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CONSTANT SCALAR CURVATURE KÄHLER METRICS AND

SEMISTABLE VECTOR BUNDLES

ANNAMARIA ORTU AND LARS MARTIN SEKTNAN

Abstract. We give a necessary and sufficient condition for the projectivisation of a slope
semistable vector bundle to admit constant scalar curvature Kähler (cscK) metrics in adiabatic
classes, when the base admits a constant scalar curvature metric. More precisely, we introduce
a stability condition on vector bundles, which we call adiabatic slope stability, which is a
weaker version of K-stability and involves only test configurations arising from subsheaves
of the bundle. We prove that, for a simple vector bundle with locally free graded object,
adiabatic slope stability is equivalent to the existence of cscK metrics on the projectivisation,
which solves a problem that has been open since work of Ross–Thomas. In particular, this
shows that the existence of cscK metrics is equivalent to K-stability in this setting. We provide
a numerical criterion for the Donaldson-Futaki invariant associated to said test configurations
in terms of Chern classes of the vector bundle. This criterion is computable in practice and we
present an explicit example satisfying our assumptions which is coming from a vector bundle
that does not admit a Hermite-Einstein metric.

1. Introduction

One of the central goals in Kähler geometry is to understand when a Kähler manifold admits a
constant scalar curvature metric in a given Kähler class. Such a metric may or may not exist, but
if it does, it gives a canonical representative of a given Kähler class. The Yau-Tian-Donaldson
conjecture [46, 43, 19] predicts that the existence of a constant scalar curvature Kähler (cscK)
metric should be equivalent to the algebro-geometric notion of K-(poly)stability. The conjecture
is still open in general, and even in situations where it is known to hold, it is a non-trivial problem
to verify whether or not K-stability holds.

In this article, we consider this question on projective bundles in adiabatic classes. Let E → B
be a simple holomorphic vector bundle over a smooth projective variety with a Hermitian metric
h and let L→ B be a fixed ample line bundle on the base. More generally, our results will hold
when B to just Kähler and we replace c1(L) by a Kähler class Ω, but we keep the line bundle
notation throughout for aesthetic purposes. Consider the projectivisation π : P(E) → B, with
the tautological line bundle OP(E)(−1) → P(E). The dual H := OP(E)(1) is a relatively ample
line bundle over P(E), i.e. the restriction on each fibre is ample. Then the Hermitian metric h
induces a Hermitian metric h∗ on H whose curvature defines a two-form on P(E)

iFh∗ =: ω

in c1(H) such that the restriction of ω to each fibre P(Eb) is the Fubini-Study metric induced by
h. Thus ω is a relative Kähler metric. For each k ≫ 0, we can define Kähler classes on P(E) by
pulling back a large multiple of the base line bundle, as

c1(H) + kπ∗c1(L).

When considering such classes for all very large k, these classes are called adiabatic classes.
This paper is concerned with determining when P(E) admits constant scalar curvature Kähler

metrics in adiabatic classes. The problem dates back to Hong [28], who proved that when B
admits a cscK metric ωB and has discrete automorphism group, and E is slope stable, then P(E)
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admits cscK metrics in adiabatic classes. Through the Hitchin-Kobayashi correspondence of Don-
aldson [18] and Uhlenbeck–Yau [45], slope stability is equivalent to the bundle being simple and
admitting a Hermite-Einstein metric h. This is used to define the relatively Fubini-Study metric
ω above, which in turn is used to produce cscK metrics on P(E), using perturbative techniques.
In light of the Yau-Tian-Donaldson conjecture, a conjectural algebro-geometric counterpart of
Hong’s result can be interpreted as follows: when the base is K-stable and E → B is slope stable,
then P(E) → B is K-stable.

Conversely, Ross–Thomas [37] showed that if E → B is a strictly unstable bundle, then P(E) is
K-unstable in adiabatic classes. It has been a long standing problem to understand the behaviour
in the strictly semistable case, which we solve here. More precisely, we consider the case when
E → B is a slope semistable simple vector bundle. We introduce a notion of stability, which
we call adiabatic slope stability, that allows us to prove a result that fills the gap between the
results of Hong and Ross–Thomas: in particular we give a necessary and sufficient condition for
the existence of cscK metrics in adiabatic classes on projectivised vector bundles.

The main result is the following.

Theorem 1.1. Suppose E → B is a sufficiently smooth, simple holomorphic vector bundle over
a smooth projective variety B. Suppose that the group of automorphisms of B that lift to L is
discrete and that B admits a cscK metric in the Kähler class c1(L). Then the projectivisation
X = P(E) admits a cscK metric in the classes c1(H) + kc1(L) for all sufficiently large k if and
only if X is adiabatically slope stable with respect to L.

Thus, under these assumptions, our result completely classifies when P(E) admits a cscK
metric in adiabatic classes. Adiabatic slope stability is defined by checking the positivity of
the Donaldson-Futaki invariant with respect to some particular test configurations, see below.
Adiabatic slope stability is thus implied by K-stability. Our result is therefore in particular a
verification of the Yau-Tian-Donaldson conjecture for this class of projective bundles.

Corollary 1.2. With X and L as above, for all sufficiently large k, X admits a cscK metric in
c1(H) + kc1(L) if and only if X is K-stable with respect to H + kL.

In fact, we show that it suffices to verify the adiabatic slope stability condition on the Kuranishi
space that parametrises the deformations of E → B, thus reducing the infinite dimensional
problem of checking K-stability to a finite dimensional problem on the Kuranishi space. Together
with an explicit formula (6.2) for the Donaldson-Futaki invariant obtained using Legendre’s
localisation formula [33], this allows us to determine if adiabatic slope stability holds, and in §6.3
we give an example of a strictly semistable vector bundle whose projectivisation admits cscK
metrics in certain adiabatic classes. This is the first such example.

Corollary 1.3. There exists a vector bundle E → B, where B is a blowup of P2 in sufficiently
many points, which is strictly slope semistable with respect to some polarisation L → B, and
such that P(E) admits cscK metrics in c1(O(1) ⊗ Lk) for all k ≫ 0.

We now explain the adiabatic slope stability condition. Given a vector bundle E → B, a
subsheaf S → B induces a test configuration for the projectivisation, whose central fibre is given
by the projectivisation of S ⊕ E

S , with ample line bundle given by H + kπ∗L. Adiabatic slope
stability essentially consists in the positivity of the Donaldson-Futaki invariant for these test
configurations and it is a vector bundle version of Hattori’s notion of f-stability [27]. The as-
sumption that E is sufficiently smooth means by definition that the graded object of E is locally
free, and it is a technical assumption that allows us to use analytic techniques to prove the
result. One consequence of this is that in order to guarantee the existence of cscK metrics, we
only have to consider S such that S ⊕ E

S is a vector bundle. Thus this assumption allows us
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to only check K-stability for test configurations that arise from vector subbundles, rather than
subsheaves. A priori, on projective bundles f-stability requires one to check the positivity of the
Donaldson-Futaki invariant on more fibration degenerations than those arising from subsheaves,
but ultimately our results show that under the sufficiently smooth hypothesis, the two are equiv-
alent. We expect the same results to hold without the sufficiently smooth hypothesis, though we
then do not expect that it suffices to verify adiabatic slope stability on subbundles of E only.

Strategy of the proof. Our technique of the proof of Theorem 1.1 is quite general; we hope that
our work serves as a blueprint to solving analogous “semistable” perturbative problems. First,
we rely on the deformation theory of vector bundles and we develop new analytic estimates to
reduce the cscK equation to a moment map equation in finite dimensional Kähler geometry, then
we use recently introduced moment map techniques to find a zero of said moment map. We next
explain the technique in more details.

The first step consists of setting up the problem in terms of the deformation theory of the
vector bundle and the associated projective bundle: the semistable holomorphic vector bundle
E → B can be viewed as a deformation of its graded object E0 → B, where E and E0 have the
same underlying smooth structure, denoted E → B. More precisely, the ∂̄-operator of E can be
written as ∂̄0 + γ, where γ ∈ Ω0,1(EndE). Let h be a Hermitian metric on E such that (h, ∂̄0)
defines a Hermite-Einstein connection on E0. Then h induces a relatively symplectic structure ω
on P(E) and the ∂̄-operators ∂̄E and ∂̄0 induce complex structures J and J0 on P(E) such that
(ω, J0) is a relatively Kähler metric and (ω, J) is a deformation of it.

At this point, we can refer to the deformation theory of complex structures, Kuranishi theory:
the deformations of J0 compatible with ω and with the projection to the base can be described
by a finite dimensional vector subspace V . Moreover, this parametrisation is equivariant with
respect to the group G of automorphisms of E0, which is a reductive group and thus is the
complexification of a maximal compact subgroup K.

The equivariance property is what allows us to use the theory of moment maps, for which
we rely on Dervan–Hallam’s recent approach using universal families [12]. We consider the
deformations of P(E0) as a K-equivariant family U → B × V . Each fibre over v ∈ V corresponds
to a projective bundle P(Ev) → B with Kähler metric (ω+ kωB, Jv). Dervan–Hallam prove that
the projection onto the Lie algebra of K of the scalar curvature of such a metric is a moment
map on V with respect to the Weil–Petersson metric.

The next step, and the core analytic step in our proof, consists of deforming (ω + kωB, Jv)
adiabatically by adding a Kähler potential ϕk to the metric such that the scalar curvature itself,
rather than only its projection, lies in the Lie algebra of K. This is a global equation and we
do not, in fact, solve it completely. We first solve a simpler fibrewise equation so that the scalar
curvature of every member of the Kuranishi family lands in a finite dimensional vector space,
and then we show that that the projection from this vector space to the Lie algebra of K is an
isomorphism, see Lemma 4.15. In particular, Lemma 4.15 is key to deducing that the zero of
the Dervan–Hallam moment map we obtain on V is precisely a solution to the cscK equation on
the fibre; its proof relies on the properties of the Lie algebra of K, it is quite general and we
expect it should be possible to apply it to solve similar perturbation problems. The reason why
we solve the fibrewise equation instead of directly solving the global equation is that the global
equation is one on a non-compact manifold, due to the non-compactness of the Kuranishi space
V .

It is worth noting that up to this point the proof is unobstructed, i.e. it does not use the
adiabatic slope stability assumption. The fact that we are solving a more general equation
means we can rely on the same type of perturbative PDE techniques that have been used in earlier
adiabatic problems, starting with the works of Hong [28] and Fine [21], and then built upon in
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various generalisations [34, 7, 14, 16, 36]. In particular, we extend to the slope semistable case the
techniques developed by Brönnle [7], who constructed extremal metrics on the projectivisation
of certain unstable vector bundles.

The last step of the proof, which is where the adiabatic slope stability condition comes in, con-
sists of applying the moment map flow, a technique which has been used in analytic approaches
to Geometric Invariant Theory (GIT) [23, 8], and for which we mostly follow [13]. In order to
run the moment map flow, we need that the Weil–Petersson form obtained from [12] in fact is
positive. We do this by relating the Weil–Petersson metric that arises from the moduli theory of
constant scalar curvature metrics, as in Fujiki–Schumacher [22], with the Weil–Petersson metric
that arises from the moduli theory of vector bundles. The moment map flow is the gradient flow
of the norm squared of the moment map; we run the flow from the point in V corresponding to
the adiabatically slope stable vector bundle E → B and the limit point of the flow induces a test
configuration for P(E) → B. By relating the weight of the moment map at the limit point and
the Donaldson-Futaki invariant of the induced test configuration, adiabatic slope stability allows
us to prove that the point to which the flow converges is in fact a zero of the moment map in the
orbit of our original complex structure, i.e. a constant scalar curvature Kähler metric on P(E).

The first main difference with our approach compared to previous constructions is that in the
classical adiabatic constructions, the constant scalar curvature metric is approximated iteratively
by adding a potential to the metric ω + kωB so that the metric is constant up to the prescribed
order. We, however, only perturb the metric so that the scalar curvature lies in the Lie algebra
of K, up to any prescribed order. In previous works [16, 36], the authors have developed opti-
mal symplectic connections as a generalisation of Hermite-Einstein connections, which allow to
construct cscK and extremal metrics on the total space in adiabatic classes. The linear analysis
required to perturb the metric so that the scalar curvature lies in the Lie algebra of K to any
required order is similar to the linear analysis involved in these problems. The main difference
is that we combine using the linearisation of the scalar curvature operator and the linearisation
of the contracted curvature operator on the vector bundle to achieve this, instead of looking at
a higher order asymptotic expansion of the linearisation of the scalar curvature operator. This
allows us to treat the adiabatic parameter k and the deformation parameter v separately here.

The second main difference with the classical approach to perturbation problems and defor-
mation theory is that traditionally, e.g. in the Fujiki–Donaldson proof that the scalar curvature is
a moment map, when studying deformations of the Kähler structure one fixes either the Kähler
form or the complex structure and varies the other within the prescribed compatibility condition.
As opposed to that strategy, the Dervan–Hallam theory allows us to change both the complex
structure, by varying the base point of the universal family U → V , and the Kähler form, by
adding a potential, at the same time.

Note that in [13], the moment map flow is run first and then the solution is perturbed.
This makes the perturbation analysis much more delicate, as one has to have more precise
understanding of the linearisation of the relevant operator. We solve an analytic perturbation
problem first before applying the moment map flow, which simplifies the analysis. The above
two new elements in the approach are what allows us to tackle the problem in this order instead.

Remark 1.4. In [16, 36], solutions to the optimal symplectic connection equation were used in
order to guarantee the existence of cscK metrics on certain fibrations. In the case we are consid-
ering, where the total space is a projective bundle, this equation reduces to the Hermite-Einstein
equation [16, Proposition 3.17]. Our construction, and in particular the concrete example given
in §6.3.1, shows that having a solution to the optimal symplectic connection equation is not a
necessary condition for the existence of cscK metrics in adiabatic classes. From the algebro-
geometric point of view, this is saying that the notion of fibration stability introduced by the
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second author and Dervan in [15] is not equivalent to Hattori’s f-stability [27], and our example
of Corallary 1.3 constitutes the first example of a f-stable variety that is not fibration stable.

Remark 1.5. During the preparation of this article, we learned that Rémi Delloque [9] was
using related ideas to study a different problem: when a sufficiently smooth vector bundle that is
semistable with respect to some initial polarisation can be equipped with a Chern connection such
that it satisfies the Hermite-Einstein condition, upon perturbing the polarisation. His approach
also consists in reducing to a finite dimensional problem, before using a moment map flow to
obtain a solution when the bundle is perturbed into the stable region. However, one difference
is that Delloque’s approach does not rely on the Dervan–Hallam theory for obtaining moment
maps; this makes invoking the moment map flow to relate the existence of a solution to the
stability criterion more involved.

Outline. In Section 2, we recall some background on cscK metrics, K-stability and the differ-
ential geometry of vector bundles and projective bundles. We also introduce adiabatic slope
stability. In Section 3, we discuss the linear theory relevant to our problem. In Section 4, we
reduce the problem of finding a cscK metric to a finite dimensional problem, which we then sub-
sequently solve in Section 5 under the necessary hypothesis of adiabatic slope stability. Finally,
in Section 6, we give a formula for the adiabatic slope stability criterion and use it to produce
examples to which the construction applies.
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on this paper was undertaken. This work was supported by EPSRC grant no EP/R014604/1.

2. Preliminaries

In this section, we recall some results on Kähler manifolds and K-stability, as well as on vector
bundles, their deformation theory and their projectivisation. We then introduce the notion of
adiabatic slope stability.

2.1. Kähler metrics with constant scalar curvature. Let (M,L) be a smooth projective
manifold endowed with an ample line bundle. We consider the polarisation to be a fixed datum
of the various problems we describe. Let ω be a Kähler form on M in the first Chern class of L
and let J be the complex structure of M . We denote by g = g(ω, J) the Riemannian metric on
M induced by J and ω, i.e.

g(·, ·) = ω(·, J ·).

The Ricci curvature of ω is the two-form

Ric(ω, J) = −
i

2π
∂J ∂̄J log ωn.
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The scalar curvature of the Kähler metric (ω, J) is a smooth function on M defined as the
contraction of the Ricci curvature:

Scal(ω, J) := ΛωRic(ω, J).

We are interested in special Kähler metrics, where the scalar curvature is subject to certain
constraints. In particular, we consider Kähler metrics with constant scalar curvature, where the
constant is given by the intersection product

Ŝ =
n c1(M) · c1(L)n−1

c1(L)n
.

In particular, Ŝ is a topological constant fixed by the polarisation. Fixing a reference Kähler
metric ω ∈ c1(L), we can then describe the linearisation of Scal(ω) in the direction of a Kähler
potential ϕ.

Definition 2.1. Let D : C∞(M,C) → Ω0,1(T 1,0M) be the operator

D(ϕ) = ∂̄(∇1,0
g ϕ).

The Lichnerowicz operator is the composition D∗D, where D∗ is the adjoint defined with respect
to the L2(g)-inner product.

It can be written explicitly as follows:

D∗D(ϕ) = ∆2
g(ϕ) + 〈Ric(ω), i∂∂̄ϕ〉 +

1

2
〈∇Scal(ω),∇ϕ〉.

The Lichnerowicz operator is a 4th-order elliptic operator. Its kernel, which by compactness is
the kernel of D, coincides with the space of real holomorphy potentials on M . The linearisation
of the scalar curvature in the direction of a Kähler potential ϕ can be written in terms of the
Lichnerowicz operator as

(2.1) −D∗D(ϕ) +
1

2
〈∇Scal(ω),∇ϕ〉.

In particular, the linearisation at a constant scalar curvature metric is given exactly by the
Lichnerowicz operator.

2.2. K-stability. We recall the notion of K-stability, introduced by Tian [43] and Donaldson
[19] to be an analogue for polarised varieties to the Hilbert-Mumford criterion for GIT.

Definition 2.2. Let (X,L) be a polarised variety of dimension n. A test configuration for (X,L)
is the data of

(1) a variety X with a C∗-equivariant flat proper morphism to C;
(2) a relatively ample line bundle L → X together with a lift of the C∗-action to it;
(3) an isomorphism (X1,L1) ≃ (X, rL) for some r > 0.

We say that (X ,L) is a product test configuration if (X ,L) ≃ (X, rL) × C, with a possibly
nontrivial C∗-action, and is a trivial test configuration if (X ,L) ≃ (X,L) × C with trivial C∗-
action.

Given a test configuration, one associates a numerical invariant as follows. Consider the
following expansions for the dimension of H0(X0, jL0) and for the weight wj of the induced
action of C∗ on H0(X0, jL0):

dimH0(X0, jL0) = a0j
n + a1j

n−1 +O
(
jn−2

)

wj = b0j
n + b1j

n−1 +O
(
jn−2

)
.
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The Donaldson-Futaki invariant, introduced by Donaldson in [19], is the number

DF(X ,L) :=
a1b0 − a0b1

a20
.

It is related to the classical Futaki invariant by the following result, first by proved by Donaldson
in the projective case [19, Proposition 2.2.2] and extended by Legendre [33, Theorem 1.1].

Theorem 2.3. Assume that the central fibre X0 is smooth. Let Fut(Jξ) be the classical Futaki
invariant

Fut(Jξ) =

∫

X0

f(Scal(ω) − Ŝ)ωn

where ξ = gradωf is the Hamiltonian vector field generating the C∗-action, i.e. the symplectic
gradient of f . Then the Donaldson-Futaki invariant of the test configuration (X ,L) satisfies

DF(X ,L)

n!
= −πFut(Jξ)

If (X ,L) is a test configuration, one can define the normalisation of (X ,L) by taking the

normalisation X̃ of X and the pullback of L to X̃ . The normalisation is again a test configuration
for (X,L) [38, §5].

Definition 2.4 ([19, 43]). A polarised variety (X,L) is

(1) K-semistable if DF(X ,L) ≥ 0 for all test configurations (X ,L) for (X,L);
(2) K-polystable if it is K-semistable and DF(X ,L) vanishes only if (X ,L) normalises to a

product test configuration;
(3) K-stable if it is K-semistable and DF(X ,L) vanishes only if (X ,L) normalises to the

trivial test configuration.

2.3. Differential geometry of vector bundles. Let E → B be a holomorphic vector bundle
of rank r + 1. Assume that E → B is strictly slope semistable with respect to an ample line
bundle L→ B, and let ωB ∈ c1(L) be a Kähler metric. Let

0 = S0 ⊂ S1 ⊂ S2 ⊂ . . . ⊂ Sm = E

be a Jordan–Hölder filtration for E . Let Qi = Si

Si−1
be the successive quotients in the Jordan–

Hölder filtration. In general, the Qi are torsion-free sheaves, but we assume that E is sufficiently
smooth, i.e. that the Qi are all locally free. Hence the Qi are slope stable vector bundles with
the same slope as E . The graded object

E0 =

m⊕

i=1

Qi

of E is then locally free and slope polystable with respect to L. In particular E0 and E are
isomorphic as smooth vector bundles, with different ∂̄-operators: let ∂̄0 be the ∂̄-operator of E0
and ∂̄ that of E . Letting E denote the underlying smooth vector bundle, we may write

E0 =(E, ∂̄0)

E =(E, ∂̄).

Analogously, we denote the underlying smooth bundles throughout by Sj and Qj. Being slope
polystable, by the Hitchin–Kobayashi correspondence of Donaldson, Uhlenbeck and Yau [18, 45],
E0 admits a Hermite-Einstein metric h, i.e.

ΛωB
F∇0 = c Id,

where ∇0 is the Chern connection induced by h and ∂̄0 on E and c is a constant given by the
slope of E0 divided by the volume of ωB.
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The linearisation of the Hermite-Einstein operator will play an important role in our work,
and this is given by the following result.

Lemma 2.5. The linearisation of the Hermite-Einstein operator of a Chern connection ∇ when
changing the ∂̄-operator is given by the corresponding Laplacian operator ∆ on endomorphisms
of E.

The space JE of holomorphic structures on E compatible with h is an affine space modelled
on Ω0,1(EndE), so ∂̄0 and ∂̄ are related by

∂̄ = ∂̄0 + γ

for some γ ∈ Ω0,1(EndE). We can decompose γ =
∑

i,j γi,j with γi,j ∈ Ω0,1(Q∗
j ⊗Qi). Moreover,

since the Sj are holomorphic subbundles of E and the holomorphic structure of each Qj is the

holomorphic structure as a quotient
Sj

Sj−1
, all γi,j with i ≥ j vanish. Thus the matrix γ = [γi,j ]

is strictly upper-triangular.

2.3.1. Deformation theory. Let JE be the space of pseudo-holomorphic structures on E → B. By
taking a slice of the action of the complex gauge group on JE at ∂̄0, we consider the deformation
space of the holomorphic structure ∂̄0

H1(B,End E0)

which can be identified with the finite dimensional subspace of Ω0,1(EndE) consisting of har-
monic representatives. In particular, these are first-order integrable deformations.

Let G = Aut E0 be the group of holomorphic bundle automorphisms of E0, and let K be the
subgroup of unitary such automorphisms. Note that G is the complexification of K. The Lie
algebra g ofG is the kernel of the Laplacian on End E0, and the Lie algebra k of K is the restriction
of the kernel to endomorphisms that are skew-Hermitian with respect to h. In particular, the
group G is a subgroup of the complex gauge group, which acts on the space of ∂̄-operators via
conjugation. If ∂̄ is ∂̄-operator and f ∈ GL(E) is a complex gauge transformation, this is given
by

f · ∂̄ = f−1 ◦ ∂̄ ◦ f.

From the deformation theory of vector bundles [31, §7.2, 7.3], there exists a neighbourhood V of
the origin in H1(B,End E0) and a holomorphic injective map

(2.2) Φ̃ : V → JE ,

such that Φ̃(0) = ∂̄0. The group G admits a local action on the space V making the map

Φ̃ : V → JE G-equivariant. Since we are including also non-integrable ∂̄-operators, the space V
is a ball in H1(B,End E0).

The holomorphic operator ∂̄ of E → B is then a deformation of ∂̄0 such that it is represented
by a point v ∈ V for which there exists a one-parameter subgroup C∗ of K with 0 ∈ C∗ · v.
Through the map (2.2), this orbit defines a family F → B × V that represents the degeneration
of E → B to the graded object. In particular, we have a family of ∂̄-operators

∂̄v = ∂̄0 + γv,

where v runs in a C∗-orbit whose closure contains the origin. Moreover, h is also a Hermitian
metric on E and the degeneration of E → B to E0 → B induces a family of Chern connections
∇v = ∇(h, ∂̄v). The curvature of the connection ∇v is related to that of ∇0 as follows [29, §4.3]

(2.3) Fv = F0 + d0(γv − γ∗v ) + (γv − γ∗v ) ∧ (γv − γ∗v ).
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2.4. Projectivised vector bundles. Let π : X = P(E) → B be the projectivisation of E → B.
Let H = OP(E)(−1)∗ be the relatively ample line bundle over X such that its restriction to each
fibre Xb of π is OP(Eb)(1). We also fix an ample line bundle L over the base.

For each k ≫ 0, an ample line bundle over X is given by

H + kπ∗L.

In the following, we will often omit the pullback from the notation and write H + kL with a
slight abuse of notation.

The ∂̄-operator on E → B induces an almost complex structure J on the underlying smooth
manifold M of X . Moreover, the fixed hermitian metric h on E induces a hermitian metric on
O(1); the curvature of the Chern connection obtained by h and ∂̄ gives rise to a relatively Kähler
metric

(ω = iF∇, J)

on M → B. Moreover, the restriction of (ω, J) on each fibre of π is a Fubini-Study metric on
the fibre. For each k ≫ 0, a Kähler metric on X is given by

ωk = ω + kωB

in the adiabatic class c1(H) + kc1(L). The volume form of ωk expands as

ωn+rk =

(
n+ r

n

)
knωr ∧ ωnB +O(kn−1).(2.4)

2.4.1. Kuranishi theory. The fibration X → B degenerates to the projectivisation P(E0) → B
through the degeneration family ̟ : X = P(F) → B×V . We denote the central fibration of the
family ̟ by π0 : X0 = P(E0) → B.

More precisely, let Jπ denote the space of almost complex structures on M , compatible with
ω and which preserve the projection π to B. There is a map ι : JE → Jπ, and we thus obtain a
map

(2.5) Φ : V → Jπ,

by composing Φ̃ (2.2) with ι. Moreover, the map Φ is equivariant with respect to G. We refer

to V as the Kuranishi space about E0 → B and to Φ̃ as the Kuranishi map, as they are obtained
from a fibrewise version of the deformation theory of complex structures of Kuranishi [32], [36,
Theorem 4.7].

There is a universal family over Jπ, which, as a smooth manifold, is simply Jπ ×M . Pulling
back the universal family via Φ gives a universal family

πU : U → V .

The family U is diffeomorphic to V ×M , thus it also admits a projection

U → B × V

and a projection
pr2 : U → M.

There is then an induced action of G on the image of JE via ι and so on U , making U → V a
G-equivariant holomorphic map.

Finally, after potentially shrinking V , we can assume that ωk is Kähler with respect to the
holomorphic structure Φ(v) for every v ∈ V for all sufficiently large k. Therefore, we have a
family of Kähler structures

(ωk, Jv)

on each Xv → B. Moreover, ωk induces a relatively Kähler metric, which we denote ωU ,k, on
the universal family U , for all sufficiently large k.
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2.4.2. Splitting of the function space. The relative Kähler form ω on X induces a splitting of the
function space C∞(X,R) as

C∞(X) = C∞(B) ⊕ C∞
0 (X),

where the C∞(B)-part is obtained taking the fibre integral

f 7→

∫

X/B

fωr

and C∞
0 (X) denotes the fibrewise mean-value zero functions. Furthermore, we can split

C∞
0 (X) = C∞

W (X) ⊕ C∞
R (X),

where C∞
W (X) denotes the space of fibrewise holomorphy potentials on X0 → B, which coincides

with the kernel of the vertical Lichnerowicz operator D∗
VDV . For a general holomorphic submer-

sion, these can be identified with the smooth sections of a finite rank vector bundle W → B,
with the identification depending on the relatively Kähler metric on X . The space C∞

R (X) is
given by the L2(ω)-orthogonal complement to C∞

W (X) in C∞
0 (X).

We next describe the space C∞
W (X) of fibrewise holomorphy potentials, following [34, §2].

Suppose h is a hermitian metric on E, which in our case we take to be the Hermite-Einstein
metric for E0. For every x ∈ Eb \ {0}, we then get an endomorphism λx of the fibre Eb of E → B
via

λx(−) =
x⊗ h(−, x)

‖x‖2h
.

Note that λ is scale-invariant. For every σ ∈ End(E), the map

x 7→ − tr(λx ◦ σ)

gives rise to a function on Eb \ {0}, which moreover is scale-invariant. Thus this descends to a
function hσ on P(Eb), defining a map

m : Γ(EndE) → C∞(X)

σ 7→ hσ.

Note that m(IdE) = −1, so, since m is C∞(B)-linear, m(f ·IdE) = −f for all f ∈ C∞(B). When
restricting to the space End0E of fibrewise trace-free endomorphisms of E, the functions hσ are
then of fibrewise average 0. Moreover, since the induced metric on the fibres is a Fubini-Study
metric one can, from the formula for the moment map for the action of U(r + 1) on Pr, show
that the hσ are in fact fibrewise holomorphy potentials on P(Ev) for any v ∈ V .

Note also that the map m : Γ(End0E) → C∞
W is a map of Lie algebras. First, since trace

and (post)-composition are linear maps, the map m is linear. Next, for σ ∈ Γ(End0E), let ξσ
denote the corresponding vector field on P(E), which then satisfies −dhσ = ιξσω, where ω is the
fibrewise Fubini-Study metric induced by the hermitian metric h on E. We then have

dh[σ,τ ] = − ιξ[σ,τ]
ω

= − ι[ξσ ,ξτ ]ω

=d{hσ, hτ},

where in the second equality we use that the infinitesimal action σ 7→ ξσ is a Lie algebra ho-
momorphism. Here {hσ, hτ} denotes the Poisson bracket of hσ and hτ , which is defined as the
function h such that dh = ι[ξσ ,ξτ ]ω. This does not necessarily define h uniquely as a function on
X , since ω is only relatively Kähler, but it still defines h uniquely when requiring h to be in C∞

W .
Summing up, we have the following result.
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Lemma 2.6. There exists a one-to-one correspondence of Lie algebras

(2.6) m : Γ(End0E) → C∞
W ,

where the Lie algebra structure on C∞
W is given by the Poisson bracket.

2.4.3. The Lie algebra k. Since k ⊂ Γ(EndE), we can thus view k as a subset of C∞
W ⊂ C∞(M).

We end the section by introducing some convenient notations for various incarnations of k in our
setup, building on this. Since K acts on U ,V and M , elements of k induce vector fields on each
of these manifolds. For σ ∈ k, let

(1) νσ ∈ Γ(TU) denote the corresponding vector field on U :

(2.7) νσ(x) =
d

dt

∣∣∣∣
t=0

exp(−iσ) · x;

(2) ησ ∈ Γ(TV) denote the corresponding vector field on V ;
(3) ξσ ∈ Γ(TM) denote the corresponding vector field on M .

Since U = V × M as a smooth manifold, we can pull back vector fields on V and M to U .
Moreover, as the K-action is a product action, we then get that νσ = pr∗1 ησ + pr∗2 ξσ, and this is
the horizontal-vertical decomposition of νσ with respect to the fibration structure U → V .

We consider the Lie algebra k of K as a subspace of Γ(EndE). Let

k
M

= m(k) = {h̃σ : σ ∈ k },

where h̃σ = m(σ) ∈ C∞(M). Then h̃σ is a Hamiltonian for ξσ on M with respect to the fibrewise
Fubini-Study metric induced by a Hermitian metric on E. We further let

hσ = pr∗2(h̃σ) ∈ C∞(U).

Then we have already shown that hσ is a Hamiltonian for νσ with respect to the relatively Kähler
metrics ωk on U for any k.

Lemma 2.7. Let σ ∈ k and let hσ be the corresponding Hamiltonian with respect to ω on U .
Then a Hamiltonian hσ,φ for σ with respect to ωk + i∂∂̄φ is given by

hφσ = hσ + νσ(φ),

where νσ is the vector field on U induced by σ.

Proof. Fibrewise, this is the classical formula for the change in holomorphy potential, see e.g.
[42, Lemma 4.10]. Since νσ is a vertical holomorphic vector field, this gives the global formula
in our context too, even though ωk and ωk + i∂∂̄φ are just relatively Kähler. �

Remark 2.8. For a section σ ∈ k, the Hamiltonian hσ is a global holomorphy potential on
P(E0) → B, i.e. with respect to the complex structure J0. As remarked above, hσ is also a
fibrewise holomorphy potential for the complex structure Jv for every v, but may not be globally
holomorphic. For example, for P(E), none of the non-trivial vector fields obtained in this way
are globally holomorphic, since E is simple.

We let

k = {hσ : σ ∈ k }

and for φ ∈ C∞(U), we let

kφ = {hσ + νσ(φ) : σ ∈ k},

be the Lie algebra of holomorphy potentials on U of νσ with respect to ωk + i∂∂̄φ. Similarly, if
ψ ∈ C∞(M), we let

k
M

ψ = {h̃σ + ξσ(ψ) : σ ∈ k},
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which are Hamiltonians on M of ξσ with respect to ωk + i∂∂̄ψ, which moreover are holomorphy
potentials with respect to the complex structure on M corresponding to the central fibre of the
family V .

2.5. Adiabatic slope stability. Let E be a vector bundle and S ⊂ E be a reflexive subsheaf.
We can form a family of sheaves

Ẽ → B × C

such that the fibres Ẽt ∼= E for t 6= 0 and the central fibre Ẽ0 coincides with the graded object
S ⊕ E

S . Taking the projectivisation, we therefore get a family

(XS ,H) → B × C

where H is the O(1)-bundle on XS = P(Ẽ). Since XS has a map to B, we can pull back L to XS ,
so that H + kL is a relatively ample line bundle on XS → C. By projecting onto C, we obtain a
test configuration

(XS ,H + kL) → C,

where the C∗-action is the trivial action on C pulled-back on (XS ,H+ kL). This leads us to the
following stability notion for a vector bundle, through the Donaldson-Futaki invariant of such
test configurations.

Definition 2.9. A vector bundle E is said to be adiabatically slope stable with respect to L if for
all reflexive subsheaves S of E ,

DF(XS ,H + kL) > 0

for all k ≫ 0.

Following [37, §5.4.3], we can expand the Donaldson-Futaki invariant in powers of k and write

DF(XS ,H + kL) = W0(S)kn +W1(S)kn−1 +O
(
kn−2

)

So E is adiabatically slope stable if for all S there exists an order i such that

(2.8) W0(S) = · · · = Wi(S) = 0 and Wi+1(S) > 0.

With this formulation, adiabatic slope stability can be viewed as a vector bundle analogue to
Hattori’s f-stability [27]. In fact, a proper holomorphic submersion (X,H) → (B,L) is f-stable
if the condition (2.8) holds for all non-trivial fibration degenerations.

Remark 2.10. In the case that S ⊂ E is a vector subbundle the test configuration XS can be
described explicitly using the language of Kuranishi theory introduced in §2.4.1. Since this is
the case of interest when E is sufficiently smooth, as we assume in the hypotheses of Theorem
1.1, we now describe this test configuration in more details. We consider the deformation space
V parametrising the deformations of S ⊕ E

S . Let v ∈ V be the point corresponding to ∂̄E via the

map Φ̃ (2.2) and let σ ∈ k be the element in the Lie algebra such that

lim
t→0

exp(−itησ) · v = 0,

where ησ is the induced vector field on V .
Composing the Kuranishi map Φ (2.5) together with such a one-parameter subgroup, we

obtain an S1-equivariant map
F : ∆ → J .

We define the total space Xησ of the test configuration to be P(Ev) × ∆ as a smooth manifold,
where the complex structure on each fibre over t ∈ ∆ is given by F (t) and it is integrable because
F is holomorphic. The S1-action on Xησ is given by

(2.9) s · (x, t) = (exp(−isησ) · x, st).
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In terms of ∂̄-operators, the operator ∂̄E on E corresponding to the point v differs from the
operator ∂̄0 on S⊕E/S by an element γ ∈ Ω0,1((E/S)∗⊗S) and the family of ∂̄-operators giving
the complex structure on the fibre over t ∈ C is given by

∂̄t = ∂̄0 + tγ.

The action ∗ of S1 is then

eiθ ∗ ∂̄t =∂̄eiθt

=e−iθ · ∂̄t

= exp(iθ IdS) ◦ ∂̄t ◦ exp(−iθ IdS)

in terms of the conjugation action. In particular, the vector field corresponding to the push-
forward of the angular vector field ∂θ on the total space of the test configuration is then the one
induced by −i IdS .

The line bundle on Xησ is given by the pull-back under the projection P(Ev) × ∆ → P(Ev) of
the line bundle OP(Ev)(−1)∗ + kL, and the S1-action (2.9) lifts to a holomorphic S1-action on
this line bundle.

The test configuration that we obtain in this way has the same Donaldson-Futaki invariant as
the deformation to the normal cone of P(E) along P(S) with polarisation parameter equal to the
Seshadri constant of P(S), as explained in [37, Remark 5.14]. In fact, given a reflexive subsheaf
S ⊂ E , the deformation to the normal cone is a test configuration defined as the blow-up along
P(S) × {0} of P(E) × P1, and the central fibre is given by BlP(S)P(E) glued to the exceptional

divisor of BlP(S)×{0}P(E)×P1 along the exceptional divisor of BlP(S)P(E). The central fibre of our
test configuration can be obtained from the deformation to the normal cone after the contraction
of the component BlP(S)P(E) in the central fibre.

The Donaldson-Futaki invariant of this test configuration can then be related to the slope
through the following.

Proposition 2.11 ([37, §5.4.3]). The Donaldson-Futaki invariant admits an expansion

(2.10) DF(XS ,H + kL) = Ckn−1(µL(E) − µL(S)) +O(kn−2).

The relationship between slope stability and adiabatic slope stability is similar to the rela-
tionship between slope stability and Gieseker stability.

Lemma 2.12. Slope stability implies adiabatic slope stability, and adiabatic slope semistability
implies slope semistability.

Proof. Both statements follow from the Ross–Thomas expansion (2.10) of the Donaldson-Futaki
invariant. �

Remark 2.13. In this work, we restrict to only consider subbundles of E . This leads to an a-
priori weaker notion of adiabatic slope stability with respect to subbundles, where we only require
DF(XS ,H + kL) > 0 when S is a subbundle of E . Under our sufficiently smooth hypothesis on
E , this will turn out to be equivalent to adiabatic slope stability, see Corollary 5.6. In general,
when E is not sufficiently smooth, we do not expect this equivalence.

3. The behaviour of the linearised operator under extensions

In this section, we discuss the linear theory of the problem. As our construction relies on the
implicit function theorem, we need to understand the mapping properties of the linearisation of
the scalar curvature operator. Moreover, when constructing approximate solutions on P(E) it is
convenient to make changes to the ∂̄-operator on the vector bundle. This uses the linearisation
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of the Hermite-Einstein operator, i.e. the contraction of the curvature, which is given by the
Laplacian on endomorphisms of E . We therefore also describe the mapping properties of this
operator in this section.

Let ‖ · ‖L2(g) denote the L2-norm with respect to a Riemannian metric g. We use that E
admits a filtration

0 = S0 ⊂ S1 ⊂ S2 ⊂ . . . ⊂ Sd = E

such that E0 = ⊕di=1Qi is a direct sum of simple bundles Qi = Si

Si−1
. We also assume that

Aut(B,L) is discrete. In this section, we do not use the existence of any special metrics on either
E0 or B.

3.1. The linearisation of the scalar curvature operator. Let L2
q(gk,v) denote the Sobolev

space of functions on M whose weak derivatives up to order q are in L2, with respect to gk,v. The
main result of this section is a uniform bound for a right inverse to the Lichnerowicz operator.

Proposition 3.1. There exists C, k0, δ > 0 such that for all v such that |v| ≤ δ and k ≥ k0 the
operator

Lk,v : L2
q+4(gk,v) × k → L2

q(gk,v)

given by

(φ, σ) 7→ D∗
gk,v

Dgk,v
(φ) − fσ − νσ(φ)

is surjective and has a right inverse Qk,v satisfying

‖Qk,v‖ ≤ Ck3.

We follow the strategy of [21, Theorem 6.1]. The primary goal is to give a Poincaré inequality
for the map φ 7→ ∂̄v(∇gk,v

φ), where gk,v is the Riemannian metric induced by ωk and Jv.
This gives a lower bound for the first non-zero eigenvalue of the (negative of) the Lichnerowicz
operator, which in turn gives the required bound for Qk,v.

To prove this Poincaré inequality, it is convenient to work with a product metric. The form
ω defines a splitting TX = TB ⊕ V . Using this splitting, we have a product metric hk =
(kωB) ⊕ (ω

∣∣
V

). As in Fine’s work, this metric is uniformly equivalent to gk,v, and we can make
this independent of v in any sufficiently small ball about 0.

Lemma 3.2 ([21, Lemma 6.2]). For any tensor bundle on X, there exists a δ > 0 such that gk,v
and hk are uniformly equivalent, uniformly for all k sufficiently large and all v such that |v| < δ.

We begin with a Poincaré inequality for the exterior derivative on X . Note that on functions,
the L2-norm only depends on the symplectic form ωk, not the complex structure Jv.

Lemma 3.3 ([21, Lemma 6.5]). There exists a C > 0 such that for all φ of mean value zero
with respect to ωk,

‖dφ‖2L2(gk,v)
≥ Ck−1‖φ‖2L2(ωk)

for all k sufficiently large.

This follows as in Fine’s case as he uses estimates with respect to the hk, which also in our
setting is uniformly equivalent to the metrics gk,v. The proof is also similar to the proof of
Lemma 3.5, which we give in full below.

The next step is to give a similar bound for ∂̄ on global sections of TX and we begin with
describing this kernel, similarly to [21, Lemma 6.3]. Here we use the hypothesis that the group
Aut(B,L) of automorphisms of B that lift to L is discrete.

Lemma 3.4. Suppose Aut(B,L) is discrete. Then the holomorphy potentials on Xv with respect
to ωk,v are precisely those induced by elements of H0(End Ev) through the map m.
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We can now establish the Poincaré estimate for ∂̄. Note that this operator and even its kernel
depends on v. We will therefore work orthogonally to the kernel h at v = 0. Note that h may
include holomorphic vector fields that do not admit holomorphy potentials, but these will not
impact the main result of this section.

Lemma 3.5. There exists a C > 0 such that for all v sufficiently close to 0 and all k sufficiently
large,

‖∂̄vν‖
2
L2(gk,v)

≥ Ck−2‖ν‖2L2(gk,v)

for all ν that are gk,v-orthogonal to h ⊂ Γ(TX).

The proof follows closely that of [21, Lemma 6.6]. We will use the following comparison of
the hk and h1-norms several times.

Lemma 3.6. The L2-norms with respect to the hk satisfy

k−n−1‖ν‖2hk
≤ ‖ν‖2h1

≤ k−n‖ν‖2hk

k−n‖α‖2hk
≤ ‖α‖2h1

≤ k1−n‖α‖2hk

k−n−1‖τ‖2hk
≤ ‖τ‖2h1

≤ k1−n‖τ‖2hk

on TX, Ω1(X) and Ω1(TX), respectively.

Proof. On TX , we have the following comparison of the pointwise norms

k−1|ν|2hk
≤ |ν|2h1

≤ |ν|2hk
.

On Ω1(X), we have
|β|2hk

≤ |β|2h1
≤ k|β|2hk

.

Combining the two gives the pointwise comparison

k−1|τ |2hk
≤ |τ |2h1

≤ k|τ |2hk
.

of norms on Ω1(TX). Since the volume form scales as vol(hk) = kn vol(h1), the result follows. �

We can now prove Lemma 3.5.

Proof of Lemma 3.5. Let ∆h
v denote the Laplacian associated to the metric h = h1 and operator

∂̄v, and let λ be the first non-zero eigenvalue of the Laplacian ∆h
0 . Note that the kernel of this

Laplacian is the kernel of ∂̄0, which is h. On the h1-orthogonal complement to h, λ can be
characterised as

λ = inf
η∈h⊥

〈∆h
0 (η), η〉h
‖η‖2h

,

which is equivalent to the bound

‖∂̄0(η)‖2L2(h1)
≥ λ‖η‖2L2(h1)

for all such η. Now,

〈∆h
v (η), η〉h =‖∂̄v(η)‖2h1

+ ‖∂̄∗v(η)‖2h1
,

where the adjoint ∂̄∗ is with respect to h1. This varies continuously with v, and so, in particular,
we see that we can ensure that

inf
η∈h⊥

〈∆h
v (η), η〉h
‖η‖2h

≥
λ

2

for all sufficiently small v, which in turn implies the bound

‖∂̄v(η)‖2L2(h1)
≥
λ

2
‖η‖2L2(h1)

(3.1)
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on the h1-orthogonal complement to h for all such v.
Next, let ξ ∈ h be such that ν − ξ is h1-orthogonal to h. If η1, . . . , ηd is an L2-orthonormal

basis of h with respect to h1, then the map ν 7→ ξ is given by

ν 7→
∑

j

(∫

X

〈ν, ηj〉h1 vol(h1)

)
ηj .

Since the ηj are sections of the vertical tangent bundle, their pointwise hk-norms and inner
products are independent of k. This the ηj form an L2-orthogonal basis with respect to the
hk-norm, and the norm is the scaling factor kn of the volume element. We therefore see that
there is a C1 > 0 such that

‖ξ‖2L2(hk)
=
∑

j

∫

X

(∫

X

〈ν, ηj〉h1 vol(h1)

)2

|ηj |
2
hk

vol(hk)

=k−2n
∑

j

∫

X

(∫

X

〈ν, ηj〉hk
vol(hk)

)2

|ηj |
2
hk

vol(hk)

=k−n
∑

j

〈ν, ηj〉L2(hk)

‖ηj‖L2(hk)

≤C1k
−n‖ν‖2L2(hk)

,

since the penultimate line is the L2(hk)-orthogonal projection of ν to k. Now,

‖∂̄vν‖
2
L2(gk,v)

≥C2‖∂̄vν‖
2
L2(hk)

,

for some constant C2 > 0, by Lemma 3.2. Combining this with the above and using that ∂̄0
vanishes on k, we see that by restricting to sufficiently small v, we can ensure that

‖∂̄vν‖
2
L2(gk,v)

≥C2

(
‖∂̄v(ν − ξ)‖2L2(hk)

−
λ

4
k−n‖ν‖2L2(hk)

)
.(3.2)

We now seek to estimate ‖∂̄v(ν − ξ)‖2L2(hk)
from below. By Lemma 3.6,

‖∂̄v(ν − ξ)‖2L2(hk)
≥ kn−1‖∂̄v(ν − ξ)‖2L2(h1)

.

Using the bound (3.1), we therefore get that

‖∂̄v(ν − ξ)‖2L2(hk)
≥
λ

2
kn−1‖ν − ξ‖2L2(h1)

,

and so, using Lemma 3.6 again to convert to a bound for the hk, we get that

‖∂̄v(ν − ξ)‖2L2(hk)
≥
λ

2
k−2‖ν − ξ‖2L2(hk)

.

Combining this with the bound (3.2), we get that

‖∂̄vν‖
2
L2(gk,v)

≥
C2λ

2

(
k−2‖ν − ξ‖2L2(hk)

−
1

2
k−n‖ν‖2L2(hk)

)
.

Since by Lemma 3.2 hk and gk,v are uniformly equivalent, we therefore get that there is a C > 0
such that

‖∂̄vν‖
2
L2(gk,v)

≥2C

(
k−2‖ν − ξ‖2L2(gk,v)

−
1

2
k−n‖ν‖2L2(gk,v)

)



CSCK METRICS AND SEMISTABLE BUNDLES 17

for all sufficiently small v and sufficiently large k. But since ν is gk,v-orthogonal to ξ, we have
that

‖ν − ξ‖2L2(gk,v)
=‖ν‖2L2(gk,v)

+ ‖ξ‖2L2(gk,v)

≥‖ν‖2L2(gk,v)
.

Thus

‖∂̄vν‖
2
L2(gk,v)

≥2C

(
k−2‖ν‖2L2(gk,v)

−
1

2
k−n‖ν‖2L2(gk,v)

)

≥Ck−2‖ν‖2L2(gk,v)
,

since n ≥ 2. This is what we wanted to show. �

We now combine the pieces as in [21, Lemma 6.7]. Recall that k̄ consists of the fibrewise
holomorphy potentials induced by holomorphic sections of End E0 through m, which by Lemma
3.4 are the global fibrewise holomorphy potentials with respect to ωk for all k, with respect to
the complex structure when v = 0.

Lemma 3.7. There exists a C > 0 such that for all φ that are gk,v-orthogonal to k̄ ⊂ C∞(X),

‖Dk,vφ‖
2
L2(gk,v)

≥ Ck−3‖φ‖2L2(gk,v)

for all v that are sufficiently close to 0 and sufficiently large k.

Proof. If φ is gk,v-orthogonal to k̄, then φ has mean value 0 with respect to ωk, and ∇g,kφ is gk,v-
orthogonal to h – note that h may be larger than k̄, but any gradient vector field is automatically
orthogonal to a holomorphic one that is also orthogonal to k̄. Hence Lemmas 3.3 and 3.5 apply
to give that for some constants C′, C > 0,

‖Dk,vφ‖
2
L2(gk,v)

≥C′k−2‖∇g,kφ‖
2
L2(gk,v)

=C′k−2‖dφ‖2L2(gk,v)

≥Ck−3‖φ‖2L2(gk,v)
,

as required. �

Remark 3.8. At v = 0, this is a lower bound for the first eigenvalue of the Lichnerowicz
operator. However, in general this is not a lower bound for the first eigenvalue of the Lichnerowicz
operator of (ωk, Jv), but rather a bound for the first eigenvalue orthogonally to k. When v 6= 0,
the kernel of the Lichnerowicz operator gets smaller, and the new elements that are not in the
kernel contributes to the first eigenvalue in a manner that depends on the “discrepancy order”
[40] between E and its subbundles coming from a Jordan–Hölder filtration, which was a crucial
feature in [40]. In our approach to semistable perturbation problems, we do not have to consider
this.

The bound for the right inverse to the Lichnerowicz operator follows from the above Poincaré
inequality and the following Schauder estimate.

Lemma 3.9. For each q, there exists a constant C > 0 such that for all sufficiently small v and
sufficiently large k,

‖φ‖L2
q+4(gk,v) ≤ C

(
‖φ‖L2(gk,v) + ‖Lφ‖L2

q(gk,v)

)
,

where L can be either the Lichnerowicz operator of gk,v or the actual linearisation Lk,v of the
scalar curvature operator at gk,v.
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The proof is similar to [21, Lemma 5.9 and 6.8]. Note bounding one of the two operators is
sufficient, because the scalar curvature is constant to leading order in k and so is O(k−1|v|) in k
and v.

With this in place, we can now prove Proposition 3.1, similarly to [21, Theorem 6.9].

Proof of Proposition 3.1. Since kerDgk,v
⊆ kerDgk,0

= k̄, the operator Lk,v is surjective. We

take the right inverse to be the one which gives the L2(gk,v)-orthogonal representative to k̄ in
the φ-variable. Let now (ψ, σ) = Qk,vφ. Note that σ is the L2(gk,v)-orthogonal projection of φ
to k̄, and so

‖σ‖L2(gk,v) ≤ ‖φ‖L2(gk,v).

Moreover, since σ lives in the finite dimensional space k̄, we can for each j mutually bound the
Cj+4,α-norm of σ with the L2-norm.

From the Schauder estimate of Lemma 3.9, we get that

‖ψ‖L2
q+4(gk,v) ≤ C

(
‖ψ‖L2(gk,v) + ‖φ‖L2

q(gk,v)

)
.

By Lemma 3.7,

‖ψ‖2L2(gk,v)
≤Ck3‖Dk,vψ‖

2
L2(gk,v)

=Ck3〈D∗
k,vDk,vψ, ψ〉L2(gk,v)

=Ck3〈φ, ψ〉L2(gk,v)

≤Ck3‖φ‖L2(gk,v)‖ψ‖L2(gk,v),

which gives that

‖ψ‖L2(gk,v) ≤Ck
3‖φ‖L2(gk,v).

So

‖Qk,vφ‖L2(gk,v) ≤ ‖ψ‖L2(gk,v) + ‖σ‖L2(gk,v)

≤ Ck3‖φ‖L2(gk,v) + ‖φ‖L2(gk,v)

≤ (C + 1)k3‖φ‖L2(gk,v).

Combined with the Schauder estimate above, this gives the result. �

3.2. The Laplacian on the vector bundle. We also require a similar bound for the Laplacian
on the vector bundle, which is the linearised operator for the contraction of the curvature on E.

Proposition 3.10. There exists C, δ > 0 such that for all v such that |v| ≤ δ the map

L2
q(EndE) × k → L2

q(EndE)

given by

(s, σ) 7→ ∆v(s) − σ

is surjective and has right inverse Rv satisfying

‖Rv‖ ≤ C.

Proof. The proof is very similar to the proof of Proposition 4.11, but easier since the metric ωB
on B is fixed. Since k is the kernel of the Laplacian of ∆0, we can use a Poincaré inequality for
the ∂̄0-Laplacian to obtain the uniform estimate

‖∂̄vs‖
2
L2(ωB) ≥ C‖s‖2L2(ωB)

for all s that are orthogonal to k, similarly to Lemma 3.5. Together with a Schauder estimate
for ∆v analogous to Lemma 3.9, this gives the required bound. �
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4. Reduction to a finite dimensional moment map problem

We will now go back to consider a holomorphic vector bundle E → B of rank r + 1 which is
slope semistable with respect to some ample line bundle L → B, and let X = P(E) → B be the
projectivisation of E . As in §2.4, let M be the smooth underlying manifold.

4.1. The moment map for the initial metrics. Let V be the Kuranishi space about E0 as
in Section 2.3 and Φ : V → Jπ be the Kuranishi map (2.5). We denote by V int the complex
subspace of V parametrising integrable complex structures.

Definition 4.1 (Weil–Petersson form). Let Y → V be a proper holomorphic submersion of
relative dimension r and let β be a fibrewise Kähler metric. Let ρ be the relative Ricci form
induced by β, i.e. the curvature of the Hermitian metric induced by β on −KY/V . The Weil–
Petersson form induced by β is the 2-form on V

αWP = −

∫

Y/V

ρ ∧ βr +
1

r + 1
Ŝx

∫

Y/V

βr+1,

where Ŝx denotes the average scalar curvature on the fibre Yx, which is independent of x.

We show that there is a closed two form αk, depending on k, on V , and a corresponding
moment map for the K-action on V such that having a zero of the moment map is related to
solving the cscK problem on the corresponding fibre. More precisely, we apply the following.

Theorem 4.2 ([12, Theorem 4.6]). Suppose Y → V is a holomorphic submersion, with compact
fibres of dimension m. Suppose that a group K acts on Y and V such that the submersion is
K-equivariant. Suppose that β is a relatively Kähler metric on Y and that τ is a moment map
with respect to β of the K-action on Y . Then the map µ : V → k∗ defined by

〈µ, ν〉(v) =

∫

y∈Yv

〈τ(y), ν〉(Scal(βv) − Ŝ)βr

is a moment for the K-action on V , with respect to the closed two form αWP .

Remark 4.3. In the statement of Theorem 4.2 we have the opposite sign compared to Dervan–
Hallam’s original statement. This is because we have chosen the definition (2.7) for the infini-
tesimal vector field, while they chose to take the opposite sign. More concretely, this is reflected
in the fact that the test configuration described in Remark 2.10, which is the one to which we
eventually apply Theorem 4.2, is induced by the element −iIdS ∈ k.

We wish to apply the above for the action of K on the universal family U → V defined in
§2.4.1: we begin by restricting the universal family to V int, so that U → V int is a holomorphic
submersion, and then we extend it to the whole V , which is smooth.

The relatively Kähler form is given by the pull-back of ωk from M via pr2 : V ×M → M ,
where we have used that U is diffeomorphic to the product V ×M . Let us denote it by ωU ,k. We
can write

ωU ,k = ω̂ + kωB

where ω̂ is the pullback to U of the relatively Kähler form ω on M → B. Let αk be the
Weil–Petersson metric induced on V int by ωk following Definition 4.1.

Lemma 4.4. There exists a Weil–Petersson Kähler form on V that on V int takes the form

αk = −

∫

U/V int

ρU ,k ∧ ω
n+r
U ,k +

1

n+ r + 1

∫

U/V int

Ŝvω
n+r+1
U ,k .
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Proof. The relatively symplectic form ωU ,k is constant in the horizontal direction with respect
to the projection pr1 : U → V int. So the second term in the expression of αk vanishes. Thus we
concentrate on the first term. We expand in powers of k the expression of ρU ,k as follows:

ρU ,k = i∂∂̄ log
(
knω̂r ∧ ωnB +O

(
kn−1

))

= i∂∂̄ log (ω̂r ∧ ωnB) +O
(
k−1

)

= i∂∂̄ log det(ω̂) + i∂∂̄ log det(ωB) +O
(
k−1

)
.

The k−1-term is exact on U because ωn+rU ,k and ω̂r ∧ ωnB induce the same class on −KU/V int.
Therefore we can write

αk = −

∫

U/V int

ρU ,0 ∧ ω
n+r
U ,k .

Using the expansion of Equation (2.4) for the volume form, the leading order term of αk is

α0 = −

∫

U/V int

i∂∂̄ log det(ω̂) ∧ ω̂r ∧ ωnB,

which vanishes because, as before, the form ω̂ is constant in the horizontal-with-respect-to-πU
direction. This is consistent with the fact that the leading order term of the Weil–Petersson
metric is the Weil–Petersson metric of the fibres of U → B × V int, which are projective spaces,
hence rigid.

We then turn our attention to the subleading order term

α1 = −

∫

U/V int

i∂∂̄ log det(ω̂) ∧ ω̂r+1 ∧ ωn−1
B −

∫

U/V int

Scal(ωB)ω̂r+1 ∧ ωnB.

Again, the second addendum vanishes because the form ω̂ is constant in the horizontal-with-
respect-to-πU direction. We have proven that

αk = −kn−1

∫

U/V int

i∂∂̄ log det(ω̂) ∧ ω̂r+1 ∧ ωn−1
B +O

(
kn−2

)

It remains to prove that the k−1-term is equal - up to a multiplicative constant - to the Weil–
Petersson metric on the Kuranishi space V int of vector bundles centred about the polystable
vector bundle E0 → B. Let F → V int × B the universal vector bundle. We consider the Weil–
Petersson metric

αWP,F =

∫

V int×B/V int

tr(F ∧ F ) ∧ ωn−1
B ,

where F is the curvature of the universal connection on F → V int × B. Going back to the
expression of αk, we note that

i∂∂̄ log det(ω̂) ∧ ω̂r+1 ∧ ωn−1
B =

(
i∂∂̄ log det(ω̂)

)
H
∧ ω̂H ∧ ω̂r ∧ ωn−1

B

where the foot index H indicates the horizontal restriction with respect to B. It follows from [16,
Lemma 3.2] that

ω̂H = m∗F + π∗β,

for some 2-form β on B. Since the fibres are projective spaces,
(
i∂∂̄ log det(ω̂)

)
H

= m∗F,

see [16, Proposition 3.17], [6, Lemma 5.4]. Using the expression of m (2.6) we see that, as a
2-form on V int ×B,

m∗F = Tr(F )
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so

α1 =

∫

U/V int

i∂∂̄ log det(ω̂)H ∧ ω̂H ∧ ω̂r ∧ ωn−1
B =

=

∫

V int×B/V int

Vol(P(Eb))Tr(F ) ∧ Tr(F ) ∧ ωn−1
B =

= Vol(P(Eb))

∫

V×B/V int

Tr(F ∧ F ) ∧ ωn−1
B + Vol(P(Eb))

∫

V int×B/V int

η ∧ ωn−1
B ,

where η is a representative of the second Chern class c2(F). The first term is the Weil–Petersson
metric induced by the universal vector bundle F → B × V int. As for the second term, since the
second Chern class is pulled back from B, we can write

η = η0 + dζ

where η0 is a representative of c2(E0) and ζ is a three-form on B that depends on V int. In
particular ∫

V int×B/V int

η0 ∧ ω
n−1
B = 0.

Since the Weil–Petersson metric αWP,F is positive on V int, and ζ|v=0 = 0, up to shrinking V int

we have that α1 is positive. So αk is a positive form on V int.
From [22, §8], αk is the Kähler form associated to the Riemannian metric

〈a1, a2〉x =

∫

Ux

Tr(a1a2)αn+rk , a1, a2 ∈ TxV
int

which can be extended to the whole V . In conclusion, we see that αk is a positive form on V . �

To understand what the moment map on V with respect to αk is, we need to understand the
moment map of the K-action on U with respect to ωk. The starting point for this is that we can
view k ⊂ C∞(M), as explained in §2.3. Thus

〈τ(u), σ〉 = hσ(pr2(u))

is a moment map with respect to ωk for the K-action on U for all k. Here pr2 : U → M is the
projection to M , using that U = V ×M as a smooth manifold.

We are now ready to understand the moment map condition on V induced from ωk on U .

Lemma 4.5. A point v ∈ V is a zero of the moment map µk if and only if the projection of the
scalar curvature S(ωk) of ωk is orthogonal to the v-dependent embedding k ⊂ C∞(M).

Proof. By Theorem 4.2, the moment map µk with respect to the Weil–Petersson form αk on V int

is given by

〈µk(v), σ〉 =

∫

u∈Uv

〈τ(u), σ〉(Scal(ωk)
∣∣
Uv

− Ŝ)ωn+rk,v ,

and it can be extended to a unique moment map µk on V . By the above,

〈τ(u), σ〉 = hσ(πM (u)).

Since Uv ∼= M via the projection πM and the holomorphic structure is that of P(Ev), we therefore
get that

〈µk(v), σ〉 =

∫

P(Ev)

hσ(m)(Scal(ωk) − Ŝ)ωn+rk .

Thus v is a zero of the moment map if and only if Scal(ωk, Jv) − Ŝ is orthogonal to the space
of functions spanned by the hσ. This is precisely the realisation of k as a subspace of C∞(M)
which depends on v. �



CSCK METRICS AND SEMISTABLE BUNDLES 22

4.2. Approximate solutions. Our goal now is to change the relatively Kähler structure on U
so that a zero of the corresponding moment map on U genuinely corresponds to a cscK metric.
In this section, as a step towards this, we compute the expansion of the scalar curvature of
(ω+kωB, Jv) in inverse powers of k and then alter the Kähler structure to construct approximate
solutions to solving that the scalar curvature lies in k.

We begin by making the following assumptions on the geometry of the base:

(1) the scalar curvature of ωB is constant:

Scal(ωB) = ŜB;

(2) the automorphism group Aut(B,L) is discrete.

Using the isomorphism m described in Lemma 2.6, the expansion (2.3) of the curvature of the
vector bundle, and the computations in [7, Lemma 18], we obtain the following expansion of the
scalar curvature of (ωk := ω + kωB, Jv) to sub-leading order in k:

(4.1) Scal(ωk, Jv) = Ŝb + k−1
(
ŜB +m∗(ΛωB

Fv)
)

+O
(
k−2

)
.

In particular, the leading order term is constant since the fibres of E0 → B all have constant
scalar curvature given by the fibrewise Fubini-Study metric. The following lemma describes the
k-expansion of the linearisation of the scalar curvature.

Lemma 4.6. Let Lk,v be the linearisation of the scalar curvature at a Kähler potential ϕ. Then

Lk,v(ϕ) = L0(ϕ) + k−1L1(ϕ) + k−2L2 +O
(
k−3

)
,

where:

(1) L0(ϕ) = −D∗
VDV(ϕ);

(2) if ϕB ∈ C∞(B), then L0(ϕB) = L1(ϕB) = 0 and
∫

X/B

L2(ϕB)ωr = −D∗
BDB(ϕB);

Proof. Both results follow as in Fine [21, §3]. Since the leading order term of the expansion (4.1)
is the scalar curvature of the fibres, which is constant, the leading order term of its linearisation
(2.1) is the Lichnerowicz operator of the fibres. The same observation holds for the second claim.
In fact, adding a potential φB to ωk,1 amounts to adding the potential k−1φB to the base metric
ωB. Since the scalar curvature of the base affects the order k−1-term and not the order zero
term, the combined effect on the linearisation is of order k−2. �

We are now ready to prove that the Kähler metric can be approximately modified by adding
Kähler potentials so that the scalar curvature lies in the Lie algebra k up to any given order in
k.

Proposition 4.7. For every v ∈ V and for every j, there exist sections

σ1, . . . , σj ∈ k ⊂ Γ(End(E)), s1, . . . , sj ∈ k⊥ ⊂ Γ(End(E)),

functions
l1, . . . , lj ∈ C∞

R (X), b1, . . . , bj ∈ C∞(B)

and constants c1, . . . , cj such that if

φk,j =

j∑

i=1

k−ili + k−i+2bi,

and
∂̄k,v,j = exp(k−j+1sr) · . . . · exp(k−1s2) · exp s1 · ∂̄v,
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then we have

Scal(ωk + i∂∂̄(φk,j), Jk,v,j) = Ŝb +

j∑

i=1

k−i
(
h
φk,j

i + ci

)
+O

(
k−j−1

)
,

where Jk,v,j is the almost complex structure on M induced by ∂̄k,v,j, for each i the function hi

is the Hamiltonian function corresponding to σi and h
φk,j

i is given by Lemma 2.7.

Proof. The proof is by induction on j. We begin with the base step j = 1, i.e. with k−1-term,
and then we describe the induction step j = 2. Let s ∈ Γ(EndE). Changing ∂̄v to exp(s) · ∂̄v
changes the bundle curvature to

ΛωB
Fexp(s)·∂̄v .

Note first that we can always solve the equation

(4.2) ΛωB
Fexp(s)·∂̄v = σ ∈ k

for s and σ, for all sufficiently small v. The linearisation of the condition (4.2) is given by the
map

(s, σ) 7→ ∆v(s) − σ.

Using Proposition 3.10, the implicit function theorem implies that there exists in fact a solution
(s1, σ1) to equation (4.2). In particular, σ1 corresponds via the map m (2.6) to a fibrewise

holomorphy potential h̃1 ∈ k for the metric (ωk, Jv). Therefore, letting Jk,v,1 be the complex
structure induced by ∂̄k,v,1 = exp(s1) · ∂̄v (which is actually independent of k), we have that

Scal(ωk, Jexp(s1)·v) =Ŝb + k−1
(
ŜB +m∗(ΛωB

Fexp(s1)·∂̄v )
)

+O
(
k−2

)

=Ŝb + k−1
(
ŜB + h̃1

)
+O

(
k−2

)
.

By Lemma 2.7, the function

h
φk,1

1 =h̃1 + 〈∇h̃1,∇φk,1〉

=h̃1 + 〈∇h̃1,∇k
−1l1〉

is a Hamiltonian with respect to ωk + i∂∂̄φk,1, where φk,1 = k−1l1. Let

ωk,1 = ωk + i∂∂̄φk,1.

Since h
φk,1

1 − h̃1 is O(k−1), we can write

Scal(ωk,1, Jk,v,1) = Ŝb + k−1
(
ŜB + h

φk,1

1

)
+O

(
k−2

)
,

where h
φk,1

1 is a Hamiltonian for a vector field in k with respect to ωk,1.
We next describe the induction step in the case j = 2. We write explicitly

Scal(ωk,1, Jk,v,1) = Ŝb + k−1
(
ŜB + h

φk,1

1

)
+ k−2 (ψ2,B + ψ2,E + ψ2,R) +O

(
k−3

)
.

We first perturb the Kähler metric so that the base term can be made constant. Let b ∈ C∞(B).
From Lemma 4.6, the change of ωk,1 by the Kähler potential b affects the scalar curvature as

Scal(ωk,1+i∂∂̄b, Jk,v,1) = Ŝb+k
−1
(
ŜB + h

φk,1

1

)
+k−2

(
ψ2,B −D∗

BDB(b) + ψ′
2,E + ψ′

2,R

)
+O

(
k−3

)
.

Since the automorphism group of (B,L) is discrete, the equation

ψ2,B −D∗
BDB(b) = constant

admits a solution, which we denote by b2. This makes the C∞(B)-term constant to order k−2.
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The corrections to the C∞
W -term and to the C∞

R -term now work as in the case r = 1: we
first produce a section s2 ∈ k such that if we let ∂̄k,v,2 = exp(s2) · ∂̄k,v,1 and let Jk,v,2 be the
corresponding almost complex structure on M , then

Scal(ωk,1 + i∂∂̄b2, Jk,v,2) = Ŝb + k−1
(
ŜB + h

φk,1

1

)
+ k−2

(
c2 + h̃2 + ψ′′

2,R

)
+O

(
k−3

)
,

where h̃2 is a holomorphy potential for (ωk, Jv). Next, we eliminate the C∞
R -term, and we obtain

an l2 such that

Scal
(
ωk,1 + i∂∂̄

(
b2 + k−2l2

)
, Jexp(k−1s2)·vk,1

)
= Ŝb + k−1

(
ŜB + h

φk,1

1

)
+

+ k−2
(
c2 + h̃2

)
+O

(
k−3

)
,

where the change of the Kähler form by the potential k−2l2 does not affect the C∞(B) and the
C∞
W -terms at order k−2.

Finally, we replace h
φk,1

1 and h̃2 with the holomorphy potentials with respect to ωk,1 +

i∂∂̄
(
b2 + k−2l2

)
, i.e. with h

φk,2

2 and h
φk,2

2 , where φk,2 = φk,1 + b2 + k−2l2. To do this, we
first observe that, since σj are vertical vector fields, σj(b2) = 0, so the Kähler potential b2 does
not change the expression of the holomorphy potential. Therefore, using that

k−1h
φk,1

1 − k−1h
φk,2

1 = O(k−3)

and

k−2h
φk,2

2 − k−2h̃2 = O(k−3),

we can replace h
φk,1

1 by h
φk,2

1 and h̃2 by h
φk,2

2 in the above expansions. Setting

ωk,2 = ωk,1 + i∂∂̄(b2 + k−2l2)

we then have that

Scal(ωk,2, Jvk,2
) = Ŝb + k−1

(
ŜB + h

φk,2

1

)
+ k−2

(
c2 + h

φk,2

2

)
+O

(
k−3

)
,

which gives the result for j = 2.
Proceeding in the same way by induction on j concludes the proof. �

Remark 4.8. The above approximate solutions depend smoothly on v ∈ V , as the operators to
which we have applied the implicit function theorem depend smoothly on v.

The above results are pointwise, but in fact can be shown to hold in any desired Sobolev
space.

Proposition 4.9. Let (ωk + i∂∂̄(φk,v,j), Jk,v,j) be the Kähler structure constructed in Proposi-
tion 4.7, and hi and ci the corresponding hamiltonians and constants. For each j and for each
q, there exists a C > 0 such that for all sufficiently small v and sufficiently large k,

‖Scal(ωk + i∂∂̄(φk,v,j), Jk,v,j) − Ŝb −

j∑

i=1

k−i
(
h
φk,j

i + ci

)
‖L2

q(gk,v) ≤ Ck
n
2 −j−1.

Proof. This follows as in [21, Lemma 5.7]. The norm of a fixed function is O(1) in the Ck(gk,v,j)-
norms [21, Lemma 5.6], where gk,v,j is the Riemannian metric coming from the Kähler structure
(ωk + i∂∂̄(φk,v,j), Jk,v,j). From this, it follows that

‖Scal(ωk + i∂∂̄(φk,v,j), Jk,v,j) − Ŝb −

j∑

i=1

k−i
(
h
φk,j

i + ci

)
‖Cq(gk,v,j) ≤ Ck−j−1.
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Incorporating the volume form, we have a general bound

‖f‖L2
q(gk,v,j) ≤ C · Vol(X, gk,v,j)

1
2 · ‖f‖Cq(gk,v,j),

the square root coming from the fact that we are working with L2-norms. Since the volume is
bounded above by a constant multiple of kn, the result follows. �

4.3. Perturbing the Kähler metric. Ultimately, we want to solve the cscK equation on P(E),
not just that the scalar curvature is orthogonal to k. We now perturb the Kähler metrics ωk
to metrics whose scalar curvature is in k ⊂ C∞(M). This is done so that having a zero of the
corresponding moment map at v ∈ V is equivalent to having a genuine cscK metric on P(Ev).

Recall from §2.4.3 that k
M

ψ = {h̃ψσ : σ ∈ k} and let Π⊥
k,ψ denote the projection to the L2-

orthogonal complement of k
M

ψ in C∞(M) with respect to ωk + i∂∂̄ψ. Our goal is to show the
following.

Proposition 4.10. Let Jk,v = Jk,v,j for a suitably chosen j. For all sufficiently large k and
sufficiently small v, there exists a φk,v such that

Π⊥
k,φk,v

(Scal(ωk + i∂∂̄φk,v), Jk,v) − Ŝk) = 0.

We will prove this using the implicit function theorem. This uses the following.

Proposition 4.11. Let (ωk,v,j = ωk+i∂∂̄φk,v,j , Jk,v,j) be the Kähler structure on M constructed

in Proposition 4.7 and let σk,v,j ∈ k be such that m∗σk,v,j =
∑j

i=1 k
−ihi. For each j ≫ 0, there

exists C, k0, δ > 0 such that for all v such that |v| ≤ δ and k ≥ k0 the linearisation Lk,v,j of the
map

Φk,v,j : L2
q+4(gk,v) × k → L2

q(gk,v)

given by

(φ, σ) 7→ Scal(ωk,v,j + i∂∂̄(φ), Jk,v,j) − Ŝk − h
φk,v,j
σ − νσ(φ)

at (0, σk,v,j) is surjective and has right inverse Qk,v,j satisfying

‖Qk,v,j‖ ≤ Ck3.

Proof. Proposition 3.1 applies to the initial Kähler structure (ωk, Jv). However, from the con-
struction in Proposition 4.7 of (ωk,v,j , Jk,v,j), we see that for each j, the corresponding Lich-
nerowicz operators satisfy a similar bound as in Proposition 3.1. Thus the required bound holds
for the Lichnerowicz operator of (ωk,v,j , Jk,v,j). The actual linearised operator in the φ variable
differs from the negative of the Lichnerowicz operator by the term

〈∇gk,v,j
Scal(ωk,v,j , Jk,v,j),∇gk,v,j

φ〉gk,v,j
.

Now,

Scal(ωk,v,j , Jk,v,j) =Ŝk +

j∑

i=1

k−ih
φk,v,j

i +O(k−j−1)

=Ŝk + hσk,v,j
+ νσk,v,j

(φk,v,j) +O(k−j−1),

and so

∇gk,v,j
Scal(ωk,v,j , Jk,v,j) =νσk,v,j

+O(k−j−1).

So when we linearise at σ = σk,v,j , we see that Lk,v,j differs from the negative of the Lichnerowicz
operator by a term which is O(k−j−1). Thus, if j is chosen sufficiently large, the linearised
operator admits a similar bound, which is what we wanted to show. �

We will also need the following application of the mean value theorem.
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Lemma 4.12. Let Ψk,v,j = Φk,v,j − Lk,v,j. There exists c, C > 0 such that for all sufficiently
small v and all k ≫ 0, if x, y ∈ L2

q+4(gk,v) × k satisfy ‖x‖L2
q+4

< c and ‖y‖L2
q+4

< c, then

‖Ψk,v,j(x) − Ψk,v,j(y)‖L2
q
≤ C

(
‖x‖L2

q+4
+ ‖y‖L2

q+4

)
‖x− y‖L2

q+4
.

The above allows us to use the following quantitative implicit function theorem to prove
Proposition 4.10.

Theorem 4.13 ([7, Theorem 25]). Suppose F : B1 → B2 is a differentiable map of Banach
spaces whose derivative at x0 is surjective with right-inverse Q. Let

• δ′ denote the radius of a ball in B1 such that F −Dx0F is Lipshitz with constant 1
2‖Q‖ ;

• δ = δ′

2‖Q‖ .

Then for all z ∈ B2 such that ‖z − F (x0)‖B2 < δ there exists an x ∈ B1 with ‖x − x0‖B1 < δ′

such that F (x) = z.

We can now prove Proposition 4.10.

Proof of Proposition 4.10. We apply Theorem 4.13 to B1 = L2
q+4 × k and B2 = L2

q, with F =
Φk,v,j and x0 = (0, σk,v,j) for a sufficiently large j. We will let v be sufficiently small and k
sufficiently large so that Proposition 4.9, Proposition 4.11 and Lemma 4.12 apply. Note that this
depends on j, but we will shortly fix which j we will use.

To see that Theorem 4.13 gives a solution when j is chosen sufficiently large, we first of all note
that Lemma 4.12 implies that for all sufficiently small ζ, F − dF = Φk,v,j −Lk,v,j is Lipschitz of
Lipschitz constant Cζ on the ball of radius ζ in L2

q+4 × k. By Proposition 4.11, there is a C′ > 0

such that 1
2‖Qk,v,j‖

> C′k−3. Thus on the ball of radius δ′k = C′

Ck3 in L2
q+4 × k, Φk,v,j − Lk,v,j is

Lipschitz of Lipschitz constant 1
2‖Qk,v,j‖

. Using the bound on 1
2‖Qk,v,j‖

again, the corresponding

δ to which is Theorem 4.13 applies is therefore bounded below by δk = C′′k−6 for some C′′ > 0.
The result follows if we then chose j from the start so that Proposition 4.11 applies, and such

that Proposition 4.9 gives an O(k−7) bound for the L2
q(gk,v,j)-norm of Φk,v,j(0, σk,v,j) (which

holds if j ≥ 6 + n
2 ). �

The above gives a new Kähler structure on the fibration U → V , and therefore a new moment
map on U for the K-action, for each k. Applying the Dervan-Hallam mechanism of Theorem
4.2 to these metrics, we get a new moment map on V for the K-action. We end this section
by showing that zeros of the moment map we have now produced genuinely correspond to cscK
metrics. We first explain what we have solved so far using the notation introduced in §2.4.3.

For every v ∈ V , we have produced a φk,v ∈ C∞(M) and an almost complex structure Jk,v
on M such that

Scal(ωk + i∂∂̄φk,v, Jk,v) − Ŝk ∈ k
M

φk,v
,

where Jk,v is the complex structure Jk,v,j which we used when we proved Proposition 4.10. By
the smooth dependence on v for the σk,v,j , the Jk,v are the restrictions to the fibre over v ∈ V
of an almost complex structure Jk on the underlying smooth manifold of U . We denote the
corresponding complex manifold Uk – as a smooth manifold these are all isomorphic to U , i.e. to
M × V . The projection Uk → V is thus still a K-equivariant holomorphic map.

The φk,v then glue to a function φk on Uk which is actually smooth, again because of the
smooth dependence of the φk,v on v. Thus we have shown that

Scal((ωk + i∂∂̄φk)
∣∣
Uk,v

) − Ŝk ∈ pr∗2(k
M

φk,v
)

for every v ∈ V , where Uk,v is the fibre at v of Uk → V . However, the moment map of the

K-action on Uk takes values in the dual of kφk

∣∣
Uk,v

when restricted to a fibre. If these were equal,



CSCK METRICS AND SEMISTABLE BUNDLES 27

we would immediately obtain that a zero of the moment map corresponds to a cscK metric on

the fibre, but k
M

φk,v
6= kφk

∣∣
Uk,v

in general.

Definition 4.14. Let τk : Uk → k∗ be the sequence of moment maps for the K-action on Uk
with respect to ωk + i∂∂̄φk. We denote by µk the corresponding sequence of moment maps on
V , given by Theorem 4.2.

Lemma 4.15. A point v ∈ V is a zero of the moment map µk if and only if the scalar curvature
of ωk on P(Ev) is constant.

Proof. Let ι1,k,v, ι2,k,v : k → C∞(M) be given by

ι1,k,v(σ) = (hσ + νσ(φk))
∣∣
Uv

and

ι2,k,v(σ) = h̃σ + ξσ(φk,v).

The ιj,k,v are injective linear maps. The corresponding images are then isomorphic to k. We

then have that ι1,k,v(k) = kφk

∣∣
Uv
, which is the image of the moment map µφk

with respect to

ωk + i∂∂̄φk associated to the K-action on U , thought of as a map from k to C∞(U), restricted

to the fibre Uv. Moreover, ι2,k,v(k) = k
M

φk,v
.

Arguing as in the proof of Lemma 4.5, we see that v ∈ V is a zero of the moment map if and
only if ScalV (ωk + i∂∂̄φk,v, Jv) − Ŝk is orthogonal to the image of µφk

, i.e. to ι1,k,v(k). Let Πk,v

denote the L2(gk,v)-orthogonal projection to ι1,k,v(k). Note that we have ensured that Scal(ωk +

i∂∂̄φk,v, Jv) − Ŝk ∈ ι2,k,v(k) for all v and k. The result will now follow from the claim that Πk,v

restricted to ι2,k,v(k) is an isomorphism, as this then implies that Scal(ωk + i∂∂̄φk,v, Jv)− Ŝk = 0

if and only if Πk,v(Scal(ωk + i∂∂̄φk,v , Jv) − Ŝk) = 0.
To see this, first note that

ι1,k,v(σ) =ι2,k,v(σ) + ησ(φk)
∣∣
Uv

since the restriction of hσ to Uv is h̃σ and the vertical part of νσ is ξσ. Now, let σ1, . . . , σd denote

a basis of k such that the h̃i = h̃σi form an orthonormal basis with respect to the volume form
ωr ∧ ωnB. We regard the restriction of Πk,v to ι2,k,v(k) as a linear map from Rd to itself, through
the isomorphisms ιj,k,v : k → ιj,k,v(k) and by using the above basis for k. The map is then

(λ1, . . . , λd) 7→ (c1, . . . , cd),

where

cj =

d∑

i=1

λi

(∫
M ι2,k,v(σi) · ι1,k,v(σj)(ωk + i∂∂̄φk,v)r+n

‖ι1,k,v(σj)‖L2(ωk+i∂∂̄φk,v)

)
.

Now, as ησ vanishes when v = 0 and φk = O(|v|), we see that

ι2,k,v(σi) · ι1,k,v(σj) = ι2,k,v(σi) · ι2,k,v(σj) +O(|v|2).

Similarly, the contribution from ξσ is O(|v|) (in fact, O(|v|k−1) since ξσ is vertical with respect
to the fibration structure M → B). So, we see that

ι2,k,v(σi) · ι1,k,v(σj) = h̃i · h̃j +O(|v|).

Expanding the volume forms and using the above, we then see that
∫
M
ι2,k,v(σi) · ι1,k,v(σj)(ωk + i∂∂̄φk,v)r+n

‖ι1,k,v(σj)‖L2(ωk+i∂∂̄φk,v)

=

∫

M

h̃i · h̃jω
r ∧ ωnB +O(|v|).
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Since the h̃i’s form an orthonormal basis with respect to ωr ∧ ωnB, the upshot is that

cj =

d∑

i=1

δijλi +O(|v|),

which is a perturbation of the identity map k → k. Thus for all sufficiently small v, Πk,v is an
isomorphism as well, giving the result. �

Remark 4.16. Lemma 4.15 can also be applied to resolve an analogous issue about the dis-
crepancy in the projection onto the different Lie algebra that appears in an argument of Dervan
[11], in the proof of their Corollary 3.49. We thank R. Dervan for pointing out this issue to us.
This method should apply generally to semistable perturbation problems to allow one to solve
an easier fibrewise problem instead of a global problem on the (non-compact) universal family.

5. Adiabatic slope stability and the moment map flow

To construct constant scalar curvature metrics on the total space we use the flow associated
with the sequence of moment maps of Definition 4.14, following [13, §4.2], which builds on [23, 8].
Let E → B be a semistable vector bundle, let v ∈ V be the corresponding point in the Kuranishi
space and let us denote by (ωk,v, Jk,v) the Kähler metric on P(Ev) → B obtained from Proposition
4.10. Let µk be the associated moment on V of Definition 4.14. For each k, the moment map
flow associated to the moment map µk is given by

d

dt
vt = Jη(µk(vt))

v0 = v,

where η(µk(vt)) is the infinitesimal vector field induced by µk(vt). This is the gradient flow of
the norm squared of the moment map [23, Chapter 3]. Up to shrinking V , since the origin of V is
in the closure of the orbit of v, for each k the moment map flow starting at a point v converges
to a unique point vk,∞, which lies in V [13, §4.2]. Moreover, since v represents an integrable
complex structure and integrability is a closed condition, the limit point is also integrable.

We need the following characterisation [13, Corollary 4.14].

Proposition 5.1. Let µk be a sequence of moment maps on V with respect to a sequence of

Kähler forms ωk. Let x ∈ V with finite stabiliser such that x ∈ KC · 0 and let xk,∞ be the limit
of the moment map flow starting at x. Then either one of the following happens:

(1) µk(xk,∞) = 0 and xk,∞ ∈ KC · x;
(2) xk,∞ /∈ KC · x and there exists an element ηk ∈ k and a point x̃k such that

lim
t→∞

exp(−itηk) · x = x̃k

and 〈µk(x̃k), ηk〉 ≥ 0.

For each k, let vk,∞ be the limit point of the moment map flow starting at v. Let ηk,∞ be the
corresponding vector field in k, i.e.

lim
t→0

exp(−itηk,∞) · v = vk,∞.

Let Ek,∞ be the vector bundle with holomorphic structure ∂̄k,∞ induced by the deformation

Φ̃(vk,∞), where Φ̃ is the Kuranishi map (2.2). Then ηk,∞ induces a test configuration for
(P(Ev), ωk) with central fibre P(Eṽk), as explained in Remark 2.10. We denote it by Xηk,∞

.
We next describe how ηk,∞ induces a filtration for Ev → B following [13, §4.2.3]. For each

λ ∈ R, denoted by σk,∞ ∈ k the endomorphism of Ev → B corresponding to ηk,∞,

Pλ = ker(iσk,∞ − λIdEv
)
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is a holomorphic subbundle of Ek,∞. In particular, we split σk,∞ =
∑d

i=1 λiσλi
, where λi are

eigenvalues of σk,∞ such that

λ1 > . . . > λd.

Note that d ≥ 2, as otherwise Ek,∞ ∼= Ev and σk,∞ is then the identity, since Ev is simple. We
can write Ek,∞ as the direct sum of the Pi = Pλi

, and there is at least two such components.
The Pi’s induce in turn a filtration of Ev by holomorphic subbundles [13, Corollary 4.18]

0 ⊂ S1 ⊂ · · · ⊂ Sd = Ev

where Sj = ⊕i≤jPi. Therefore, each sub-filtration 0 ⊂ Sj ⊂ Ev induces a test configuration
(Xj ,H + kL) as explained in Remark 2.10, via the vector field ηi = ησλi

.

Lemma 5.2. The pairing of the moment map µk with the vector field ηk,∞ is given by

〈µk(vk,∞), ηk,∞〉 = −
DF(Xηk,∞

,H + kL)

(n+ r)!π

where H = OP(Ev)(1). Furthermore,

DF(Xη∞,k
,H + kL) = (λd−1 − λd)DF(Xd,H + kL)+(λd−2 − λd−1)DF(Xd−1,H + kL)+

· · · + (λ1 − λ2)DF(X1,H + kL).

Proof. Since the test configurations are smooth, from Theorem 2.3 the Donaldson-Futaki invari-
ant is equal to the negative of the classical Futaki invariant of the central fibre, computed on the
vector field inducing the test configuration:

−
DF(Xη∞,k

,H + kL)

(n+ r)!π
= Fut(ηk,∞) = 〈µk(vk,∞), ηk,∞〉.

Moreover, since IdPi
= IdSi

− IdSi−1 , we can write

σk,∞ =
d∑

i=1

λiIdPi
= λd IdSd

+
d−1∑

i=1

(λi − λi+1)IdSi
,

so in particular, since Sd = Ev and ηd = ηIdEv
= 0 as the identity on ∂̄v acts trivially,

ηk,∞ =

d−1∑

i=1

(λi − λi+1)ηi.

Therefore,

DF(XF ,H + kL)

(n+ r)!
= − πFut(ηk,∞)

= − π

d−1∑

i=1

(λi − λi+1)Fut(ηλi
)

=

d−1∑

i=1

(λi − λi+1)
DF(Xi,H + kL)

(n+ r)!
,

where each coefficient λi − λi+1 is positive. �

Theorem 5.3. Let (P(Ev), ωk) → B be adiabatically slope stable. Then there is vk,∞ ∈ V in the
KC-orbit of v such that

Scal(ωk, Jvk,∞
) = constant

for every k ≫ 0.
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Proof. Assume that condition (2) of Proposition 5.1 occurs. We can therefore find ṽk ∈ V and
ηk ∈ k such that limt→∞ exp(−itηk) · v = ṽk and

〈µk,v(ṽk), ηk〉 ≥ 0.

Then ηk induces a test configuration for (P(Ev), ωk) with central fibre P(Eṽk). By Lemma 5.2,
the pairing

〈µk,v(ṽk), ηk〉

is equal to the negative of the Donaldson-Futaki invariant of said test configuration. By assump-
tion P(Ev) → B is adiabatically slope stable, so using Lemma 5.2 again, we see that

〈µk,v(ṽk), ηk〉 < 0

unless the test configuration induced by ηk is a product test configuration. But ṽk is not in the
orbit of v, and since ṽk has non-trivial stabiliser, but v corresponds to a simple bundle, Jṽk is
not biholomorphic to Jv. So the test configuration is not a product test configuration.

Hence from Proposition 5.1 we obtain that the condition (1) must hold, so there is a vk,∞ ∈
KC · v such that µk,v(vk,∞) = 0 and Φ(vk,∞) is an integrable complex structure. From Lemma
4.15, vk,∞ is such that the scalar curvature of the Kähler metric on P(Evk,∞

) is constant. �

We deduce the following corollary.

Corollary 5.4. With the same assumptions on E and B, suppose P(E) → B is K-stable with
respect to H + kL for all sufficiently large k. Then P(E) admits a cscK metric in c1(H + kL) for
all sufficiently large k.

While our methods are analytical, we obtain the following algebro-geometric statement.

Corollary 5.5. Suppose E is a sufficiently smooth adiabatically slope stable vector bundle over a
base B with discrete automorphism group admitting a cscK metric in c1(L). Then (P(E), H+kL)
is K-stable for all sufficiently large k.

We also have that for sufficiently smooth vector bundles, it suffices to check adiabatic slope
stability on subbundles.

Corollary 5.6. Suppose E is a sufficiently smooth vector bundle over a base B with a discrete
automorphism group admitting a cscK metric in c1(L), which is adiabatically slope stable with
respect to subbundles. Then E is adiabatically slope stable.

6. Asymptotic expansion of the Donaldson-Futaki invariant

In Section 5 we have seen that to check adiabatic slope stability it is enough to check on
the test configurations induced by subbundles. In this section, we write an asymptotic adiabatic
expansion of the Donaldson-Futaki invariant of said test configuration and we exhibit an example
of a bundle satisfying our assumptions.

6.1. Asymptotic expansion in general. In this section, we will give a generating formula for
the asymptotic expansion of the Donaldson-Futaki invariant of the test configuration (XS ,H+kL)
considered in §2.5 when S ⊂ E is a subbundle. In order to obtain the formula, we will use
Legendre’s localisation formula for the Donaldson-Futaki invariant [33].

First of all, note that (XS ,H + kL) is obtained by flowing along the vector field generated
by m(IdS). Indeed, if we let Q = E

S and ∂̄0 be the holomorphic structure of S ⊕ Q, then the

holomorphic structure on E is given by ∂̄ = ∂̄0 + γ, where γ ∈ Ω0,1(Q∗ ⊗ S). It follows that

exp(t IdS) · ∂̄ = ∂̄0 + e−tγ
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and so

lim
t→∞

exp(t IdS)∂̄ = ∂̄0.

Thus E degenerates to S ⊕ Q via IdS and therefore the projectivisation P(E) degenerates to
P(S ⊕Q) via the vector field generated by m(IdS).

By Theorem 2.3, we can therefore compute the Donaldson-Futaki invariant of (XS ,H + kL)
via the Futaki invariant on the central fibre, which is P(S ⊕ Q). This is where we apply the
localisation formula of Legendre, which we now describe.

Let (Y, ωY ) be a compact Kähler manifold of dimension m. Suppose f is a Hamiltonian for
a S1-action generated by a holomorphic vector field ν ∈ k. Let Z1, . . . , Zl be the connected
components of the fixed point set of this S1-action: on each such component, the restriction
fi = f

∣∣
Zi

is a constant.

Let Ni be the normal bundle of Zi in Y , for each i; then ωY induces a hermitian metric on
Ni, with curvature Fi.

Let ∆ = d∗d be the Laplacian on functions on Y , so that on each Zi

(6.1) ∆f = −2λif

where the constant λi on Zi is the weight of the action of K on the normal bundle Ni.

Definition 6.1. The equivariant Euler class of Ni is a rkNi-equivariant differential form on Y .
Its Chern-Weil representative at ν is

eeq(Ni)ν = PrkNi
(Fi + f),

where PrkNi
is the rkNi-th homogeneous component of det(id + Fi).

Thought of as represented by an element in the cohomology ring of Z, the equivariant Euler
class has a non-zero degree 0 component, and can thus be inverted – when we use division
notation below, we mean multiplication by this inverse.

The form in which we will use the localisation formula is given by the following.

Proposition 6.2 ([33, Equation (9)]). With the notation above,

Fut(ν) =

l∑

i=1

m

(m+ 1)!
ŜY

〈
([ωY ] − f1)m+1

eeq(Ni)
, [Zi]

〉
−

l∑

i=1

1

m!

〈
(c1(Y ) + λifi) .([ωY ] − fi)

m

eeq(Ni)
, [Zi]

〉

where ŜY is the average scalar curvature and with the brakets we denote the intersection product
computed on the class of the subvariety Zi.

We compute the localisation formula for the action generated by f = m(IdS) with Y =
P(S ⊕ Q) and ωY = ωk = ω + kωB. With this choice of f , the fixed point set is Z1 ∪ Z2, where
Z1 = P(S) and Z2 = P(Q). Moreover

m(IdS) =

{
−1 on P(S)

0 on P(Q)

We start by multiplying the Futaki invariant by the volume of ωk to obtain a polynomial in
k., This does not change the sign. Since f vanishes on P(Q), the only addendum in the Futaki
invariant is the one evaluated on P(S). Therefore, the quantity we compute is

[ωk]n+rFut(ν) =
n+ r

(n+ r + 1)!

〈
c1(X) · [ωk]n+r−1, X

〉〈 ([ωk] + 1)n+r+1

eeq(NS)
, [P(S)]

〉
+

−
1

(n+ r)!
〈[ωk]n+r, X〉

〈
(c1(X) − λS) .([ωk] + 1)n+r

eeq(NS)
, [P(S)]

〉
.
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Here we continue using the bracket notation to denote the object on which we compute the
intersection product. We denote

q = rkQ, s+ 1 = rkS.

We first compute the constant λS . The eigenfunctions of the Laplacian with respect to the
metric induced by the canonical polarisation OPr(r + 1) with eigenvalue 2 [16, Lemma 3.16] are
induced by a traceless element of k, such as the function

m

(
IdS −

rkS

rkE
IdE

)
.

However, we consider the polarisation OPr(1) instead of the canonical polarisation, and

c1(O(r + 1)) = (r + 1)c1(O(1)).

Therefore from equation (6.1) it follows that on P(S),

∆(m(IdS)) =∆

(
m

(
IdS −

rkS

rkE
IdE

))

= − 2(r + 1)m

(
IdS −

rkS

rkE
IdE

)

= − 2(r + 1)

((
1 −

rkS

rkE

)
m(IdS) +

rkS

rkE
m(IdQ)

)

= − 2(r + 1)

(
1 −

rkS

rkE

)
m(IdS),

where we have used that m(IdQ) vanishes on P(S). Hence

λS = −rkQ.

Next, to apply the formula we need to compute the equivariant Euler class of the normal
bundle. The normal bundle of P(S) in P(S ⊕Q) is given by

NS = H ⊗ π∗ (Q) ,

see [20, Proposition 9.13]. By the equivariant splitting principle [24, Theorem 8.6.2], we can
write π∗ (Q) as sum of line bundles

π∗ (Q) =

q⊕

i=1

Li.

The hermitian metric on S ⊕Q induces a Chern connection ∇1 which is equivariant with respect
to the S1-action on the norma bundle N1. The equivariant Euler class of N1, which equals the
top equivariant Chern class of the bundle since it is a complex vector bundle, is then represented
by

eeq(NS) =

q∏

i=1

(c1(H ⊗ Li) + 1)

= 1 +

q∑

i=1

c1(H ⊗ Li) +

q∑

i,j=1,i<j

c1(H ⊗ Li)c1(H ⊗ Lj) + · · · +

q∏

i=1

c1(H ⊗ Li)

= 1 + c1(H ⊗ π∗Q) + c2(H ⊗ π∗Q) + · · · + cq(H ⊗ π∗Q)

= c(H ⊗ π∗Q).

Its inverse is the total Segre class [20, Chapter 10]:

eeq(NS)−1 = s(NS).
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Finally, we need to compute the first Chern class of X . From the relative Euler sequence, and
since E has rank r + 1 and c1(E) = c1(S ⊕Q), one sees that

c1(X) =c1(B) + c1(H ⊗ π∗E)

=c1(B) + (r + 1)c1(H) + c1(E).

Putting everything together
(6.2)

[ωk]n+rFut(σ) =
n+ r

(n+ r + 1)!

〈
c1(X) · [ωk]n+r−1, X

〉 〈
([ωk] + 1)n+r+1.s(H ⊗ π∗Q), [P(S)]

〉

−
1

(n+ r)!

〈
[ωk]n+r, X

〉 〈
(c1(X) + q) .([ωk] + 1)n+r.s(H ⊗ π∗Q), [P(S)]

〉

6.2. Example. We will now compute the first three terms in the k-expansion of the Futaki
invariant (6.2) explicitly under the simplifying assumption that q = 1. We will frequently use
the following result [17, 25].

Lemma 6.3. Let P(E) → B be the projectivisation of a vector bundle of rank r + 1. Let ω be a
relatively Fubini-Study metric on P(E) and β be a cholomology class of degree 2j on B. Then

∫

P(E)

β̃ ∧ ωr+j = β · sj(E),

where β̃ is a representative of β and sj(E) is the j-th Segre class of E.

We denote

〈
[ωk]n+r, X

〉
=

n∑

i=0

αik
n−i

〈
c1(X).[ωk]n+r−1, X

〉
=

n∑

i=0

βik
n−i

〈
([ωk] + 1)n+r+1.s(H ⊗ π∗Q), [P(S)]

〉
=

n∑

i=0

γik
n−i

〈
(c1(X) + q) .([ωk] + 1)n+r.s(H ⊗ π∗Q), [P(S)]

〉
=

n∑

i=0

δik
n−i.

Thus the expansion of the Futaki invariant is

[ωk]n+rFut(σ) =

(
n+ r

(n+ r + 1)!
β0γ0 −

1

(n+ r)!
α0δ0

)
k2n

+

(
n+ r

(n+ r + 1)!
(β0γ1 + β1γ0) −

1

(n+ r)!
(α0δ1 + α1δ0)

)
k2n−1

+

(
n+ r

(n+ r + 1)!
(β0γ2 + β1γ1 + β2γ0) −

1

(n+ r)!
(α0δ2 + α1δ1 + α2δ0)

)
k2n−2

+O(k2n−3).
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First we compute the expansion of the volume, i.e. the α-terms. Using that Ln+1 = 0, Lemma
6.3 and the relations s1(E) = −c1(E) and that s2(E) = c1(E)2 − c2(E) one sees that

α0 =

(
n+ r

n

)
Ln

α1 = −

(
n+ r

n− 1

)
Ln−1.c1(E)

α2 =

(
n+ r

n− 2

)
Ln−2.

(
c1(E)2 − c2(E)

)
.

Similarly, by expanding c1(X).[ωk]n+r−1, we see that

β0 =

(
n+ r − 1

n

)
· (r + 1)Ln

β1 =

(
n+ r − 1

n− 1

)
· (c1(B) − rc1(E))Ln−1

β2 =

(
n+ r − 1

n− 2

)
·
(
−c1(B)c1(E) + rc1(E)2 − (r + 1)c2(E)

)
Ln−2.

Next, we consider the γ-terms, i.e. we compute
〈
([ωk] + 1)n+r+1 · (s(H ⊗ π∗Q)), [P(S)]

〉
.

We have that if V = H⊗π∗Q, then, since this is a line bundle, we have that ci(V ) = 0 for i > 1,
and so one can inductively prove that

si(V ) = (−1)ic1(V )i.

We therefore get that

si(V ) =(−1)ic1(V )i

=(−1)i (H + π∗Q)
i
.

Note also that Q.Ln = 0, and so

si(V ).Ln = (−1)iHi.Ln

and in particular

s(V ).Ln =
n∑

i=0

Hi.Ln.

Similarly, Q2.Ln−1 = 0, and so

si(V ).Ln−1 = (−1)i(Hi + iHi−1.Q).Ln−1.(6.3)

Note also that since the dimension of P(S) is n+r−1 and we are regarding H⊗π∗Q as a bundle
over P(S), the final term in the total Segre class s(V ) is the term of degree n+ r − 1.

With this place, we then see that

γ0 =

(
n+ r + 1

n

)〈
(1 +H)r+1Ln.s(V ), [P(S)]

〉

=

(
n+ r + 1

n

)〈
(1 +H)r+1

n+r−1∑

i=0

(−1)iHi.Ln, [P(S)]

〉

=

(
n+ r + 1

n

) r+1∑

j=0

n+r−1∑

i=0

(−1)i
(
r + 1

j

)〈
Hi+j .Ln, [P(S)]

〉
.
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Now, this term is only non-zero when i + j = r − 1, since P(S) has dimension n+ r − 1. We
therefore have that for each j, we need to pick i = r − 1 − j, but we also need to ensure that
i ∈ [0, n+ r − 1]. The inequality i ≥ 0 then gives that j ≤ r − 1. The inequality i ≤ n + r − 1
gives that j ≥ r − 1 − (n+ r − 1) = −n, which is always satisfied as j ≥ 0. Thus

γ0 =

(
n+ r + 1

n

) r−1∑

j=0

(−1)r−1−j

(
r + 1

j

)〈
Hr−1.Ln, [P(S)]

〉

=

(
n+ r + 1

n

) r−1∑

j=0

(−1)r−1−j

(
r + 1

j

)
Ln.

We treat the terms γ1 and γ2 similarly. By using Equation (6.3) for the γ1-term and the
analogous equation

s(V ).Ln−2 =

n+r−1∑

i=0

(−1)i(Hi + iHi−1.Q +
1

2
i(i− 1)Hi−2.Q2).Ln−2.

coming from Q3.Ln−2 = 0 for the γ2-term, one can by proceeding as above verify that

γ0 =

(
n+ r + 1

n

) r−1∑

j=0

(−1)r−1−j

(
r + 1

j

)
Ln

γ1 =

(
n+ r + 1

n− 1

) r∑

j=0

(
r + 2

j

)
(−1)r−j(−c1(S) + (r − j)Q).Ln−1

γ2 =

(
n+ r + 1

n− 2

) r+1∑

j=0

(
r + 3

j

)
(−1)r+1−j

(
c1(S)2 − c2(S)) − (r + 1 − j)c1(S).Q +

(r + 1 − j)(r − j)

2
Q2

)
.Ln−2.

We have one final expansion to consider:

〈
(c1(X) + q) · ([ωk] + 1)n+r · (s(H ⊗ π∗Q)), [P(S)]

〉
=

n∑

i=0

δik
n−i

The strategy is the same as the above. For the leading order term δ0, we have

δ0 =

(
n+ r

n

) r∑

j=0

n+r−1∑

i=0

(−1)i
(
r

j

)〈(
(r + 1)Hi+j+1 +Hi+j

)
.Ln, [P(S)]

〉
.

This contributes only when the power of H is r − 1. Using this, after some manipulation, we
obtain that

δ0 =

(
n+ r

n

)
(r + 1)

r−2∑

j=0

(−1)r−2−j

(
r

j

)
+

r−1∑

j=0

(−1)r−1−j

(
r

j

)
Ln
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The computations of δ1 and δ2 are longer, but similar. In the end, we obtain that

δ0 =

(
n+ r

n

)
(r + 1)

r−2∑

j=0

(−1)r−2−j

(
r

j

)
+

r−1∑

j=0

(−1)r−1−j

(
r

j

)
Ln

δ1 =

(
n+ r

n− 1

) r−1∑

j=0

(
r + 1

j

)
(−1)r−1−j (c1(B) + c1(E)) .Ln−1

+

(
n+ r

n− 1

)
(r + 1)

r−1∑

j=0

(
r + 1

j

)
(−1)r−1−j(−c1(S) + (r − 1 − j).Q).Ln−1

+

(
n+ r

n− 1

) r∑

j=0

(
r + 1

j

)
(−1)r−j(−c1(S) + (r − j)Hr−1.Q).Ln−1

δ2 =

(
n+ r

n− 2

)
(r + 1)

r∑

j=0

(
r + 2

j

)
(−1)r−j

(
c1(S)2 − c2(S) − (r − j)c1(S).Q +

(r − j)(r − j − 1)

2
Q2

)
.Ln−2

+

(
n+ r

n− 2

) r∑

j=0

(
r + 2

j

)
(−1)r−j (−c1(S) + (r − j)Q) .(c1(B) + c1(E)).Ln−2

+

(
n+ r

n− 2

) r+1∑

j=0

(
r + 2

j

)
(−1)r+1−j

(
c1(S)2 − c2(S) − (r + 1 − j)c1(S).Q +

(r + 1 − j)(r − j)

2
Q2

)
.Ln−2.

6.3. A concrete example: rank 2 vector bundles over a surface. We now specialise our
discussion to the case when the base has dimension n = 2 and r = 2, so that E is the extension
of a rank 2 slope stable vector bundle S by a line bundle Q, over a surface. In this case, one
verifies that

α0 =6L2

α1 = − 4c1(E).L

α2 =c1(E)2 − c2(E)

β0 =9L2

β1 =3(c1(B) − 2c1(E)).L

β2 = − c1(B).c1(E) + 2c1(E)2 − 3c2(E)

γ0 =20L2

γ1 = − 5(3c1(S) + 2c1(Q)).L

γ2 =4(c1(S)2 − c2(S)) + 3c1(S).c1(Q) + 2c1(Q)2

δ0 =24L2

δ1 =8(c1(B) + c1(E)).L − 28c1(S).L − 16c1(Q).L

δ2 =10(c1(S)2 − c2(S)) + 6c1(S).c1(Q) + 3c1(Q)2

− (3c1(S) + 2c1(Q))(c1(B) + c1(E)).

Denoting the expansion of the Donaldson-Futaki invariant as

[ωk]n+rFut(σ) = a0k
2n + a1k

2n−1 + a2k
2n−2 +O(k2n−3),

one can from the relations above easily verify that

(n+ r)!

L2
a0 =0

and that

(n+ r)!

L2
a1 =72 (µL(S) − µL(E)) .

This gives the relationship with the slope that we already knew from the results of Ross–Thomas
(Proposition 2.11).

Finally, we consider the O(k2n−2)-term. Since we are ultimately interested in the case when
S is a destabilising subbundle, i.e. µL(S) = µL(E), we make this assumption in the computation.
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We then obtain the following simplification, which is straightforward to verify given the above
formulae and which we expect holds in general.

Lemma 6.4. Suppose µL(S) = µL(E). Then n+r
n+r+1β1γ1 − α1δ1 = 0.

Thus, under this condition, the O(k2n−2)-term of the Futaki invariant is given by

(n+ r)!

L2
a2 =

n+ r

n+ r + 1
(β0γ2 + β1γ1 + β2γ0) − (α0δ2 + α1δ1 + α2δ0).

Manipulating the formulae above, we then obtain the following.

Lemma 6.5. If µL(S) = µL(E), the a2-term in the expansion of the Donaldson-Futaki invariant
is given by

(n+ r)!

L2
a2 =

2

5

(
−51c1(S)2 + 78c2(S) − 3c1(S).c1(E) + 41c1(E)2 − 60c2(E)

)

+ 12
(
µc1(B)(S) − µc1(B)(E)

)
.

Remark 6.6. The formula for the expansion of the Donaldson-Futaki invariant can be compared
to that of Keller and Ross in [30], who considered the case when the rank of E is 2 instead of 3.
Their formula is obtained through the Ross-Thomas expansion, but can also be recovered from
the localisation approach used here, using the formulae from the previous section with r = 1.
Keller–Ross relate the (Chow) stability of P(E) to the Gieseker stability of E . Note that in
general, adiabatic slope stability cannot be equivalent to Gieseker stability since adiabatic slope
stability does not have any terms involving the higher Chern classes of the base B, but such
terms do appear in the Todd class, and therefore in Gieseker stability. When B is a surface, the
c2(B)-term appearing in Gieseker stability does depend on the bundle, and does not play a role.

6.3.1. An adiabatically slope stable vector bundle over the blow up of P2. We will now apply the
above to a concrete example. Let B = Blp P

2. The Picard group is generated by the pullback of
the O(1) line bundle on P2 and the exceptional divisor D of the blowup. Note that the canonical
divisor KB = −3H +D, thus L := 3H −D is ample on B.

Let S be the pullback of a slope stable vector bundle on P2 with c1(S) = 0 and let Q = H−3D.
Then

µL(Q) =(3H −D)(H − 3D) = 0,

µL(S) =0.

By the Bogomolov inequality, c2(S) ≥ 0. In fact, over projective spaces, simplicity is equivalent
to slope stability for rank 2 vector bundles (see [35, Theorem 2.1.2.10]), and for each c2 > 0 there
exists a simple bundle with c1(S) = 0 [39, Theorem 8]. For our purpose we can take c2(S) = 1.

Assume that E is a simple extension

0 → S
i
−→ E

q
−→ Q → 0(6.4)

of S by Q and let E0 = S ⊕Q be the trivial extension. Then

c1(E) =c1(Q)

c2(E) =c2(S).

Now, this gives that a0 = a1 = 0. We also have that

c1(E)2 =(H − 3D)2 = −8

µc1(B)(E) =
1

3
(3H −D)(H − 3D) = 0.
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Thus
5!

2L2
a2 =18c2(S) + 41(−3)

=18c2(S) − 328.

Since c2(S) = 1 < 328
18 , E is adiabatically slope stable, provided such an extension with E being

simple exists.
It remains to show that there exists in fact a simple extension of S by Q. To do this, we first

compute h1(S ⊗Q∗) in order to show that there are non-trivial extensions of S by Q. We then
show that any non-trivial extension has to be simple.

We have

h1(S ⊗Q∗) =h0(S ⊗Q∗) + h2(S ⊗Q∗) − χ(S ⊗Q∗)

=h0(S ⊗Q∗) + h0(KB ⊗ S∗ ⊗Q) − χ(S ⊗Q∗)

where in the second line we used Serre duality. Now, S ⊗ Q∗ is stable bundle with slope zero,
and so cannot admit a section (a section would give an inclusion O ⊂ S⊗Q∗, whose slope would
then agree with that of S⊗Q∗). As KB = −3H+D and S∗⊗Q is a stable bundle with vanishing
slope, KB ⊗S∗ ⊗Q is a stable bundle with negative slope, and so cannot admit a section either.
Thus h0(S ⊗Q∗) = 0 = h0(KB ⊗ S∗ ⊗Q) and so

h1(S ⊗Q∗) = − χ(S ⊗Q∗).

To compute h1, we then use Riemann–Roch. Note that when B = Blp P
2, we have

∫

B

c1(B)2 + c2(B) = 12.

Moreover,

c1(S ⊗Q∗) =c1(S) + 2c1(Q∗) = −2(H − 3D)

c2(S ⊗Q∗) =c2(S) + c1(S)c1(Q∗) + c1(Q∗)2 = c2(S) + (H − 3D)2.

This gives that

h1(S ⊗Q∗) = −

∫

B

ch(S ⊗Q∗)Td(B)

= −

∫

B

(
2 + c1(S ⊗Q∗) +

c1(S ⊗ Q∗)2 − 2c2(S ⊗Q∗)

2

)

·

(
1 +

c1(B)

2
+
c1(B)2 + c2(B)

12

)

= −(2 − (H − 3D)(3H −D) + 2(H − 3D)2 − c2(S) − (H − 3D)2)

= 6 + c2(S)

≥ 6.

Note that in the above we also showed that h2(S ⊗ Q∗) = h0(KB ⊗ S∗ ⊗ Q) = 0, so that all
deformations are unobstructed. Thus there are non-trivial extensions of S by Q.

It remains to show that these are simple. More precisely, we claim that all but the trivial
extension is simple, i.e. we show that H0(End E) is one dimensional whenever E is a non-trivial
extension of S by Q.

We show first that E does not split as a sum S ′ ⊕ Q′ for any other S ′ and Q′. Assume by
contradiction that it does. Note then that since S ′ is both a subsheaf and a quotient of E , and
E is semistable, S ′ must have the same slope as E . Similarly, Q′ also has the same slope. Thus
S ′ and Q′ must be slope semistable, and of the same slope as S,Q and E .
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Next, consider the diagram

0

S ′

0 S E = S ′ ⊕Q′ Q 0

Q′

0

i′

i q

q′

The maps q′ ◦ i : S → Q′ and q ◦ i′ : S ′ → Q, obtained by composing with our starting sequence
(6.4), are morphisms of semistable sheaves. Then by [35, Corollary to Lemma 1.2.8], as S is
stable, q′ ◦ i is either 0 or injective, and similarly q ◦ i′ is either 0 or surjective as Q is stable. If
both q′ ◦ i is injective and q ◦ i′ is surjective, then rkS ≤ rkQ′ and rkS ′ ≥ rkQ. This gives that

rkE =rkS + rkQ

≤rkQ′ + rkS ′

=rkE ,

and so we must have equality in both of the inequalities. In particular, in this case both maps are
isomorphisms. However, since the sequence (6.4) does not split by assumption, the morphisms
cannot both be isomorphisms. Therefore at least one of them is the 0 morphism.

Assume that q ◦ i′ = 0. Then we have two sequences:

0 S ′ E Q 0

0 S E Q 0

i′

0

q

= =

i q

where the map S ′ → S is induced by the inclusion i′(S) ⊆ ker(q) = i(S), and it is the zero
map because S and S ′ are both stable and non isomorphic. Therefore i′ = 0 and analogously, if
q′ ◦ i = 0, we get that q′ = 0. Therefore E does not split.

Next we show that h0(End E) = 1. Taking the dual of the sequence (6.4) and tensoring with
E∗, we obtain the sequence

0 → E ⊗Q∗ → EndE → E ⊗ S∗ → 0.

This gives a long exact sequence

0 → H0(E ⊗ Q∗) → H0(End E) → H0(E ⊗ S∗) → . . . .

First we observe that since the sequence (6.4) does not split and Q is stable, H0(E⊗Q∗) = {0}.
Indeed, a section ϕ ∈ H0(E ⊗Q∗) would induce an endomorphism q ◦ϕ of Q. From the stability
of Q we have that q ◦ϕ is either the identity or the zero map. Since the sequence (6.4) does not
split, it cannot be the identity, thus it is the zero map. If ϕ 6= 0, then ϕ is injective since Q is
stable, and so we have a short sequence

0 → Q
ϕ
−→ E

q
−→ Q → 0.

This implies that E splits, against our previous conclusion. So ϕ = 0.
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Next, since S is stable, H0(S ⊗ S∗) = 〈IdS〉. Moreover, since S is a subbundle of E , we have
an inclusion H0(S ⊗ S∗) ⊆ H0(E ⊗ S∗). We claim that this inclusion is an equality. Indeed, for
the trivial extension, we have

H0(E0 ⊗ S∗) = H0(EndS) ⊕H0(Q⊗ S∗).

Since Q⊗ S∗ is a stable bundle of slope zero and Q and S are not isomorphic, it cannot admit
a section. So the inclusion H0(EndS) ⊆ H0(E0 ⊗ S∗) is an equality for the trivial extension E0.
Since E0 ⊗S∗ has at least as many sections as E ⊗S∗, it follows that the inclusion is an equality
also for E .

For the above, we see that

1 ≤ h0(End E) ≤ h0(E ⊗ Q∗) + h0(E ⊗ S∗) = 1.

Thus h0(EndE) = 1 and so E is simple.

Remark 6.7. The above strategy for proving that E is indecomposable and simple has been
implemented in similar contexts by Brambila-Paz (see for example [4] and [5, Lemma 2.5]); we
gratefully thank L. Brambila-Paz for explaining this to us.

The upshot is that E satisfies all the requirements of Theorem 1.1. Unfortunately, the base
B = Blp P

2 does not. It has automorphisms and only has an extremal metric, not a cscK one.
Luckily, this is easily remedied, since the intersection numbers are unchanged upon pulling back
to blowups in points.

First we blow up Blp P
2 to a base with a cscK metric. This is achieved by blowing B up

in two points and picking the polarisation such that the volumes of all the exceptional divisors
equal that of D above, which is just the anticanonical polarisation on the blowup of P2 in three
points. This admits a Kähler-Einstein metric [44]. We then apply the Arezzo–Pacard theorem
[1, 2] to further blowup a collection of points such that the resulting manifold does not have any
continuous automorphisms, and still has a cscK metric, in a certain polarisation. Replacing the
base Blp P

2 with B where τ : B → Blp P
2 is the blowup in this collection of points, we obtain the

same expansion of the Donaldson-Futaki invariant for the pulled back bundle (up to the change
in the volume of the polarisation). Moreover, by [41], τ∗E remains slope semistable and has
graded object which is the pullback of the graded object before blowing up. We can then apply
our main result to obtain the following, which is a more detailed version of Corollary 1.3.

Corollary 6.8. Let τ : B → Blp P
2 be the blowup of Blp P

2 in a collection of points as above
and let L be a polarisation which makes two of the points have the same volume as D ⊂ Blp P

2,
and the remaining exceptional divisors have sufficiently small volume. Then τ∗E is strictly slope
semistable, and X = P(τ∗E) admits a cscK metric in c1(O(1) ⊗ Lk) for all sufficiently large k.

Remark 6.9. One can extend a stable bundle S by the structure sheaf O on P2 to produce a
strictly slope semistable rank 3 bundle on P2. As above, any non-trivial extension E will then
be a simple bundle. However, in this case, as c1(E) = 0,

5!

2L2
a2 =18c2(S) ≥ 0,

and thus E will be asymptotically slope unstable, no matter which S we choose.

Remark 6.10. In [26], Hattori introduced a notion of stability for fibrations called adiabatic
K-stability. He defines a fibration (X,H) → (B,L) to be adiabatically K-stable if there exists a
ǫ0 such that the Donaldson-Futaki invariant of all test configurations for (X, ǫH +L) is positive
for all ǫ ∈ (0, ǫ0). He defines uniform adiabatic K-stability by requiring that there exists a δ > 0
and an ǫ0 > 0 such that for all ǫ ∈ (0, ǫ0),

DF(X,ǫH+L)(X ,H) ≥ δ‖(X ,H)‖m
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for all test configurations (X ,H) for (X, ǫH+L), where δ does not depend on ǫ and ‖(X ,H)‖m is
the minimum norm of the test configuration [10, 3]. In terms of our adiabatic parameter k = ǫ−1,
this means that the fibration is uniformly adiabatically K-stable if there exists a δ > 0 and a
k0 > 0 such that

DF(X,H+kL)(X ,H) ≥
δ

k
‖(X ,H)‖m(6.5)

for all k > k0. Note we to divide by k on the right hand side because the Donaldson–Futaki
invariant scales like the reciprocal of the scaling factor upon scaling the underlying polarisation,
but the minimum norm remains unchanged.

Let now E be the vector bundle in Corollary 6.8 and (XS ,H + kL) be a test configuration
induced by the vector subbundle S used to construct E . Then the minimum norm admits an
expansion [15, §2.5]:

(6.6) ‖(XS ,H + kL)‖m = kn
(
Ln.Hr

r + 1
+ Ln.Hr.(H−H)

)
+O

(
kn−1

)
.

This leading order term is the Donaldson-Futaki invariant of the induced test configuration for
the generic fibre, which is a non-trivial product test configuration for P

r. From the expression
(2.10) we see that the first non-vanishing term of the Donaldson-Futaki invariant is the kn−2-
term. However, from the expression (6.6) we see that the leading order term of the minimum
norm is of order kn for some non-trivial test configuration. Thus in this case, the left hand side
in the inequality (6.5) is O(kn−2), but the right hand side is O(kn−1). In particular, P(E) cannot
be uniformly adiabatically stable.

The upshot is that with E → B as above, P(E) admits a cscK metric, and is therefore an
adiabatically K-stable manifold that is not uniformly adiabatically K-stable. The same consid-
erations apply to any strictly semistable vector bundle that is adiabatically slope stable, over a
base with discrete automorphism group that admits a cscK metric. Note, on the other hand,
that if E is stable, then the left and right hand sides of (6.5) are both O(kn−1) when (X ,H)
arises from a subbundle S, so the construction of Hong [28] does not yield this phenomenon. We
thank M. Hattori for pointing out this feature to us.
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[10] Ruadháı Dervan, Uniform stability of twisted constant scalar curvature Kähler metrics, Int. Math. Res. Not.

IMRN (2016), no. 15, 4728–4783. MR 3564626 41



CSCK METRICS AND SEMISTABLE BUNDLES 42

[11] , Stability conditions for polarised varieties, Forum Math. Sigma 11 (2023), Paper No. e104, 57.
MR 4668981 28
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