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Abstract

We show how to incorporate massive spinning fields into the Euclidean path in-
tegral of three-dimensional quantum gravity via its Chern-Simons formulation. The
coupling of the spinning fields to gravity is captured by a Wilson spool, a collection
of Wilson loops winding around closed paths of the geometry, and generalizes the
proposal of [1, 2]. We present a robust derivation of the Wilson spool by providing
a new group-theoretic perspective of the quasinormal mode method for one-loop
determinants. We test our proposal on Euclidean BTZ and S3 backgrounds. We
also evaluate explicitly the quantum corrections to the path integral on S3, and
report on how GN and the mass are renormalized to leading order in perturbation
theory.
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1 Introduction

Low-dimensional gravity is an exciting arena to explore and test the gravitational path
integral. In two and three spacetime dimensions, there is no propagating graviton and all
of the effective degrees of freedom are long-range. A prime example of this phenomenon
is the rewriting of pure Einstein gravity with a cosmological constant (of either sign) as a
Chern-Simons gauge theory [3,4] which is the quintessential example of a topological field
theory in three-dimensions. A full leveraging of this fact allows the exact evaluation of the
gravitational path integral either about a saddle point [5–9] or as a non-perturbative sum
over saddles [10–13]. While Chern-Simons gravity is not a UV-complete model of quan-
tum gravity [12–14], its all-loop exactness provides strong tests for potential microscopic
models in the spirit of e.g. [8, 15–19].

One feature that is expected of a UV-complete model of quantum gravity is that it
includes matter, in particular massive fields that couple to gravity. The manifest topo-
logical invariance that makes Chern-Simons theory so powerful as a description of the
gravitational path integral also presents a challenge to incorporating matter. On a practi-
cal level, this is simple to illustrate: the action of a massive field theory minimally coupled
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to a geometry involves both inverse metrics and metric determinants. The rewriting of
these terms as Chern-Simons connections is highly non-linear and indicates that integrat-
ing out of the massive field will result in a non-local effective action. However, we can
take inspiration from the general philosophy that the low-energy avatar of the worldline
of a massive degree of freedom is a line-operator of the effective gauge theory [20].

This philosophy was made precise in [1] for massive scalar fields minimally coupled to
gravity with a positive cosmological constant. The key result was the expression of the
one-loop determinant of a massive scalar field coupled to a background metric, gµν , as a
gauge-invariant object of the Chern-Simons connections, AL/R. That is,

Zscalar[gµν ] = exp
1

4
W[AL, AR] . (1.1)

The object W[AL, AR], coined the Wilson spool, is a collection of Wilson loop operators
wrapped many times around cycles of the base geometry. The equality in (1.1) is expected
to apply to three-dimensional gravity of either sign of cosmological constant, and this was
explicitly shown for Euclidean black holes in Anti-de Sitter (i.e., Euclidean BTZ) and
Euclidean de Sitter (i.e., the three-sphere S3) in [1, 2]. It has also been upheld on T T̄
deformations of AdS3 [21]. The importance of (1.1) is not only conceptual, it is practical:
it was additionally shown in [1] that certain “exact methods” in Chern-Simons theory
(such as Abelianisation [22–24] and supersymmetric localization [25,26]) extend to three-
dimensional de Sitter (dS3) Chern-Simons gravity with the Wilson spool inserted into the
path integral. This allows a precise and efficient calculation of the quantum gravitational
corrections to Zscalar at any order of perturbation theory of Newton’s constant, GN .

An important element excluded from the dictionary established in [1] is the description
of massive fields with spin. The representation theory of dS3 spacetime admits a series of
representations describing single-particle states with both mass and integer spin [27,28]. It
is important to know how the field theory of those particles fits into quantum gravity about
the dS3 background. This consideration is more than pedestrian: we expect the massive
states of a UV description of quantum gravity to carry spin and it is sensible to organize
these states into the representation theory of the low energy effective theory. In [2] a
Wilson spool describing massive spinning fields on Euclidean BTZ was conjectured and
shown to reproduce the correct one-loop determinants as GN → 0, however, no principled
derivation was provided there. More importantly, it was shown that a näıve generalization
of the Wilson spool does not correctly reproduce the physics of spinning fields on S3.

In this paper we address this mismatch by revisiting the derivation of W[AL, AR].
The original derivation in [1] to obtain (1.1) used some of the conditions behind the
quasinormal mode method to evaluate one-loop determinants developed in [29]. Here, we
give a robust derivation where we cast all aspects of the method in terms of conditions that
rely solely on group-theoretic concepts. These conditions apply to gravity with either sign
of cosmological constant, Λ. We show in explicit examples how from the group-theoretic
picture one can write the one-loop determinant in terms of (AL, AR) and representations
of the algebra. This then gives the Wilson spool, which describes the minimal coupling
of massive spinning fields to gravity.
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To be specific, we state our main result, the generalization of (1.1) for massive spinning
fields, as the following. Consider the local path integral,1 Z∆,s, of a spin-s field Φµ1µ2...µs

with mass
m2

Λ
= (∆ + s− 2)(s−∆) , (1.2)

minimally coupled to a metric geometry, (M3, gM3), where M3 is topologically either
Euclidean BTZ or Euclidean dS3. Then, we propose

logZ∆,s[gM3] =
1

4
WjL,jR[AL, AR] , (1.3)

where

WjL,jR[AL, AR] =
i

2

∫

C

dα

α

cos
(
α
2

)

sin
(
α
2

)
(
1 + s

2 sin2
(α
2

))
×

∑

RL⊗RR

TrRL

(
Pe

α
2π

∮
γ AL

)
TrRR

(
Pe−

α
2π

∮
γ AR

)
. (1.4)

The details ofWjL,jR will be made explicit as we continue, however let us briefly summarize
the parts appearing in (1.4). The Chern-Simons connections, AL/R, are related to the
metric, gM3 , in (1.3) through the usual Chern-Simons gravity dictionary and they are
integrated over a non-trivial cycle, γ, of the base geometry. The representations, RL/R,
appearing in the Wilson loops are summed over a set determined by the mass and spin,
(∆, s), of (1.3) and labelled by weights (jL, jR). Lastly the parameter α is integrated
along a contour, C, determined by a regularization scheme appropriate for the sign of
cosmological constant. The ultimate effect of the α integral is to implement a “winding”
of the Wilson loop operators around γ; this occurs through the summing the residues of
the poles of its measure (as well as any of representation traces themselves). We coin the
above object, (1.4), the spinning Wilson spool.

In the remainder of this paper we will establish the results upholding (1.3) and (1.4)
as well as the necessary details to utilize (1.4). Much of this analysis will be done in the
context of a positive cosmological constant, where the difference between the scalar and
spinning Wilson spools are most apparent. In Sec. 2 we will establish the representation
theory necessary for describing massive spin-s particles in terms of the Euclidean isometry
group su(2)L ⊕ su(2)R. In Sec. 3 we will utilize this representation theory to build the
spinning Wilson spool, (1.4), when the background is classically S3. This follows from a
re-organization of the quasinormal mode method for one-loop determinants [29] in terms
of representation theory following a set of broad guiding principles, which we establish in
Sec. 3.1 and apply to Chern-Simons gravity in Sec. 3.2. In Sec. 4 we propose the spinning
Wilson spool as an operator, allowing us to insert it off-shell into the Chern-Simons path
integral. The full power of this is manifest in the context of a dS3 background where we
show that the Chern-Simons path integral with a spool insertion reduces to an ordinary
integral that can be evaluated to any order in GN perturbation theory. We illustrate

1Including any additional Stückelberg fields to fix its invariances and associated ghosts.
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how this can be interpreted as either a renormalization of the particle mass or Newton’s
constant, depending on choice of renormalization condition. Lastly in Sec. 5, to establish
the scope of the results in Sec. 3, we will also illustrate how (1.4) also holds when the
background is Euclidean BTZ mutatis mutandis. We conclude the paper in Sec. 6 with
potential uses for the spinning Wilson spool as well as a discussion of open problems.
Details on the dictionary relating Chern-Simons theory and gravity as well as details on
the spin-s quasinormal modes on S3 are found in App.A and App.B, respectively.

2 Non-standard spinning representations of su(2)

In this section, we will describe single-particle states of massive spin-s fields living on dS3,
with de Sitter radius ℓdS, as representations of su(2)L ⊕ su(2)R. The guiding principle of
the construction is to mimic the unitary representations of the Lorentzian dS3 isometry
group, so(1, 3). In [1] this was done for cases with s = 0, and here, following the same
arguments and conventions, we extend that construction to include spin.

Unitary representations of so(1, 3) are labeled by a conformal dimension ∆ (the eigen-
value of the dilatation operator D) and a spin s (the eigenvalue of the spin operator iM)
and come in two series:2

∆ =1 + ν , ν ∈ (−1, 1) , s = 0 ,

∆ =1− iµ , µ ∈ R , s ∈ Z . (2.1)

The first line is the complementary series describing light scalars with masses ℓ2dSm
2 =

1 − ν2 while the second line is the spinning principal series describing spinning particles
with masses ℓ2dSm

2 = (s− 1)2 + µ2.
To connect this to su(2)L ⊕ su(2)R, let us introduce some basic aspects of su(2). The

algebra is generated by L3 and L±, where

[L3, L±] = ±L± , [L+, L−] = 2L3 . (2.2)

The Casimir of the representation is c
su(2)
2 = 1

2
(L+L− + L−L+) + L2

3. Representations
of su(2) will be characterized by j, the eigenvalue of L3. The so(1, 3) algebra shares a
complexification with su(2)L ⊕ su(2)R, such that the dilatation and spin generators can
be identified with the Cartan elements of su(2) as

D = −L3 − L̄3 , M = iL3 − iL̄3 , (2.3)

respectively. Similar relations follow for the remaining generators, which can be found
in [1]. In (2.3) we have distinguished the generators of su(2)R from those of su(2)L by an
overbar. Within this complexification, the quadratic Casimir of so(1, 3) is equal to the
sum of the su(2) Casimirs:

c
so(1,3)
2 = −2c

su(2)L
2 − 2c

su(2)R
2 . (2.4)

2See [1] for a basic introduction on so(1, 3) representation theory and for our notation here. See
[27, 28, 30–32] for a more thorough treatment.
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Equation (2.3) suggests that we need to look for su(2)L ⊕ su(2)R representations with

∆ = −jR − jL , s = jR − jL , (2.5)

where jL is the eigenvalue of L3 in su(2)L, and similarly for jR.
The relations (2.5), together with (2.1), indicate to us that we will need to construct

representations with continuous and complex eigenvalues (jL, jR). These do not fall into
the standard finite-dimensional representation theory of su(2). However in [1, 33] it was
shown how to construct an alternative inner product in su(2) (or equivalently, an alter-
native notion of Hermitian conjugation) allowing for highest-weight representations with
a continuous and complex weight while preserving norm-positivity. Such representations
were coined non-standard representations in the latter reference. These representations
are built from a highest weight state, |j, 0〉, satisfying

L3|j, 0〉 = j|j, 0〉 , L+|j, 0〉 = 0 , (2.6)

and j ∈ C is the weight of the representation. Acting with lowering operators defines

|j, p〉 = Nj,p (L−)
p |j, 0〉 , (2.7)

for some normalizations Nj,p that we will determine shortly.
The key ingredient distinguishing the non-standard representations is a map, S, be-

tween highest weight representations

S|j, p〉 = |j∗, p〉 , (2.8)

where j∗ is the complex conjugate of j. This map is utilized in Hermitian conjugation in
the following way:

L†
3 := S−1L3S , L†

± := −S−1L∓S . (2.9)

Note that j
S
→ j∗ is consistent with the action of L†

3. In [1], norm-positive inner products
were constructed for non-standard representations with j = −1

2
(1 + ν) or j = −1

2
(1− iµ)

(and µ, ν ∈ R) which relate to the scalar complementary and principal series with s = 0.
Here we will relax this condition and show that a norm-positive inner product can be
constructed for any complex j.

We will first determine the normalizations Nj,p. We note that

〈j, p− 1|L+|j, p〉 =
Nj,p

Nj,p−1

p(2j + 1− p)〈j, p− 1|j, p− 1〉 , (2.10)

which can be seen from replacing L+L− with c
su(2)
2 + L3 − L2

3 in the matrix element.
Alternatively, utilizing (2.9) and (2.8), this same matrix element is

〈j, p− 1|L+|j, p〉 = 〈j, p|L†
+|j, p− 1〉∗ = −

(
Nj∗,p−1

Nj∗,p

)∗

〈j, p|j, p〉 . (2.11)

5



If we assume that we can set 〈j, p− 1|j, p− 1〉 = 1 and also 〈j, p|j, p〉 = 1, then (2.10) and
(2.11) imply (

Nj∗,p−1

Nj∗,p

)∗

= p(p− 2j − 1)

(
Nj,p

Nj,p−1

)
. (2.12)

To solve this constraint, we write

αj,p = Arg (Nj,p) , φj,p = Arg (p− 2j − 1) , (2.13)

leading to recurrence relations

|Nj∗,p−1|

|Nj∗,p|
=p|p− 2j − 1|

|Nj,p|

|Nj,p−1|
,

αj∗,p − αj∗,p−1 =αj,p − αj,p−1 + φj,p mod(2π) . (2.14)

There is a lot of freedom in solving these recurrence relations. We will choose a particular
solution by fixing

|Nj,p| = |Nj∗,p| , αj,0 = αj∗,0 = 0 , αj,p = −αj∗,p ∀ p . (2.15)

This sets
|Nj,p−1|

|Nj,p|
=

|Nj∗,p−1|

|Nj∗,p|
=
√
p|p− 2j − 1| (2.16)

and3

αj,p = −
1

2

p∑

p′=1

φj,p′ . (2.17)

For concreteness we summarize the generator actions on this representation as

L3|j, p〉 = (j − p)|j, p〉 ,

L−|j, p〉 = eiφj,p/2
√
(p+ 1)|p− 2j||j, p+ 1〉 ,

L+|j, p〉 = −eiφj,p/2
√
p|p− 2j − 1||j, p− 1〉 , (2.18)

with the action on |j∗, p〉 obtained by simply replacing j → j∗ in the above formulas. We
can now show norm-positivity by induction starting with 〈j, 0|j, 0〉 = 1. Let us investigate
the first descendant state:

|L−|j, 0〉|
2 =− 〈j, 0|S−1L+SL−|j, 0〉

=eiφj,1/2+iφj∗,1/2
√

|2j|
√

|2j|〈j, 0|j, 0〉

=|2j| > 0 . (2.19)

3Note that φj∗,p = −φj,p.
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Similarly norm-positivity of |j, p〉 induces norm-positivity of |j, p+ 1〉4:

|L−|j, p〉|
2 =− 〈j, p|S−1L+SL−|j, p〉

=eiφj,p+1/2+iφj∗,p+1/2
√

(p+ 1)|p− 2j|
√

(p+ 1)|p− 2j|〈j, p|j, p〉

=(p+ 1)|p− 2j|〈j, p|j, p〉 > 0 . (2.20)

This establishes norm-positivity for all states in the representation. We additionally note
that these representations have well-defined characters

χj(z) = Trj
(
ei2πzL3

)
=

∞∑

p=0

ei2πz(j−p) =
eiπ(2j+1)z

2i sin(πz)
. (2.21)

In [1] the restrictions of the highest-weights, j = −1
2
(1 + ν) or j = −1

2
(1 − iµ),

followed from Hermiticity of the su(2) Casimirs, separately. In this paper we will take
a more Lorentzian perspective, and impose reality of the so(1, 3) Casimir at the level of
(2.4); doing so ties the su(2)L/R representations together and the highest weights take the
generic form

jL = −
1

2
(1 + s− iµ) , jR = −

1

2
(1− s− iµ) . (2.22)

Let us briefly show this now. Assuming that jL and jR are generically complex the
condition for reality of the so(1, 3) Casimir is that

Im (jL(jL + 1)) = −Im (jR(jR + 1)) , (2.23)

or equivalently
Im(jL) (1 + 2Re(jL)) = −Im(jR) (1 + 2Re(jR)) . (2.24)

If both sides are simultaneously zero then we must have either j ∈ R or j ∈ −1
2
+ iR

(for either jL or jR) which lead to the complimentary and principal-type representations
discussed in [1]. More generally there will be a family of highest weight solutions satisfying
(2.24). However, if we further insist5 that jL − jR ∈ R then it must be the case that

Im(jL) = Im(jR) , Re(jL) + Re(jR) = −1 , (2.25)

which lead to the highest-weights appropriate for the spinning principal series, (2.22). We
will refer to such representations as the spinning principal-type representations.

As noted already in [1], our non-standard characters can be massaged into the sug-
gestive Lorentzian form via

χjL(zL)χjR(zR) + χj∗L
(zL)χj∗R

(zR) =
wsq∆ + w−sq∆̄

(1− w−1q)(1− wq)
, (2.26)

4We are assuming j is a generic complex number and ignoring the potential for possible null states
when j ∈ 1

2
N0. Of course, in these cases the representation simply terminates and we recover the standard,

finite-dimensional, representations of su(2).
5At this point we will impose this by hand; we will see later that in the quantum theory only repre-

sentations with jL − jR ∈ Z contribute to the matter one-loop determinant.
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where q = e−iπ(zL+zR) and w = eiπ(zL−zR) and we have identified (2.5) as well as ∆̄ =
2−∆. This matches the Harish-Chandra character, Tr

(
qDwiM

)
, for the so(1, 3) spinning

principal series [31].

3 Spinning spool on S3

In this section, we present the construction of the Wilson spool for massive spin-s fields
on S3. That is, we will derive an expression for the one-loop determinant of these fields on
S3 in terms of the representations of su(2)L ⊗ su(2)R constructed in the previous section.

To start, let us describe the path integral of a single massive spin-s field, with no
self-interactions. The local partition function for this theory contains a symmetric spin-s
tensor, Φµ1µ2...µs

, as well as a tower of Stückelberg fields which enforce that Φµ1µ2...µs
is

transverse and traceless [34]:

∇νΦνµ2...µs
= Φν

νµ3...µs
= 0 . (3.1)

As emphasized in [8], on a compact manifold the path integral over symmetric, transverse,
traceless (STT) tensors leads to non-local divergences which cannot be canceled by local
counterterms. This path integral must be compensated by the path integral over the
Stückelberg fields and ghosts which leave behind a finite product from integrating over
normalizable zero modes. To that end, we write

Z∆,s = ZzeroZSTT , (3.2)

where

ZSTT =

∫
[DΦµ1µ2...µs

]STTe
− 1

2

∫
Φ(−∇2

(s)
+ℓ2dSm̄

2
s )Φ . (3.3)

Above ∇2
(s) is the Laplace-Beltrami operator

[
∇2

(s)Φ
]
µ1µ2...µs

= ∇ν∇
νΦµ1µ2...µs

, (3.4)

and m̄2
s
is an “effective mass”

ℓ2dSm̄
2
s
= ℓ2dSm

2 + 3s− s
2 , (3.5)

where we recall that m2 is the standard mass parameter in dS3 [8], and related to the
representation theory of Sec. 2 via

ℓ2dSm
2 = (∆ + s− 2)(s−∆) . (3.6)

The zero mode contribution in (3.2) follows from counting conformal Killing tensor modes
on S3 and is given by [8]6

Zzero =
[
(∆− 1)(∆̄− 1)

] s
2

2

s−2∏

n=0

[
(∆ + n)(∆̄ + n)

]−(n+1+s)(n+1−s)
, (3.7)

6This is true for s ≥ 2 while for s = 0, 1 the product over n is replaced by 1.
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where we recall that ∆̄ = 2−∆.
In the following, we will show that

logZ∆,s =
1

4
WjL,jR , (3.8)

for fields on S3. That is, we will express Z∆,s as a function of the Chern-Simons connections
which we will explicitly construct utilizing the non-standard representation theory of
Sec. 2. While our construction takes place on a fixed classical background, we will see that
WjL,jR is an integral over gauge-invariant Wilson loop operators and naturally generalizes
into an off-shell operator that can be inserted into the Chern-Simons path integral, which
we will discuss in Sec 4.

The roadmap to derive (3.8) is as follows. We will first focus on ZSTT. This de-
terminant can be evaluated via the method of quasinormal modes pioneered by Denef,
Hartnoll, and Sachdev (DHS) [29]. We will adapt this method such that each component
has a group theoretic interpretation: we will show how defining properties of quasinormal
modes can be translated to conditions on the representation of the fields. This follows [1],
however, for spinning fields, we will take particular care with the role of global conditions
(i.e., Euclidean solutions are regular and single-valued) in isolating physical contributions
to the quasinormal mode product. The additional contribution of Zzero, which is not
part of the quasinormal mode product but crucial for maintaining locality of Z∆,s, will
permit a Schwinger parameterization of logZ∆,s, regularized by an iε prescription. This
will organize the quasinormal mode sum into an integral over representation traces of the
background holonomies. From this follows our main result.

3.1 A group theory perspective on S3 quasinormal modes

As the first step in our construction, we will recast the functional determinant

ZSTT = det
(
−∇2

(s) + ℓ2dSm̄
2
s

)− 1
2 (3.9)

in su(2) representation theoretic language. We recall that the DHS method instructs us
to treat Z2

STT as meromorphic function of ∆. Then, up to a holomorphic function, Z2
STT

is equal to the product containing the same zeros and poles. Here ZSTT only has poles
on states satisfying (−∇2

(s)+ m̄
2
s
)Φµ1µ2...µs

= 0. These are precisely the spin-s quasinormal
modes. In App.B, we explicitly compute these modes and their product to obtain ZSTT

directly. Here we will reinterpret these modes in terms of su(2) representation theory to
obtain an expression natural to the Chern-Simons theory formulation of gravity.

We note that the isometry algebra of the three-sphere is generated by two mutually
commuting sets of su(2) vector fields {ζa} and {ζ̄b} which are the infinitesimal left and
right group actions acting on S3 ≃ SU(2). On spin-s STT tensors the Casimirs of their
Lie derivatives, {Lζa} and {Lζ̄b}, act as the Laplace-Beltrami operator [35]:

−2δab
(
LζaLζb + Lζ̄aLζ̄b

)
Φµ1µ2...µs

=
[
∇2

(s) − s(s+ 1)
]
Φµ1µ2...µs

. (3.10)
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Hence we can write (3.9) suggestively as

ZSTT = det
(
2c

su(2)L
2 + 2c

su(2)R
2 +∆(2 −∆)− s

2
)− 1

2
. (3.11)

Following the DHS methodology, we then expect Z2
STT to have pole contributions from

states in su(2)L ⊕ su(2)R representations satisfying
(
−2c

su(2)L
2 − 2c

su(2)R
2

)
|ψ〉 =

[
∆(2−∆)− s

2
]
|ψ〉 . (3.12)

This is precisely the condition satisfied by the non-standard representations constructed
in Sec. 2 with highest weights (jL, jR) = (−∆+s

2
,−∆−s

2
). We are interested in the poles in

Z2
STT arising from weights of the representations RjL⊗RjR as we continue ∆ in the complex

plane.7 In principle we should consider all representations that satisfy (3.12), so for a given
(∆, s), we also encounter poles associated to highest weight representations arrived at by
sending ∆ → ∆̄ = 2 −∆ as well as s → −s.8 If we define (jL, jR) = (−∆+s

2
,−∆−s

2
) then

we will denote

(j̄L, j̄R) =

(
−
∆̄ + s

2
,−

∆̄− s

2

)
, (3.13)

while s → −s is equivalent to jL ↔ jR. We will then have pole contributions from any of
the representations appearing in

R∆,s =
{
RjL ⊗ RjR,Rj̄L ⊗ Rj̄R,RjR ⊗ RjL,Rj̄R ⊗ Rj̄L

}
. (3.14)

We make a special note that for scalar representations (jL = jR = j) it is sufficient to
consider the smaller set

R∆,scalar =
{
Rj ⊗ Rj ,Rj̄ ⊗ Rj̄

}
(3.15)

as in [1].
The “mass-shell condition” (3.12) is only a necessary condition to contribute a physical

pole to Z2
STT. Functional determinants come with boundary and regularity conditions on

their functional domain and we must impose these on weight spaces satisfying (3.12) to
obtain a physical answer. We will state these up-front in an su(2) natural language as
the following:

Condition I. Single-valued solutions: A configuration constructed from a represen-
tation RL ⊗RR ∈ R must return to itself under parallel transport around any closed
cycle in the Euclidean manifold.

Condition II. Globally regular solutions: A configuration constructed from a repre-
sentation RL ⊗ RR ∈ R must be globally regular on the Euclidean manifold. When
the base space is homogeneous this means RL ⊗RR lifts from a representation of the
isometry algebra to a representation of the isometry group.

7It will be important as we progress to take special care of the cases when ∆ is such that jL/R ∈ 1
2
N;

in these cases the weight spaces terminate discontinuously to finite-dimensional representations.
8This is consistent with the Lorentzian picture: a spin-s field is built out of so(1, 3) representations

labelled by both (∆,±s) while the (∆, s) representation is isomorphic to that labelled by (∆̄,−s) through
the so(1, 3) shadow map [32].

10



Let us first expand upon Condition I for spin-s fields on S3. A field Φ living in a
representation RL⊗RR is parallel transported around a cycle, γ, through the background
connections:

Φf = RL

[
P exp

(∮

γ

aL

)]
Φi RR

[
P exp

(
−

∮

γ

aR

)]
. (3.16)

When aL/R are flat this conjugation is trivial. However for the backgrounds appropri-
ate for describing the S3 metric geometry, the background connections take non-trivial
holonomies

P exp

(∮

γ

aL

)
= u−1

L ei2πL3h
(γ)
L u−1

L , P exp

(∮

γ

aR

)
= u−1

R ei2πL̄3h
(γ)
R u−1

R , (3.17)

when γ wraps one of two lines on the base S3 [1]. These lines are Hopf-linked and Wick-
rotate to the coordinate positions of the static patch origin and horizon. They yield
respective holonomies

γorig. : (hL, hR) = (1, 1) , γhor. : (hL, hR) = (1,−1) . (3.18)

More details can be found in App.A.1. The salient point is that a single-valued field will
satisfy

λLhL − λRhR ∈ Z , (3.19)

for each of the two sets of holonomies in (3.18) and for all weights (λL, λR) in the repre-
sentation RL ⊗ RR.

From cycles wrapping the origin weights must satisfy

λL − λR ∈ Z (3.20)

to contribute a pole to Z2
STT. Weights of a highest-weight representation RjL/R

necessarily
take the form

λL/R = jL/R − pL/R , pL/R ∈ N0 , (3.21)

simply via the structure of the su(2) algebra. Single-valuedness around the static patch
origin then requires

jL − jR ∈ Z ⇔ s ∈ Z . (3.22)

This condition is the same for all other representations inR∆,s. We pause here to note that
while the representation theory in Sec. 2 only relies on jL − jR ∈ R, we now see that only
fields with quantized spin can contribute physical poles to Z2

STT. We will thus fix s ∈ Z

and consider the analytic structure of Z2
STT as a function of ∆. This analytic structure is

constrained by single-valuedness around the static patch horizon, which requires

λL + λR ∈ Z . (3.23)

We will return to this condition shortly.
We now address Condition II, that configurations contributing to Z2

STT are globally
regular. Without loss of generality we will state this for RjL ⊗ RjR ∈ R∆,s. For the

11



S3 background in question the isometry group acts transitively. Thus regularity at a
point guarantees global regularity as long as the isometry group, SU(2)L × SU(2)R, acts
faithfully on the field in question: that is, RjL ⊗ RjR lifts to a representation of the
isometry group. The Peter-Weyl theorem states that these must be finite-dimensional
representations of su(2)L ⊗ su(2)R (see, for example, [36]), where such representations
have weights (3.21) satisfying

λL/R = jL/R − pL/R , 0 ≤ pL/R ≤ 2jL/R , jL/R ∈
1

2
N0 . (3.24)

To be clear about interpretation: the DHS method instructs us to consider the structure of
Z2

STT as ∆ continues to the complex plane. The mass-shell condition, (3.12), then instructs
us to consider representations with generically complex highest weights, jL/R ∈ C. Such
representations are non-standard and infinite-dimensional. However Condition II simply
tells us that the poles of Z2

STT are located at ∆ ∈ Z≤−s and the orders of these poles are
correctly counted not by weights of an infinite dimensional representation but instead by
(3.24). In this counting we notice that weights of finite dimensional representations of
SU(2) are centered about zero and so for any weight satisfying λL + λR = N > 0 there
is a corresponding weight with λL + λR = −N . Thus for the purposes of counting the
number of weights contributing to a particular pole, we can restate (3.23) as

λL + λR = |N | , N ∈ Z (3.25)

as a necessary condition for incorporating Condition II.
We pause to note that for minimally coupled scalar fields (3.25) is also sufficient to

imply Condition II. Thus the scalar one-loop determinant can be written as

Zscalar =
∏

(λL,λR)

∈Rj⊗Rj

∏

N∈Z

(|N | − λL − λR)
−1/2 ×

∏

(λ̄L,λ̄R)

∈Rj̄⊗Rj̄

∏

N̄∈Z

(∣∣N̄
∣∣− λ̄L − λ̄R

)−1/2
, (3.26)

where we have written explicitly the product over the two representations appearing in
R∆,scalar. From here the expression of Zscalar as a Wilson spool follows the procedure in [1].

For massive spin-s fields, (3.25) is no longer sufficient and we must impose additional
constraints to reproduce Z2

STT. For a given |N | in (3.25), Condition II additionally
implies the weights λL/R = jL/R − pL/R must satisfy

pL ≥ −|N | − s , pR ≥ −|N | + s . (3.27)

While the first of these is always satisfied (for positive s) the second is an additional
constraint on counting the order of the poles appearing in Z2

STT and is only non-trivial
when |N | ≤ s. For these 2s+1 cases we observe that p̃R = pR + |N | − s ≥ 0 and (3.25) is
equivalently written

jL + jR − pL − p̃R = s , pL, p̃R ≥ 0 . (3.28)
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We can thus treat this as a condition on the weights (λL, λ̃R) = (jL − pL, jR − p̃R) of
highest-weight representations RjL ⊗ RjR and for each pole arising from this condition
being satisfied, it arises 2s+ 1 times.

Applying this same procedure to all representations appearing in R∆,s we arrive at

ZSTT =
∏

R∆,s

∏

(λL,λR)


(s− λL − λR)

− 2s+1
2

∏

N∈Z,
|N |>s

(|N | − λL − λR)
− 1

2


 , (3.29)

where the first product is understood to take the product over all pairs RL ⊗ RR ∈ R∆,s

and the second product is taken over all weights (λL, λR) ∈ RL ⊗ RR of a particular pair
in R∆,s. Where it does not cause confusion we will maintain this shorthand (in both
products and sums) for compactness of notation.

As mentioned at the beginning to this section, the local spin-s partition function,
Z∆,s, includes, in addition to this quasinormal product, the product from integrating over
normalizable zero modes, (3.7):

Z∆,s = ZzeroZSTT . (3.30)

In the next section we will show how this combination, with the expression of ZSTT as a
product over representation weights, (3.29), will lead to the Wilson spool.

3.2 Constructing the spool

The procedure to cast logZ∆,s as an integral over Wilson loop operators starts by re-
arranging (3.7) and (3.29). We first make use of the Schwinger parameterization of the
logarithm

logM = −

∫ ∞

×

dα

α
e−αM , (3.31)

with a regularization of the divergence at α → 0 that we will leave unspecified for now.
We will address this regularization through a suitable iε prescription below. Applying
(3.31) to (3.29), we first see that the sum over weights in logZSTT can then be organized
into representation traces

∑

(λL,λR)

eα(λL+λR) = TrRL

(
eαL3

)
TrRR

(
eαL̄3

)
, (3.32)

which are the characters of the non-standard representation in (2.21). This then leads to

log(ZSTT) =
1

2

∫ ∞

×

dα

α



∑

N∈Z
|N |>s

e−|N |α + (2s+ 1)e−sα


×

∑

R∆,s

TrRL

(
eαL3

)
TrRR

(
eαL̄3

)
. (3.33)

13



Similarly, we can introduce a Schwinger parameter to logZzero, where now (3.7) reads

logZzero =

∫ ∞

×

dα

α

(
s−2∑

n=0

((n+ 1)2 − s
2)e(jL+jR−n)α −

s
2

2
e(jL+jR+1)α

)
+ (jL/R → j̄L/R)

=
1

2

∫ ∞

×

dα

α
(eα − 1)2e−2α

(
s−2∑

n=0

((n + 1)2 − s
2)e−nα −

s
2

2
eα

)
×

∑

R∆,s

TrRL

(
eαL3

)
TrRR

(
eαL̄3

)
. (3.34)

In the first line, we used ∆ = −jL − jR, and in the second, the characters (2.21) to cast
this as a trace. The zero mode contribution (3.34) combines nicely with log (ZSTT) to give

logZ∆,s =
1

2

∫ ∞

×

dα

α

(
cosh

(
α
2

)

sinh
(
α
2

) − s
2 sinh(α)

)
∑

R∆,s

TrRL

(
eαL3

)
TrRR

(
eαL̄3

)
, (3.35)

where we used
∑

n∈Z

e−|n|α =
cosh

(
α
2

)

sinh
(
α
2

) . (3.36)

At this point we use the even parity of the integrand to regulate the divergence through
the following iε prescription:

∫ ∞

×

dα

α
f(α) := lim

ε→0

1

4

∑

±

∫ ∞

−∞

dα

α± iε
f(α± iε) . (3.37)

This is a choice of regularization scheme for the one-loop determinant. Finally, under a
change of integration variables α→ −iα we can write the partition function as

logZ∆,s =
i

8

∫

C

dα

α

(
cos
(
α
2

)

sin
(
α
2

) + 2s2 cos
(α
2

)
sin
(α
2

))∑

R∆,s

TrRL

(
eiαL3

)
TrRR

(
eiαL̄3

)
, (3.38)

where the contour C runs upwards along the imaginary α axis to the left and right of the
divergence at the origin, as depicted in Fig. 1.

As a final step we now rewrite the holonomies inside the traces to restore the back-
ground connections, arriving at (3.8) with WjL,jR the spinning Wilson spool:

WjL,jR[aL, aR] :=
i

2

∫

C

dα

α

cos
(
α
2

)

sin
(
α
2

)
(
1 + 2s2 sin2

(α
2

))
×

∑

R∆,s

TrRL

(
Pe

α
2π

∮
γ aL
)
TrRR

(
Pe−

α
2π

∮
γ aR
)
, (3.39)

where above γ = γhor. is a cycle wrapping the singular point corresponding to the horizon.
At this point let us make several comments:
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Re(α)

Im(α)
C

Figure 1: The integration contour regulating the α → 0 divergence.

• The spinning Wilson spool takes a form similar to that of the scalar spool found in
[1,2]; importantly the “operator pieces” of the expression (3.39) have been organized
into gauge-invariant Wilson loop operators. The only modification the spinning spool
brings is in the integration measure.

• The modification to the integration measure, proportional to s
2, will have the effect

of lowering the degree of each pole at α ∈ 2πZ by two. As we will shortly see, this
effect reproduces the “edge partition function” of [8].

• Mathematically the holonomies corresponding to γhor. appear in the one-loop deter-
minant because they are sensitive to ∆ on which ZSTT is treated as an meromorphic
function. The physics behind this is clear: we are reproducing a one-loop determinant
of massive fields. In the worldline quantum mechanics framework this corresponds
to averaging over worldlines of a massive particle in the static patch. Such wordlines
are timelike and rotate to a contour gauge equivalent to γhor..

3.3 Testing the Wilson spool

We now uphold equations (3.8) and (3.39) by verifying that it indeed reproduces the
correct path integral of a massive spinning field on S3. There are several ways how
to evaluate this path integral, and here we will focus on two approaches to use as a
comparison. The first is to implement the DHS method traditionally: in App.B we
evaluate this path integral by explicitly listing the quasinormal modes and applying DHS.
The second approach we can compare to are the expressions found in [8], which cast the
results in terms of so(1, 3) characters.

Since we are not turning on gravity (GN → 0), we evaluate the Wilson loop operators
in (3.39) as characters with the appropriate holonomies in (3.18). Using the form of our
non-standard representation character, (2.21), we then write

logZ∆,s = −
i

8

∫

C

dα

α

(
cos
(
α
2

)

sin3(α
2
)
+ 2s2

cos
(
α
2

)

sin
(
α
2

)
)
eiα(1−∆) , (3.40)

where we note that the sum over representations in R∆,s is already neatly packaged into
our two contours. We recognize the first term in the parentheses of (3.40) as twice the
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on-shell scalar Wilson spool found in [1]. We evaluate both terms by deforming the α
contours to run above and below the real α axis to pick up the residues at the poles lying
at 2πZ6=0. This deformation is depicted in Fig. 2.

Re(α)

Im(α)

C

Figure 2: We deform the α integration contour to wrap the poles lying
along the real axis.

Summing the towers of poles and expressing the su(2)L/R highest-weight labels in
terms of µ and s as in (2.22), we write this as

logZ∆,s =
∑

±

(
−

1

4π2
Li3
(
e∓2πµ

)
∓

µ

2π
Li2
(
e∓2πµ

)
−
µ2 + s

2

2
Li1
(
e∓2πµ

))

= 2 logZscalar −
s
2

2

∑

±

Li1
(
e∓2πµ

)
,

(3.41)

where

Lip(z) =

∞∑

n=1

zn

np
(3.42)

is the polylogarithm. As mentioned above, logZscalar is the one-loop determinant of a
massive scalar field on S3 with a mass set by ℓ2dSm

2 = ∆(2 − ∆) = 1 + µ2. Up to an
overall phase, unfixed by the quasinormal mode method, (3.41) matches the path integral
of a massive spin-s field on S3 via DHS in App.B and the results reported in [8].

4 Coupling quantum matter to dS3 quantum gravity

Having constructed the spinning Wilson spool on S3 in Sec. 3, in this section we will
promote it to an off-shell object with the aim of incorporating quantum effects from
gravity around S3. More concretely, we posit the following: let AL and AR be su(2)L and
su(2)R connections respectively, yielding a non-degenerate dreibein ea = −i (Aa

L − Aa
R)

with an associated metric geometry (M3, gM3) that is topologically equivalent to the round
S3. Then the partition function of massive spin-s fields minimally coupled to gM3 is
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determined by the spinning Wilson spool given by (3.39) with aL/R replaced with AL/R:

logZ∆,s[gM3] =
1

4
WjL,jR[AL, AR] . (4.1)

For scalar fields it was argued in [1] that the manipulations leading to the Wilson
spool remain valid for off-shell geometries. This argumentation relied on the expression of
the Laplacian −∇2

gM3
as a Casimir of local su(2)L/R action (see App.D of [1]). While this

remains true when acting on spin-s fields (via the transverse-traceless condition), various
manipulations leading to (3.39) make the leap to (4.1) less rigorous than for scalar fields.
This includes both manipulations relying on the integer nature of the holonomies, hL/R,
as well as the explicit form of Zzero. Barring a detailed analysis of normalizable zero
modes for the ghost and Stückelberg fields appearing in Z∆,s on generic three-geometries,
at this point we take (4.1) as a proposal. This proposal is upheld on the grounds that it
utilizes and generalizes naturally the gauge-invariant observables in Chern-Simons theory
(namely its Wilson loops); these observables appear in a form that reduces to twice9 the
scalar path integral when s → 0 and, as we will see in the following section, continues to
work for negative cosmological constant.

With this proposal in hand, the Wilson spool gives us a concrete route for calculating
finite GN effects10 to logZ∆,s. That is we can consider

〈
logZ∆,s

〉
grav

:=

∫
[DgM3]S3 e

−IEH[gM3
] logZ∆,s[gM3 ]

≡

∫
[DALDAR]S3 eiS[AL,AR]

(
1

4
WjL,jR[AL, AR]

)
, (4.2)

where the second line follows from the rewriting of the gravitational variables and action
(in a first-order formalism) as two Chern-Simons path integrals.11 Additionally, in the first
line, [DgM3]S3 indicates that we integrate over metric geometries topologically equivalent
to S3, and in the second line, [DALDAR]S3 indicates we perform the Chern-Simons path
integral on the base S3 topology.

The power of the second line of (4.2) lies in the breadth of techniques for eval-
uating Wilson loop observables for SU(2) Chern-Simons theories on the three-sphere
[22–26, 37, 38]. In [1] it was shown how to adapt two such techniques, Abelianisa-
tion [22–24] and localization through a N = 2 supersymmetric extension [25, 26], for
the evaluation of Wilson loop expectation values in light of the features unique to Chern-
Simons gravity: non-trivial background connections, complex levels, and non-standard
representations appearing in Wilson loop operators. While prima facie these are two
very different techniques, they both lead to the expression of a Wilson loop expectation

9This stems simply from the fact that a STT field contains roughly two scalars corresponding to the
polarizations with s and −s and has nothing to do with the ambiguities of a compact space and possible
zero modes. This counting is obviously not continuous as s → 0.

10To be clear on scope: here we mean to all orders in GN perturbation theory about the S3 saddle.
We do not consider topology change or other non-perturbative effects here.

11In App.A.1 we review dictionary between Chern-Simons theory and dS3 gravity.
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value as a deformation of its on-shell (i.e. flat) background value integrated over a single
modulus: ∫

[DA]eik SCS[A]TrRPe
∮
γ A = eirSCS[a]

∫

R

dσ sin2(πσ)eir
π
2
σ2

χR (σ + h) , (4.3)

where r = k + 2 is the renormalized level, a is the on-shell background connection, h is
its holonomy about the contour γ, and χR(z) = TrR e

i2πz L3 is the su(2) representation
character. Equation (4.3) holds for complex levels and non-standard su(2) representations,
including those found in Sec. 2. Applying this to (4.2), we can write

〈
logZ∆,s

〉
grav

=
i

8
eirLSCS[aL]+irRSCS[aR]

∫
dσLdσR e

irL
π
2
σ2
L+irR

π
2
σ2
R sin2(πσL) sin

2(πσR)×

∑

R∆,s

∫

C

dα

α

cos
(
α
2

)

sin
(
α
2

)
(
1 + 2s2 sin2

(α
2

))
×

χRL

( α
2π

(1 + σL)
)
χRR

( α
2π

(1− σR)
)
, (4.4)

where we used the off-shell version of the spool in (3.39). Upon writing

rL = δ̂ + is , rR = δ̂ − is , s =
ℓdS
4GN

, δ̂ ∈ Z , (4.5)

per the Chern-Simons gravity dictionary outlined in App.A.1, we posit that (4.4) is exact
(that is, holding to all orders) in GN perturbation theory about the S3 saddle.

While this claim has power in principle, in practice (4.4) is complicated as an integral.

By rescaling σL/R → r
−1/2
L/R σL/R, we can proceed systematically in ℓ−1

dSGN perturbation
theory which amounts to a Taylor expansion in σL/R of non-Gaussian pieces of the in-
tegrand in (4.4). At any order in this expansion the Gaussian integrals over σL/R can
be performed. This leaves the contour integral over α which can be deformed to pick
up its poles (which remain at 2πZ6=0 at each order of perturbation theory) in a similar
spirit as our computation in Sec. 3.3. This procedure completely mirrors that outlined for
the scalar Wilson spool in [1] and can be efficiently implemented on a computer algebra
system.

To illustrate this concretely, we evaluate
〈
logZ∆,s

〉
grav

normalized by the gravitational

path integral to the first non-zero order of ℓ−1
dSGN perturbation theory. The gravitational

path integral on S3 has a close form given by

Zgrav =e
irLSCS[aL]+irRSCS[aR]

∫
dσLdσR e

irL
π
2
σ2
L+irR

π
2
σ2
R sin2(πσL) sin

2(πσR)

=e2πs
(
ie

−i2π δ̂

δ̂2+s2

)
2√

δ̂2 + s2

∣∣∣∣sin
(

π

δ̂ + is

)∣∣∣∣
2

, (4.6)

as outlined in [1] (see also [8, 13, 39]). By implementing the rescaling σL/R → r
−1/2
L/R σL/R

in (4.4), to leading order in the coupling we find
〈
logZ∆,s

〉
grav

Zgrav

= logZ∆,s[S
3] +

(
GN

ℓdS

)2

[logZ∆,s](2) + . . . , (4.7)
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where the dots correspond to subleading corrections in ℓ−1
dSGN , and the first non-trivial

correction is

[logZ∆,s](2) =
∑

±

3∑

i=0

z
(2)
i [±µ, s]Li−i

(
e∓2πµ

)
, (4.8)

with

z
(2)
0 [µ, s] =−

(
16π

3
−

8

π
− 8iδ̂

)
µ3 −

(
16π −

144

π
− 24iδ̂ + 16πs2 −

216

π
s
2 − 24iδ̂s2

)
µ ,

z
(2)
1 [µ, s] =

(
16π2

3
+ 12− i8πδ̂

)
µ4 +

(
16π2 − 276− i24πδ̂ − 432s2

)
µ2

− (16π2 − 372− i24πδ̂)s4 + (16π2 − 588− i24πδ̂)s2 − 48 ,

z
(2)
2 [µ, s] =−

24π

5
µ5 +

(
104π + 96πs2

)
µ3 +

(
96π − 168πs4 + 792πs2

)
µ ,

z
(2)
3 [µ, s] =−

(
8π2 − 16π2

s
2
)
µ4 −

(
32π2 + 40π2

s
4 + 160π2

s
2
)
µ2

+ 8π2
s
6 + 24π2

s
4 − 32π2

s
2 . (4.9)

We note that taking s → 0 doubles the corrections to the scalar one-loop determinant [1]
as expected. At leading order in a large µ expansion (which amounts to a large mass
expansion while holding s fixed)

[logZ∆,s](2) = −
48π µ5

5
e−2πµ +

(
24−

16π2

3
+ 32π2

s
2 − i16πδ̂

)
µ4 e−2πµ + . . . , (4.10)

where we have kept to next-to-leading order in the large mass expansion where the first
contribution from spin appears.

It is natural at this stage to interpret this as a renormalization of the mass12 of the
spin-s field. Writing an expansion for the renormalized mass

µR = µ+

(
GN

ℓdS

)2

δ(2)µ + . . . , (4.11)

we note to O(G2
Nℓ

−2
dS )

logZ∆,s = logZ∆R,s − π
cosh(πµR)

sinh(πµR)
(µ2

R + s
2)

(
G2

N

ℓ2dS

)
δ(2)µ + . . . , (4.12)

where ∆R = 1 − iµR. Interpreting the corrections due to quantum gravity as a mass
renormalization then sets as a renormalization condition

〈
logZ∆,s

〉
grav

Zgrav

!
= logZ∆R,s , (4.13)

12Importantly the spin of the field does not get renormalized.
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with GN held fixed. This then determines the renormalized mass as

δ(2)µ =
1

π

tanh(πµR)

µ2
R + s2

[logZ∆,s](2)

=−
48

5
µ3
R e

−2πµR +

(
24

π
−

16π

3
+ 32πs2 − i16δ̂

)
µ2
R e

−2πµR + . . . , (4.14)

where in the second line we have written the leading and next to leading terms in a
large mass expansion. Note that the magnitude of the leading term is s independent and
consistent13with the leading mass renormalization for scalar fields [1].

We note that this is not the only renormalization condition that one may choose to
set. We could instead to renormalize Newton’s constant, GN → GN,R, while holding the

mass of the spinning field fixed. To illustrate this, we will set δ̂ = 0 and consider the
following renormalization condition:

∫
[Dg]e−IEH[g]Z∆,s[g]

Z∆,s[gS3]

∣∣∣
GN

=Zgrav

(
1 +

〈
logZ∆,s

〉
grav

Zgrav
− logZ∆,s[gS3] + . . .

)∣∣∣
GN

!
= Zgrav

∣∣∣
GN,R

, (4.16)

or equivalently
Zgrav

∣∣
GN,R

Zgrav

∣∣
GN

= 1 +

(
GN,R

ℓdS

)2

[logZ∆,s](2) + . . . . (4.17)

Note we have normalized by Z∆,s[gS3] in (4.16) as this leading term decouples from metric
fluctuations. It would be responsible for a renormalization of the cosmological constant,
but does not mediate the gravitational self-interactions relevant for renormalizing the
coupling, GN . Writing

GN = GN,R

(
1 + δ

(2)
GN

(
GN,R

ℓdS

)2

+ . . .

)
, (4.18)

we find from expanding (4.6) and comparing to the right-hand side of (4.17)

δ
(2)
GN

=−
1

3
[logZ∆,s](2)

=
16π

5
µ5 e−2πµ −

(
8−

16π2

9
+

32π2

3
s
2

)
µ4 e−2πµ + . . . , (4.19)

13In [1] the renormalization condition was taken (tacitly) as

〈
logZ∆R,scalar

〉
grav

Zgrav

!
= logZ∆,scalar , (4.15)

which leads to an overall minus sign with respect to (4.14).
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where again we have written the leading and next-to-leading terms in a large mass ex-
pansion.

It is worth noting that the results of this section, both the renormalization of the
field mass, (4.14), and the renormalization of GN , (4.17), are novel. To our knowledge,
corresponding computations have not been carried out in the metric formulation of dS3.

14

To this end, the results of this section provide concrete and testable predictions of the
Chern-Simons formulation of gravity.

5 Spinning spool on AdS3

To illustrate the general utility of the spinning Wilson spool constructed in Sec. 3.2, as
well as bolster the Conditions I & II that lead to it in Sec. 3.1, we can repeat this
construction in an AdS3 background. An expression for the one-loop determinant of
massive spinning fields on a BTZ black hole as a classical Wilson spool was conjectured
in [2] based on an extension of the result for a massive scalar field. In this section we
show how to derive the spinning spool on AdS3 from the principles set out in Sec. 3.1 and
demonstrate that the final expression accords with the general result (1.4).

We wish to compute

Z∆,s = det
(
−∇2

(s) + ℓ2AdSm̄
2
s

)− 1
2 (5.1)

with ∇2
(s) being the Laplace-Beltrami operator acting on spin-s STT tensors. The back-

ground geometry entering in (5.1) will be the rotating BTZ black hole [41,42] with AdS3

radius ℓAdS; properties of this geometry are described in App.A.2. The effective mass
ℓ2AdSm̄

2
s
is related to the standard mass, m2, via [43]

ℓ2AdSm̄
2
s
= ℓ2AdSm

2 + s(s− 3) . (5.2)

We recall that the standard mass is related to the conformal dimension of a dual primary
through [44]

ℓ2AdSm
2 = (∆ + s− 2)(∆− s) . (5.3)

Z∆,s is completely captured by this one-loop determinant over STT tensors: in contrast
to the previous section, there is no additional zero mode product as AdS3 is non-compact.

The isometry group of Lorentzian AdS3 is SO(2, 2) with an algebra isomorphic to
sl(2,R)L⊕sl(2,R)R which we will take to be generated by {L0, L±} and {L̄0, L̄±}, respec-
tively.15 As done for dS3, it is useful to briefly establish our conventions regarding the de-
scription of single-particle states living in AdS3 as representations of sl(2,R)L⊕sl(2,R)R.
Lowest-weight representations RLW

j are defined by a lowest-weight state, |j, 0〉LW, which is
annihilated by L− and labelled by its L0 eigenvalue:

L−|j, 0〉LW = 0 , L0|j, 0〉LW = j|j, 0〉LW . (5.4)

14In the absence of a cosmological constant, a three-loop computation involving gravitons was done
in [40]. It seems feasible that one could apply that approach to dS3 and verify (4.14) and (4.17).

15Our conventions for the sl(2,R) algebra follow [45, 46].
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All other states in R
LW

j are generated by the action of L+ acting on |j, 0〉LW. This repre-
sentation has a character

χj,LW(z) = TrRLW
j

(
ei2πzL0

)
=

eiπz(2j−1)

2 sinh(−iπz)
. (5.5)

Highest-weight representations RHW

j are defined by a highest-weight state, |j, 0〉HW, which
is instead annihilated by L+. We will take by convention its L0 eigenvalue to be −j:

L+|j, 0〉HW = 0 , L0|j, 0〉HW = −j|j, 0〉HW . (5.6)

All other states of RHW

j are generated by the action of L− on |j, 0〉HW. This representation
has a character

χj,HW(z) = TrRHW
j

(
ei2πzL0

)
=

e−iπz(2j−1)

2 sinh(iπz)
. (5.7)

Our conventions have been chosen so that the Casimir of both highest and lowest-weight
representations is given by

c
sl(2,R)
2 |j, p〉LW/HW = j(j − 1)|j, p〉LW/HW , ∀ |j, p〉LW/HW ∈ R

LW/HW

j . (5.8)

Returning to the functional determinant (5.1), we now want to implement the steps
in Sec. 3.1: the “mass-shell condition” and Conditions I & II. To start, we write the
Laplace-Beltrami operator in terms of the Casimir of the isometries of AdS3 [44]:

2c
sl(2,R)L
2 + 2c

sl(2,R)R
2 = ∇2

(s) + s(s+ 1) . (5.9)

In this language, a pole contributing to Z2
∆,s corresponds to a state |ψ〉 in a representation

of sl(2,R)L ⊕ sl(2,R)R satisfying
(
2c

sl(2,R)L
2 + 2c

sl(2,R)R
2

)
|ψ〉 =

(
∆(∆− 2) + s

2
)
|ψ〉 . (5.10)

This is the “mass-shell condition” and it is satisfied for pairs of highest and lowest-weight
representations labeled by

jL =
∆± s

2
, jR =

∆∓ s

2
. (5.11)

Note that representations labeled by (5.11) with ∆ replaced by ∆̄ = 2−∆ share the same
Casimir. However, unlike in dS3, we are forced to choose either ∆ or ∆̄ due to Dirichlet
boundary conditions tacitly imposed on solutions contributing to (5.1).16 For what follows
we will assume, without loss of generality, that ∆ corresponds to a normalizable massive
spin-s solution.17 Fixing jL/R as in (5.11) with the upper sign, we can then have pole
contributions from any representation appearing in

R∆,s = RHW

∆,s ∪ RLW

∆,s =
{
R

HW

jL
⊗ R

HW

jR
,RHW

jR
⊗ R

HW

jL

}
∪
{
R

LW

jL
⊗ R

LW

jR
,RLW

jR
⊗ R

LW

jL

}
. (5.12)

16Dirichlet boundary conditions also exclude sl(2,R) representations that are neither highest nor lowest-
weight from contributing to the one-loop determinant.

17In the special cases where ∆ and ∆̄ both correspond to normalizable solutions, we simply choose ∆,
again without loss of generality.
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For scalars, s = 0, we have the reduced set

R∆,scalar = RHW

∆,scalar ∪ RLW

∆,scalar =
{
R

HW

j ⊗ R
HW

j

}
∪
{
R

LW

j ⊗ R
LW

j

}
. (5.13)

We now apply the group theoretic conditions of Sec. 3.1 to the representations con-
tributing to (5.1). Conditions I & II as they are stated in Sec. 3.1 can be readily applied
to the one-loop determinant on BTZ, and they respectively imply:

Condition I. Single-valued solutions. In Euclidean signature, BTZ is a solid torus
that has two cycles that characterize its global properties. Requiring solutions to
be single-valued around the contractible thermal cycle, γth, of the BTZ geometry
requires s ∈ Z. Requiring solutions to be single-valued around the non-contractible
spatial cycle, γsp, of the BTZ geometry requires a weight (λL, λR) ∈ RL ⊗ RR to
satisfy

λLhL − λRhR ∈ Z , (5.14)

where hL,R are holonomies around the non-contractible cycle

hL = −
1

τ
, hR = −

1

τ̄
, (5.15)

and τ is the modular parameter defining the geometry. See App.A.2 for details.

Condition II. Globally regular solutions. A representation RL ⊗ RR ∈ R∆,s is re-
quired to lift to a group representation of SL(2,R) × SL(2,R) . In contrast to
Sec. 3.1, in the present case Condition II is trivial since every representation of
sl(2,R) lifts to a (not necessarily unitary) representation of the universal cover of
SL(2,R) [47].

Thus we fix s ∈ Z and the one-loop determinant (5.1) is then the product of poles in the
complex ∆ plane given by

Z∆,s =
∏

R∆,s

∏

(λL,λR)

∏

N∈Z

(|N | − λLhL + λRhR)
−1/4 (|N |+ λLhL − λRhR)

−1/4 . (5.16)

Following (3.31), we next implement a Schwinger parameterization of the logarithm
of this expression which reads

log(Z∆,s) =
1

4

∫ ∞

×

dα

α

cosh
(
α
2

)

sinh
(
α
2

)
∑

R∆,s

∑

(λL,λR)

(
eα(λLhL−λRhR) + e−α(λLhL−λRhR)

)
, (5.17)

where we have performed the sum over N as in (3.36). We will regulate the α → 0
divergence of the above expression by combining the two terms in the bracket into a single
contour integral regulated about the origin by an iε prescription. To ensure convergence
of the representation traces, a separate iε prescription must be given to the highest and
lowest-weight representations appearing in R∆,s:

log(Z∆,s) =
1

4

∑

R∆,s

∫ ∞±iε

−∞±iε

dα

α

cosh
(
α
2

)

sinh
(
α
2

)
∑

(λL,λR)

eα(λLhL−λRhR) . (5.18)
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with the (+/-) sign applying to representations in RLW/HW

∆,s , respectively. Recognizing the
sum over weights as a representation trace and redefining α → −iα we then can write
this suggestively as

log(Z∆,s) =
i

4

∑

RLW
∆,s

∫

C+

dα

α

cos
(
α
2

)

sin
(
α
2

) TrRL

(
Pe

α
2π

∮
γsp

aL
)
TrRR

(
Pe

− α
2π

∮
γsp

aR
)

+
i

4

∑

RHW
∆,s

∫

C−

dα

α

cos
(
α
2

)

sin
(
α
2

) TrRL

(
Pe

α
2π

∮
γsp

aL
)
TrRR

(
Pe

− α
2π

∮
γsp

aR
)
, (5.19)

where the contours C± are depicted in Fig. 3 and applied separately to the lowest and
highest-weight representations appearing in R∆,s. We have written logZ∆,s in this form

Re(α)

Im(α)
C+C−

Figure 3: The integration contours relevant for the Wilson spool in AdS3
gravity. Highest-weight representations are integrated against C− (in blue)
while lowest-weight representations are integrated against C+ (in red). The

black crosses depict the poles of the integration measure, 1
α
cosα/2
sinα/2 . Not

depicted are the poles of the representation traces which lie along the
imaginary α axis.

to draw comparison to the dS3 Wilson spool in Sec. 3.2. In the construction from that
section, all representations are integrated along both C±. This is natural: as was argued
in Sec. 3.1, the poles of the one-loop determinant lie on states of finite-dimensional su(2)
representations which are simultaneously highest and lowest-weight. In the present case,
C± appear distinctly because highest and lowest-weight representations are distinct for
sl(2,R).

With this comparison noted, we can express logZ∆,s purely in terms of lowest-weight
representations, which are more standard in the AdS/CFT dictionary, by returning to
(5.18) and recalling that every weight of a highest-weight representation is the negative
of a weight in a corresponding lowest-weight representation. This allows to write logZ∆,s

in the form conjectured in the supplemental material of [2]

log(Z∆,s) =
i

4

∑

RLW
∆,s

∫

2C+

dα

α

cos
(
α
2

)

sin
(
α
2

) TrRL

(
Pe

α
2π

∮
γsp

aL
)
TrRR

(
Pe

− α
2π

∮
γsp

aR
)
. (5.20)
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providing a principled derivation of that result. It was shown there that utilizing the
holonomies of the background connections corresponding to a spinning BTZ black hole
(see App.A.2 for the explicit form), the right-hand side of (5.20) evaluates to the correct
one-loop determinant of massive spin-s fields on that background:

logZ∆,s = −
∑

±

∞∑

l,l̄=0

log
(
1− q

∆±s

2
+lq̄

∆∓s

2
+l̄
)
, q = ei

2π
τ , q̄ = e−i 2π

τ̄ . (5.21)

This agrees with the one-loop determinant of BTZ for spinning fields as reported in, for
example, [43, 48–50].

We finish this section by reconciling the spinning Wilson spool in AdS3 gravity with our
main result (1.4), namely the lack of the s2 correction to the α integration measure. This
lack stems from two places in our derivation: (i) the absence of normalizable zero-modes
and (ii) the triviality of Condition II which leaves the product over the weight spaces

unrestricted. However it is interesting to note that, on-shell, TrRL/R
Pe

± α
2π

∮
γsp

aL/R only
have poles along the imaginary α axis [2]. Thus this correction term is completely regular
along the real α axis and integrates to zero. We may then include it into the definition of
the spinning Wilson spool and state succinctly, for both signs of the cosmological constant,

logZ∆,s =
1

4
WjL,jR[aL, aR] , (5.22)

with WjL,jR appearing in (1.4) and the representations RjL,R
, the integration contour, and

the background-connections aL,R chosen appropriately.

6 Discussion

In this paper we extended the Wilson spool constructions of [1,2] to incorporate one-loop
determinants of massive spinning fields in both Euclidean dS3 and AdS3 backgrounds.
This construction was based upon arranging the quasinormal mode spectra of the respec-
tive backgrounds into the representation theory of the isometry algebra. Along the way we
codified two important principles for evaluating one-loop determinants in a representation-
theoretic framework. These conditions lead naturally to a spinning Wilson spool expres-
sion for the local path integral, logZ∆,s, of a massive spinning field, (1.4). This expression
mimics the scalar Wilson spool: it is an integral over gauge invariant Wilson loop oper-
ators with the integral providing a mechanism for “wrapping” the loops around cycles of
the base manifold. The spinning Wilson spool only departs from the scalar expression
in its integration measure which cleanly captures the “edge contributions” of [8]. We
posited an off-shell expression for the spinning Wilson spool which allows its insertion
into the Chern-Simons path integral. In the context of a Euclidean dS3 background, ex-
act methods in Chern-Simons theory provide efficient methods for evaluating quantum
gravity corrections to logZ∆,s. We discussed two renormalization conditions in which
these quantum corrections can be interpreted as renormalizing either the particle mass
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or Newton’s constant. This provides concrete predictions for testing the correspondence
between Chern-Simons theory and three-dimensional quantum gravity.

There are multiple comments in order about our results, as well as future directions
to which the spinning Wilson spool may prove useful. We briefly discuss these below.

Group theoretic perspective on one-loop determinants

One important result of Sec. 3.1 is the restating of the quasinormal mode method in
a manner directly utilizing aspects of the representation theory and isometries of the
background. At the core of that section are Conditions I & II which precisely isolate
the representations and the states of a representation that contribute poles to massive
one-loop determinants. We regard these conditions to be a significant new asset to the
evaluation of one-loop determinants. For one, Conditions I & II will play an important
role in establishing the Wilson spool for matter on Euclidean saddles beyond S3, which is
ongoing work [51]. For instance, our preliminary findings indicate that these two condi-
tions correctly predict the placement and the degeneracies of the poles of scalar one-loop
determinants on Lens spaces. This gives us strong credence that a Wilson spool built from
Conditions I & II will accurately describe the physics of matter on those backgrounds.

More broadly, we have taken care to state the content of these conditions in a manner
not specific to spacetime dimension or sign of cosmological constant. Even outside the
context of 3d quantum gravity, it is our expectation that Conditions I & II will provide
a powerful asset to organizing quasinormal modes and evaluating one-loop determinants
for any manifold which possesses a transitive group action, regardless of dimension.

On the role of finite dimensional su(2) representations

In Sec. 2 we took great care to build su(2) representations corresponding to massive spin-
ning particle states; these representations are infinite dimensional and non-standard. The
reader might then find it surprising that finite dimensional representations played such
important role in Sec. 3.1 (particularly in the implementation of Condition II). It is
worth disentangling the roles of these two separate series of representations.

We regard the mass-shell condition, (3.12), as always providing a link between repre-
sentation theory and the particle mass. For physical values of the mass, these represen-
tations are generically non-standard. The implementation of Condition II is a separate
statement about the analytic structure of Z2

STT, namely it encounters poles on finite di-
mensional representations of su(2). These however do not (necessarily) lie on physical
values of the mass. In evaluating WjL,jR our goal is not to land on a pole; our goal is to
evaluate a one-loop determinant for a physical field. As such the representations appear-
ing in (1.4) should be appropriate for a physical value of ∆ and are, again, generically
non-standard. Obtaining the right hand side of (3.41) is a non-trivial verification of this
fact.

We can further illustrate this distinction by investigating what happens if we insert
finite dimensional representations jL/R ∈ 1

2
Z directly into the Wilson spool (say, for the

classical S3 background). For the sake of this illustration we will take a non-spinning case
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jL = jR = j:

Wj|finite dim rep =
i

2

∫

C

dα

α

cos
(
α
2

)

sin
(
α
2

) sin
2
(
(2j + 1)α

2

)

sin2
(
α
2

) , (6.1)

where we have inserted directly the finite dimensional su(2) characters χj(z) =
sin(π(2j+1)z)

sin(πz)

and utilized the holonomies around γhor., (3.18). However it is clear what will happen if
we wrap C as in Fig. 2: the poles at α ∈ 2πZ6=0 are now only first order and now without
any exponential damping. We thus find

Wj|finite dim rep =

∞∑

n=1

(2j + 1)2

n
= (2j + 1)2ζ(1) = ∞ , (6.2)

where ζ is the Riemann zeta function. This illustrates the importance of utilizing the
non-standard representations (corresponding to physical masses) in W.

Massive versus massless spinning fields

It is worth commenting on the important distinction between describing massive spinning
fields (the focus of this work) versus massless (higher) spin fields in the Chern-Simons
formalism. Our comments are very much motivated by viewing Chern-Simons gravity as
an effective field theory. This effective field theory provides a description of the physics
below some mass gap; indeed we can expect that massive degrees of freedom can be
“integrated” out, leaving behind an effective response on the remaining low-energy degrees
of freedom. This is precisely what the spinning Wilson spool encapsulates: the response
of massive degrees of freedom directly in variables natural to the Chern-Simons path
integral.

We contrast this with massless degrees of freedom which cannot be integrated out.
Instead their presence must alter the low-energy effective field theory. This is an indica-
tion that the one-loop determinants of massless higher-spin fields do not have a Wilson
spool description. Instead, we already know they are described by modifying the effective
field theory to a theory of higher-spin gravity. For example, one simple way of describing
massless higher-spin fields up to spin-N is by replacing SL(2,R) → SL(N,R) in asymp-
totically AdS3 spacetimes [52–54] and SU(2) → SU(N) in asymptotically Euclidean dS3

spacetimes [8, 55].
These above comments lead naturally to a line of inquiry: “How does one couple mas-

sive matter to a theory of higher-spin gravity?” The relations between Wilson lines and
particle worldlines in higher-spin gravity have been explored, e.g., in [56,57]. However we
believe the Wilson spool (generalized to, e.g., SU(N) or SL(N,R)) will be an invaluable
tool for a more complete answer to this important open question.

Generalized symmetries in 3d gravity

Let us offer a final, speculative, remark on the insights that the Wilson spool can possibly
lend to our understanding of gravity as an effective field theory. A modern perspective
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on organizing low-energy physics is the extension of the Landau paradigm of broken
symmetries to higher-form and non-invertible (what we will collectively call, generalized)
symmetries [58, 59]. Attempts to categorize gravity as a low-energy phase through this
lens include [60–62]. An important conjecture along these lines is the wide-held belief that
all global symmetries are either gauged or explicitly broken in a UV theory of quantum
gravity [63] and these statements extend to generalized symmetries.

Chern-Simons theory provides a natural area for exploring these discussions applied
to three-dimensional gravity: the Wilson line operators of Chern-Simons theory both
generate and are mutually charged under a generalized symmetry.18 It naturally follows
that the Wilson spool is also charged under this generalized symmetry and its non-zero
expectation value is a direct sign of the explicit breaking of this symmetry through the
inclusion of matter. While the spectrum of operators in Chern-Simons theory might be too
large, we note the special role non-standard representation theory plays in this statement:
as noted above, the Wilson spool associated to a finite-dimensional su(2) representation
diverges even classically, (6.2). It would be very interesting to make more precise the
relation between the Wilson spool and the generalized symmetries of Chern-Simons theory
as well as what these relations lend to the question, “What is 3d gravity?”19
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A Chern-Simons gravity dictionary

A.1 Euclidean dS3

Three-dimensional de Sitter spacetime is a maximally symmetric spacetime with two-
sphere spatial slices expanding into future and past infinity. Due to this expansion, inertial

18We are being imprecise about the distinction between topological operators and topological defects
here. Because we often have in mind Euclidean signature, we will call an operator anything that can be
inserted into the path integral to obtain an expectation value.

19We thank Nabil Iqbal for extended discussions in this direction.
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observers have access to a finite portion of spacetime called the static patch. A coordinate
patch covering one-half of this patch is given by (t, ρ, ϕ) with ρ ∈ [0, π

2
), t ∈ (−∞,∞),

and ϕ ∈ [0, 2π) with ϕ a periodic coordinate. The observer’s origin and causal horizon lie
at ρ = 0 and ρ = π

2
, respectively. The corresponding metric of the static patch is

ds2

ℓ2dS
= − cos2 ρ dt2 + dρ2 + sin2 ρ dϕ2 . (A.1)

Above, the “de Sitter radius,” ℓdS, sets the length scale for this maximally symmetric
spacetime. For the purpose of moving between the following Chern-Simons description
and the metric description, as well for computing one-loop determinants, it will be useful
to go to Euclidean signature through the Wick-rotation, t = −iτ . Under this rotation the
static-patch rotates to a three-sphere in “torus coordinates”

ds2

ℓ2dS
= cos2 ρ dτ 2 + dρ2 + sin2 ρ dϕ2 . (A.2)

Absence of a conical singularity at the horizon, ρ = π
2
, sets τ ∼ τ+2π. The isometry group

of this Euclidean space is SU(2)L × SU(2)R/Z2 with the L/R denoting left/right group
action. We will denote the generators of these two actions as {La}a=1,2,3 and {L̄a}a=1,2,3,
respectively.

In accordance with the split structure of this isometry group, we will describe Eu-
clidean dS3 gravity with a pair of SU(2) Chern-Simons theories

S = kL SCS[AL] + kR SCS[AR] , (A.3)

with

SCS[A] =
1

4π
Tr

∫ (
A ∧ dA +

2

3
A ∧A ∧ A

)
, (A.4)

and the trace taken in the fundamental representation. The basic ingredients of the
dictionary between this Chern-Simons description and the more familiar “metric descrip-
tion” is given by relating the gauge connections, AL/R, to a dreibein, ea, and (dual)
spin-connection, ωa = 1

2
ǫabcωbc, via

AL = i

(
ωa +

1

ℓdS
ea
)
La , AR = i

(
ωa −

1

ℓdS
ea
)
L̄a . (A.5)

The levels, kL/R, are written as

kL = δ + is , kR = δ − is . (A.6)

We can rewrite the action (A.3) as

iS = −IEH − iδIGCS , (A.7)

with

IEH = −
s

4πℓdS

∫
ǫabce

a ∧

(
Rbc −

1

3ℓ2dS
eb ∧ ec

)
(A.8)
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the Euclidean Einstein-Hilbert term in the first-order formalism20 with positive cosmo-
logical constant, Λ = ℓ−2

dS . Thus s ≡ ℓdS
4GN

is the (inverse) gravitational coupling; in this
paper we will find it convenient to keep it written as s and keep in mind the classical limit
is s→ ∞. IGCS is the gravitational Chern-Simons term

IGCS =
1

2π
Tr

∫ (
ω ∧ dω +

2

3
ω ∧ ω ∧ ω

)
+

1

2πℓ2dS
Tr

∫
e ∧ T , (A.9)

with T the torsion two-form. Under quantization the levels will undergo a finite renor-
malization kL/R → rL/R ≡ kL/R + 2 [64] amounting to a renormalization of the IGCS

coupling, δ → δ̂ = δ + 2. For the rest of this paper we will always work directly with the
renormalized levels.

Appropriate classical flat background connections, aL/R, describing the S3 are given
by

aL =iL1 dρ+ i (sin ρL2 − cos ρL3) (dϕ− dτ) ,

aR =− iL̄1 dρ− i(sin ρL̄2 + cos ρL̄3)(dϕ+ dτ) . (A.10)

An important aspect of the above connections is that they each possess ring singularities
at ρ = 0 and ρ = π

2
where the ϕ and τ coordinates degenerate, respectively. These Wick-

rotate to the worldline at the static patch origin and to the causal horizon bifurcation
surface, respectively. There is potential for holonomy around these singularities which we
will write generically as

P exp

∮

γ

aL = g−1
ρ ei2πL3hLgρ , P exp

∮

γ

aR = ḡρ e
i2πL̄3hR ḡ−1

ρ , (A.11)

for periodic group elements, gρ = eiL1ρ and ḡρ = eiL̄1ρ, and holonomies, hL/R. Given the
solution (A.10), it is easy to deduce that for cycles, γorig, wrapping the static-patch origin
at ρ = 0

γorig : hL = 1 , hR = 1 , (A.12)

while for cycles, γhor, wrapping the causal horizon at ρ = π
2
,

γhor : hL = 1 , hR = −1 . (A.13)

Lastly we point out that these singularities give delta function sources of curvature21 that
is important for reproducing the on-shell action

irLSCS[aL] + irRSCS[aR] =
πℓdS
2GN

, (A.14)

which is the tree-level de Sitter entropy.

20Here Rab is the Riemann two-form.
21Importantly the metric geometry remains smooth everywhere.
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A.2 Lorentzian AdS3

For Anti-de Sitter space, we will start directly in Lorentzian signature where the relevant
isometry group exhibits a similar split, SL(2,R)L × SL(2,R)R. Accordingly gravity is
described by two Chern-Simons theories, this time with opposite levels:

S = kSCS[AL]− kSCS[AR] = SEH , k =
ℓAdS

4GN
, (A.15)

where SEH is the Lorentzian Einstein-Hilbert action and ℓAdS is the AdS radius. This
matching is facilitated by writing the connections as

AL =

(
ωa +

1

ℓAdS

ea
)
La , AR =

(
ωa −

1

ℓAdS

ea
)
L̄a , (A.16)

where now {La}a=0,± and {L̄a}a=0,± generate the Lie algebras sl(2,R)L and sl(2,R)R,
respectively. We will follow the conventions set in [45, 46] for the sl(2,R) algebra.

The general asymptotically AdS3 vacuum solutions are Bañados geometries [65] de-
scribed by background connections

aL =L0 dη +

(
eη L+ − e−η 2πL

k
L−

)
dx+ ,

aR =− L̄0 dη −

(
eη L̄− − e−η 2πL̄

k
L̄+

)
dx− , (A.17)

where L(x+) and L̄(x−) are arbitrary functions. Here η is a radial coordinate with the
conformal boudary at η → ∞ and x± = t ± φ are the lightcone coordinates of the
boundary cylinder. A special case of interest in this paper are the rotating BTZ black
hole geometries described by

L =
M ℓAdS + J

4π
, L̄ =

M ℓAdS − J

4π
, (A.18)

where M and J are the mass and spin of the black hole, respectively [41, 42].
In Euclidean signature, t → itE , smoothness of the horizon requires that Euclidean

time is compact and so the geometry is the interior of a complex torus

(w, w̄) ∼ (w + 2πm+ 2πnτ, w̄ + 2πm+ 2πτ̄ ) , m, n ∈ Z , (A.19)

where w = φ+ itE and w̄ = φ− itE and with modular parameter

τ =
i

2

√
k

2πL
, τ̄ = −

i

2

√
k

2πL̄
. (A.20)

Around the two cycles of this torus the connections have holonomy

P exp

∮

γ

aL = u−1
L ei2πL0hL uL , P exp

∮

γ

aR = uR e
i2πL̄0hR u−1

R , (A.21)
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where uL/R are periodic along both cycles (only depending on η). For the contractible,
thermal, cycle γth : (w, w̄) → (w + τ, w̄ + τ̄) the connections have holonomy

γth : hL = −1 , hR = −1 , (A.22)

while for the non-contractible spatial cycle, γsp : (w, w̄) → (w + 2π, w̄ + 2π), they have
holonomy

γsp : hL = −
1

τ
, hR = −

1

τ̄
. (A.23)

B DHS for massive spinning fields on S3

In this appendix, we will review DHS [29] as it was originally intended: first, determine
the quasinormal modes from the equations of motion of a massive spinning field, Wick-
rotating them carefully to Euclidean space, and then evaluate the one-loop as a product
of the poles.

Special care is needed when implementing DHS for massive spinning fields. The quasi-
normal modes of massive fields on de Sitter are found directly from the equations of mo-
tion of the field in the manner of [66]. However, as shown in [67], for spin s > 0 some
care is required in Wick-rotating de Sitter quasinormal modes into regular modes on S3,
that is symmetric, transverse, traceless spherical harmonics. In particular, imposing the
näıve fall-off condition on the frequency ω is not sufficient. We will review carefully and
explicitly this regularity condition.

We will then construct the one-loop determinant from the quasinormal mode frequen-
cies of a spin-s field on S3 using the DHS method and regularise it via zeta function
regularisation, as in the case for a scalar field in [29]. Identities of special functions are
then utilised to rewrite these expressions in the form of polylogarithms to make explicit
the comparison to the one-loop determinants derived in [8] and Sec. 3.3.

The metric for the de Sitter static patch in “torus coordinates” is given by (A.1). For
the sake of finding the quasinormal modes of this background, we will also make use of
the radial coordinate

r = sin ρ . (B.1)

B.1 Real massive scalar field

To introduce notation and the basic ingredients needed in subsequent sections, we will
start by deriving the quasinormal modes of a real scalar field in dS3 and then review the
derivation of the one-loop determinant as done originally in DHS [29]. This will set up
the procedure for massive spinning fields in the next subsections.

Quasinormal modes

First, we construct the solutions to the equations of motion for a scalar field Φ on dS3

∇2Φ = ℓ2dSm
2Φ , (B.2)
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where ∇2 is the Laplacian on (A.1) and as in the main text ℓ2dSm
2 = ∆(2−∆). Suitable

boundary conditions must also be imposed on the solutions to ensure that they Wick-
rotate to a regular solution on S3. These are:

• The solution must be single-valued in ϕ.

• The solution must be single-valued in imaginary time.

• The solution must be regular at the origin of the static patch (r = 0).

• The solution must be regular and purely in-going or out-going at the horizon (r = 1).

Proceeding via separation of variables we encounter a second order ODE for r, resulting
in two solutions. Imposing regularity at the origin removes one of these solutions leaving
us with the modes

Φ = e−iωt+ilϕ
(
r2
)| l

2
| (
1− r2

)− iω
2

2F1

(
a, b; c; r2

)
, (B.3)

where

a =
∆+ |l| − iω

2
, b =

∆̄ + |l| − iω

2
, c = 1 + |l| , (B.4)

and l, iω ∈ Z are constants constrained to the integers by the single-valuedness of Φ
around ϕ and imaginary time respectively.

To consider regularity at the horizon we will expand the solution to lowest order
as ε2

2
= 1 − r2 approaches zero. Taking care as we are in a non-generic case for the

hypergeometric function when c − a − b = iω ∈ Z, the connection formulae for the
hypergeometric function about r2 and 1− r2 [68] imply that a purely ingoing or outgoing
solution will require at least one of a, b, (c− a), (c− b) ∈ Z≤0. Noting that a → b simply
takes ∆ → ∆̄ which has no effect on the form of the mode Φ, we need consider only two
(not necessarily distinct) cases:

Case 1: a = −n ∈ Z≤0 =⇒ ∆ = −2n− |l|+ iω.

Case 2: c− b = −n ∈ Z≤0 =⇒ ∆ = −2n− |l| − iω.

In both cases, the hypergeometric function takes the form of a Jacobi polynomial in terms
of Pochhammer symbols (for the rising factorial). For Case 1, a = −n gives

2F1

(
−n, b; c; 1−

ε2

2

)
=

n∑

d=0

(
ε2

2

)d
(b)d(c− b)n−d

(c)n
, (B.5)

and forCase 2 we make use of the identity 2F1 (a, b; c; u) = (1−u)c−a−b
2F1 (c− b, c− a; c; u).

Substituting for a, b, c, we then find that to lowest order in ε the following:

Case 1 : ∆ = −2n− |l|+ iω , n ∈ Z≤0, iω ∈ Z ,

Φ ∼

{
e−iωtε+iω (anti-quasinormal) 0 ≤ iω ≤ n ,

e−iωtε−iω (quasinormal) else ,
(B.6)
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Case 2 : ∆ = −2n− |l| − iω , n ∈ Z≤0, iω ∈ Z ,

Φ ∼

{
e−iωtε−iω (quasinormal) 0 ≤ −iω ≤ n ,

e−iωtε+iω (anti-quasinormal) else .
(B.7)

For quasinormal modes regularity demands iω ≤ 0, for anti-quasinormal modes regularity
demands iω ≥ 0. Note that for iω = 0 the modes are equivalent.

For iω ≥ 0 Case 2 is a subset of Case 1 and the possible regular anti-quasinormal
modes are

∆ = −2ñ− |l| − iω , n− iω ≡ ñ ∈ N0 . (B.8)

For iω < 0 Case 1 is a subset of Case 2 and the possible regular quasinormal modes are

∆ = −2ñ− |l|+ iω , n+ iω ≡ ñ ∈ N0 . (B.9)

These two expressions can be combined by allowing iω ≡ k ∈ Z to range over all integers
(and relabelling ñ→ n for convenience). The Euclidean regular (anti-)quasinormal modes
take the values

∆ = −2n− |l| − |k| . (B.10)

Note that the modes with ∆ ↔ ∆̄ are equivalent due to the ambiguity in defining ∆
from the mass. This was seen above by the invariance of Φ to the exchange, and we
have hence counted these modes only once. In using the DHS method we consider the
one-loop determinant as a meromorphic function of ∆. Since the determinant also cannot
distinguish between ∆ ↔ ∆̄ there must be a pole at both ∆ and ∆̄. The poles in the
one-loop determinant thus appear at

∆, ∆̄ = −2n− |l| − |k| . (B.11)

It can also be confirmed that the modes we have obtained are (expectedly) the scalar
spherical harmonics on S3. More simply the degeneracy of each value of ∆ = −p, p ∈ Z≥0

can be counted as (p+1)2 matching the degeneracy of the spherical harmonics fitting into
representations of so(4).

One-loop determinant

Following [29] the one-loop determinant can be constructed from the location of the
quasinormal frequencies, treating the functional determinant as a meromorphic function
of ∆. For convenience in this section the notation of [29] is also followed such that
∆ ≡ ∆+, and ∆̄ ≡ ∆−.

Up to a holomorphic factor, which in this case is trivial, the partition function is
simply a product of poles at the (anti-)quasinormal mode frequencies:

Zscalar =
∏

±,n∈N
l,k∈Z

(|k|+ 2n+ |l|+∆±)
− 1

2 . (B.12)
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Noting that |k|+ |l|+ 2n = p has degeneracy (p+ 1)2, we can rewrite (B.12) as

log(Zscalar) = −
1

2

∑

±,p∈N

(p+ 1)2 log (p+∆±)

=
1

2

∑

±

ζ ′(−2, 1± iµ)∓ 2iµζ ′(−1, 1± iµ)− µ2ζ ′(0, 1± iµ) ,

(B.13)

where ∆± = 1± iµ for the principle series and ζ is the Hurwitz zeta function. This is the
formula derived in [29] and it will be convenient to write in terms of polylogarithms. The
two key the identities are

ζ ′(−2,±iµ)∓ 2iµζ ′(−1,±iµ)− µ2ζ ′(0,±iµ)

=ζ ′(−2, 1± iµ)∓ 2iµζ ′(−1, 1± iµ)− µ2ζ ′(0, 1± iµ) ,
(B.14)

and22

ζ ′(−n, x) + (−1)nζ ′(−n, 1− x) = −πi
Bn+1(x)

n+ 1
+ e

πin
2

n!

(2π)n
Lin+1(e

−2πix) , (B.15)

where Bn are the Bernoulli polynomials. Substituting these into (B.13) we find

log(Zscalar) =
∑

±

(
−
µ2

4
Li1(e

±2πµ)±
µ

4π
Li2(e

±2πµ)−
1

8π2
Li3(e

±2πµ)

)
, (B.16)

in agreement with [8].

B.2 Massive spin-1 field

Next we work out in detail the quasinormal modes of a massive spin-1 field on dS3, and
then its one-loop determinant via DHS. Many results follow from the analysis of a scalar
field. However, it is important to highlight the subtleties of the regularity condition in
this case, and how it reproduces the appearance of the “edge” partition function [67].

Quasinormal modes

The equation of motion is

(
∇2

(1) − ℓ2dSm
2 − 2

)
Φµ = 0 , (B.17)

accompanied by a transversality condition

∇µΦµ = 0 . (B.18)

22The identity (B.15) can be derived by adapting the proof from [69] to the region of the complex plane
where x ∈ iR.

35



These equations of motion are solved in [50] for an AdS3 background using a first-order
formalism, we present here the corresponding results in dS3.

23

As in the scalar case we discard one set of solutions to the radial part of the PDE as
non-regular at the origin, and impose l, iω ∈ Z to ensure single-valuedness. The resulting
expressions are

ΦL = eLe
−iωt+ilϕ

(
r2
)| l

2
| (
1− r2

)− iω
2

2F1

(
∆̄ + 1 + |l| − iω

2
,
∆− 1 + |l| − iω

2
; 1 + |l|; r2

)
,

ΦR = −eRe
−iωt+ilϕ

(
r2
)| l

2
| (
1− r2

)− iω
2

2F1

(
∆̄− 1 + |l| − iω

2
,
∆+ 1 + |l| − iω

2
; 1 + |l|; r2

)
,

Φr = −
i

(∆− 1)

1

r(1− r2)
[(ω + il)ΦL + (ω − il)ΦR] ,

(B.19)

where ΦL/R are related to the components of the vector field via

iΦϕ = ΦL + ΦR ,

Φt = ΦL − ΦR .
(B.20)

In (B.19) eL/R are constants of integration and describe the polarisation vector. These
constants are further constrained by (B.17), (B.18) to satisfy one of two conditions de-
pending on the sign of l.

(−ω + il + i(∆− 1))eR = (−ω − il + i(∆− 1))eL , l ≤ 0 ,

(−ω + il − i(∆− 1))eR = (−ω − il − i(∆− 1))eL , l ≥ 0 .
(B.21)

Next, we look for those modes which Wick-rotate into regular Euclidean modes on S3.
In order for a mode to be single-valued and regular a necessary condition is for ΦL,ΦR

themselves to be single-valued and regular at the horizon. Applying the results from the
scalar case (B.10) to (B.19) with ∆ → ∆±1 implies that regular modes potentially occur
at

ΦL : ∆ = 1− 2NL − |l| − |k| (B.22)

or ∆̄ = 1− 2(N ′
L + 1)− |l| − |k|

ΦR : ∆ = 1− 2(N ′
R + 1)− |l| − |k| (B.23)

or ∆̄ = 1− 2NR − |l| − |k| .

Unlike in the scalar case there is no symmetry of ∆ → ∆̄ in Φµ and so the two cases
result in distinct physical modes.

23One method to derive these solutions is the analytic continuation of ℓdS → iℓAdS at which point the
results of [50] can be used directly.
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For Φµ to have a mode at some value of ∆ or ∆̄ it is necessary for both ΦL and ΦR

to support a mode. We will suppose that k, l are fixed and consider two24 families of
solutions:

• A mode with NL/R ≥ 1 in one of the two components and N ′
R/L = NL/R − 1 ≥ 0 in

the other. We denote these the ‘general modes’ valid for all N ′ ≥ 0:

values ranges

∆ = −1 − 2N ′ − |l| − |k| k, l ∈ Z, N ′ ∈ Z≥0

∆̄ = −1 − 2N ′ − |l| − |k| k, l ∈ Z, N ′ ∈ Z≥0

• If NL/R = 0 in one component it may be possible to still have a consistent mode if
the other component is identically 0. For example setting NL = 0 in (B.22) it may
be permissible from (B.21) to set eR = 0. A unique list (accounting for overlaps
where k, l = 0) of these ‘special modes’ is

values ranges
k < 0, l ≥ 0

∆ = 1− |l| − |k| k = 0, l ∈ Z

k > 0, l ≤ 0
k < 0, l ≤ 0

∆̄ = 1− |l| − |k| k = 0, l ∈ Z \ {0}
k > 0, l ≥ 0

Since the regularity of ΦL,ΦR is only a necessary condition it is still important to
check the regularity of the Euclidean norm |Φ|2 = ΦµΦ

µ. This will determine regularity
in a coordinate-independent manner. Consider first regularity as r → 0 at the origin of
the static patch. The only cases which can cause divergences are those for which l = 0.
In this case, to lowest order in r we find

|Φ|2 ∼
1

r2

(
|ω|2

(∆− 1)2
+ 1

)
|eL − eR|

2 . (B.24)

The first bracket is always non-zero due to the reality of ∆ and so regularity implies
eL = eR. For l = 0 general modes this is always true from (B.21). For the special modes
one of eL/R is zero and the other is non-zero and so these modes are irregular.

As in the scalar case, looking at the horizon we can expand in small ε for r2 = 1− ε2

2
.

Again using the expansion (B.5) the only potentially problematic case is k = 0, in which
case this expansion gives to leading order

|Φ|2 ∼
1

ε2

(
1 +

l2

(∆− 1)2

) ∣∣∣∣eL
(cL − bL)nL

(cL)nL

+ eR
(cR − bR)nR

(cR)nR

∣∣∣∣
2

, (B.25)

24There is also a single exceptional case where ∆ = ∆̄ = 1 and we can choose a mode in each component
by taking NL = NR = l = k = 0. This also automatically satisfies the constraints of (B.21). It can be
checked using the regularity conditions below that this solution cannot be regular at both the origin and
horizon.

37



where again the constants a = −n, b, c are defined as coefficients in the hypergeometric
function for each component. The general modes with k = 0 satisfy

∆ = −1 − 2N ′ − |l| or ∆̄ = −1− 2N ′ − |l| . (B.26)

Inserting the first of these into the coefficients of the hypergeometric function and noting
that from (B.21) it is possible to choose

eL = +|l| −∆+ 1 = 2(N ′ + 1 + |l|) ,

eR = −|l| −∆+ 1 = 2(N ′ + 1) ,
(B.27)

it therefore follows25 that

eL
(cL − bL)nL

(cL)nL

+ eR
(cR − bR)nR

(cR)nR

=2(N ′ + 1 + |l|)
(−N ′ − 1)N ′+1

(1 + |l|)N ′+1
+ 2(N ′ + 1)

(−N ′)N ′

(1 + |l|)N ′

= 0 .

(B.28)

The same process works in the ∆̄ case. All the general modes therefore are regular.
In the special cases with k = 0 and ∆, ∆̄ = 1 − |l| either ΦL = 0,ΦR 6= 0, nR = 0 or

ΦR = 0,ΦL 6= 0, nL = 0. Noting that (x)0 ≡ 1 the leading order term does not vanish
and the special modes with k = 0 are not regular. Combining the results of regularity at
the origin and horizon the final list of regular Euclidean modes is

values ranges

∆ = −1 − 2N ′ − |l| − |k| k, l ∈ Z, N ′ ∈ Z≥0

∆̄ = −1 − 2N ′ − |l| − |k| k, l ∈ Z, N ′ ∈ Z≥0

k < 0, l > 0
∆ = 1− |l| − |k|

k > 0, l < 0
k < 0, l < 0

∆̄ = 1− |l| − |k|
k > 0, l > 0

It can be confirmed that the degeneracy of the modes at ∆ = −p, p ≥ 1 is p(p + 2).
This aligns with the expected degeneracies of transverse spherical vector harmonics on
S3, which fit into representations of so(4).

As in the scalar case we note that while each of these modes is distinct, the one-loop
determinant has an ambiguity under ∆ ↔ ∆̄ and so we must include a pole for each.
Since the (anti-)quasinormal modes listed above take the same form for ∆ and ∆̄ this
effectively doubles the degeneracy of the poles in the one-loop determinant relative to the
modes listed in the table.

25The identities (−n)n = (−1)nn! and (1 + |l|)N ′+1 = (1 + |l|)N ′(1 + |l|+N ′) are useful here.
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One-loop determinant

We recall from Sec. 3 that for spinning fields we must account for both a set of zero
modes (3.7), due to the compact nature of S3, as well as the functional determinant of
a symmetric, transverse, traceless field (3.2). The DHS method can only reproduce this
second part of the calculation. Repeating the procedure in the scalar case above for the
spin-1 field, the relevant functional determinant for a transverse vector field is

ZSTT =
∏

±,n∈N
l,k∈Z

(|k|+ 2n + |l|+∆± + 1)−1
∏

±,{l>0,k<0}
∪{l<0,k>0}

(|k|+ |l|+∆± − 1)−1 (B.29)

and hence

log(ZSTT) = −
∑

±,n∈N
l,k∈Z

log (|k|+ 2n+ |l|+∆± + 1)−
∑

±,{l>0,k<0}
∪{l<0,k>0}

log (|k|+ |l|+∆± − 1)

= −
∞∑

±,p=0

log(∆± + 1 + p)(p+ 1)2 −
∞∑

±,p=1

log(∆± + p)(2p)

= −
∞∑

±,p=0

log(∆± + p)(p+ 1)2 +

∞∑

±,p=0

log(∆± + p) .

(B.30)
We now identify the first of these sums as exactly 2 log(Zscalar) in (B.12), and for the
second term it is convenient to define

log(Zedge) ≡ −
∞∑

±,p=0

log(∆± + p)

=
∑

±

ζ ′(0,∆±) .

(B.31)

We refer to this part of the partition function by the term ’edge’ in reference to [8], where
this term is viewed as an ’edge character integral’. Similarly to before the expansion of
the zeta function implies that

ζ ′(0,±iµ) = ζ ′(0, 1± iµ)− log(±iµ) , (B.32)

and hence

log(Zedge) =
1

2

∑

±

ζ ′(0, 1± iµ) + ζ ′(0,±iµ) + log(±iµ)

=
1

2

∑

±

−πiB1(±iµ) + Li1(e
±2πµ) + log(±iµ) .

(B.33)

Using the definition of the Bernoulli polynomial and Li1 and inserting this expression for
log(Zedge) into the main calculation, we arrive at

log(ZSTT) = 2 log(Zscalar)−
(
−πµ − log

(
1− e−2πµ

))
−

1

2
log
(
µ2
)
. (B.34)

39



Finally, we need to account for the zero modes. Following [8], the contribution is given
by (3.7), and with this the full one-loop determinant is

Z∆,s=1 = ZSTTZzero = ZSTT

∏

±

(∆± − 1)
1
2 , (B.35)

and so
log(Z∆,s=1) = 2 log(Zscalar)−

(
−πµ − log

(
1− e−2πµ

))
. (B.36)

B.3 Massive spin-s fields

It is now clear how the story should continue for massive spin-s fields, when s ≥ 2. We
solve the equations of motion for a spin-s field

∇2Φµ1...µs
= ℓ2dSm̄

2
s
Φµ1...µs

, (B.37)

where Φ is symmetric and subject to the usual constraints

∇µ1Φµ1...µs
= 0, Φν

νµ3...µs
= 0 . (B.38)

Applying (anti-)quasinormal mode boundary conditions we can extract the (anti-)quasinormal
mode frequencies. A careful treatment of these quasinormal modes will show that (as ex-
pected) the quasinormal modes which Wick-rotate to regular Euclidean modes on S3 are
the symmetric, transverse, traceless spherical harmonics. These lie in representations of
so(4) ∼= su(2)× su(2) labelled by highest weights (n

2
+ s, n

2
) and (n

2
, n
2
+ s).

The corresponding degeneracies for ∆ = −p, p ≥ −s are (s+ 1 + p)(1− s+ p) and so

log(ZSTT) =−
∞∑

±,p=s

log(∆± + p)(p+ 1 + s)(p+ 1− s)

=−
∞∑

±,p=0

log(∆± + p)(p+ 1)2 + s
2

∞∑

±,p=0

log(∆± + p)

+

s−2∑

±,p=0

log(∆± + p)(p+ 1 + s)(p+ 1− s) .

(B.39)

The first of these sums reproduces again 2 log(Zscalar) in (B.13) and the second sum
is proportional to log(Zedge) as defined in (B.31). We can directly insert our previous
expression for this.

log(ZSTT) =2 log(Zscalar)− s
2
(
−πµ− log

(
1− e−2πµ

))
−

s
2

2
log
(
µ2
)

+
s−2∑

±,p=0

log(∆± + p)(p+ 1 + s)(p + 1− s) .
(B.40)
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As in the spin-1 case, to compute the full local partition function we also need to account
for a set of zero modes (3.7). Including these, we obtain the final result

log(Z∆,s) = log(ZSTT) + log(Zzero) = 2 log(Zscalar)− s
2
(
−πµ− log

(
1− e−2πµ

))
. (B.41)

This formula is again in agreement with the calculation in [8], and it matches with the
Wilson spool in (3.41) (up to overall phase).
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