k12 (τ)

τk12

p̃2k22 (τ)

τk22

)
, (26)
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with

detMρ,v(τ) =
p̃2k11(τ) p̃2k22(τ)

τk11+k22
−
p̃22k12(τ)

τ2k12
=
q22n(τ)

τ2n
. (27)

Note that, since q2n(0) ̸= 0 (cf. (22)), we must have, by (21),

2n = max{k11 + k22, 2k12}. (28)

Let moreover, for the first and second rows of M̃ρ,v(τ),

N1 = max{k11, k12} , N2 = max{k12, k22}. (29)

Remark 3.4. It is not difficult to see that the conditions (28) and (29) together imply that we
cannot have simultaneously N1 = k11 > k12 and N2 = k12 > k22, nor can we have simultane-
ously N1 = k12 > k11 and N2 = k22 > k12.

In order to formulate our main results in this section, we still need to define the contour with
respect to which the factorisation of Mρ,v(τ) is considered. So, from each of the n pairs of zeroes
of q2n(τ), of the form (23), we choose one point which we denote by τi (i = 1, . . . , n), and we
denote the other by τ̃i, and we take Γ to be any admissible contour such that {τi, i = 1, . . . , n} is
contained in D+

Γ . Note that Γ may depend on (ρ, v), but we omit this for simplicity of notation,
unless necessary. We assume (ρ, v) to be such that ρ > 0 and v ± iρ are not zeroes of q.

We can now state our main theorems. The proofs will be given in Section 3.1.
We start by addressing the question of existence of a canonical WH factorisation of Mρ,v(τ)

by reducing it to the question of whether the injectivity Riemann-Hilbert problem for the
Toeplitz operator with symbol Mρ,v(τ), (18), admits only the zero solution.

Theorem 3.5. With the notation above, for M(ω) of the form (20) and Mρ,v(τ) given by (7),
we have that:
(i) if N1 +N2 < 2n, then Mρ,v(τ) has a canonical WH factorisation w.r.t. Γ, for all ρ, v;
(ii) if N1 +N2 = 2n, then Mρ,v(τ) has a canonical WH factorisation if and only if

D(ρ, v) ̸= 0 , (30)

where D(ρ, v) is the determinant of the matrix coefficient of the following linear system of 2n
equations for 2n unknowns,(

QN1−1 τ
N2−k22 p̃2k22 −QN2−1 τ

N1−k12 p̃2k12

)
(τi) = 0,(

QN1−1 τ
N2−k22 p̃2k22 −QN2−1 τ

N1−k12 p̃2k12

)′
(τi) = 0 , i = 1, 2, . . . , n, (31)

where QN1−1 and QN2−1 are unknown polynomials of degree at most N1− 1 and N2− 1, respec-
tively, their coefficients being the 2n = N1 +N2 unknowns of the system;
(iii) the case where N1 +N2 > 2n can be reduced to (ii).

It is easy to see from (26) that, since τn

q2n(τ)
is a scalar function that, by a theorem given in

[11, Section 2], admits a canonical WH factorisation with respect to any admissible contour Γ
where q2n does not vanish, and that this factorisation can be obtained straightforwardly, the
existence of a canonical WH factorisation for Mρ,v(τ) is equivalent to that of M̃ρ,v(τ). The
latter can be obtained, if it exists, as described in Theorem 3.1. For the particular case (ii)
of Theorem 3.5, writing M̃ρ,v(τ) = M̃−

ρ,v(τ)X̃(τ, ρ, v) according to (9) and (11), we have the
following.

8



Theorem 3.6. With the same notation as in Theorem 3.5, if N1 +N2 = 2n and D(ρ, v) ̸= 0,
each column of X̃−1(τ, ρ, v) is given by ψ+ = (ψ1+, ψ2+)

T with

ψ1+ =
QN1 τ

N2−k22 p̃2k22 −QN2 τ
N1−k12 p̃2k12

q22n(τ)
, ψ2+ =

QN1 − τN1−k11 p̃2k11 ψ1+

τN1−k12 p̃2k12
, (32)

where the 2n + 2 coefficients of QN1 , QN2 are uniquely determined by the analyticity of ψ1+

and ψ2+ in D+
Γ , together with the normalizing conditions ψ1+(0) = 1, ψ2+(0) = 0 for the 1st

column, and ψ1+(0) = 0, ψ2+(0) = 1 for the second column. The factor M̃−
ρ,v(τ) is given by

M̃−
ρ,v(τ) = M̃ρ,v(τ)X̃

−1(τ, ρ, v), and both X̃(τ, ρ, v) and M̃−
ρ,v(τ) are C

∞ functions of (ρ, v).

The equation

D(ρ, v) = 0 (33)

defines a curve (or a curve system) C in the plane of the Weyl coordinates ρ, v. A natural question
that arises from (ii) in Theorem 3.5 regards the behaviour of the solution M(ρ, v), obtained
as in (12), for points (ρ, v) that do not satisfy (33), as we approach a point (ρ0, v0) ∈ C. We
address this question in the following theorem, where gtt denotes the coefficient of the term
proportional to dt2 in (3).

Theorem 3.7. With the same notation as in Theorem 3.5, let N1 + N2 = 2n and let (ρ, v)
be such that (30) holds, so that Mρ,v(τ) admits a canonical WH factorisation. Let moreover
M(ρ, v) be the solution to the field equation (1) given by (12). If (ρ0, v0) is a point on C then
gtt = −λ∆(ρ, v) in (3) tends to 0 as (ρ, v) tends to (ρ0, v0).

In the case when the space-time metric (3) describes the exterior region of a non-extremal
Kerr black hole solution in four space-time dimensions, the vanishing of gtt defines the ergosur-
face of the rotating black hole.

The previous results can be reformulated in terms of Toeplitz operators as follows.

Corollary 3.8. Let Γ be an admissible contour and let Mρ,v(τ) be of the form (26). If N1+N2 <
2n, or N1 + N2 = 2n with D(ρ, v) ̸= 0 for all (ρ, v), then the Toeplitz operator with symbol
Mρ,v(τ) is invertible and the space-time metric (3), corresponding to M(ρ, v) defined by (12),
is well behaved, for all (ρ, v).

If N1+N2 = 2n and there are points in the Weyl half-plane satisfying (33), then the Toeplitz
operator with symbol Mρ,v(τ) is not invertible for (ρ, v) on the curve D(ρ, v) = 0 and, in the
space-time metric (3), we have gtt = 0 on that curve.

3.1 Proofs

The proof of Theorem 3.5 is based on various lemmata which we now introduce.

Lemma 3.9. Let the assumptions of Theorem 3.5 be satisfied and let ϕ1+, ϕ2+ satisfy

p11(τ)ϕ1+ + p12(τ)ϕ2+ = q1(τ)
p21(τ)ϕ1+ + p22(τ)ϕ2+ = q2(τ)

}
on Γ, (34)

where pij , qi (i, j = 1, 2) are polynomials such that p12 and p22 do not have common zeroes and
p11 p22 − p12 p21 ̸= 0 for all τ ∈ Γ. Then if ϕ1+ is analytic in D+

Γ , ϕ2+ is also analytic in D+
Γ .
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Proof. By Cramer’s rule we have

ϕ1+ =
q1 p22 − q2 p12
p11 p22 − p12 p21

, (35)

and, from the first and the second equation in (34),

q1 − p11 ϕ1+
p12

=
q2 − p21 ϕ1+

p22
= ϕ2+. (36)

Let ϕ1+ be analytic in D+
Γ . Since p12 and p22 do not have common zeroes, in the neighbourhood

of any zero of p12 in the interior of Γ, the right hand side of (36) must be analytic, and vice-versa.
Hence, ϕ2+ be analytic in D+

Γ .

Lemma 3.10. Let G be an n × n matrix function and let TG denote the Toeplitz operator on
(H2

+)
n with symbol G. If all elements of kerTG vanish at 0, then kerTG = {0}.

Proof. Let ϕ+ ∈ (H2
+)

n be an element of kerTG, i.e.

Gϕ+ = ϕ− with ϕ− ∈ (H2
−)

n, (37)

and assume that ϕ+(0) = 0. Then ϕ+/τ ∈ (H2
+)

n, and hence ϕ+/τ ∈ kerTG because

G
ϕ+
τ

=
ϕ−
τ

∈ (H2
−)

n. (38)

Therefore ϕ+/τ also vanishes at 0 and, by repeating the same argument, also ϕ+/τ
k ∈ (H2

+)
n

for all k ∈ N, which is only possible if ϕ+ = 0.

Lemma 3.11. Let the assumptions and notation of Theorem 3.5 hold. Then N1 +N2 > 2n if
and only if

k11 > k12 > k22 ∨ k22 > k12 > k11. (39)

Proof. Since 2n = max{k11 + k22, 2k12}, it is clear that (39) implies N1 +N2 > 2n. Now let us
prove the converse, which is equivalent to proving

∼ (k11 > k12 > k22 ∨ k22 > k12 > k11) ⇒∼ (N1 +N2 > 2n) . (40)

Let us therefore assume that k11 > k12 > k22 and k22 > k12 > k11 are both false. Falsity of
k11 > k12 > k22 implies that either (i) k11 ≤ k12 or (ii) k12 ≤ k22. Let us first consider the case
(i). Then N1 +N2 = k12 +max{k12, k22}. If N2 = max{k12, k22} = k12, then N1 +N2 = 2k12 ≥
k11 + k22, and hence 2n = 2k12 = N1 +N2. If N2 = max{k12, k22} = k22, then either k22 > k12
or k22 = k12. If k22 > k12, for the condition k22 > k12 > k11 to be false, we must have k12 ≤ k11,
and hence k12 = k11. Then N1 +N2 = k11 + k22 > 2k12 and hence N1 +N2 = 2n. On the other
hand, if k22 = k12, then N1 +N2 = 2k12 ≥ k11 + k12, and hence N1 +N2 = 2n.

Now let consider the case (ii). Then N2 = k22 and N1 + N2 = max{k11, k12} + k22. If
N1 = max{k11, k12} = k11, then N1 + N2 = k11 + k22 ≥ 2k12, and hence N1 + N2 = 2n. If
N1 = max{k11, k12} = k12, then either k12 > k11 or k11 = k12. If k12 > k11, for the condition
k22 > k12 > k11 to be false, we must have k12 ≥ k22, and hence k12 = k22, in which case
N1 + N2 = 2k12 > k11 + k22 and hence N1 + N2 = 2n. On the other hand, if k12 = k11, then
N1 +N2 = k11 + k22 ≥ 2k12, and hence N1 +N2 = 2n.
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Using the above lemmata, we proceed with the proofs of Theorems 3.5,3.6 and3.7.

Proof of Theorem 3.5:
Let us consider the Riemann-Hilbert problem (18) for the existence of a canonical Wiener-Hopf
factorisation for Mρ,v(τ) = G. Since τn/q2n(τ) admits a canonical Wiener-Hopf factorisation
as mentioned before, we are reduced to studying (18) replacing G by M̃ρ,v. We then have, using
(26),

p̃2k11
τk11

ϕ1+ +
p̃2k12
τk12

ϕ2+ = ϕ1−,

p̃2k12
τk12

ϕ1+ +
p̃2k22
τk22

ϕ2+ = ϕ2−, (41)

where ϕ1±, ϕ2± ∈ H2
±, which is equivalent to

τN1−k11 p̃2k11 ϕ1+ + τN1−k12 p̃2k12 ϕ2+ = τN1 ϕ1−,

τN2−k12 p̃2k12 ϕ1+ + τN2−k22 p̃2k22 ϕ2+ = τN2 ϕ2−. (42)

Since, for any N ∈ N∪{0}, H2
+∩ τNH2

− = PN−1, where PN−1 is the space of all polynomials of
degree at most N−1, we conclude that both sides of the equations (42) are equal to polynomials
QN1−1 ∈ PN1−1 for the first equation and QN2−1 ∈ PN2−1 for the second equation. Then

τN1−k11 p̃2k11 ϕ1+ + τN1−k12 p̃2k12 ϕ2+ = QN1−1,

τN2−k12 p̃2k12 ϕ1+ + τN2−k22 p̃2k22 ϕ2+ = QN2−1, (43)

and by Cramer’s rule

ϕ1+ =

∣∣∣∣QN1−1 τN1−k12 p̃2k12
QN2−1 τN2−k22 p̃2k22

∣∣∣∣
q22n(τ)

τ2n−(N1+N2) , ϕ2+ =

∣∣∣∣τN1−k11 p̃2k11 QN1−1

τN2−k12 p̃2k12 QN2−1

∣∣∣∣
q22n(τ)

τ2n−(N1+N2), (44)

where we recall that q22n is given by (27). If N1 +N2 < 2n then ϕ1+ and ϕ2+ vanish at 0 and,
by Lemma 3.10 we must have kerTM̃ρ,v

= {0}, and hence M̃ρ,v has a canonical Wiener-Hopf

factorisation. If N1+N2 = 2n, then ϕ2+ will be analytic if ϕ1+ is analytic in D+
Γ by Lemma 3.9,

and therefore we are reduced to studying the condition for ϕ1+ to be analytic. This corresponds
to imposing that the zeroes of the numerator of

ϕ1+ =
QN1−1 τ

N2−k22 p̃2k22 −QN2−1 τ
N1−k12 p̃2k12

q22n(τ)
(45)

cancel the zeroes of q22n(τ) in the interior of Γ, as in (31). The result of (ii) in Theorem 3.5
follows from here.

Finally, if N1 + N2 > 2n, then by Lemma 3.11 we must have either k11 > k12 > k22 or
k22 > k12 > k11. Let us consider the case k11 > k12 > k22 (the other case can be dealt with
in a similar manner). It follows that N1 = k11, N2 = k12. Now recall the definition of n given
in (28). Let us assume that 2n = k11 + k22 (the other case, 2n = 2k12, can be dealt with in a
similar manner). Then

k11 + k22 = 2n < N1 +N2 = k11 + k12. (46)

Then, (43) can be written as

p̃2k11 ϕ1+ + τk11−k12 p̃2k12 ϕ2+ = QN1−1,

p̃2k12 ϕ1+ + τk12−2n+k11 p̃2k22 ϕ2+ = QN2−1, (47)
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and by Cramer’s rule

ϕ1+ =

∣∣∣∣QN1−1 τk11−k12 p̃2k12
QN2−1 τk11−2n+k12 p̃2k22

∣∣∣∣
τk11−2n+k12 p̃2k11 p̃2k22 − τk11−k12 p̃22k12

=

∣∣∣∣QN1−1 τ2n−2k12 p̃2k12
QN2−1 p̃2k22

∣∣∣∣
p̃2k11 p̃2k22 − τ2n−2k12 p̃22k12

=

∣∣∣∣QN1−1 τ2n−2k12 p̃2k12
QN2−1 p̃2k22

∣∣∣∣
q22n(τ)

, (48)

where we used (27). Note that 2n ≥ 2k12, and hence the powers of τ in (48) are all non-negative.
Therefore, the analyticity of ϕ1+ follows by imposing that the numerator in (48) has the same
zeroes as q22n(τ) in the interior of Γ, i.e. 2n zeroes (counting their multiplicity), as it happens
when N1 +N2 = 2n.

Proof of Theorem 3.6:
Let us consider the Riemann-Hilbert problem (19) which, in this case, can be written (analo-
gously to the proof of Theorem 3.5) as

τN1−k11 p̃2k11 ψ1+ + τN1−k12 p̃2k12 ψ2+ = τN1 ψ1− = QN1 ,

τN2−k12 p̃2k12 ψ1+ + τN2−k22 p̃2k22 ψ2+ = τN2 ψ2− = QN2 , (49)

where now ψi+ ∈ Cµ+, ψi− ∈ Cµ− and QN1 , QN2 are polynomials of degree N1, N2 (respectively),
at most. We have, by Cramer’s rule,

ψ1+ =
QN1 τ

N2−k22 p̃2k22 −QN2 τ
N1−k12 p̃2k12

q22n(τ)
, (50)

and ψ2+ is obtained from ψ1+ by

ψ2+ =
QN1 − τN1−k11 p̃2k11 ψ1+

τN1−k12 p̃2k12
, (51)

where the 2n+2 coefficients ofQN1 and QN2 are determined by imposing zeroes in the numerator
of the right hand side of (50), so that ψ1+ is analytic in the interior of Γ, together with the
normalization conditions. Note that the analyticity of ψ2+ then follows from there according
to Lemma 3.9.

Since we assumed that the zeroes of q2n(τ) are simple, and denoting its zeroes in the interior
of Γ by τi, i = 1, 2, . . . , n, the analyticity of ψ1+ is obtained by imposing that the numerator of
ψ1+ in (50) has zeroes of order at least 2 at τi. Let us write

QNj = τ Q̃Nj−1 +Aj , j = 1, 2, (52)

where the constantsA1, A2 are determined by the normalization conditions ψ1+(0) = 1, ψ2+(0) =
0 for the 1st column of G−1

+ and ψ1+(0) = 0, ψ2+(0) = 1 for the 2nd column. By (49) the con-
stants A1 and A2 cannot be simultaneously equal to 0, see Remark 3.4. The coefficients of
Q̃N1−1, Q̃N2−1 will be given by the non-homogenous linear system of 2n equations for the 2n
unknown coefficients,[

τ
(
Q̃N1−1 τ

N2−k22 p̃2k22 − Q̃N2−1 τ
N1−k12 p̃2k12

)]
(τi) =

−A1 τ
N2−k22
i p̃2k22(τi) +A2 τ

N1−k12
i p̃2k12(τi),[

τ
(
Q̃N1−1 τ

N2−k22 p̃2k22 − Q̃N2−1 τ
N1−k12 p̃2k12

)]′
(τi) =

−A1

(
τN2−k22 p̃2k22

)′
(τi) +A2

(
τN1−k12 p̃2k12

)′
(τi), (53)
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which is equivalent to[(
Q̃N1−1 τ

N2−k22 p̃2k22 − Q̃N2−1 τ
N1−k12 p̃2k12

)]
(τi) =

− 1

τi

(
A1 τ

N2−k22 p̃2k22(τi)−A2 τ
N1−k12
i p̃2k12(τi)

)
, (54)[(

Q̃N1−1 τ
N2−k22 p̃2k22 − Q̃N2−1 τ

N1−k12 p̃2k12

)]′
(τi) =

− 1

τi

[
A1

(
τN2−k22 p̃2k22

)′
(τi)−A2

(
τN1−k12 p̃2k12

)′
(τi)

+
1

τi

(
A1 τ

N2−k22
i p̃2k22(τi)−A2 τ

N1−k12
i p̃2k12(τi)

)]
.

Finally, the fact the solutions are C∞ functions of (ρ, v) can be verified directly.

Proof of Theorem3.7:
Note that the matrix coefficient of the system (54) is the same as that of (31), so its determinant
is given by D(ρ, v) in Theorem 3.5. On the other hand, by Cramer’s rule, the coefficients of the
polynomials Q̃N1−1 and Q̃N2−1 are given by a quotient, where the numerator is not zero (since
A1 and A2 cannot vanish simultaneously) and the denominator is D(ρ, v). Now, 1/∆ is given
by the element in the second row and second column in lim

τ→∞
M−

ρ,v(τ), i.e. according to (49) and

(52), 1/∆ is equal to the coefficient of the term of order N2 − 1 in Q̃N2−1, which tends to ∞
when D(ρ, v) → 0. Since gtt = −∆, we have gtt → 0.

4 Examples in four and five space-time dimensions

As an application, we consider in this section several examples which illustrate the results of
Sections 2 and 3 as well as possible generalisations.

4.1 The non-extremal Kerr monodromy matrix

Let M be given by (see [32, 21])

M(ω) =
1

ω2 − c2

(
(ω −m)2 + a2 2am

2am (ω +m)2 + a2

)
, c =

√
m2 − a2 > 0. (55)

By composition with ωτ,ρ,v we obtain a monodromy matrix of the form (26), where

q2n(τ) = q4(τ) =
1

4

[
ρ2(1− τ2)2 + 4(v2 − c2)τ2 + 4ρvτ(1− τ2)

]
(n = 2) , (56)

M̃ρ,v(τ) =

(
(v −m+ ρ (1−τ2)

2τ )2 + a2 2am

2am (v +m+ ρ (1−τ2)
2τ )2 + a2

)
. (57)

Note that this is a case considered in (ii) in Theorem 3.5, with

k11 = k22 = 2 , k12 = 0 , N1 = N2 = 2 , 2n = 4 = N1 +N2 . (58)
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Let τ1, τ̃1, τ2, τ̃2 be the (simple) zeroes of q4, in the notation of Section 3, and let Γ be any
admissible contour with τ1, τ2 in its interior.

The system (31) now takes the form of a system of 4 linear equations for the unknown
coefficients α0, α1, β0, β1:

(α1τ1 + α0)P22(τ1)− 2amτ21 (β1τ1 + β0) = 0,

α1P22(τ1) + (α1τ1 + α0)P
′
22(τ1)− 4amτ1(β1τ1 + β0)− 2amτ21β1 = 0,

(α1τ2 + α0)P22(τ2)− 2amτ22 (β1τ2 + β0) = 0,

α1P22(τ2) + (α1τ2 + α0)P
′
22(τ2)− 4amτ2(β1τ2 + β0)− 2amτ22β1 = 0, (59)

which we can write as

T̃


α0

α1

β0
β1

 = 0, (60)

where T̃ is the 4 × 4 matricial coefficient of the system (59), with entries depending on the
parameters (ρ, v). The determinant D(ρ, v) of T̃ is given by

D(ρ, v) = f(ρ, v)h(ρ, v), (61)

where

f(ρ, v) =
a2m2

4
ρ2 (τ1 − τ2)

4 ̸= 0 , for all (ρ, v) ,

h(ρ, v) = −16(m− v)2τ21 τ
2
2 + ρ2

(
1 + 4τ31 τ2 + 6τ21 τ

2
2 + 4τ1τ

3
2 + τ41 τ

4
2

)
−8ρ(m− v)τ1τ2

(
−τ1 − τ2 + τ21 τ2 + τ1τ

2
2

)
. (62)

Hence D(ρ, v) = 0 if and only if

h(ρ, v) = 0 . (63)

This condition describes a curve C in the Weyl half-plane of the coordinates ρ > 0, v ∈ R,
which corresponds to the values of (ρ, v) for which Mρ,v(τ) does not admit a canonical WH
factorisation and for which we have gtt = 0, see Theorem 3.7. This curve C naturally depends
on the choice of the points τ1 and τ2 that one chooses to be in the interior of Γ, which is the
contour in the complex plane of the spectral parameter τ with respect to which the canonical
factorisation of Mρ,v(τ) is sought.

If one looks for a canonical factorisation of Mρ,v(τ) w.r.t. an admissible contour Γ such
that

τ1 =
v − c−

√
(v − c)2 + ρ2

ρ
,

τ2 =
v + c−

√
(v + c)2 + ρ2

ρ
(64)

lie in D+
Γ , then that factorisation, obtained for (ρ, v) /∈ C, yields by (12) a solution to the field

equation (1) that describes the exterior region of the non-extremal Kerr black hole solution in
General Relativity. The curve C defined by (63) in the Weyl coordinates half-plane describes the
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ergosurface of that four-dimensional solution, as follows. If we express (63) in terms of prolate
spheroidal coordinates (u, y) (see [19, 21]),

v = u y , ρ =
√
(u2 − c2)(1− y2), (65)

where

c < u < +∞ , |y| < 1 , (66)

we obtain

ρτ1 = uy − c− (u− cy),

ρτ2 = uy + c− (u+ cy). (67)

Inserting these expressions into the expression of h(ρ, v) given in (62) we get

h(u, y) =
16

[(u2 −m2 + a2)(1− y2)]3
(u2 − c2)3(y − 1)4(u2 −m2 + a2y2) (68)

and we see that (63) is equivalent to

u(y) =
√
m2 − a2y2, (69)

This equation indeed defines the ergosurface of the non-extremal Kerr black hole in four di-
mensions, in the exterior region. Namely, in standard Boyer-Lindquist coordinates, the metric
component gtt of the Kerr solution is given by gtt = −(r2−2mr+a2 cos2 θ)/(r2+a2 cos2 θ). Con-
verting from Boyer-Lindquist coordinates to coordinates (u, y) using u = r −m, y = cos θ [19]
shows that gtt vanishes precisely when (69) holds. The vanishing of gtt defines the ergosurface
of the black hole.

The curve C defined by D(ρ, v) = 0 is represented in Figure 1, in the Weyl half-plane
ρ > 0, v ∈ R. The region between the curve C and the axis ρ = 0 represents the ergosphere, the
region between the ergosurface C and the outer horizon of the non-extremal Kerr black hole,
while the complementary region describes the region outside of the ergosphere.

-1.5 -1.0 -0.5 0.5 1.0 1.5

0.2

0.4

0.6

0.8

1.0

Figure 1: Curve C in the Weyl coordinates upper half-plane (ρ > 0, v) for the values m = 2, a =
1. The horizontal axis represents v ∈ R, while the vertical axis represents ρ > 0.

Remark 4.1. Different choices of the contour Γ yield different factorisations of Mρ,v(τ) and
correspondingly different solutions M(ρ, v). We can have 3 other cases: (i) τ̃1 and τ̃2 in D+

Γ ,
(ii) τ̃1 and τ2 in D+

Γ , (iii) τ1 and τ̃2 in D+
Γ . In each case we obtain a curve C where the metric

component gtt vanishes, gtt = 0; in case (i) it coincides with the curve for the ergosurface of the
non-extremal Kerr black hole, while in the other two cases we obtain a different curve, namely

u(y) =
c

a

√
m2 − c2y2 . (70)

These various solutions reduce to solutions belonging to the class of A-metrics when the rotation
parameter a is set to 0 (for the class of A-metrics see [2] and references therein).
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4.2 Rotating black hole in five space-time dimensions

In this section we will discuss solutions to (1) with λ = 1 that yield solutions in five space-time
dimensions. Such solutions are described by a five-dimensional line element whose metric factors
in Weyl coordinates are encoded in the 3×3 matrix M(ρ, v) given in (98). In the notation used
in (98), the metric component gtt of the line element is given by gtt = −e2Σ3 + e2Σ2χ2

1, which is
contained in the last component of the third column in (98).

In the following we will consider the factorisation of two monodromy different matrices with
respect to suitably chosen contours. When these matrices have a canonical factorisation, the
resulting matrix factor (12) has the form (98). In the first example considered below, the metric
factor gtt is given by gtt = −e2Σ3 since χ1 = 0, whereas in the second example gtt takes the form
gtt = −e2Σ3 + e2Σ2χ2

1. In both cases, the resulting space-time solution describes the exterior
region of a rotating Myers-Perry black hole solution in five space-time dimensions carrying one
angular momentum a [28], albeit in different space-time coordinates. In one case, it yields the
Myers-Perry solution in standard spherical coordinates [19], while in the other case it yields
the Myers-Perry solution in the coordinates used in [12]. Even though the functional form of
gtt in both solutions looks different when expressed in terms of the quantities Σ3 and χ1, when
converting to standard spherical coordinates the metric factor gtt takes the form (103) in both
cases.

For each monodromy matrix, there is a curve C in the Weyl coordinate plane ρ > 0, v ∈ R
where the canonical factorisation does not exist. When approaching a point (ρ, v) on the
curve, the factor e2Σ1 blows up, while the factor e2Σ3 becomes vanishing. In the first example,
gtt = −e2Σ3 vanishes on the curve C, which therefore coincides with the ergosurface in the
exterior region of the black hole. In the second case, when approaching the corresponding curve
C, the combination e2Σ2χ2

1 remains finite and gtt does not vanish on this curve. However, there
are terms in M(ρ, v), given in (98), proportional to e2Σ1 , that blow up on the curve C.

First, let us then consider the following matrix (where 4α = 2m− a2 > 0),

M(ω) =


ω−α+m

2(ω+α)(ω−α) 0 am
2(ω+α)(ω−α)

0 2(ω + α) 0
am

2(ω+α)(ω−α) 0 8(ω−α)2(ω+α)+4a2m2

8(ω+α)(ω−α)(ω−α+m)

 . (71)

This matrix satisfies detM = 1 and has the property M♮(ω) = M(ω), where M♮ = ηMT η
with η = diag(1,−1, 1) [12].

When the rotation parameter a is set to zero, this reduces to the matrix

M(ω) =

 1
2(ω−α) 0 0

0 2(ω + α) 0
0 0 ω−α

ω+α

 (72)

which, by composition with the spectral relation (6) with λ = 1, yields a monodromy matrix
whose canonical Wiener-Hopf factorisation with respect to a suitably chosen admissible contour
Γ gives the five-dimensional Schwarzschild black hole. This contour is defined such that

τα =
v − α−

√
(v − α)2 + ρ2

ρ
,

τ−α =
v + α−

√
(v + α)2 + ρ2

ρ
(73)

lie in the interior of Γ. As as consequence, τ̃α = −1/τα and τ̃−α = −1/τ−α lie in the exterior of
Γ.
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We compose (71) with the spectral relation (6) with λ = 1. The resulting monodromy
matrix Mρ,v(τ) has poles in the τ -plane located at τα, τ−α, τ̃α, τ̃−α and also at

τα−m =
v − α+m−

√
(v − α+m)2 + ρ2

ρ
(74)

and at τ̃α−m = −1/τα−m. We will choose the contour Γ with respect to which we will perform
the canonical factorisation of Mρ,v(τ) to be such that the three points τα, τ−α and τα−m lie in
its interior. The points τ̃α, τ̃−α and τ̃α−m will then lie in the exterior of Γ.

Applying Theorem 3.1 and studying the Riemann-Hilbert problem (18) with n = 3, we
conclude that the canonical factorisation of Mρ,v(τ) with respect to Γ exists for any point
(ρ > 0, v) in the Weyl coordinates upper half-plane so long as D(ρ, v) ̸= 0, where D(ρ, v) is
the determinant of a linear system that is analogous to the one in (31) and is obtained by an
entirely similar reasoning,

D(ρ, v) = ρ6
(τα − τ−α)

2 (τα − τα−m)
2 (τ−α − τα−m)

2τ3α τ−α τα−m
(1 + τατα−m)

3[
2τατα−m(1 + τατα−m)(1 + τ−ατα−m)

2 − τ−α (τα − τα−m)
3 L
]
, (75)

where L denotes the ratio L = a2/m which, in view of the condition 4α = 2m− a2 > 0, lies in
the range 0 ≤ L < 2. Note that the bracket (1 + τατα−m) can be expressed as (τ̃α − τα−m)/τ̃α.
Hence it cannot vanish, since τ̃α and τα−m lie on different sides of the contour Γ. Therefore,
D(ρ, v) can only vanish if the big bracket [. . . ] in (75) vanishes. To infer when this happens we
express the coordinates (ρ > 0, v) in terms of prolate spheroidal coordinates (u, y) (see [19, 12]),

v = αu y , ρ = α
√
(u2 − 1)(1− y2), (76)

where

1 < u < +∞ , |y| < 1 . (77)

Then we have

ρτα = α (uy − 1− (u− y)) ,

ρτ−α = α (uy + 1− (u+ y)) ,

ρτα−m = α(uy − 1) +m−
√

(α(uy − 1) +m)2 + α2(u2 − 1)(1− y2) . (78)

The big bracket [. . . ] in (75) becomes

2τατα−m(1 + τατα−m)(1 + τ−ατα−m)
2 − τ−α (τα − τα−m)

3 L = (2 + (L− 2)u− Ly) Σ(u, y) ,(79)

with

Σ(u, y) = f1(u, y) + f2(u, y)
√
f3(u, y) , (80)

where f1, f2, f3 are polynomials in (u, y) given by

f1(u, y) = −4 f3(x, y) (y − 1)2
(
4(u− 1)(y − 1)2 + L2(u− 1)(y + 1)2 − 4L(3 + u+ y2(u− 1)

)
,

f2(u, y) = −4(y − 1)2
[
(L+ 2)

(
16L− (L− 2)2u+ (L− 2)2u2

)
+(L− 2)(−1 + 2u)

(
4(−1 + u) + L2(−1 + u)− 4L(3 + u)

)
y

+(L− 2)2(L+ 2)(u− 2)(u− 1)y2 − (L− 2)3(u− 1)y3
]
,

f3(u, y) = L2(u− y)2 + 4(u+ y)2 − 4L(−2 + u2 + y2) . (81)
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It can be verified that f3 and Σ do not vanish when (u, y) is the range (77) with 0 ≤ L < 2.
The combination (79) can therefore only vanish on the line

2 + (L− 2)u− Ly = 0 ⇐⇒ y − 1 + (u− y)
2α

m
= 0 . (82)

This line defines the ergosurface of the Myers-Perry black hole solution carrying angular mo-
mentum a, where the metric component gtt vanishes. Therefore, we conclude that the canonical
factorisation with respect to the chosen contour Γ exists for any point (ρ, v) in the Weyl co-
ordinates upper half-plane so long as it doesn’t lie on the ergosurface of the rotating black
hole.

By explicitly performing the canonical Wiener-Hopf factorisation (9) (when it exists) of
Mρ,v(τ) with respect to Γ and using (12), we obtain for the solution M(ρ, v), in the notation
used in [12, 7],

M(ρ, v) =

 e2Σ1 0 e2Σ1χ3

0 e2Σ2 0
e2Σ1χ3 0 e2Σ3 + e2Σ1χ2

3

 , (83)

with

e2Σ2 =
√
ρ2 + (v + α)2 + v + α ,

e2Σ3 =

√
ρ2 + (v + α)2 +

√
ρ2 + (v − α)2

(
1− a2

m

)
− 2α√

ρ2 + (v + α)2 +
√
ρ2 + (v − α)2

(
1− a2

m

)
+ 2α

,

e2Σ1 = e−2Σ2e−2Σ3 ,

χ3 = a

√
ρ2 + (v + α)2 −

√
ρ2 + (v − α)2 + 2α√

ρ2 + (v + α)2 +
√
ρ2 + (v − α)2

(
1− a2

m

)
+ 2α

. (84)

This describes a Myers-Perry black hole solution, with one angular momentum a, in Weyl
coordinates [19], which can be brought into standard form by converting the Weyl coordinates
(ρ, v) into standard spherical coordinates. The gtt component of the space-time metric is given
by gtt = −e2Σ3 .

The entries ofM(ρ, v) in (83) have the following behaviour on the ergosurface: e2Σ3 vanishes,
e2Σ2 and χ3 are finite, while e2Σ1 blows up. Thus, various entries of M(ρ, v) blow up when
approaching the ergosurface, similarly to what happens in the case of the Kerr black hole in
four dimensions discussed above.

Next, let us consider the matrix (where 4α = 2m− a2 > 0)

M(ω) =

 − 2
ω+α 1− m

2(ω+α) 0

−1 + m
2(ω+α) − a2m

4(ω−α) +
m2

8(ω+α)
am

2(ω−α)
0 − am

2(ω−α) 1 + m
ω−α

 . (85)

This matrix is a special case of the one considered in [12]. The latter depends on two angular
momenta denoted by (l1, l2), while here we restrict ourselves to one angular momentum, namely
a = l1. This matrix satisfies detM = 1 and has the property M♮(ω) = M(ω), where M♮ =
ηMT η with η = diag(1,−1, 1) [12]. We now consider the composition of (85) with the spectral
relation (6) with λ = 1, and we denote the resulting monodromy matrix by Mρ,v(τ).
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When the rotation parameter a is set to zero, we have m = 2α and the matrix (85) reduces
to the matrix

M(ω) =

− 2
ω+α

ω
ω+α 0

− ω
ω+α

α2

2(ω+α) 0

0 0 ω+α
ω−α

 (86)

which results in a monodromy matrix Mρ,v(τ), whose canonical Wiener-Hopf factorisation with
respect to a suitably chosen admissible contour Γ gives a solution describing the exterior region
of the five-dimensional Schwarzschild black hole. This contour is the one that we choose in the
following. It is defined such that

τα =
v − α+

√
(v − α)2 + ρ2

ρ
,

τ−α =
v + α+

√
(v + α)2 + ρ2

ρ
(87)

lie in the interior of Γ. As as consequence, τ̃α = −1/τα and τ̃−α = −1/τ−α lie in the exterior
of Γ. Note that the choice of points (87) that lie in the interior of Γ differs from the choice of
points (73) in the previous example. Therefore, the contour Γ with respect to which we perform
the factorisation in this example differs from the one used in the previous example.

We now turn to the study of the existence of the canonical Wiener-Hopf factorisation of the
monodromy Mρ,v(τ) associated with (85). This is done as described in the proof of Theorem
3.5. The expression for ϕ2+ given in (44) now reads

ϕ2+ =

∣∣∣∣∣∣∣
4τ

ρ(τ−τ̃−α)
k1 0

−1 0 −a
2

0 k3 τ − τα − 2mτ
ρ(τ−τ̃α)

∣∣∣∣∣∣∣
(τ − τα)(τ − τ−α)

=
k1

(
τ − τα − 2mτ

ρ(τ−τ̃α)

)
+ k3a

2τ
ρ(τ−τ̃−α)

(τ − τα)(τ − τ−α)
, (88)

where k1, k3 ∈ R, and analogously for ϕ1+. Imposing the analyticity of ϕ2+ at τ = τα and
τ = τ−α implies that

−k1
(

2mτα
ρ(τα − τ̃α)

)
+ k3a

2τα
ρ(τα − τ̃−α)

= 0 ,

k1

(
τ−α − τα − 2mτ−α

ρ(τ−α − τ̃α)

)
+ k3a

2τ−α
ρ(τ−α − τ̃−α)

= 0 . (89)

This is a linear system for the constants k1, k3. If the determinant of this linear system vanishes,
the kernel of the associated Toeplitz operator has dimension one (c.f. the discussion around
(18)), and there is no canonical factorisation. The determinant of the linear system (89) reads

− 2amτα
ρ(τα − τ̃α)

D(ρ, v) , (90)

with D(ρ, v) given by

D(ρ, v) =
τ−α
ρ

∣∣∣∣∣ 1 − 1
m

(τα−τ̃α)
(τα−τ̃−α)

− a2

(τ−α−τ̃α)
2

(τ−α−τ̃−α)

∣∣∣∣∣ . (91)

Assuming a ̸= 0, it follows that the vanishing of (91) occurs when D(ρ, v) = 0, or equivalently
D(ρ, v) = 0 ⇔ g(ρ, v) = 0, where

g(ρ, v) = 2m(τα − τ̃−α)(τ−α − τ̃α)− a2(τα − τ̃α)(τ−α − τ̃−α) . (92)
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To study the condition g(ρ, v) = 0, we express the coordinates (ρ > 0, v) in terms of the prolate
spheroidal coordinates (u, y) given in (76). Then, using√

(v ± α)2 + ρ2 = α (u± y) > 0, (93)

we obtain

ρτα = α (uy − 1 + u− y) ,

ρτ−α = α (uy + 1 + u+ y) , (94)

and the condition g(ρ, v) = 0 gives

u2 − y2 =
m

2α
(1− y2) . (95)

This defines a curve C in the Weyl coordinates upper half-plane (ρ > 0, v). On this curve,
e2Σ3 vanishes and the quantities χ1, χ2, χ3 and e2Σ2 remain finite, but the matrix M(ρ, v) is ill
behaved, since its matrix entry (104) blows up. We note, however, that the metric component
gtt, given in (103), stays finite and non-zero on C: although the condition (95) resembles the
condition (82) for the ergosurface of the rotating Myers-Perry black hole with one angular
momentum a, the former does not equal the latter.

We have explicitly performed the canonical Wiener-Hopf factorisation (9) (assuming its
existence) of Mρ,v(τ) with respect to Γ. The resulting expression for M(ρ, v) is given in (96).
The solution M(ρ, v) describes the exterior region of a rotating Myers-Perry black hole solution
with one angular momentum a, as can be verified by converting the Weyl coordinates (ρ, v) into
the coordinates used in [12].

Summarising, in the examples discussed above we have shown that, as in the 2 × 2 case,
the non-existence of a canonical Wiener-Hopf factorisation of the monodromy matrices occurs
on simple smooth curves in the Weyl coordinates upper-half plane. However, unlike in the the
2× 2 case considered in Section 3 (see Theorem 3.7), these curves may or may not correspond
to ergosurfaces, which are defined by the norm of the Killing vector ∂/∂t becoming null there.
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A Canonical factorisation of a 3× 3 monodromy matrix

The canonical factorisation (9) (if it exists) of a monodromy matrix Mρ,v(τ) with respect to an
admissible contour Γ is performed as in (19). Here we consider the monodromy matrix given in
[12], obtained by composition of (85) with the spectral relation (6) with λ = 1. Its canonical
factorisation with respect to the contour Γ specified below (86) results in a matrix (12) given
by

M(ρ, v) =

 A11 A12 A13

−1− m
4 A11 +

a
2A31

m
4 − m

4 A12 +
a
2A32 −a

2 − m
4 A13 +

a
2A33

A31 A32 A33

 , (96)
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where

A11 =
4τ−α (τα − τ̃α)

mρ2 (τ−α − τ̃−α) (τα − τ̃−α)D

(
2m

τα − τ̃α
− a2

τ−α − τ̃α

)
A12 = 1 +

m

4
A11 −

a

2
A31

A31 = A13 = − 4aτ−α
ρ2 (τ−α − τ̃α)D

(
1

τ−α − τ̃−α
− 1

τα − τ̃−α

)
(97)

A32 =
a

2
+
m

4
A13 −

a

2
A33

A33 =
1

mρD

[
2m

(τ−α − τ̃−α)

(
τα − a2τ−α

ρ(τ−α − τ̃α)

)
− a2τ−α

(τ−α − τ̃α)(τα − τ̃−α)

(
τα − τ̃α − 2m

ρ

)]
,

with D given by (91).
The matrix M(ρ, v) is of the form [12, 7] e2Σ1 e2Σ1χ2 e2Σ1χ3

−e2Σ1χ2 −e2Σ1χ2
2 + e2Σ2 −e2Σ1χ2χ3 + e2Σ2χ1

e2Σ1χ3 e2Σ1χ2χ3 − e2Σ2χ1 −e2Σ2χ2
1 + e2Σ1χ2

3 + e2Σ3

 (98)

with Σ1 + Σ2 + Σ3 = 0 and satisfies M ♮ = M , where M ♮ = ηMT η with η = diag(1,−1, 1),
as required for a coset representative M ∈ SL(3,R)/SO(2, 1). The five-dimensional space-time
metric is then expressed in terms of these matrix entries as (c.f. eqs. (A.1)-(A.6) in [12])

ds25 = e2Σ1 ds23 − e2Σ3 (dt+A2)
2 + e2Σ2 (dψ + χ1 dt+A1)

2 (99)

with

ds23 = f2
(
dρ2 + dv2

)
+ ρ2 dϕ2 . (100)

The scalars Σ1,Σ2,Σ3, χ1, f and the 1-forms A1 and A2 are functions of ρ, v. The two 1-forms
are dualised into scalars χ2 and χ3 using

e−(4Σ1+2Σ3) ⋆3 F1 = dχ2 , −e−2(Σ1−Σ3) ⋆3 F2 = dχ3 − χ1dχ2 , (101)

where

F1 = dA1 +A2 ∧ dχ1 , F2 = dA2 , (102)

and where ⋆3 denotes the Hodge star operator in three dimensions. Finally, the function f2 is
determined from M(ρ, v) by integration, as in eq. (2.7) in [2].

In particular, the metric component gtt is given by

−gtt = e2Σ3 − e2Σ2χ2
1 = A33 −

A2
13

A11
=
u− y − m

2α(1− y)

u− y + m
2α(1 + y)

= 1− 2m

r2 + a2 cos2 θ
, (103)

where we converted from prolate spheroidal coordinates (u, y) to spherical coordinates (r, θ)
using the relations r2 = 2α(u+ 1), 2 cos2 θ = y + 1 [19, 21].

When approaching a point on the curve C specified by (91) in a non-tangential manner, the
matrix entry e2Σ1 ,

e2Σ1 =
2

α

[
u− y + m

2α(1 + y)

u2 − y2 − m
2α(1− y2)

]
, (104)

blows up, while gtt remains finite. This metric component vanishes when u − y = m
2α(1 − y),

which defines the ergosurface of the rotating Myers-Perry black hole.
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