
The light we can see:

Extracting black holes from weak Jacobi forms

Luis Apolo a, Suzanne Bintanja b, c, Alejandra Castro d and Diego Liska b

aBeijing Institute of Mathematical Sciences and Applications, Beijing 101408, China

bInstitute for Theoretical Physics and ∆-Institute for Theoretical Physics, University of

Amsterdam, PO Box 94485, 1090GL Amsterdam, The Netherlands

cKavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA

dDepartment of Applied Mathematics and Theoretical Physics, University of Cambridge,

Cambridge CB3 0WA, United Kingdom

apolo@bimsa.cn, s.bintanja@uva.nl, ac2553@cam.ac.uk, d.liska@uva.nl

Abstract

We quantify how constraints on light states affect the asymptotic growth of heavy states in

weak Jacobi forms. The constraints we consider are sparseness conditions on the Fourier

coefficients of these forms, which are necessary to interpret them as gravitational path

integrals. Using crossing kernels, we extract the leading and subleading behavior of these

coefficients and show that the leading Cardy-like growth is robust in a wide regime of

validity. On the other hand, we find that subleading corrections are sensitive to the

constraints placed on the light states, and we quantify their imprint on the asymptotic

growth of states. Our approach is tested against the generating function of symmetric

product orbifolds, where we provide new insights into the factors contributing to the

asymptotic growth of their Fourier coefficients. Finally, we use our methods to revisit

the UV/IR connection that relates black hole microstate counting to modular forms. We

provide a microscopic interpretation of the logarithmic corrections to the entropy of BPS

black holes in N = 2, 4 ungauged supergravity in four and five dimensions, and tie it to

consistency conditions in AdS3/CFT2.
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1 Introduction

Modular forms play a pivotal role in the counting of black hole microstates. The underlying

modular symmetry of counting formulae was key in the precise match between the Bekenstein-

Hawking entropy of five-dimensional supersymmetric black holes and Cardy’s formula for the

asymptotic growth of states [1]. The same principle is used in the derivation of the entropy

of these black holes via the AdS3/CFT2 correspondence [2]. These developments have led to

an understanding of the statistical nature of several black holes in string theory, where the

properties of modular forms can be used to cast specific counting formulae as gravitational

path integrals. Reviews that highlight the prominence of modular forms on this subject

include [3, 4].

Our goal is to revisit the connection between modular forms and black hole entropy, and

tie it with other consistency conditions of AdS/CFT. We will focus our attention on weak

Jacobi forms (wJf), which can be thought of as generating functions of the form

φ(τ, z) =
∑
n,ℓ

c(n, ℓ)e2πiτne2πizℓ . (1.1)

As we will review in the coming sections, the Fourier coefficients c(n, ℓ) are highly constrained

by the modular and elliptic properties of these forms. In particular, the c(n, ℓ) coefficients

are organized in terms of the discriminant ∆ := n − ℓ2/4t. Here t is the index of the wJf

which, together with the weight of the form, completely characterize the modular and elliptic

properties of φ(τ, z). When ∆ ≥ 0, one refers to the corresponding state as non-polar or

heavy, while ∆ < 0 corresponds to a polar or light state. The discriminant of the most

polar state is denoted by ∆0. The appearance of wJfs is common in the context of N = 4

supersymmetric CFT2, where

φ(τ, z) = TrRR(−1)F e2πiτ(L0− c
24

)e2πizJ0e2πiτ̄(L̄0− c
24

) , (1.2)

is the elliptic genus of the theory — an index that captures 1/4-BPS states. In these cases,

the central charge of the CFT2 is c = 6t and the most polar state satisfies ∆0 = −c/24.

However, our analysis will not rely upon this specific interpretation.1

The comparison between black hole entropy and counting formulae like (1.1) is usually

valid for large values of the parameters involved. We will revisit this comparison by imple-

menting further conditions on φ(τ, z) that are motivated by the AdS3/CFT2 correspondence.

These conditions are:

Large |∆0| limit. The index t and maximal polarity |∆0| determine the central charge of

the CFT2 (their precise relation will be given when we discuss examples). Taking |∆0| ≫ 1

and t ≫ 1 is equivalent to taking the large central charge limit characteristic of AdS3/CFT2.

1A relation similar to (1.2) exists for theories with N = 2 supersymmetry, for which one needs to account

for fractional values of J0. Other instances where wJfs appear include holomorphic theories with a U(1) current

and warped CFTs. One can also generalize the notion of wJfs to theories with an enlarged symmetry algebra,

leading to wJfs with multiple charges.
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Sparseness of polar states. The distribution of polar states is an important criterion to

diagnose the class of gravitational theories in AdS3 we are working with. We will quantify

the imprint of the sparseness of polar states on the c(n, ℓ) coefficients of non-polar states,

the latter of which are naturally linked to black hole configurations.

These conditions were first introduced by Hartman, Keller and Stoica (HKS) [5] in the context

of the torus partition function of a CFT2. The authors showed that these conditions are

necessary for the free energy to be universal and for the asymptotic growth of states to be

given by the Cardy formula for all ∆ ≥ |∆0| ≫ 1. The same universality is present in

AdS3 quantum gravity in the semiclassical regime. Hence, the aforementioned conditions

are necessary for any CFT2 to be holographic, i.e. to capture universal features of three-

dimensional gravity in the semiclassical approximation. One outcome of this analysis is that

the light spectrum does not leave an explicit imprint on the free energy.

The ideas of HKS were extended to weak Jacobi forms in [6, 7], which considered the

elliptic genus of a CFT2 and compared its asymptotic growth to the entropy of BPS black

holes in AdS3 supergravity. Our analysis will start from those findings. More specifically,

we will study the asymptotic growth of states of “sparse weak Jacobi forms”, which are wJfs

that comply with the two conditions mentioned above. Given that polar states do not leave

a mark on the asymptotic expansion of the c(n, ℓ) coefficients at leading order, the questions

we will address are the following. Can we quantify the effects of light states on the subleading

corrections to the c(n, ℓ) coefficients? And how do these effects translate into aspects of a

putative dual theory of gravity in the semiclassical regime?

One might expect that implementing the large |∆0| and sparseness conditions should

be somewhat straightforward: the Rademacher expansion gives an exact expression for the

c(n, ℓ) coefficients of non-polar states in terms of the polar ones, as we will review in the

coming sections. However, this expansion is impractical in the large |∆0| limit. In this paper,

we will take a different route and use crossing kernels to study the asymptotic behavior of the

c(n, ℓ) coefficients. In particular, we will quantify the effect of the large |∆0| and sparseness

conditions have in the analysis, and contrast this approach with the Rademacher expansion,

highlighting the differences and similarities. One advantage of using crossing kernels is that

they allow us to approximate a discrete spectrum by a continuum, which will be key in our

analysis.

In this paper, we give an expression for the c(n, ℓ) coefficients of non-polar (heavy) states

in sparse wJfs that can be written as

log c(n, ℓ) = 4π
√
∆|∆0|+ a∆ log∆ + a∆0

log |∆0|+ · · · , (1.3)

where the dots denote terms suppressed in the ∆ ≫ 1 and |∆0| ≫ 1 limits. The leading

(first) term indicates a universal exponential growth of states, in accordance with HKS. We

will also quantify the subleading or logarithmic corrections by providing explicit expressions

for a∆ and a∆0
in terms of the polar spectrum. We will show that (1.3) is valid in the following

scenarios:
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Universal behavior for ∆ ≳ |∆0|. In this regime, the asymptotic growth of coefficients

of a sparse wJf is of the form

c(n, ℓ) ≈ ρ0(∆0)

∆

√
|∆0|
t

e4π
√

∆|∆0| , ∆ ≳ |∆0| ≫ 1 . (1.4)

The exponential growth is expected from the HKS bound and it agrees with [6]. Our analysis

also captures the subleading logarithmic corrections. These are controlled by ρ0(∆0), which

incorporates the possibility of a degenerate ground state. Comparing to (1.3), we thus find

that a∆ is universal (independent of the light states), and that a∆0
is only sensitive to the

ground state degeneracy.

It is instructive to compare this result with [8], where Tauberian methods were used to

obtain subleading corrections to the HKS analysis of modular forms with positive Fourier

coefficients. While the explicit dependence on ∆, |∆0|, and t in (1.4) agrees with their

results, ρ0(∆0) was not accounted for there. In many circumstances, such as in partition

functions, it is natural to set ρ0(∆0) = 1. However, we will see that in a supersymmetric

context, there can be degenerate Ramond ground states that cause ρ0(∆0) to grow polyno-

mially with |∆0|. This feature is present in BPS black holes and is crucial for the agreement

between the gravitational and microscopic account of their entropy.

Non-universal behavior for ∆ ≲ |∆0|. This regime is not natural from the CFT2 point

of view. However, it has appeared on the gravitational side and is thus worth exploring.

Our methods can quantify the asymptotic behavior of the c(n, ℓ) coefficients in the regime

|∆0| ≳ ∆ ≫ 1 when the wJf exhibits “slow growth”. These are wJfs where the distribution

of light states is sub-Hagedorn. An important outcome of our analysis is that we can

determine when c(n, ℓ) is of the form (1.4) and quantify precisely how a∆ and a∆0
depend

on the spectrum of light states.

We test our analysis by considering the generating function of symmetric product orb-

ifolds. These are wJfs that not only comply with the two conditions described above [7,9] but

also explicitly realize different types of sparse wJfs [10–12]. Within this class of generating

functions, we have access to a third independent method to extract the c(n, ℓ) coefficients,

which follows from the methods of [3, 13, 14]. This portion of the analysis will place various

components of the crossing kernels into context, provide nontrivial checks, and illuminate the

interpretation of the results.

Another motivation for revisiting the analysis of symmetric product orbifolds is compari-

son with the entropy of 1/4-BPS black holes in N = 4 ungauged supergravity in four and five

dimensions. The modular form that captures the relevant microstates in 4D is the Igusa cusp

form, while a simple modification of this form covers 5D black holes. In both cases, these

modular forms contain information about the elliptic genus of the symmetric product orbifold

of K3 since there is an uplift to AdS3 × S3× K3. The seminal work of [15, 16] showed that

the logarithmic corrections in gravity agree precisely with those extracted from this modular
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form. From a gravitational perspective, one evaluates the entropy of the black hole via a

Euclidean path integral, which takes the form

SBH =
AH

4G
+ agrav log

(
AH

4G

)
+ · · · , (1.5)

where the dots denote corrections that are subleading in the area of the horizon AH relative

to the Planck length, i.e. AH/G ≫ 1. The logarithmic correction is an IR effect that comes

from the one-loop determinant of massless fields and zero modes in supergravity, effects that

we are encoding as agrav. The analysis of [15, 16] match agrav to the microscopic (UV) data

encoded in the a∆ and a∆0
variables parametrizing the c(n, ℓ) coefficients of a wJf. We will

revisit this match from the point of view of HKS: we are interested in determining the data

in the modular form that controls the logarithmic corrections, and how this fits within the

framework of AdS3/CFT2. We will see that the 4D black hole falls into the universal regime,

and hence the logarithmic corrections are only sensitive to the number of ground states. On

the other hand, the 5D black hole falls in the non-universal regime, which is sensitive to the

distribution of polar states in the modular form.

The final application of our analysis comprises the microscopic nature of the entropy of

1/2-BPS black holes in 4D N = 2 supergravity. The leading and logarithmic contribution to

the entropy of these black holes have been argued to be compatible with the OSV formula

in [17], and there are components of this formula that deal with the asymptotic behavior of a

wJf [18–21]. As we will see, various subtleties make the comparison challenging because these

black holes fall into the non-universal regime. In fact, the charges of the black hole are such

that ∆ is situated right at the edge of the regime of validity of our analysis, where the leading

Cardy behavior receives order one corrections. Additionally, in the non-universal regime,

the logarithmic corrections are sensitive to the distribution of polar states, meaning that a

match with gravity requires precise knowledge of the light spectrum. Using our methods, we

illustrate how to reproduce the logarithmic corrections to the black hole entropy and highlight

the delicate components of the match.

This paper is organized as follows. In Sec. 2 we review the properties of wJfs, obtain

general expressions for their Fourier coefficients using crossing kernels, and compare these to

the expressions obtained from the Rademacher expansion. In Sec. 3 we consider wJfs with a

sparse spectrum of light states and quantify the imprint of the light states on the asymptotic

growth of the c(n, ℓ) coefficients. Therein we derive expressions for c(n, ℓ) that are valid in

the the universal and non-universal regimes characterized by different scalings of ∆ with |∆0|.
In Sec. 4 we study the asymptotic growth of wJfs obtained from symmetric product orbifolds

and compare the resulting c(n, ℓ) coefficients to the ones obtained from the crossing kernel

and the exponential lift. The expressions for the c(n, ℓ) coefficients derived in Sec. 3 and

Sec. 4 are tested in Sec. 5, where they are shown to reproduce Bekenstein-Hawking entropy

and its logarithmic corrections in 1/4-BPS black holes in N = 4 supergravity in four and

five dimensions. Therein we also revisit the logarithmic corrections to 1/2-BPS black holes

in four-dimensional N = 2 supergravity. We conclude with a discussion in Sec. 6. Various
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results are collected in the appendices. App.A describes our conventions for the different

approximations used in the paper. App.B contains more details on the derivation of the

crossing kernel of wJfs with nonzero weight. Some important features (including the crossing

kernel) of wJfs with nonzero weight and multiple charges are discussed in App.C. In App.D we

write down the Rademacher expansion of wJfs. Finally, in App. E we provide more details on

the relationship between exponential lifts and the generating function of symmetric product

orbifolds.

2 Asymptotic expansions of sparse weak Jacobi forms

In this section we introduce the basic ingredients necessary to extract the Fourier coefficients

of weak Jacobi forms (wJf). The method we use to extract these coefficients is the crossing

kernel, which allows us to explore different regimes of parameter space. We then compare

this method with the more familiar Rademacher expansion. We also review the well-known

derivation of the Cardy-like growth of the Fourier coefficients of wJfs, and introduce the

notion of a sparse wJf.

2.1 Weak Jacobi forms

The basic object we want to consider is a weak Jacobi form. These forms are labeled by

two integers: a weight k and an index t > 0. A Jacobi form is a function φ(τ, z) defined on

H × C → C with a Fourier expansion given by

φ(τ, z) =
∑
n,ℓ

c(n, ℓ)qnyℓ , q := e2πiτ , y := e2πiz . (2.1)

Crucially, the adjective “weak” in a wJf means that

c(n, ℓ) = 0 , unless n ≥ 0 . (2.2)

For integral values of ℓ and n, φ(τ, z) satisfies the transformation rules

φ

(
aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)ke

2πitcz2

cτ+d φ(τ, z) ,

(
a b

c d

)
∈ SL(2,Z) . (2.3)

In particular, the S and T transformations of SL(2,Z) correspond to (a, b, c, d) = (0,−1, 1, 0)

and (a, b, c, d) = (1, 1, 0, 1), respectively. In addition, φ(τ, z) transforms under shifts of z as2

φ(τ, z + λτ + µ) = e−2πit(λ2τ+2λz+µ)φ(τ, z) , λ, µ ∈ Z . (2.4)

This transformation is known as an elliptic (or spectral flow) transformation. A simple

consequence of (2.3) is that under the modular transformation (ST )3, the c(n, ℓ) coefficients

satisfy

c(n, ℓ) = (−1)kc(n,−ℓ) . (2.5)

2Our results also apply to cases where ℓ is fractional. In these cases there is an “unwrapping” of the

potential z that makes ℓ an integer, see e.g. [10].
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Additionally, (2.4) implies that

c(n, ℓ) = c(n+ λℓ+ tλ2, ℓ+ 2λt) , λ ∈ Z . (2.6)

There are two important properties of wJfs to keep in mind. First, the transforma-

tions (2.3) and (2.4) imply that the c(n, ℓ) coefficients depend only on ℓ (mod 2t) and the

discriminant ∆ defined by

∆ := n− ℓ2/(4t) . (2.7)

In this context, we will differentiate between two classes of contributions to (2.1): for given

values of (n, ℓ) we will denote the corresponding states as a

polar state if ∆ < 0 ,

non-polar state if ∆ ≥ 0 .
(2.8)

Second, the discriminant of polar states is bounded from below by the index t of φ(τ, z) such

that ∆0 ≥ −t/4, where ∆0 is the minimum value of the discriminant, i.e. the discriminant of

the most polar term. We are interested in wJfs where the most polar term is of the form

q0y±b , (2.9)

such that ∆0 = −b2/(4t) where b is taken to be a positive integer with b ≤ t.

The notion of a wJf can be generalized to an arbitrary rank M , where we would instead

have φ : H × CM → C. Physically, this means that we have a system with multiple charges

ℓi, i = 1, . . . ,M . Many of the properties of these modular forms are straightforward general-

izations of the wJfs discussed in this section. There are however some surprising differences,

which will prove to be crucial in Sec. 5.3. In particular, the relationship between the index

and the maximal polarity of the form can be modified. We discuss wJfs with multiple charges

in detail in App.C.

2.2 Crossing kernels

In this section we derive a general formula for the c(n, ℓ) coefficients of wJfs using crossing

kernels. This formula follows naturally from the standard statistical mechanics approach of

extracting the Fourier coefficients using an inverse Laplace transform; see for example [22–25]

for an application to non-holomorphic modular forms. It is important to note, however, that

this approach does not give an exact count for these coefficients because it approximates the

numbers c(n, ℓ) with a density (or distribution) that we denote by ρ(n, j), where n and j are

continuous parameters.3 Nevertheless, this approach is conceptually much simpler than the

exact methods presented in Sec. 2.3 and Sec. 4, and it suffices to capture the leading and

subleading corrections to c(n, ℓ) when ∆ is large. For simplicity, we only consider weight-zero

3Note that ρ(n, j) is not strictly a density since the c(n, ℓ) coefficients are not necessarily positive. A precise

definition of ρ(n, j) and its relation to c(n, ℓ) is given below.
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forms of rank one in this section, deferring the generalization of our results to forms with

arbitrary weight and arbitrary rank to App.B and C, respectively.

We begin by writing the wJf φ(τ, z) as an integral over the density of states,

φ(τ, z) =

∫ ∞

0
dn

∫ ∞

−∞
dj ρ(n, j) e2πi(τn+zj) , (2.10)

where ρ(n, j) is given by a sum of delta functions centered at integer values of n = n and j = ℓ.

For a weight-zero form, invariance under modular S transformations implies

φ(τ, z) =

∫ ∞

0
dn

∫ ∞

−∞
dj ρ(n, j) e

2πi
τ (−n+zj−tz2) . (2.11)

Using an inverse Laplace transform then leads to the crossing equation

ρ(n, j) =

∫ ∞

0
dn′
∫ ∞

−∞
dj′ ρ(n′, j′)P{n, j};{n′, j′} , (2.12)

where P{n, j};{n′, j′} is the crossing kernel defined by

P{n, j};{n′, j′} :=

∫
dτ dz e−2πi(τn+z j)e

2πi
τ (−n′+z j′−tz2) . (2.13)

Since the density of states ρ(n, j) is a sum of delta functions, we can rewrite the integral in

(2.12) as a discrete sum over the spectrum of φ(τ, z), with the result

ρ(n, j) =
∑
ℓ′∈Z
n′≥0

c(n′, ℓ′)P{n, j};{n′,ℓ′} . (2.14)

This equation is an exact relation between distributions and it does not converge in the usual

sense. Since the left-hand side of (2.14) is a sum of delta functions, the sum on the right-

hand side does not have a smooth asymptotic behavior. Rather, this equation only holds when

integrated against a valid test function, which requires some smearing. The level of smearing

required for (2.14) to be valid depends on the details of the modular form at hand. For wJfs,

which have a discrete and integer-spaced spectrum, we need an integration window that is

presumably much larger than one. The most conservative statement we can make about

(2.14) is that the total number of states below a certain value of n and ℓ is asymptotic to the

integral of the sum on its right-hand side. In Sec. 2.3, we will review the exact Rademacher

expansion and contrast it against the distribution ρ(n, j).

The crossing kernel P{n,j};{n′,j′} for a weight-zero wJf is given by (see App.B)

P{n,j};{n′,j′} := e−iπ j′j
t P{∆};{∆′} , (2.15)

where P{∆};{∆′} is defined, in terms of ∆ = n− j2/(4t) (and similarly for ∆′), by

P{∆};{∆′}=

√
2π2

t

(
−∆′

∆

) 3
4

I− 3
2

(
4π

√
−∆∆′

)
Θ(∆) . (2.16)
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In the equation above, Θ(∆) is the Heaviside step function and Iν(z) is a modified Bessel

function of the first kind. Note that up to the j′j-dependent phase, the crossing kernel depends

only on the discriminants ∆ and ∆′. For this reason, it is convenient to rearrange the sum

in (2.14) in terms of ∆′ and ℓ′. Furthermore, since c(n, ℓ) depends only on ∆ and ℓ (mod 2t),

we can use (2.6) to write4

ρ(n, j) =
∑
∆′

P{∆};{∆′}

t−1∑
ℓ′=−t

∑
λ∈Z

c

(
∆′ +

(ℓ′ + 2λt)2

4t
, ℓ′ + 2λt

)
e−iπ

(ℓ′+2λt)j
t

=
∑
∆′

P{∆};{∆′}

t−1∑
ℓ′=−t

c

(
∆′ +

(ℓ′)2

4t
, ℓ′
)
e−iπ ℓ′j

t

∑
λ∈Z

e−2πiλj

= (−1)j
∑
∆′

P{∆};{∆′}cj(∆
′)
∑
m∈Z

δ(m− j) ,

(2.17)

where in the last line we used the Fourier transform of the Dirac comb and introduced the

notation5

cℓ(∆
′) := (−1)ℓ

t−1∑
ℓ′=−t

c

(
∆′ +

(ℓ′)2

4t
, ℓ′
)
e−iπ ℓ′ℓ

t . (2.18)

In general, very few terms tend to contribute to (2.18) since the arguments of c(n, ℓ) have to

be integral. Note also that c(∆′ + ℓ′2/(4t), ℓ′) vanishes unless ∆′ + ℓ′2/(4t) is a nonnegative

integer.

We are ultimately interested in determining the asymptotic density of states for large

values of the discriminant ∆. In this case, ρ(n, j) receives qualitatively different contributions

from different types of states. This can be seen from the large-∆ behavior of the kernel

P{∆};{∆′} =
1

2∆

√
−∆′

t
e4π

√
−∆∆′

+ · · · , Re
(√

−∆∆′
)
→ ∞ . (2.19)

For polar (light) states where ∆′ is negative, the kernel is a smooth exponential function of√
|∆′|, while it becomes a rapidly oscillating function for non-polar (heavy) states where ∆′

is positive. Hence, it is natural to write the density of states as

ρ(n, j) =
(
ρH|L(n, j) + ρH|H(n, j)

)
×
∑
m∈Z

δ(m− j) , (2.20)

where ρH|L(n, j) and ρH|H(n, j) denote the contributions of the light and heavy states, respec-

tively, that is

ρH|L(n, j) := (−1)j
∑
∆′<0

P{∆};{∆′}cj(∆
′) , (2.21)

4The sum over delta functions in the last line of (2.17) explicitly shows that ρ(n, j) is a distribution.
5When t = b, the sum in the definition of cℓ(∆

′) collapses to a single term. The factor of (−1)ℓ is included

in this definition so that ct(∆0) = c (0, t).
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ρH|H(n, j) := (−1)j
∑
∆′≥0

P{∆};{∆′}cj(∆
′) . (2.22)

As described above, ρH|L(n, j) is responsible for the exponential growth of the density ρ(n, j)

at large ∆, while ρH|H(n, j) is responsible for its oscillatory behavior. We have not included

the spin quantization condition in these expressions as they will be directly related to the

c(n, ℓ) coefficients in the next section. Note that the delta functions corresponding to the spin

quantization appear explicitly in (2.20) as a consequence of modular invariance. On the other

hand, the quantization of n is nontrivially encoded in the infinite sum of oscillating terms in

ρH|H(n, j).

2.3 Rademacher expansions

Let us now relate the light density ρH|L(n, j) to the coefficients c(n, ℓ) via the Rademacher

expansion. The Rademacher expansion is an exact formula for the coefficients c(n, ℓ) of a

Jacobi form of weight k ≤ 1/2 and index t that is valid for states with a positive discriminant.

For wJfs with zero weight, the Rademacher expansion reads6

c(n, ℓ) =
∑
∆′<0

t−1∑
ℓ′=−t

c(n′, ℓ′)
∞∑
c=1

2π

c

(
−∆′

∆

) 3
4

I 3
2

(
4π

c

√
−∆∆′

)
Kl(∆, ℓ,∆′, ℓ′; c) , (2.23)

where the summation variable “c” is traditional and should not be confused with the central

charge of a CFT. The function Kl(∆, ℓ,∆′, ℓ′; c) is known as a generalized Kloosterman sum.

Kloosterman sums are finite sums over complex phases that are bounded by c and are mul-

tiplied by an overall factor of
√
1/t [28]. The asymptotic behavior of the c(n, ℓ) coefficients

turns out to be sensitive only to the c = 1 term in (2.23), which is given by

Kl(∆, ℓ,∆′, ℓ′, 1) =

√
1

2t
e−iπ ℓℓ′

t . (2.24)

A general definition of Kl(∆, ℓ,∆′, ℓ′, c) and some of its properties are described in App.D.

There are a few small but important differences between the expressions for ρ(n, j) and

c(n, ℓ) obtained from the crossing kernel (2.17) and the Rademacher expansion (2.23). First,

the Bessel functions featured in these expressions have different weights, −3/2 and 3/2, re-

spectively.7 Second, (2.17) is a sum over the entire spectrum of the wJf while (2.23) only

sums over polar terms with spin restricted to the range ℓ′ ∈ [−t, t− 1]. Finally, the crossing

6We will follow the conventions and definitions of [26] (see also [27,28]). For completeness, the Rademacher

expansion of wJfs of weight k ≤ 1/2 is given in App.D.
7The discrepancy in the weight of I−3/2(x) and I3/2(x) can be understood as the result of a choice of

integration contour (see App.B and D for details). Nevertheless, these functions are related via the modified

Bessel function K3/2(x) and their difference is non-perturbatively small when the argument is large

I3/2(x)− I−3/2(x) =
2

π
K3/2(x) ∼

√
2

πx
e−x

(
1 +O

(
x−1)) .
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equation does not include a sum over the discrete variable c featured in the Kloosterman sum

and in fact only captures the behavior of the first term with c = 1.

The differences between the density ρ(n, j) and the exact coefficients c(n, ℓ) described

above are “small” for our purposes, as they correspond to non-perturbative, exponentially

suppressed corrections. To make this comparison precise, let us define the “Rademacher”

kernel R{n,ℓ};{n′,ℓ′} by

R{n,ℓ};{n′,ℓ′} :=
∞∑
c=1

2π

c

(
−∆′

∆

) 3
4

I 3
2

(
4π

c

√
−∆∆′

)
Kl(∆, ℓ,∆′, ℓ′; c) , (2.25)

such that the c(n, ℓ) coefficients can be written as

c(n, ℓ) =
∑
∆′<0

t−1∑
ℓ′=−t

c(n′, ℓ′)R{n,ℓ};{n′,ℓ′} . (2.26)

For large values of |∆∆′|, the Rademacher and crossing kernels agree up to non-perturbative

corrections that originate from the c > 1 terms in the Kloosterman sum, that is

R{n,ℓ};{n′,ℓ′}

P{n,ℓ};{n′,ℓ′}
= 1 +O

(
e−2π

√
−∆∆′

)
. (2.27)

Using the asymptotic expansion of the Bessel function we can write

c(n, ℓ) = (−1)ℓ
∑
∆′<0

cℓ(∆
′)

1

2∆

√
−∆′

t
e4π

√
−∆∆′

[
1 +O

(
e−2π

√
−∆∆′

)]
, (2.28)

where cℓ(∆
′) is defined in (2.18) and we have omitted terms with c > 1 that are responsible

for the leading corrections to this expression. Comparing (2.21) and (2.28) then yields

c(n, ℓ)

ρH|L(n, ℓ)
= 1 +O

(
e−2π

√
−∆∆′

)
. (2.29)

We conclude that the c(n, ℓ) coefficients are well approximated by the density ρH|L(n, j). In

other words, we can use crossing kernels to extract the leading and subleading behavior of

the c(n, ℓ) coefficients when the product |∆∆′| is large.

2.4 Asymptotics of sparse weak Jacobi forms

We now describe the leading asymptotic behavior of ρH|L(n, ℓ) when the wJf has a sparse

spectrum and a large value of the minimum discriminant ∆0. These features are motivated

by the AdS3/CFT2 correspondence and control the leading universal behavior of the c(n, ℓ)

coefficients of wJfs.

Let us first consider the asymptotic behavior of generic wJfs in the regime ∆ ≫ |∆0|.
In this case, the density (2.21), which receives contributions from states with ∆′ < 0, is

12



dominated by the most polar term with ∆′ = ∆0. This can be seen from the crossing kernel,

which organizes the spectrum into an exponential hierarchy

P{∆};{∆′}

P{∆};{∆0}
=

√
∆′

∆0
e
−4π

√
∆
(√

|∆0|−
√

|∆′|
)
+ · · · . (2.30)

Consequently, for fixed values of ∆0 (or t), the coefficient c(n, ℓ) with discriminant ∆ ≫ |∆0|
is universally given by

c(n, ℓ) = ρH|L(n, ℓ) + · · · = (−1)ℓcℓ(∆0)

√
2π2

t

(
|∆0|
∆

) 3
4

I− 3
2

(
4π
√
∆|∆0|

)
+ · · · . (2.31)

Ignoring the subleading (non-exponential) terms, (2.31) yields the expected leading behavior

of c(n, ℓ), namely

c(n, ℓ) ∼ e4π
√

∆|∆0| , ∆ ≫ |∆0| . (2.32)

It is important to note that as ∆ approaches |∆0|, the corrections to (2.32) become relevant.

The effect of these corrections to the leading behavior (2.32) is discussed in the next section.

It is instructive to compare (2.32) with the ordinary Cardy formula in CFT2, SCardy ∼
2π
√

c
3E, where c is the central charge of the CFT and E is the energy of the state. We see

that (2.32) reproduces the Cardy formula provided that we identify

∆0 → − c

12
, ∆ → E . (2.33)

Note that the dictionary (2.33) depends on the precise relationship between φ(τ, z) and the

torus partition function or index of the CFT. Nevertheless, it is natural to refer to the regime

of validity of (2.32) as the Cardy regime.

Following [5, 6], let us now introduce the notion of a sparse weak Jacobi form. We say

that a wJf is sparse if the Fourier coefficients of its polar states satisfy the HKS bound,

namely [5, 6]

c(n, ℓ) ≲ e2π(∆−∆0) , ∆0 < ∆ < 0 . (2.34)

This is usually referred to as the sparseness condition. An immediate consequence of (2.34)

is that the asymptotic growth (2.32) can be extended to the so-called universal regime where

c(n, ℓ) ∼ e4π
√

∆|∆0| , ∆ ≳ |∆0| ≫ 1 . (2.35)

In the context of AdS3/CFT2, this result is compatible with holographic conditions on the

spectrum. In particular, from a gravitational perspective, we interpret (2.35) as the appear-

ance of BTZ black holes that dominate the spectrum at high energies.8

To summarize, the asymptotic growth of wJfs is given by a universal Cardy formula that

is determined by the most polar state in the spectrum. Depending on the distribution of the

8Colloquially, we identify non-polar states with black holes, and polar states with “light” or perturbative

states. However, this is just a rough analogy since the precise statements depend on the gravitational theory.
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polar states, this formula is valid in the Cardy regime (2.32) or the universal regime (2.35).

So far, we have only discussed the leading order behavior of the c(n, ℓ) coefficients. The

subleading corrections to these coefficients, and their sensitivity to other polar states in the

spectrum, are the subject of the next section.

3 Light state imprint on the asymptotics

We now consider the subleading corrections to the Fourier coefficients of sparse wJfs. We

begin by refining the concept of sparseness and distinguish between wJfs with a fast and slow

growth of polar states. We will show that in the universal regime where ∆ ≳ |∆0| ≫ 1, the

corrections to the Fourier coefficients of any sparse wJf remain universal, being determined by

the most polar state in the spectrum. In addition, we will show that slow-growing wJfs have

an extended regime of validity of the Cardy formula that includes states with discriminant

|∆0| ≳ ∆ ≫ 1. In this regime, the subleading corrections to the Fourier coefficients become

sensitive to the distribution of light states and are no longer universal.

3.1 Fast vs slow growth

Based on the arguments around (2.29), the c(n, ℓ) coefficients of a wJf are approximated by

the density (2.21) when the discriminant is large. While the leading asymptotic behavior of

these coefficients is determined by the most polar state, their subleading corrections are in

principle sensitive to the distribution of light states. Let us model the light spectrum with

the density ρL(n, j) defined as

ρL(n, j) := Θ

(
j 2

4t
− n

) t−1∑
ℓ=−t

∞∑
n=0

δ(n− n)δ(ℓ− j) c(n, ℓ) . (3.1)

In contrast to the full density of states ρ(n, j), this density is restricted to the polar states

and values of the spin j ∈ [−t, t− 1].9 The density (3.1) is defined so that ρH|L(n, j) in (2.21)

can be written as

ρH|L(n, j) =

∫
dn′ d j′ ρL(n

′, j′)P{n, j};{n′, j′} . (3.2)

We are interested in characterizing the behavior of the c(n, ℓ) coefficients of wJfs in

a regime where |∆0| ≫ 1. For rank one wJfs, large |∆0| implies that t ∼ b ≫ 1. In

order to quantify the effects of the light states on the asymptotic behavior of c(n, ℓ), it is

necessary to refine the sparseness condition introduced in the previous section. Henceforth,

we distinguish between sparse wJfs whose polar states grow fast or slow. These types of

growth are characterized as follows:

Fast growth. A sparse wJf is “fast” growing when the density of light states ρL(n, j) is

Hagedorn-like, namely

ρL(n, j) ≲ e2πγ(∆−∆0) , 1 ≪ ∆ < |∆0| , (3.3)

9The range on the spin j follows from (2.6) and is a consequence of invariance under spectral flow.
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where γ > 0. Generally γ is a function of n and j that does not scale in the large ∆, |∆0|
limits. Note that we have broadened the sparseness condition (2.34) by allowing γ to be

potentially greater than one. We will quantify the repercussions of this choice in the next

subsection. A familiar case of fast growth is the Hagedorn growth that occurs when γ = 1.

In the context of AdS3/CFT2, this growth is associated with a stringy spectrum on the

bulk side of the correspondence [9].

Slow growth. A sparse wJf is “slow” growing when ρL(n, j) is well below the HKS bound.

We can parametrize this growth by the behavior of ρL under a rescaling of the charges by

a parameter Λ that we take to be large. More precisely, we consider

n 7→ Λn , a 7→ Λa , (3.4)

where a := j+ b is the spin shifted by the spin of the ground state. In terms of this scaling,

slow-growing wJfs satisfy

ρL(n, j) ≲ ef(n, a), where f
(
Λ n,Λ a

)
≲ Λαf(n, a). (3.5)

Here α < 1, and we take Λ to be parametrically larger than one but less than |∆0|. The

condition on α is relevant in the context of holography as it makes the growth of light

states compatible with that of a weakly interacting quantum field theory in, for example,

AdS3 ×MD−3.
10

As illustrated in [6,7], it is difficult to construct wJfs with a slow growth of polar states;

fast-growing light states seem to be the norm. One arena where it is possible to design wJfs

with either slow or fast growth is in the context of symmetric product orbifolds [10–12, 29].

We will use this class of wJfs as testing grounds for our analysis in Sec. 4.

3.2 Universal behavior for ∆ ≳ |∆0|

Let us now consider the behavior of ρH|L(n, j) for sparse wJfs in the regime ∆ ≳ |∆0| ≫ 1,

where the following ratios are held fixed

∆

|∆0|
,

j

|∆0|
. (3.6)

Following (2.29), the asymptotic behavior of the c(n, ℓ) coefficients is determined by the light

density of states via (2.28). In the regime ∆ ≳ |∆0|, the integral in (3.2) is dominated by

light states that lie well below the threshold ∆′ = 0 of non-polar states due to HKS. For this

reason, we will assume that

n′ ≪ b , j′ = a′ − b , |a′| ≪ b , (3.7)

where we recall that b parametrizes the most polar state of φ(τ, z) via (n, ℓ) = (0,±b) such

that ∆0 = −b2/4t. The limit |∆0| ≫ 1 implies that 1 ≪ 2
√
t ≪ b ≤ t.

10The perturbative spectrum of a weakly coupled QFT on AdS3 ×MD−3 has α = D−1
D

< 1.
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With this hierarchy, the crossing kernel (2.15) can be approximated by

P{n, j};{n′,a′−b} =
1

2∆

√
|∆0|
t

eπi
b j
t e4π

√
∆|∆0|e2πiτ⋆n

′+2πiz⋆a′ + · · · , (3.8)

where we used (2.19) with the exponential term expanded to linear order in n′ and a′, while

τ⋆ and z⋆ are defined as

τ⋆ := i

√
∆

|∆0|
, z⋆ := − j

2t
+ i

b

2t

√
∆

|∆0|
= − j

2t
+

b

2t
τ⋆ . (3.9)

The reason for this choice of variables becomes evident once we substitute (3.8) in (3.2).

Indeed, we find that (3.2) can be written as

ρH|L(n, j) =
1

2∆

√
|∆0|
t

eπi
b j
t e4π

√
∆|∆0|φ0(τ⋆, z⋆) + · · · , (3.10)

where φ0(τ, z) can be interpreted as a partition function for the light states defined by

φ0(τ, z) :=

∫ ∞

0
dn′
∫ b+t−1

b−t
da′ ρL(n

′, a′ − b) e2πiτn
′+2πiza′ . (3.11)

Note that in this expression, ρL(n
′, a′ − b) only has support on states with ∆0 ≤ ∆′ < 0.

Equation (3.10) provides insight into the factors that control the corrections to ρH|L(n, j).

In particular, we see that the subleading corrections to ρH|L(n, j) are controlled entirely by

φ0(τ⋆, z⋆). Importantly, n and j only enter φ0(τ⋆, z⋆) via the potentials (3.9), which remain

fixed in the regime ∆ ≳ |∆0| ≫ 1 as they only depend on the ratio ∆/|∆0|. Namely, under

the rescaling

∆ 7→ Λ∆ , ∆0 7→ Λ∆0 , (3.12)

with Λ ≫ 1, the partition function φ0(τ⋆, z⋆) simply contributes a numerical factor to (3.10).

In order to sharpen this picture, we will now consider (3.11) more carefully.

In the regime where the ratios (3.6) are held fixed, the parameters τ⋆ and z⋆ are fixed

numbers of order one. What we would like to argue is that φ0(τ⋆, z⋆) exhibits no pathologies

when the potentials are finite. It suffices to show that this partition function is finite when

the range of integration is extended to infinity, that is,

|φ0(τ⋆, z⋆)| ≲
∫ ∞

0
dn′
∫ ∞

− 2t
b
n′
da′ ρL(n

′, a′ − b) e2πiτ⋆n
′+2πiz⋆a′ , (3.13)

where the lower limit of integration of the spin variable a′ comes from the requirement ∆′ ≥ ∆0

in the limit |∆0| ≫ 1. The integrand above is bounded by the sparseness condition, such that

the real part of the exponent is bounded by

Re
(
log(ρL) + 2πiτ⋆n

′ + 2πiz⋆a
′) ≤

−2π(Im(τ⋆)− γ)(n′ + b
2ta

′) , fast growth ,

−2πIm(τ⋆)(n
′ + b

2ta
′) , slow growth ,

(3.14)
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where we are using the bounds for fast and slow growth given in (3.3) and (3.5). As a

result, the partition function (3.11) is finite for fast-growing wJfs provided that Im(τ⋆) > γ,

or equivalently ∆ > γ2|∆0|. For slow-growing wJfs, the explicit exponential factor always

dominates over ρL(n, j). Thus, obtaining a finite integral in this case only requires Im(τ⋆) > 0,

which is consistent with the regime chosen.

An important caveat is that the number of light states can scale as a polynomial of ∆0

which does affect (3.10). This is compatible with the HKS sparseness criteria, and it usually

arises from an overall normalization of the modular form.11 For this reason, we write the

effect of the scaling as

φ0(τ⋆, z⋆) ≈
∆→Λ∆

∆0→Λ∆0

ρ0(∆0) , (3.15)

where ρ0(∆0) is a polynomial in ∆0.

We can now gather our results and relate (3.10) to the Fourier coefficients of sparse

wJfs. We find that the subleading corrections to the c(n, ℓ) coefficients with ∆ ≳ |∆0| ≫ 1

are universal and determined entirely by the modular image of the most polar state in the

spectrum, that is

c(n, ℓ) ≈ ρ0(∆0)

∆

√
|∆0|
t

e4π
√

∆|∆0| when

∆ > γ2|∆0| , fast growth ,

∆ ≳ |∆0| , slow growth .
(3.16)

There are two important takeaways of this analysis. First, we have found that fast-growing

wJfs feature a minimum value of Im(τ⋆) for which the asymptotic growth of c(n, ℓ) is given

by the Cardy formula. This means that sparse wJfs can satisfy a weaker version of the HKS

bound (2.34) where γ > 1 and still feature a universal Cardy growth. On the other hand,

when ∆ ≤ γ2|∆0|, the partition function φ0(τ⋆, z⋆) is no longer well defined and it is necessary

to consider the Rademacher expansion of c(n, ℓ). In this case, we expect large corrections to

both the leading and subleading behavior of these coefficients.

We have also found that slow-growing wJfs feature a Cardy growth that is valid for an

extended regime. Note that, while Im(τ⋆) can be arbitrarily small, this regime still requires ∆

to scale linearly with |∆0|, as reflected in (3.15). It is natural to wonder if a linear scaling is

necessary for the Cardy growth, or if other scalings for which Im(τ⋆) > 0 are also possible. In

the next section we will show that slow-growing wJfs can realize the second option, allowing

the leading Cardy growth to extend to a non-universal regime where ∆ ≲ |∆0|. This regime

is not universal since the subleading corrections to the c(n, ℓ) coefficients turn out to depend

on the distribution of the light states.

11 An explicit example of this is a system where the ground state is highly degenerate. We will see this when

considering symmetric products orbifolds in Sec. 4, and it is crucial for the coefficients of the wJf to correctly

reproduce the logarithmic correction to black hole entropy. In other cases, a polynomial growth in ∆0 can

originate from an overall normalization of the partition function due to global symmetries, see for example [30].
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3.3 Non-universal behavior for ∆ ≲ |∆0|

We now consider the asymptotic behavior of the Fourier coefficients of slow-growing wJfs in

the non-universal regime |∆0| ≳ ∆ ≫ 1 where the ratio ∆/|∆0| is not fixed. In this regime,

the potentials (3.9) at which we evaluate φ0(τ⋆, z⋆) are no longer of order one, since they scale

in the large-|∆0| limit as

τ⋆ ∼ z⋆ ∼ i|∆0|−θ , (3.17)

for some θ > 0. As a result, it is not clear that (3.7) holds, and the approach of Sec. 3.2

may no longer apply. In this case, we will evaluate the integral in (3.2) via a saddle-point

approximation. This will allow us to demonstrate that the corrections to the Cardy growth

of the c(n, ℓ) coefficients in the regime |∆0| ≳ ∆ ≫ 1 are no longer universal and carry an

imprint of the light spectrum.

We start by considering (3.2) in the non-universal regime |∆0| ≳ ∆ ≫ 1. An important

difference with the analysis of the previous section is that we cannot expand the crossing kernel

as in (3.8). This is because in the non-universal regime, (3.2) is not necessarily dominated by

states close to the state of maximal polarity. Instead, we use the following approximation of

the crossing kernel

P{n, j};{n′, j′} =
1

2∆

√
−∆′

t
e−πi j′ j

t e4π
√

∆
(

( j′)2
4t

−n′
)
+ · · · , (3.18)

which only assumes that ∆ ≫ 1. Thus, the asymptotic behavior of the c(n, ℓ) coefficients is

determined by the following integral∫ ∞

0
dn′
∫ t−1

−t
d j′ ρL(n

′, j′)
√
−∆′ e4π

√
∆
(

( j′)2
4t

−n′
)
. (3.19)

In the non-universal regime |∆0| ≳ ∆ ≫ 1, we can evaluate (3.19) using a saddle-point

approximation. The exponential growth of ρL(n, j) determines the location of the saddle

point and the regime of validity of the Cardy growth of c(n, ℓ). The non-exponential terms in

the distribution of light states, on the other hand, are crucial in determining the subleading

corrections to these coefficients. Therefore, it is convenient to parametrize the density of light

states as

ρL(n, j) = ρ0(∆0)g(n, a)e
f(n,a) , ∆0 < n− j2

4t
< 0 , (3.20)

where we have separated the contribution of light states into an exponential part f(n, a) that

affects the position of the saddle point in (3.19), a polynomial part g(n, a), and a possible

overall normalization ρ0(∆0) (which is the factor we introduced in (3.15); see footnote 11).

As highlighted in Sec. 3.2, the relevant variable to describe the growth of light states is not

j but a = j + b. Following (3.5), the condition that the wJf is slow growing then translates

into the property that, under a rescaling of n and a by a large parameter Λ,

f(Λn,Λa) ≲ Λαf(n, a) , where α < 1 . (3.21)
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To illustrate the sensitivity of logarithmic corrections to the details of the light spectrum,

we will examine two specific cases that are relevant for Sec. 4 and Sec. 5. In the first case,

both variables n and j appear on equal footing in ρL(n, j). In the second case, we assume

that f(n, a) and g(n, a) do not depend on a to leading order, making n the only relevant

variable. The cases under consideration are by no means exhaustive. They are chosen for

their relevance to the explicit examples discussed in the following sections. Moreover, they

demonstrate the sensitivity of the logarithmic corrections to the details of the light spectrum.

Democracy. For simplicity, in this case we restrict to α = 1
2 in (3.21). We define “democ-

racy” as situations where f(n, a) and g(n, a) in (3.20) scale uniformly for large values of Λ,

namely situations where

f(Λ n, a) ≈ f(n,Λ a) ≈ f(Λ n,Λ a) ≈ Λ
1
2 f(n, a) ,

g(Λ n,Λ a) ≈ Λωg(n, a) ,
for 1 ≪ Λ ≤ |∆0| . (3.22)

Both α = 1
2 and democracy are present in wJfs constructed via symmetric product orbifolds,

which will be discussed in Sec. 4.

With this parametrization of the light spectrum, the saddle-point equations of (3.19) are

∂n′f(n
′, a′) = 2π

√
−∆

∆′ , ∂a′f(n
′, a′) = −π

j′

t

√
−∆

∆′ . (3.23)

As we take n′ ≈ a′ ≈ Λ, it follows that Λ ≈ ∆0 −∆′ and that the derivatives of f(n′, a′) scale

like Λ−1/2. This scaling leads to the following solution to the saddle-point equations

Λ⋆ ≈ −∆0

∆
, (3.24)

where we used the fact that t ∼ |∆0| ≫ 1.

From (3.22), it follows that the Hessian of the saddle-point approximation is of order

O
(
Λ−3
⋆

)
. This can be seen from the fact that the Hessian is given by the determinant of the

two-by-two matrix whose entries are the second derivatives of f(n, a). Using ∆′
⋆ −∆0 ≈ Λ⋆,

we find that (3.19) evaluates to∫ ∞

0
dn′
∫ t−1

−t
d j′ ρL(n

′, j′)
√
−∆′ e4π

√
∆
(

( j′)2
4t

−n′
)

≈ ρ0(∆0)

(
∆0

∆

) 3
2
+ω√

−∆0 e
4π

√
−∆∆0 .

(3.25)

Here we used the fact that for large values of the discriminant ∆ ≫ 1 , the saddle-point value

satisfies Λ⋆ ≪ |∆0|, which follows from (3.24). This means that we can approximate ∆′
⋆ with

∆0 at the saddle point. Combining all these ingredients into (3.2) we obtain

c(n, ℓ) ≈ ρ0(∆0)

∆

(
∆0

∆

) 3
2
+ω
√

−∆0

t
e4π

√
−∆∆0 , (3.26)

which is valid for a democratic light spectrum with α = 1
2 in the regime |∆0| ≳ ∆ ≫ 1. This

expression shows that the logarithmic corrections are now sensitive to properties of the light

spectrum via ρ0(∆0) and ω (the scaling behavior in (3.22)).
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Autocracy. The second example we consider is one where light states are not sensitive to

a 7→ Λa to leading order (relative to n 7→ Λn). This means that we can safely assume ρL(n, j)

as being “neutral” in the large-Λ limit, that is

ρL(n, j) ≈ ρ0(∆0)n
ωe2πγn

α
δ( j+ b) , 1 ≪ n < |∆0| , (3.27)

where α < 1 and γ > 0. This is what we call “autocracy”: one variable dominates over the

other, and it is the case relevant for Sec. 5.3. This time, the integral over the spin variable

in (3.19) collapses due to the delta function and we are left with a single integral over n∫ |∆0|

0
dn nω

√
|∆0| − n eF (n) , F (n) = 2πγnα + 4π

√
∆
(
|∆0| − n

)
. (3.28)

We can evaluate the integral via saddle-point approximation once again. In this case, the

saddle-point equation for n⋆ is given by

αγ

(n⋆)1−α
−

√
∆

|∆0| − n⋆
= 0 . (3.29)

This equation cannot be solved analytically for generic values of α. Nevertheless, the equation

can be solved perturbatively in the following cases:

• ∆ ≫ |∆0|2α−1: In this regime, the solution to the saddle-point equation is given by

n⋆ =

(
γα

|∆0|
∆

) 1
2(1−α) [

1 +O
(
|∆0|2α−1

∆

)]
. (3.30)

Furthermore, we have −F ′′(n⋆) ≈ nα−2
⋆ and

F (n⋆) = 4π
√

−∆0∆
[
1 +O

(
|∆0|2α−1

∆

)]
. (3.31)

We conclude that the saddle-point equation of this integral, including the one-loop correc-

tions, results in the following scaling for the Fourier coefficients of the wJf

c(n, ℓ) ≈ ρ0(∆0)

∆

√
|∆0|
t

(
|∆0|
∆

) 2−α
4(1−α)

+ω

e4π
√
−∆∆0 . (3.32)

• ∆ ≪ |∆0|2α−1: In this regime, the saddle-point equation (3.29) tells us that n⋆ approaches

|∆0| in the large-|∆0| limit, i.e. it approaches the threshold of non-polarity. The saddle

point is located at

n⋆ = |∆0| −
|∆0|
(αγ)2

(
∆

|∆0|2α−1

)
+ · · · . (3.33)

For this value of n⋆, the light states dominate over the contribution of the kernel. This

implies that the exponential term in the integrand of (3.28) is no longer given by the Cardy

formula. Instead, we find that the exponent is given by

2πγ(n⋆)
α + 4π

√
−∆∆′

⋆ = 2πγ|∆0|α
[
1 +O

(
∆

|∆0|2α−1

)]
, (3.34)
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where ∆′
⋆ = n⋆− |∆0|. In this case, both the leading and subleading behavior of the c(n, ℓ)

coefficients depend on the distribution of the light states as evidenced by

c(n, ℓ) ≈ ρ(∆0)√
∆t

|∆0|
4−3α

2
+ωe2πγ|∆0|α . (3.35)

• ∆ ∼ |∆0|2α−1: This is an intermediate regime where n⋆ is of order |∆0|, but it is not quite
yet at the threshold of non-polarity. As a result, the saddle-point equation can only be

satisfied when

∆′
⋆ ≈ ∆0 . (3.36)

In this case, the contribution of the light states becomes comparable to that of the kernel,

as can be seen from

2πγnα⋆ ≈ |∆0|α ≈ 4π
√

−∆∆′
⋆ . (3.37)

In this scaling regime, evaluating the integral (3.19) at the saddle point (3.36) yields

c(n, ℓ) ≈ ρ0(∆0)√
t

|∆0|
5(1−α)

2
+ωe4πζ|∆0|α , ζ =

γ

2

n⋆
|∆0|

+

√
−∆∆′

⋆

|∆0|α
, (3.38)

where ζ is a number that is independent of ∆0 in the large-|∆0| limit but instead depends

on the ratios ∆/|∆0|2α−1 and ∆′
⋆/|∆0|. As a consistency check, we note that extending

the c(n, ℓ) coefficients in (3.32) and (3.35) to the regime ∆ ≈ |∆0|2α−1 reproduces the

subleading (non-exponential) terms in (3.38). However, these expressions cannot reproduce

the leading behavior in (3.38). This follows from the fact that the exponential growth in

(3.31) and (3.34) receives O(1) corrections when ∆ ≈ |∆0|2α−1.

Let us conclude this section by summarizing the main insights derived from the two cases

considered above. A general feature we observe is that the leading exponential behavior of

the c(n, ℓ) coefficients, i.e. the Cardy behavior, persists as long as the condition ∆ ≫ |∆0|2α−1

is fulfilled. When α = 1/2 this regime only requires that ∆ ≫ 1, but for generic values of α,

there exists a threshold beyond which the Cardy term undergoes significant corrections. On

the other hand, the subleading (non-exponential) corrections to the leading Cardy behavior

are not universal and depend sensitively on the specific details of the wJf. This sensitivity

has multiple origins: the possible scaling of ρ0(∆0), the polynomial growth of the density of

light states, and the one-loop corrections involved in the integral (3.19).

4 Symmetric product orbifolds

In this section we consider the asymptotic behavior of weak Jacobi forms constructed via a

symmetric product orbifold. A symmetric product orbifold of a two-dimensional CFT is built

by tensoring and orbifolding a CFT2 as follows. Consider a compact and unitary seed CFT2

C with central charge co. The symmetric product orbifold SymN (C) is obtained by taking
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the N -th tensor power of C and orbifolding with respect to the discrete SN symmetry that

permutes the different copies of the tensor product, that is

SymN (C) := C⊗N

SN
. (4.1)

The central charge of the resulting theory is c = Nco. Moreover, the spectrum consists of

the SN -invariant states of the tensor product C⊗N , which form the so-called untwisted sector,

supplemented by twisted sectors labeled by the conjugacy classes of SN [31–33].

We will use (4.1) as an operation acting on a wJf.12 More precisely, let φ(τ, z) be a wJf

with weight zero and index to that we identify with C. In order to make this dependence

explicit, we write

φ(τ, z; C) =
∑
n,ℓ

co(n, ℓ)q
nyℓ , (4.2)

where co(n, ℓ) is the data of the seed wJf. We assume that φ(τ, z; C) is of the form (2.9),

and hence the state with maximal polarity is q0y±bo . Based on this seed data, we construct

a new wJf of weight zero, index t = toN , and maximal polarity b = boN , by following

the rules in (4.1). This results in a new wJf denoted by φ
(
τ, z; SymN (C)

)
. A simple way

to obtain φ
(
τ, z; SymN (C)

)
is to consider the generating function of partition functions (or

grand canonical ensemble) known as the DMVV formula [33]. This generating function is

given by

Z(τ, z, σ) =
∞∑

N=0

ptoNφ
(
τ, z; SymN (C)

)
=
∏
m>0
n,ℓ

1

(1− qnyℓptom)
co(nm,ℓ)

, (4.3)

where p := e2πiσ. Note the explicit dependence on the seed data due to the appearance of

the coefficients co(n, ℓ) on the right-hand side of (4.3). This formula shows that we can easily

access wJfs with arbitrarily large values of |∆0| = Nb2o/(4to), i.e. large N , by expanding

Z(τ, z, σ) to large powers of p.

In the following, we will extract the Fourier coefficients of

Z(τ, z, σ) =
∑
t,n,ℓ

d(n, ℓ; t) ptqnyℓ , (4.4)

by performing a suitable contour integral. This method is conceptually different from the

Rademacher and crossing kernel expansions considered in Sec. 2. Depending on the seed

data, φ
(
τ, z; SymN (C)

)
can be either a fast or slow growing wJf [10, 34], providing explicit

examples of modular forms that comply with (3.3) and (3.5). The bottom line of this analysis

is that for ∆|∆0| ≫ 1 we find that d(n, ℓ; t) agrees with c(n, ℓ), giving us a nontrivial check

of the results of Sec. 3.

12The analysis in this section does not require a Hilbert space interpretation in terms of a two-dimensional

CFT. However, in many cases, it is possible to give a very precise CFT2 interpretation to the wJf. We refer

to [10–12] for a recent discussion on this interpretation in the context of N = 2 CFTs.
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4.1 Asymptotic expansions

The procedure to extract the d(n, ℓ; t) coefficients starts by casting d(n, ℓ; t) as a contour

integral that is simply given by

d(n, ℓ; t) =

∮
dp

2πip

∮
dq

2πiq

∮
dy

2πiy
Z(τ, z, σ) p−tq−ny−ℓ , (4.5)

where each of the contours encloses the origin and we recall that p = e2πiσ, q = e2πiτ , and

y = e2πiz. The integral (4.5) is defined in the Siegel upper half-plane (H2). On H2, a contour

C that renders the expansion of Z(τ, z, σ) convergent and encloses p = q = y = 0 is

Im τ ≫ 1 , Im σ ≫ 1 , Im z ≫ 1 , Im τ Im σ − (Im z)2 ≫ 1 , (4.6)

while the real parts lie in

0 ≤ Re τ, Re σ, Re z < 1 . (4.7)

Note that the contour is not closed in terms of τ , σ, and z, but it is closed in terms of p, q,

and y.

In solving the integral (4.5), one has two resources at hand, namely the modular and

the meromorphic properties of Z. In the latter, the strategy is to locate the poles of Z
on H2 and deform the contour such that it encloses the poles [3]. The key to obtaining

asymptotic expansions for d(n, ℓ; t) is to argue that for a range of t, n, and ℓ, the integral is

well approximated by a single residue, i.e., that one pole gives the most dominant contribution

to the asymptotic expansion.

Following [3], we add new segments to the contour C defined above that closes the contour

in a clockwise fashion in the Siegel upper half-plane. The addition of these segments can be

viewed as deforming the contour C to a new contour by moving the imaginary parts of τ , σ,

and z downward to the following values

Im τ ∼ 1 , Im σ ∼ 1 , Im z ∼ 1 , (4.8)

while their real parts are kept unchanged. Ref. [3] argued that this deformation only leads to

exponentially suppressed contributions such that the leading and the perturbative corrections

to the leading result of the integral (4.5) remain unchanged.

Now that we have closed the contour in the Siegel upper half-plane, we can evaluate

(4.5) using Cauchy’s integral theorem. Therefore, one of the integrals reduces to a sum over

residues of poles that are enclosed by the contour. In fact, we will argue that the leading

result of this integral, as well as its perturbative corrections, are captured by the contribution

of a single pole. In order to make this argument we need one additional assumption: we

assume that for ∆|∆0| ≫ 1, the integrand in (4.5) is dominated by the explicit exponential

factor p−tq−ny−ℓ. In particular, this assumption implies that the residue of Z(τ, z, σ) does

not compete with the explicit exponential.

Let us now examine the residues of Z at each of its poles. This can be done systematically

by relating Z to an exponential lift, the details of which are described in App. E. In short, the
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procedure is as follows. The poles of Z are simple to detect from (4.3): when co(nm, ℓ) > 0,

we will have a pole at qnyℓptom = 1 and modular images of this equation. In the regime

4nt − ℓ2 ≫ 1, the integrand of (4.5) is exponentially dominated by the residue of one pole,

which is located at

to(τσ − z2) + boz = 0 , (4.9)

where to and bo are the index and maximal polarity of the seed wJf. To manipulate Z(τ, z, σ)

near this point, it is convenient to note that (4.9) has a simple relation to the pole

boẑ − toσ̂ = 0 , or equivalently ŷbo = p̂to , (4.10)

where (τ̂ , ẑ, σ̂) correspond to the S transformation of (τ, z, σ), that is,

τ̂ = −1

τ
, ẑ = −z

τ
, σ̂ =

στ − z2

τ
. (4.11)

Note that p̂to = ŷbo has to solutions when solving for p̂ since

p̂ = ŷbo/toζto , (4.12)

is a solution for all to-th roots of unity ζto . Therefore, there are to poles of the form (4.10)

that lie in the interval 0 ≤ Re σ < 1.

We can then expand Z around (4.10) (see App. E.5 for details), which yields

Z(τ̂ , ẑ, σ̂) =
φ∞(τ̂ , ẑ)

(2πi)co(0,−bo)

1

(boẑ − toσ̂)co(0,−bo)
+ · · · , (4.13)

where we have only shown the leading behavior around the pole. The residue is controlled by

φ∞(τ̂ , ẑ) =
∏
n≥0
ℓ∈Z

(n,ℓ) ̸=(0,0)

(
1− q̂nŷℓ

)−f(n,ℓ)
=:
∑
n′,ℓ′

d∞
(
n′, ℓ′

)
q̂n

′
ŷℓ

′
, (4.14)

where the function f is defined as

f(n, ℓ) :=

∞∑
m=1

co(nm, ℓ− bom) . (4.15)

The function φ∞(τ̂ , ẑ) was first introduced in [10, 34], where it was shown that d∞ (n′, ℓ′)

captures the degeneracies of polar states in the limit N → ∞, appropriately regularized. We

will discuss the interpretation of d∞ in more detail below. Using the ingredients described

above, we can now manipulate the integrals in (4.5). First, we use modular invariance to

write

d(n, ℓ; t) =

∫
C
dτ dz dσ Z(τ, z, σ)e−2πi(tσ+ℓz+nτ)

=

∫
C
dτ dz dσ Z(τ̂ , ẑ, σ̂)e−2πi(tσ+ℓz+nτ) .

(4.16)
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We can then use (4.13), and rewrite the expansion in the unhatted variables, which yields

d(n, ℓ; t) =

∫
C
dτ dz dσ

1

(−2πito)co(0,−bo)

1(
σ − z2

τ + bo
to

z
τ

)co(0,−bo)

×
∑
n′,ℓ′

d∞
(
n′, ℓ′

)
exp

[
−2πi

(
nτ + tσ + ℓz +

n′

τ
+

ℓ′z

τ

)]
+ · · · .

(4.17)

The dots in the equation above correspond to higher order terms in the expansion that lead

to exponentially suppressed contributions in 4nt − ℓ2. In other words, (4.17) is the leading

order approximation to d(n, ℓ; t) when 4nt− ℓ2 ≫ 1.

We now approximate the integral over σ by the residue of the integrand at σ = z2

τ − bo
to

z
τ ,

taking into account the fact that there are to of these residues, such that13

d(n, ℓ; t) =
∑
n′,ℓ′

d∞
(
n′, ℓ′ + boN

) N co(0,−bo)−1

(co(0,−bo)− 1)!
eπi

ℓℓ′
t

×
∫

dτ exp

[
−2πi

(
∆′

τ
+∆τ

)]
×
∫

dz exp

[
−2πit

τ

(
z +

ℓτ + ℓ′

2t

)2
]
+ · · · ,

(4.18)

where we shifted ℓ′ 7→ ℓ′ + boN and defined ∆′ := n′ − (ℓ′)2

4t .

Next, we turn to the remaining two integrals over z and τ . The integral over z is a

Gaussian. Recall that the contour of integration is given by 0 < Re(z) < 1 for a fixed positive

value of Im(z) =: ϵ. To evaluate the integral, we change variables to

u :=

√
2πit

τ

(
z +

ℓτ + ℓ′

2t

)
, (4.19)

so that for t ≫ 1∫ 1+iϵ

0+iϵ
dz exp

[
−2πit

τ

(
z +

ℓτ + ℓ′

2t

)2
]
=

√
− iτ

2πt

∫ ∞

−∞
du e−u2

=

√
− iτ

2t
. (4.20)

We are then left with the integral over τ in (4.18), which can be written as

I(∆,∆′) :=

∫ 1+iδ

0+iδ
dτ

√
τ exp

[
−2πi

(
∆′

τ
+∆τ

)]
, (4.21)

where δ > 0 denotes the constant imaginary value of the τ contour. The integrand has an

essential singularity at τ = 0 and we take the branch cut to lie along the negative imaginary

τ -axis. Using Rademacher’s prescription, we split the contour into smaller pieces, and we

deform the contour such that its different parts follow Ford circles in the interval (0, 1) (see

13Note that there is a minus sign because of the clockwise orientation of the contour.
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e.g. [14, 35]). The integral over (parts of) the different Ford circles then sources the different

terms in the Kloosterman sum. Since we are only concerned with the leading term in the

Kloosterman sum, we can take the contour to be given by the leading Ford circle, which is a

circle of radius 1/2 and is centered around i/2 with the branch point τ = 0 removed. Next,

we change variables to

w =
i

∆τ
, (4.22)

such that

I(∆,∆′) = −∆−3/2

∫ ν+i∞

ν−i∞

dw

(iw)5/2
exp

[
2π

(
1

w
−∆∆′w

)]
+ · · · , (4.23)

for some ν > 0. Above, the dots denote the exponentially suppressed contributions from the

subleading Ford circles. After this change of variables, the branch cut now lies along the

negative real w-axis. The evaluation of this integral depends on the sign of ∆′. When ∆′ ≥ 0,

we trivially have ∆∆′ ≥ 0, and we can close the contour in the half-plane Re(w) > 0. There

are no poles or branch cuts in this region, and hence the integral evaluates to zero. On the

other hand, when ∆′ < 0 we need to deform the contour to the left half-plane Re(w) < 0 to

get a convergent answer. The contour is deformed such that it surrounds the branch cut on

the negative real axis and the integral converges to a Bessel function. We thus obtain

I(∆,∆′) = 2πi−3/2

(
|∆′|
∆

)3/4

I3/2(4π
√

|∆′|∆)Θ(∆) + · · · . (4.24)

Combining the results above, we arrive at the final result

d(n, ℓ; t) =
∑
n′,ℓ′

∆′<0

c∞(n′, ℓ′)eπi
ℓℓ′
t

√
2π2

t

(
|∆′|
∆

)3/4

I3/2(4π
√

|∆′|∆) + · · · , (4.25)

where

c∞(n′, ℓ′) =
N co(0,−bo)−1

(co(0,−bo)− 1)!
d∞(n′, ℓ′ − boN) , (4.26)

and d∞(n, ℓ) is defined in (4.14).

At this stage, it is worth making three important remarks:

Light spectrum of symmetric product orbifolds. Let us elaborate further on the

interpretation of d∞(n, ℓ) and c∞(n, ℓ) in (4.26). These coefficients appear as the residue of

Z(τ̂ , ẑ, σ̂) in (4.13). However, these coefficients also count a class of light states in SymN (C)
that is important to highlight.

As mentioned above, d∞(n, ℓ) controls the degeneracy of polar states in SymN (C) at

N → ∞. In particular, the analysis of [10,34] shows that they corresponds to the normalized

degeneracies of states in SymN (C) that satisfy

n ≪ b0N , ℓ = a− boN , |a| ≪ boN , (4.27)
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in the strict N → ∞ limit. Therefore, the states captured by d∞(n, ℓ) are polar states for

which n and a are kept fixed in the |∆0| → ∞ limit.

The degeneracy of these states is actually given by c∞(n, ℓ), since there is also an overall

normalization that is important to take into account. If the seed ground state degeneracy is

c0(0,−bo), then the number of ground states in SymN (C) at finite N is given by

co(0,−bo)∑
k=1

(
co(0,−bo)

k

)(
N − 1

k − 1

)
=

(
N + co(0,−bo)− 1

co(0,−bo)− 1

)
. (4.28)

This expression can be obtained by counting all the possible distributions of the seed ground

states over the N tensor factors, a result that also follows from the DMVV formula (4.3). As

a result, the ground state degeneracy of the N -th symmetric product orbifold scales like(
N + co(0,−bo)− 1

co(0,−bo)− 1

)
=

N→∞

N co(0,−bo)−1

(co(0,−bo)− 1)!
+ · · · . (4.29)

This is the prefactor in (4.26), which accounts for the high degeneracy of states due to the

intrinsic properties of the symmetric product orbifold. Therefore, c∞(n, ℓ) counts light states

of the form (4.27) in the limit N → ∞.

It is interesting to note that although the asymptotic formula (4.25) does not require

N → ∞, the relevant coefficients that enter there, even at finite N , can be identified as the

light states for the wJf for SymN (C) at N → ∞.

Comparison with the Rademacher expansion. Using the fact that the c∞(n′, ℓ′) are

Fourier coefficients of a wJf, we can use spectral flow to restrict the sum over ℓ′ to ℓ′ mod 2t.

In analogy with Sec. 2.2 and Sec. 2.3, we can define a “symmetric product” kernel by

S{n,ℓ},{n′,ℓ′} := e−iπ ℓℓ′
t

√
2π2

t

(
|∆′|
∆

)3/4

I3/2

(
4π
√

∆|∆′|
)
. (4.30)

In terms of this kernel, (4.25) becomes14

d(n, ℓ; t) =
∑
∆′<0

|ℓ′| mod 2t

c∞(n′, ℓ′) S{n,ℓ},{n′,ℓ′} + · · · . (4.31)

The dots above contain exponentially suppressed corrections that arise from the fact that

(1) we have deformed the contour and we have taken only the leading contribution to the

integrals, and (2) we have approximated the integrals by a single residue.

The symmetric product kernel agrees with the Rademacher kernel up to nonperturbative

corrections that originate from the aforementioned approximations

S{n,ℓ},{n′,ℓ′}

R{n,ℓ},{n′,ℓ′}
= 1 +O

(
e−2π

√
∆|∆′|

)
. (4.32)

14Note that compared to (4.25), we have added a minus sign to the phase appearing in the symmetric

product kernel. This is allowed because weight zero wJfs are symmetric under z 7→ −z, which implies that

c(n, ℓ) = c(n,−ℓ). The sole reason to add the minus sign is to compare more readily to the crossing and

Rademacher kernels, which have the minus sign in the phase.
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Properly taking into account the corrections to the leading contour gives rise to the Kloost-

erman sums, while taking into account subleading residues will generate the c > 1 terms in

the Rademacher expansion (see App. E.4). We believe it is possible to carefully track these

corrections and reproduce the full Rademacher expansion for symmetric product orbifolds.

For the special case of the Igusa cusp form, which can be cast as an exponential lift, this has

been done in [14,36].

Comparison with crossing kernels. In Sec. 3, we use crossing kernels to get a reliable

approximation to the coefficients of a sparse wJf. The results of this section are compatible

with that approximation. In order to make this explicit, we write (4.18) as

d(n, ℓ; t) =

∫
C
dτ dz

N co(0,−bo)−1

(co(0,−bo)− 1)!
φ∞(τ̂ , ẑ)

× exp

[
−2πi

(
nτ +

tz2

τ
− bz

τ
+ ℓz

)]
+ · · · ,

(4.33)

where φ∞(τ, z) is given in (4.14). In the derivation of (4.25), we evaluated the τ and z

contour integrals explicitly. Here we will approximate these integrals via saddle point. We

are assuming that the residue of Z, or more explicitly φ∞(τ, z), does not compete with the

explicit exponential dependence of (4.33). It follows that the location of the saddle point is

controlled, to a good approximation, by the explicit exponential. Under this assumption, the

location of the saddle point is given by

τ⋆ =
b√

ℓ2 − 4nt
, z⋆ =

b

2t
− bℓ

2t
√
ℓ2 − 4nt

. (4.34)

A simple check shows that the exponential evaluated at the saddle point scales as expected

Re

[
−2πi

(
nτ⋆ +

tz2⋆
τ⋆

− bz⋆
τ⋆

+ ℓz⋆

)]
= 4π

√
|∆0|∆ . (4.35)

In the saddle-point approximation we thus have

d(n, ℓ; t) =
1

2∆

√
|∆0|
t

eπi
bℓ
t e4π

√
∆|∆0| N co(0,−bo)−1

(co(0,−bo)− 1)!
φ∞(τ̂⋆, ẑ⋆) + · · · . (4.36)

This expression is exactly of the form (3.10). In particular, the location of the saddle point

(4.34) is equivalent to the effective potentials in (3.9). We can also recognize

φ0(τ, z) =
N co(0,−bo)−1

(co(0,−bo)− 1)!
φ∞(τ̂ , ẑ) , (4.37)

as the light states that contribute to the approximation. Furthermore, it is clear from this

comparison, and the discussion around (4.28) and (4.29), that

ρ0(∆0) =
N co(0,−bo)−1

(co(0,−bo)− 1)!
≈ |∆0|co(0,−bo)−1 . (4.38)
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Recall that ρ0(∆0) was introduced in (3.15) as the possibility of having a ground state de-

generacy controlled by ∆0.

One important difference between (3.10) and (4.36) is the regime of validity of the approx-

imation. The analysis of Sec. 3.2 only applies to states of sparse wJfs with ∆ ≳ |∆0| ≫ 1.

In contrast, the analysis here applies when ∆|∆0| ≫ 1 and the residue does not compete

against the exponential factors. For slow-growing forms, this implies that we can also use

(4.36) in the regime |∆0| ≳ ∆ ≫ 1, which is special to symmetric product orbifolds (and the

exponential lifts discussed below).15

4.2 Logarithmic corrections

Now that we have (4.36), it is straightforward to extract the subleading corrections to the

exponential growth of d(n, ℓ; t). The nontrivial information needed is contained in φ∞(τ, z)

which we will now discuss.

An important consequence of the symmetric product orbifold construction is that the

gauging by the symmetric group leads to a maximal possible growth of light states. In fact,

the growth of wJfs obtained from a symmetric product orbifold satisfy [9]

d(n, ℓ; t) ≲ e2π(∆−∆0) , ∆0 < ∆ < 0 . (4.39)

This means that any symmetric product orbifold is sparse and complies with either (3.3) or

(3.5). We can, however, obtain a more refined version of (4.39). The degeneracies of light

states as N → ∞ are determined by the seed coefficients, or more precisely, by the values of

f(n, ℓ) defined in (4.15). It was proven in [10, 34] that there are only two possible kinds of

growth for wJfs obtained from symmetric product orbifolds:

Fast growth. The f(n, ℓ) functions grow exponentially as functions of the charges. This

corresponds to the fast growth defined in (3.3) with γ ≤ 1.

Slow growth. The f(n, ℓ) functions are constants, i.e. the dependence on n and ℓ is

extremely weak. Therefore, φ∞ is basically a ratio of theta and Dedekind-eta functions.

We are in the democratic case discussed in Sec. 3.3.

What determines fast versus slow growth are simple conditions on the polar states of the

seed theory, which are presented in [10,34,37]. These conditions can be used to classify large

families of symmetric product orbifolds. We can now characterise the subleading corrections

to d(n, ℓ; t) for slow and fast growing forms in the two regimes discussed in Sec. 3, namely

∆ ≳ |∆0| and ∆ ≲ |∆0|.
15It is worth stressing that (4.36) is also valid when we hold ∆0 fixed and ∆ is large, i.e. in the universal

Cardy regime.
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Universal behavior for ∆ ≳ |∆0|. In this regime τ⋆ and z⋆ are order one parameters such

that φ∞(τ⋆, z⋆) does not contribute to the scaling behavior of d(n, ℓ; t). From (4.36) we find

d(n, ℓ; t) ≈ |∆0|co(0,−bo)

∆|∆0|
e4π

√
∆|∆0| when

∆ > γ2|∆0| , fast growth ,

∆ ≳ |∆0| , slow growth .
(4.40)

This expression agrees with (3.16) where ρ0(∆0) is given by (4.38). The result also reinforces

the fact that, in the regime ∆ ≳ |∆0| ≫ 1, the asymptotic growth of states is universal and

determined entirely by the degeneracy of ground states.

Non-universal behavior for ∆ ≲ |∆0|. In this case, we will only focus on forms that

exhibit slow growth. The subleading corrections to d(n, ℓ; t) can be obtained from (4.36).

However, in contrast with the previous case, we now need information about φ∞.

Since |∆0| ≳ ∆ ≫ 1, the effective potentials (4.34) are small, which implies that (4.36)

is sensitive to the high-temperature behavior of φ∞(τ, z). The latter is given by a ratio of

theta and Dedekind-eta functions, whose high-temperature behavior can be extracted from

its low-temperature regime. In App. E.6, we show that the relevant contribution to φ∞(τ, z)

is schematically given by

φ∞(τ, z) ∼ η(τ)co(0,0)η(τ − z)−co(0,0)−2co(0,−bo)η(z)−co(0,0)−2co(0,−bo) , (4.41)

where η(τ) is the Dedekind-eta function, and that the weight of φ∞(τ, z) is

weight of φ∞ = 2co(0,−bo) + co(0, 0)/2 . (4.42)

Using these ingredients in the regime |∆0| ≳ ∆ ≫ 1, we find that (4.36) gives

d(n, ℓ; t) ≈
(

∆

|∆0|

)co(0,0)/4 ∆co(0,−bo)

∆|∆0|
e4π

√
∆|∆0| , |∆0| ≳ ∆ ≫ 1 . (4.43)

In contrast to (4.40), information about the density of light states encoded in the properties

of φ∞ was crucial to determine the subleading corrections to the asymptotic growth of states.

The result in (4.43) is in perfect agreement with (3.26), a democracy, once we take into

account the scaling of the saddle-point (3.24). This provides a nontrivial verification of the

methods used in Sec. 3.3. In particular, it is not difficult to check that due to the weight of

φ∞ in (4.42), applying a Laplace transform on φ∞ yields a density of light states of the form

(3.20) with f and g as in (3.22), ρ0 given in (4.38), and

ω = −co(0,−bo)− co(0, 0)/4− 3/2 . (4.44)

4.3 Exponential lifts

In this section we will use the exponential lift as a tool to construct wJfs with weight k

and a large index. The exponential lift is closely related to the symmetric product orbifold
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construction of wJfs. Given a seed wJf φ(τ, z), the exponential lift of φ(τ, z) is constructed

as follows

Exp-Lift(φ)(τ, z, σ) := qAyBptoA
∏

(n,ℓ,m)>0

(
1− qnyℓptom

)co(nm,ℓ)
. (4.45)

Here (n, ℓ,m) > 0 means n,m ∈ Z≥0 and ℓ ∈ Z such that m > 0 ∨ (m = 0 ∧ n > 0) ∨ (n =

m = 0 ∧ ℓ < 0), while p, A, and B are defined by

p = e2πiσ , A :=
1

24

∑
ℓ∈Z

co(0, ℓ) , B :=
1

2

∑
ℓ∈Z>0

ℓco(0, ℓ) . (4.46)

The exponential lift is a meromorphic modular form of weight k := 1
2co(0, 0) with respect

to the paramodular group Γ+
to [38], see App. E for details. In particular, the inverse of the

generating function of the symmetric product Z can be recognized as a factor of (4.45). In

what follows we will focus on slow-growing forms, obtained from the inverse of the exponential

lift, as defined in [34].

One can find the asymptotic expansion of the Fourier coefficients of the inverse of the

exponential lift (which has weight −k) along the lines of Sec. 4.1,

Φ(τ, z, σ) :=
1

Exp-Lift(φ)(τ, z, σ)
=
∑
t,n,ℓ

dΦ(n, ℓ; t)p
tqnyℓ . (4.47)

In evaluating the inverse Laplace transform of Φ, we follow the same steps as in Sec. 4.1. In

this case, the dominant pole is located at (4.9), and its residue is controlled by

φΦ
∞(τ̂ , ẑ) = q̂−Aŷ−B−boA

∏
ℓ<0

(
1− ŷℓ

)−co(0,ℓ) ∏
n≥0
ℓ∈Z

(n,ℓ)̸=(0,0)

(
1− q̂nŷℓ

)−fΦ(n,ℓ)
, (4.48)

with

fΦ (n, ℓ) :=

∞∑
m=0

co(nm, ℓ− bom) . (4.49)

This can be seen by comparing to (4.14) and using the relation between symmetric products

and exponential lifts (E.19). Compared to the analysis of Sec. 4.1, the residue that for sym-

metric products is characterized by φ∞, is now multiplied by a form of weight −k. φ∞ counts

polar states in the limit t → ∞ [34], and it ties elegantly to wall crossing for Φ10 and CHL

models [39, 40]. By carefully tracking the effects of the weight through the computation, we

can then reproduce the Rademacher kernels for weighted wJfs up to exponentially suppressed

corrections (see eqs. (B.9) and (D.1) for the explicit form of the kernels). For the special case

of the Igusa cusp form, the Rademacher expansion has been reproduced exactly in [14,36].

As in the case for wJfs constructed via a symmetric product orbifold, we can connect

to the analysis of Sec. 3. We can find a reliable approximation to the coefficients of sparse
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wJfs constructed via an exponential lift by evaluating the inverse Laplace transform by saddle

point, leading to

dΦ(n, ℓ; t) =
1

2∆

√
|∆0|
t

(
|∆0|
∆

) k
2

eπi
bℓ
t e4π

√
∆|∆0| N co(0,−bo)−1

(co(0,−bo)− 1)!
φΦ
∞(τ̂⋆, ẑ⋆) + · · · , (4.50)

where the location of the saddle is once again given by (4.34). This equation should be

compared to (4.36).

Using steps similar as those of Sec. 4.2, we arrive at the following asymptotic expansion

for the dΦ(n, ℓ; t) coefficients in the universal regime

dΦ(n, ℓ; t) ≈
(
|∆0|
∆

)co(0,0)/4 |∆0|co(0,−bo)

∆|∆0|
e4π

√
∆|∆0| , ∆ ≳ |∆0| , (4.51)

and the following one for the non-universal regime

dΦ(n, ℓ; t) ≈
(

∆

|∆0|

)co(0,0)/4 ∆co(0,−bo)

∆|∆0|
e4π

√
∆|∆0| , |∆0| ≳ ∆ ≫ 1 . (4.52)

An important difference with the analysis of wJfs constructed via a symmetric product orb-

ifold is that, due to the weight of the exponential lift, the parameter ω given in (4.44) is

shifted by the weight of Φ,

ωΦ = ω − k . (4.53)

Note that the expressions (4.51) and (4.52) apply only when Φ(τ, z, σ) is slow growing [34].

Corresponding expressions can be obtained for fast-growing forms, which we omit for brevity.

Interestingly, the logarithmic corrections to the leading Cardy exponent only differ from

those obtained from the symmetric product orbifold in the Cardy regime ∆ ≫ ∆0. In the

non-universal regime, the modifications due to the weighted kernels and the shift in ω cancel

against each other such that (4.52) has the same form as (4.43). Finally, we note that this

result agrees perfectly with the results of [13].

5 Logarithmic corrections to the entropy of BPS black holes

We now turn to the gravitational side of the analysis and revisit the microscopic nature

of the logarithmic corrections to the entropy of 4D and 5D BPS black holes in ungauged

supergravity. These corrections can be computed using the quantum entropy function, which

is the Euclidean path integral in the near-horizon AdS2 region of the black hole.16 In this

setup, the logarithmic corrections appear as a scaling effect. To illustrate this, consider a 4D

BPS black hole where the area of the horizon is a function of charges qi such that rescaling

qi 7→ Λqi induces

AH(qi) 7→ Λ2AH(qi) . (5.1)

16For a review of the original work see [41].
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When this rescaling is implemented in the quantum entropy function, it shows that there is

a correction to the black hole entropy of the form

SBH(qi) 7→ · · ·+ agrav log Λ
2 + · · · . (5.2)

The logarithmic term arises as a one-loop correction to the leading saddle point in the path

integral that originates from massless fields. This correction is determined entirely by the

low energy effective action and is therefore independent of the UV completion. Thus, the

logarithmic corrections to the entropy provide an infrared window into the microstates of the

black hole.

There are several cases where agrav is matched with a microscopic description, where the

microscopic counting formula is a weak Jacobi form. In these cases, the near-horizon AdS2
geometry can be uplifted to AdS3, and we would like to see what the match says about

AdS3/CFT2. In the following, we revisit the ingredients that control the logarithmic correc-

tions on both the macroscopic and microscopic sides. In particular, we highlight the cases

where agrav is in the universal or non-universal regimes, and demonstrate how the logarithmic

corrections could have been predicted from an AdS3 perspective. In that process, we also

highlight what data of the CFT2 determines the logarithmic corrections to the black hole

entropy.

Before we proceed, it is important to describe a feature of agrav that will contrast the

analysis for 4D and 5D black holes. Generically, this coefficient receives two contributions

agrav = alocal + azm , (5.3)

where alocal is the contribution from non-zero eigenvalues of the one-loop determinant while

azm accounts for zero modes in the path integral. For an even-dimensional background, both

of these terms contribute. As a result, in four dimensions the logarithmic corrections are

sensitive to the supergravity spectrum. Following the conventions in [42], we write

alocal,4D =
1

12
(11(3−N )− nV + nH) , azm,4D =

1

2
(−6 + 8) , (5.4)

where N denotes the number of supercharges while nV and nH are the number of N = 2

vector and hyper multiplets, respectively. The alocal,4D term is evaluated using the heat kernel

method where the contribution of modes with zero eigenvalue has been explicitly removed.

For this reason, the zero modes in azm,4D come solely from the gravity multiplet, with the

negative contribution arising from the six isometries of the metric while the positive one

comes from the gravitinos.

For an odd-dimensional background, the local contribution to agrav always vanishes.

Therefore, the supergravity spectrum plays no role. In particular, for the five-dimensional

BMPV black hole, we have [16]

alocal,5D = 0 , azm,5D = −1

6
(nV + 21− 24) . (5.5)
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In this case, the vector fields, metric, and gravitinos have zero modes that contribute to

the agrav, with each contribution respectively highlighted. In the language of N = 2 5D

supergravity, the total number of vector fields is nV = n5d
V +2n5d

S +1, where one contribution

comes from the graviton multiplet, while n5d
V and n5d

S are respectively the number of vector

and gravitino multiplets. We note that azm,5D is independent of any other aspect of the

supergravity theory.

5.1 1/4-BPS black holes in 4D N = 4 supergravity

Let us begin by considering the logarithmic corrections to 1/4-BPS black holes in 4D N = 4

supergravity [15]. This theory can be obtained by a compactification of type IIB supergravity

on K3×T 2. One way to characterize these black holes is as dyonic solutions which carry

electric charges Q⃗ and magnetic charges P⃗ . Following the conventions of [3], the area law for

these black holes reads
AH

4G4
= π

√
Q⃗2P⃗ 2 − (Q⃗ · P⃗ )2 . (5.6)

The logarithmic corrections in this case are parametrized by

alocal,4D = −1 , azm,4D = 1 . (5.7)

where we used the fact that nV = nH + 1 for N = 4 supergravity. Famously, it follows that

the logarithmic correction vanishes

SBH =
AH

4G4
+ 0× log

(
AH

G4

)
+ · · · . (5.8)

On the microscopic side, the relevant counting formula is the reciprocal of the Igusa-cusp

form Φ10, which is the exponential lift of the wJf 2φ0,1 [3, 43]. Hence, this counting formula

falls into the cases discussed in Sec. 4.3, and it is instructive to see how the parameters are

related, and the logarithmic corrections matched, to the macroscopic result (5.8). For the

seed theory we have to = bo = 1, co(0,−bo) = 2, and c0(0, 0) = 20. The relation between the

parameters used in Sec. 4.3 and the gravitational charges is [3, 43]

∆0 = − t

4
= −Q⃗2

8
, n =

P⃗ 2

2
, ℓ = Q⃗ · P⃗ . (5.9)

The rescaling of parameters relevant to match the gravitational computation is

(Q⃗, P⃗ ) 7→ (ΛQ⃗,ΛP⃗ ) ⇒ (|∆0|,∆) 7→ (Λ2|∆0|,Λ2∆) , (5.10)

where Λ is large. This indicates that we are in the universal regime such that ∆ ∼ |∆0|.
Using (4.51) we then see that

log dΦ10(n, ℓ; t) = 4π
√
∆|∆0|+ (co(0,−1)− 1) log(|∆0|)− log∆ + · · · , (5.11)

which perfectly reproduces (5.8) since co(0,−1) = 2. This is the result originally reported

in [15].
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Let us now revisit this success from an AdS3/CFT2 perspective. The near-horizon AdS2×
S2 region of the black hole can be uplifted to an AdS3 × M spacetime that is expected to

describe the near-horizon region of a black string. In this case, the AdS2 × S2 geometry is

uplifted to the near horizon region of the 6D BPS black string with charges Q1, Q5, and

momentum n considered in [1]. The near-horizon region of this black string is described by

AdS3 × S3 ×K3 . (5.12)

The spectrum of IIB supergravity on an AdS3 × S3 spacetime is organized into short multi-

plets of SU(1, 1|2)L × SU(1, 1|2)R, i.e. into chiral primary representations of the N = (4, 4)

superconformal algebra. The elliptic genus provides a signed count of these states which are

all 1/4-BPS from the point of view of the N = (4, 4) algebra. The contributions of the light

states to the elliptic genus of type IIB supergravity on AdS3×S3×K3 were computed in [44]

and shown to match those of the symmetric product orbifold of the nonlinear sigma model

on K3,

SymNK3 , N = Q1Q5 + 1 , (5.13)

where Q1 and Q5 are large. In fact, the supergravity spectrum matches the regularized

degeneracies of polar states in the N → ∞ limit denoted by d∞ in (4.14). The elliptic genus

of the nonlinear sigma model on K3 is given by 2φ0,1(τ, z). Therefore, the wJf associated to

SymNK3 has vanishing weight and index

t = Nto = N . (5.14)

In the notation of Sec. 5.1 we have N = Q⃗2/2. The relationship between the generating

function of the symmetric product and Φ10 is

Z(τ, z, σ) =
∑

N∈Z≥0

pNφ
(
τ, z; SymN (K3)

)
=

p ϕ10,1(τ, z)

Φ10(τ, z, σ)
, (5.15)

where ϕ10,1(τ, z) = η(τ)18ϑ2
1,1(τ, z) is a wJf of weight 10 and index 1.

The logarithmic correction is controlled by co(0,−1) = 2, which is the degeneracy of

ground states in the elliptic genus of K3 (as opposed to that of SymN K3) and is determined

entirely by the symmetries of the theory. This follows from the fact that the ground states

in the elliptic genus of N = (4, 4) CFTs take the form

|0⟩L × |chiral primary⟩R, (5.16)

where |0⟩L and |chiral primary⟩R are the trivial and chiral primary representations of the

SU(1, 1|2)L × SU(1, 1|2)R supergroup. The only states of the form (5.16) are either the

vacuum (empty AdS3× S3) or the generators of the right-moving part of the R-symmetry

group. For the N = (4, 4) superconformal algebra, only one of the generators of the SU(2)R
R-symmetry belongs to a chiral primary representation. As a result, there are only 2 ground

states in the elliptic genus of K3 such that co(0,−1) = 2.17

17By the same reasoning, the elliptic genus of a theory with only an N = (2, 2) symmetry algebra admits

only one ground state, namely the vacuum.
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The degeneracy of ground states in the elliptic genus of K3 translates into the following

ground state degeneracy in the elliptic genus of SymN K3 (see (4.38))

ρ0(∆0) ∼ |∆0| . (5.17)

As described above, this result is independent of K3 and a consequence of supersymmetry.

In fact, (5.17) holds even if the CFT is not a symmetric product orbifold — it is an outcome

of the SU(2)R R-symmetry group. In order to see this, we note that under spectral flow, the

NS vacuum flows to a lowest SU(2)R weight state in the Ramond sector with J̄3
0 = −cR/12,

where cR is the right-moving central charge. Consequently, the degeneracy of the ground

state is 2|J̄3
0 |+ 1 ∼ |∆0|, from which (5.17) follows.

Although the logarithmic corrections to the entropy of 4D N = 4 black holes vanish, it

is interesting to contrast the origins of this result from the AdS3 and AdS2 perspectives. An

important aspect to keep in mind is that we are working in the universal regime ∆ ∼ |∆0|:
from our findings in Sec. 3, we expect the logarithmic corrections to depend only on the

ground state degeneracy ρ0(∆0) and to be insensitive to the distribution of the polar states.

From the point of view of the near-horizon AdS2 × S2 geometry, the vanishing logarithmic

correction is the result of a careful cancellation between the local contribution of massless

fields and the contribution of zero modes. This cancellation is due to the constrained spectrum

of N = 4 theories. From the point of view of AdS3 (or the dual CFT2), the degeneracy

of Ramond ground states is universally determined by the SU(2) R-symmetry group, and

leads to vanishing logarithmic corrections. In particular, the information about the massless

spectrum does not enter in the AdS3 calculation. In the next section we will see an example

where this situation is reversed, and it is the near-horizon AdS2 calculation that is universal,

while the AdS3 analysis depends on the details of the theory.

5.2 1/4-BPS black holes in 5D N = 4 supergravity

Let us now turn to the logarithmic corrections of 1/4-BPS black holes in 5D N = 4 supergrav-

ity [16]. These are the black holes originally conceived in [1,45]. We will focus on the BMPV

solution which carries electric charges (Q1, Q5, n) and angular momentum (J), following the

conventions in [16, 46]. The near-horizon region of these black holes is described locally by

an AdS2 × S3 geometry. The area law in this case is

AH

4G5
= 2π

√
Q1Q5n− J2 . (5.18)

When the N = 4 theory arises as a compactification of type IIB string theory on K3 × S1,

the number of vector fields is nV = 22+ 2× 2+ 1 = 27, and therefore azm,5D = −4 in (5.5).18

As a result, the leading expression for the entropy is given by

SBH =
AH

4G5
− 4 log

(
AH

G5

)
+ · · · . (5.19)

18This compactification is dual to Heterotic strings on T 5 or M-theory on K3× T 2.
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In analogy with the previous section, we can uplift the near-horizon AdS2 × S3 region

of the black hole to an AdS3 × S3 geometry. We expect the entropy of the black hole to be

captured by the elliptic genus of SymNK3 such that the relevant counting formula is given

in (5.15). Using the fact that ℓ = J , together with (5.13), (5.14), and the results of Sec. 4.1,

we find that in the large charge limit

∆ = n− J2

Q1Q5
, |∆0| =

Q1Q5

4
. (5.20)

As before, the supergravity spectrum on AdS3 × S3 captures the regularized density of polar

states in the large-N limit [44]; for symmetric product orbifolds this is d∞ given by (4.14).

The crucial difference between the analyses of this and the previous section lies in the

different scaling limits. The relevant rescaling needed to obtain (5.19) from a five-dimensional

gravitational path integral is

Q1 7→ ΛQ1 , Q5 7→ ΛQ5 , n 7→ Λn , J 7→ Λ3/2J , (5.21)

where Λ is large. In terms of the discriminant, this implies that

|∆0| 7→ Λ2|∆0| , ∆ 7→ Λ∆ . (5.22)

This scaling corresponds to the non-universal regime where |∆0| ≫ ∆. The asymptotic

density of states of a wJf in the non-universal regime (5.22) can be obtained from the micro-

canonical or canonical ensembles as described in Sec. 3 and Sec. 4, respectively. In either case,

the asymptotic density of states is sensitive to the distribution of light states and is given by

c(n, ℓ) ≈ ρ0(∆0)

∆

√
|∆0|
t

(
|∆0|
∆

)ω+ 3
2

e4π
√

|∆0|∆ , (5.23)

where ρ0(∆0) and ω are determined from the density of states co(n, ℓ) of the K3 seed by

(4.38) and (4.44), which we reproduce here for convenience

ω = −co(0,−1)− co(0, 0)

4
− 3

2
, ρ0(∆0) ≈ |∆0|co(0,−1)−1 . (5.24)

For the elliptic genus of K3, the number of Ramond ground states is given by co(0,−1) = 2,

while

co(0, 0) = h1,1 = 20 , (5.25)

with h1,1 the Hodge number of K3. As a result, the asymptotic density of states of SymNK3

in the non-universal regime (5.22) is given by

log c(n, ℓ) = 4π
√

|∆0|∆− 6 log |∆0|+ 6 log∆ + . . . . (5.26)

The first term corresponds to the area of the black hole in Plank units while the second and

third terms encode the logarithmic corrections to the entropy. In terms of the area AH ∼ Λ3/2,

|∆0| ∼ Λ2, and ∆ ∼ Λ, we find that (5.19) and (5.26) perfectly agree.
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It is important to reinforce that, in contrast to the 4D case, heat kernels in odd dimen-

sions do not contribute to the logarithmic corrections of the black hole entropy. From the

five-dimensional AdS2 × S3 perspective, these logarithmic corrections arise instead from the

contributions of zero modes associated with the symmetries of the background. In this sense,

the 5D result is universal. Conversely, the AdS3/CFT2 calculation is not universal, as it is

sensitive to the distribution of the light states ρL(n, j), as can be explicitly seen from its de-

pendence on the light state data parametrized by ω in (5.23). From an AdS3×S3 perspective,

we need input from all the matter fields in supergravity that contribute to the elliptic genus,

not just zero modes. From a CFT2 perspective, (5.23) is sensitive to the exponential and

polynomial growth of the light spectrum, in addition to its dependence on the degeneracy of

the Ramond ground state. The fact that the macroscopic computation in 5D matches the

microscopic counting in the CFT2 is remarkable and not a coincidence.

5.3 1/2-BPS black holes in 4D N = 2 supergravity

Let us now turn to a more delicate case: the logarithmic corrections to the entropy of 1/2-BPS

black holes in 4D N = 2 supergravity [17]. Following the conventions in [47], the black hole

carries magnetic charges pI with I = 1, . . . , nV , and one electric charge q0. Viewing this as

a solution of Type IIA supergravity on CY3, the charges pI and q0 correspond to the charge

of D4-branes and a D0-brane, respectively. On the other hand, from the point of view of

M-theory on CY3 × S1, the pI are M5-brane charges wrapping four-cycles of CY3, while q0 is

the momentum along the M-theory direction. The area law is then given by

AH

4G4
= 2π

√
q0P 3 , (5.27)

where P 3 := cIJKpIpJpK and cIJK are the intersection numbers of the CY3. It is possible

to add additional electric charges qI associated to D2-branes in Type IIA (M2-branes in M-

theory). The entropy remains of the same form where now q0 7→ q̂0 = q0 +
1
12c

IJqIqJ and

cIJ is the inverse of cIJ = cIJKpK . The leading expression for the entropy including the

logarithmic correction follows from (5.4) and is given by [17]

SBH =
AH

4G4
+

1

12

(
23− nV + nH

)
log

(
AH

G4

)
+ · · · . (5.28)

The entropy was obtained from the quantum entropy function applied to the two-derivative

N = 2 supergravity in 4D. In particular, this result applies in the limit where all the charges

of the theory scale uniformly with a large parameter Λ such that

(q0, qI , p
I) 7→ (Λq0,ΛqI ,Λp

I) , (5.29)

and hence AH → Λ2AH . It was argued in [17] that the logarithmic corrections are compatible

with the OSV formula [48] refined in [20]. Here we would like to revisit some of the ingredients

that control this agreement.
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The logarithmic correction to the entropy of the black hole is sensitive to the massless

degrees of freedom in the near-horizon AdS2×S2 region. This geometry can be uplifted to an

AdS3×S2 spacetime with N = 2 supersymmetry. The corresponding five-dimensional theory

can be obtained from compactification of M -theory on a CY3, with the desired AdS3 × S2

background arising from the near-horizon limit of the wrapped M5-branes described above.

The resulting supergravity theory is expected to be dual to an N = (0, 4) CFT2 whose left

and right-moving central charges are given by [49]

cL = 6P 3 + c2 · p , cR = 6P 3 +
1

2
c2 · p , (5.30)

where c2I is the second Chern class of CY3. It is important to note that the symmetry

algebra of the dual CFT consists of a small N = 4 superconformal algebra that is enhanced

by the presence of an additional “center of mass” multiplet [50]. This multiplet includes four

right-moving bosons and four right-moving Goldstinos, and it plays a significant role in our

analysis.

Following [19], the relevant index we should consider is

Z
(
τ, τ̄ , zI

)
= TrR

(
F 2(−1)F e2πiτ(L0−cL/24)e−2πiτ̄(L̄0−cR/24)e2πiz

IℓI
)
, (5.31)

where we identify

q0 = L0 −
cL
24

− (L̄0 −
cR
24

) , ℓI = qI . (5.32)

Z
(
τ, τ̄ , zI

)
is a modular form of rank nV that is equipped with a lattice specifying the

quantization of the charges, with cIJ := cIJKpK controlling the lattice spacing [19, 21, 49].

There are three subtle aspects of Z(τ, τ̄ , zI) that are important to mention and are explained in

more detail in [19]. First, the term F 2 inside the trace is necessary to absorb the contribution

of the four fermion zero modes from the center of mass multiplet, the latter of which make

the elliptic genus (without the F 2 insertion) vanish. Second, there is a continuous part of the

spectrum associated with three of the bosonic zero modes in the center of mass multiplet that

describe the motion of the M5 branes in R3. The removal of these states makes Z(τ, τ̄ , zI) a

weight (−3/2, 1/2) form with respect to τ and τ̄ . Third, the τ̄ dependence is controlled by

zI and is determined by a heat equation. For our purposes, this means that we can set τ̄ = τ

so that we are working with a wJf that we denote by

Z(τ, zI) := Z(τ, τ̄ = τ, zI) =
∑
n,ℓI

c(n, ℓI)e
2πiτn+2πizIℓI , (5.33)

which has rank nV , weight −1, and matrix index tIJ ∼ cIJ . In addition, we have n = q0,

∆ = q̂0, and ∆0 = −cL/24.

We would like to establish whether the c(n, ℓI) coefficients of (5.33) can reproduce (5.28),

given what we know about this instance of AdS3/CFT2. From the analysis of crossing kernels

in Sec. 2.2, we know that a convenient way to cast the asymptotic expansion of the c(n, ℓI)

coefficients is

c(n, ℓI) =

∫
dn′

∫ ∏
I

drI
′ ρL(n

′, rI
′)P(−1,nV )

{n,ℓI};{n′,rI ′} + · · · , (5.34)
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where ρL(n, r
i) is the density of light states of Z(τ, zI) and P(k,M)

{n,ℓi};{n′,ri′} is the crossing kernel

of a wJf of rank M and weight k given in (C.18). In particular, when |∆∆′| ≫ 1, the crossing

kernel is approximately given by

P(−1,nV )
{n,ℓI};{n′,rI ′} =

√
1

2
det

(
tIJ

2

)(√
−∆

∆′

)−2−nV
2

e−iπ(tIJ ℓI r
′
J )
e4π

√
−∆∆′

(−∆∆′)
1
4

+ . . . , (5.35)

where tIJ is the inverse of the matrix index tIJ .

The first step in evaluating (5.34) is to establish what the scaling limit (5.29) does to

the parameters defining c(n, ℓI) and Z(τ, zI). In this scaling limit, the central charge (5.30)

scales as cL 7→ Λ3cL such that, in terms of the discriminant, we find

∆ 7→ Λ∆ , |∆0| 7→ Λ3|∆0| . (5.36)

Since ∆ ≪ |∆0| in the large-Λ limit, we are working in the non-universal regime described

in Sec. 3.3. This means that the subleading behavior of the c(n, ℓI) coefficients is sensitive to

the distribution of light states.

Our next task is to characterize the distribution of light states in the modified elliptic

genus (5.33). The light part of (5.33) receives two types of contributions at large cL/R:

perturbative contributions from the supergravity spectrum and non-perturbative ones from

M2 and anti-M2 branes wrapping two-cycles of CY3 [18]. The polar part of the modified

elliptic genus which determines the distribution of light states can therefore be written as

Zlight(τ, z
I) := Zsugra(τ, z

I)ZM2(τ, z
I) . (5.37)

In the dilute gas approximation where the M2 and anti-M2 contributions decouple, the general

form of ZM2(τ, z
I) is given in [18]. An explicit expression for ZM2(τ, z

I) is not known for

arbitrary CY3, a fact that makes obtaining a general expression for the density of light states

difficult. Nevertheless, in the limit cL, |∆0| → ∞, the distribution of light states should be

captured by the spectrum of supergravity fluctuations on AdS3 × S2. We expect this to be

the case to leading order in the large-Λ limit, since the logarithmic corrections to the entropy

of the corresponding 4D black holes depend only on the supergravity spectrum. In what

follows, we will extract the density of light states from the supergravity part Zsugra(τ, z
I) of

the modified elliptic genus.

The perturbative spectrum of supergravity on AdS3×S2 is organized into chiral primary

representations of the corresponding symmetry group, namely SL(2, R) × SU(1, 1|2). The

contributions of supergravity modes to the modified elliptic genus take the form [18,51]

Zsugra(τ, z
I) = e2πiz

IbIZsugra(τ) , Zsugra(τ) =
∑
n

csugra(n)q
n , (5.38)

where the bI are the minimum values of the ℓI charges such that ∆0 = −cL/24 (one could

also cast the e2πiz
IbI term as q−cL/24 using spectral flow). Note that up to spectral flow trans-

formations, supergravity states are not charged since the theory has (0, 4) supersymmetry.
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The partition function (5.38) has been explicitly computed in [18,51] and is given by

Zsugra(τ) = q−
s
24 η(q)sM(q)−χ . (5.39)

In this expression, M(q) is the MacMahon function

M(q) :=
∞∏
n=1

(1− qn)n , (5.40)

while χ is the Euler characteristic of the Calabi-Yau threefold19

χ = 2(h1,1 − h1,2) = 2(nV − nH + 1) , (5.41)

where nV and nH denote the number of vector and hyper multiplets in 4D.

The variable s in (5.39) parametrizes a disagreement in the elliptic genera reported in

[18, 51]. The value found in [18] is s = 1, which was then set to s = 0, while the analysis

of [51] found s = 3. Both [18, 51] compute the spectrum of N = 2 supergravity fluctuations

on AdS3 × S2, which is compatible with the N = (0, 4) supersymmetry of the dual CFT2.

However, as discussed earlier, the algebra of the dual CFT is enhanced by the presence of the

center of mass multiplet, a fact that was not taken into account in [18, 51]. We expect the

modifications to the symmetry algebra to cancel the s-dependent terms in (5.39) effectively

setting s = 0. One piece of evidence in favor of this value, besides the supergravity derivation

of the OSV formula [18], comes from the computation of the central charge (5.30) from

supergravity. As shown in [52], a value of s = 3 in (5.39) leads to a finite correction to the

central charge that is missing from the originally proposed value [49]. For these reasons, we

will assume that s = 0 such that

Zsugra(τ) = M(q)−χ . (5.42)

We will show that this partition function leads to c(n, ℓI) coefficients that precisely match

the logarithmic corrections to the entropy of the corresponding 4D black holes.

The distribution of light states corresponding to the perturbative supergravity spectrum

in (5.42) can be obtained by approximating the MacMahon function for large values of n,

see e.g. [53, 54] for a derivation. Using the approach described there, we find that up to a

numerical constant,

csugra(n) ≈ n−χ+24
36 exp

(
3

(
χ ζ(3)

4

) 1
3

n
2
3

)
. (5.43)

We see that the growth of light states is slow, i.e. sub-Hagedorn, as expected for a theory of

supergravity.

19The Hodge numbers of CY3 are given in terms of 5D vector (n5d
V ) and hyper (n5d

H ) multiplets by

h1,1 = n5d
V + 1, and h1,2 = n5d

H − 1 .

The 5D multiplets are related to the 4D ones by (nV ,nH) = (n5d
V + 1, n5d

H ).
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In order to determine the density of light states, we also need to take into account

the contribution from the ground state degeneracy in (5.37). The latter is given, in the

cL, |∆0| → ∞ limit, by the universal formula (5.17), which we reproduce here for convenience

ρ0(∆0) = 2|J̄3
0 |+ 1 ∼ |∆0| . (5.44)

This degeneracy is a consequence of the SU(2)R R-symmetry group, as discussed in more

detail in Sec. 5.1. Note that the degeneracy is actually controlled by cR and subleading

corrections from the center of mass multiplet as well as M2 and anti-M2 branes [27, 55].

However, in the limit cL, |∆0| → ∞, we have cR = cL+ . . . , which justifies (5.44). From a 4D

perspective, the ground state degeneracy can be understood as originating from bound states

of multicentered solutions [20].

Altogether, we find that the density of light states of the modified elliptic genus (5.37)

takes the form

ρL(n, jI) ≈ |∆0|nωe2πγn
α

nV∏
I=1

δ( jI − bI) , (5.45)

where ω, γ, α are respectively given by

ω = −χ+ 24

36
, γ =

3

2π

(
χ ζ(3)

4

) 1
3

, α =
2

3
. (5.46)

We now have all the ingredients necessary for the evaluation of (5.34). Several of the

steps follow the autocracy example presented in Sec 3.3, with the most important difference

being that the kernel in (5.34) now includes a weight and a rank. In terms of the parameter

α, the scaling limit (5.36) can be written as

∆ ∼ |∆0|2α−1 . (5.47)

This shares the features of the third autocratic case in (3.36) – (3.38). One important feature

of this case is that the leading asymptotic behavior of the c(n, ℓI) coefficients is not e4π
√

|∆0|∆;

instead, the exponential growth receives corrections that depend on γ and the ratio ∆/|∆0|1/3.
One simplification in this case is that the density of light states depends only on one

variable. Therefore, the integrals over the spin variables in (5.34) collapse and the saddle-

point equation is given by (3.29). This follows from the fact that the exponential behavior

of the rank-nV crossing kernel (5.35) is independent of the number of U(1) charges in the

scaling limit (5.36). In the regime (5.47), the location of the saddle-point is given in (3.36),

which we reproduce here for convenience

∆′
⋆ ≈ ∆0 . (5.48)

Using the crossing kernel (5.35) together with the results of Sec. 3.3, we find that the asymp-

totic value of the c(n, ℓI) coefficients is approximately given by

c(n, ℓI) ≈ |∆0|
√

det
(
tIJ
)(√ ∆

|∆0|

)−2−nV
2 |∆0|ω+

2
3 e4πζ|∆0|

2
3

(|∆0|∆)
1
4

, (5.49)
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where ζ is an order one number given in (3.38). Note that the location of the saddle and the

leading asymptotic behavior of c(n, ℓJ) follow from the analysis of the autocratic regime in

Sec. 3.3, and are unchanged by the weight and the rank of the crossing kernel. Letting ∆ ∼ Λ

and |∆0| ∼ Λ3 with Λ ≫ 1, we find that

log c(n, ℓI) = 4πζΛ2 +
3(ω + 2)

2
log Λ2 + . . .

= 4πζΛ2 +
1

12
(23− nV + nH) log Λ2 + . . . ,

(5.50)

where we used the value of ω in (5.46) characterizing the growth of the light states. It is im-

portant to remark that the logarithmic corrections are sensitive to the weight of P(k,M)
{n,ℓi};{n′,ri′},

but not to its rank. The independence on the rank follows from (5.47) and the fact that

tIJ ∼ |∆0|1/3 ∼ Λ, which guarantees that the explicit factor of nV in (5.49) cancels out and

enters (5.50) only via ω.

Let us conclude this section by comparing (5.50) with its gravitational counterpart (5.28).

Two important features come to light:

• Remarkably, the coefficient of the logarithmic correction in (5.50) matches precisely the

logarithmic correction to the black hole entropy. The spectrum of supergravity on AdS3 ×
S2 together with an appropriate account of the center of mass modes and the ground

state degeneracy are responsible for this correction. This indicates that we have correctly

captured all the ingredients in the CFT2 that account for the logarithmic corrections.

• Due to the the regime (5.36) and the fact that the MacMahon function controls the growth

of light states, the leading order behavior of c(n, ℓI) is not Cardy-like. Therefore, the leading

term in (5.50) does not reproduce the area law in (5.28) (albeit both terms scale as Λ2).

Interpreting this result from the point of view of a gravitational path integral on AdS3×S2,

we see that this is a case where quantum effects take over and overcome the classical action.

This is also manifest on AdS2 × S2, where the MacMahon function is a resummation of

degree zero Gromov-Witten invariants that contribute to OSV, see e.g. [20, 53].

6 Discussion

In this paper, we studied the asymptotic behavior of the Fourier coefficients of wJfs using

crossing kernels, focusing on the features relevant for a holographic interpretation in terms of

the black hole entropy. For large values of the discriminant, we recovered the universal Cardy

behavior at leading order. Importantly, we quantified how the large |∆0|-limit and sparseness

conditions on the polar spectrum extend the regime of validity of the Cardy growth. In

this extended regime, we computed the logarithmic corrections to the Fourier coefficients,

and quantified how these corrections depend on the distribution of polar states in the wJf.

We found two qualitatively different behaviors. There is a universal regime characterized by

∆ ≳ |∆0| where the logarithmic corrections are universal and depend only on the ground
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state degeneracy. Additionally, there is a non-universal regime with ∆ ≲ |∆0|, accessible
only for slow-growing wJfs, where the logarithmic corrections depend on the distribution of

polar states.

As a way to verify the results obtained via crossing kernels, we considered wJfs con-

structed via a symmetric product orbifold and exponential lift. The pole structure of these

modular forms gives an independent way to extract the c(n, ℓ) coefficients of certain wJfs, and

we found perfect agreement with the result obtained from crossing kernels. More importantly,

these forms illustrate the stark difference between the universal and non-universal regimes,

and the key role played by the ground state degeneracy in matching the c(n, ℓ) coefficients to

the entropy of black holes.

A key motivation for decoding these corrections is to see their imprint in the gravitational

path integral. On the gravitational side, these corrections show up as one-loop corrections

to the entropy of black holes. Although both the microscopic and macroscopic sides of

these corrections have been shown to agree in specific examples, it was not clear what is the

microscopic data that controls the logarithmic corrections. In other words, it was not clear

what was learned about the microscopic system through the logarithmic corrections computed

in gravity. In this context, we revisited the matching of the logarithmic corrections of 1/4-

BPS black holes in N = 4 ungauged supergravity in four and five dimensions, and of 1/2-BPS

black holes in N = 2 ungauged supergravity in four dimensions. It is interesting to note that

the agreement, at least in these cases, is never controlled solely by symmetries. For 1/4-

BPS black holes in 4D, the logarithmic correction on the microscopic side is universal, but

the gravitational answer is (in intermediate steps) sensitive to the supergravity spectrum.

For 1/4-BPS black holes in 5D, the logarithmic correction of the c(n, ℓ) coefficients is not

universal, but the gravitational answer is dictated only by zero modes, showing that very

different pieces of data contribute to the corrections. For 1/2-BPS black holes in 4D, both

the microscopic and macroscopic sides are controlled by detailed aspects of their spectrum,

and their match requires a careful understanding of the appropriate scaling regimes.

We conclude with some comments and open questions.

Applications of crossing kernels to holographic CFTs

In this paper, we use crossing kernels as the main tool to study the coefficients of wJfs.

Crossing kernels and asymptotic expansions, analogous to the Cardy formula, are known for

other CFT2 observables. There, the leading order expressions are obtained by taking the limit

where the “vacuum” kernel dominates, see e.g. [56–60]. It would be interesting to study under

what conditions the regime of validity of these formulae can be extended in the large central

charge limit, and how the light data controls the regime of validity and subleading corrections.

We believe the main difficulty is to come up with a reasonable parametrization of the light

data, analogous to (3.20), (3.22), and (3.27), argued for by holographic considerations. With

such a parametrization at hand, one could in principle generalize the analysis of Sec. 3. One

instance where an analysis like this has been done (without crossing kernels) is in the context

of thermal correlation functions of holographic CFTs [61].
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For the coefficients of wJfs, we have argued for the validity of the crossing kernel analysis

through comparison with the Rademacher expansion in Sec. 2.3. The Rademacher expansion

provides an exact relation between light and heavy states that is possible because wJfs are

holomorphic modular objects.20 To ensure the validity of a crossing kernel analysis of more

general objects one cannot rely on an exact expansion à la Rademacher. In some cases, it

has been shown that Tauberian theorems can be used to investigate the robustness of these

formulae, see e.g. [8, 64–66]. An essential ingredient in the proof of Tauberian theorems is

the positivity of the coefficients of the corresponding object [67]. For many observables of

interest, including wJfs and CFT correlation functions, these coefficients are not necessarily

positive. It would be interesting to investigate if and how Tauberian theorems can be used

as inspiration for theorems for observables that are not necessarily positive.

Rademacher expansions for sparse modular forms

For wJfs constructed via symmetric product orbifolds or exponential lifts, it is clear how one

can improve on the approximations made in the derivation of the symmetric product kernel

in (4.31). First, one can take into account the subleading poles, in addition to the single

dominant one. From the analysis of App. E, we see that the contributions of these poles

resemble the c > 1 terms of the Rademacher expansion. Furthermore, there are subleading

contributions from the τ -contour that resemble the different terms in the Kloosterman sums.

Finally, one can improve on the approximations in the expansion around the poles and the

range of integration of the Gaussian integral over z. By considering these subleading cor-

rections, one could presumably reproduce the exact Rademacher expansion, as done for the

Igusa cusp form (which can be cast as an exponential lift) [14]. It would be interesting to

generalize this result to general wJfs constructed via symmetric products or exponential lifts.

As we mentioned in Sec. 2, it is not obvious how to implement the t → ∞ limit and

the HKS condition on the Rademacher expansion. The analysis of Fourier coefficients for

symmetric product orbifolds and exponential lifts provides insights to overcome this obstacle.

The residue at each pole corresponds to polar state data of a wJf at t → ∞. This is not obvious

coming from a more traditional approach to the Rademacher expansion: why would polar

data at t → ∞ be needed to describe d(n, ℓ; t) for finite t? From a gravitational perspective,

one always starts at t → ∞ (GN → 0), and the interpretation of this residue is natural in the

gravitational path integral: c∞(n, ℓ) in (4.31) is the input from the perspective of the HKS

bound. It would be interesting to make this approach mathematically rigorous. For instance,

instead of thinking about the Rademacher expansion for a single wJf, can we think of the

implementation of the expansion as a collective? The specification of c∞(n, ℓ) as polar data

potentially defines a family of wJfs with varying values of t. The question is then, are there

constraints on c∞(n, ℓ) such that each member of the family leads to a modular form?

20See, for example, [35, 62, 63] for a detailed discussion on the limitations of the Rademacher method when

objects are not holomorphic.
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Logarithmic corrections to black hole entropy

In recent years, interest in exploring quantum properties of black holes in AdS/CFT has been

revived, with developments on both the microscopic and macroscopic sides. The logarithmic

corrections discussed in this paper are nontrivial indicators of these quantum properties. In

this work, we revisited the role of these logarithmic corrections from a microscopic point of

view when the object counting the black hole microstates is a wJf.

One class of supersymmetric black holes we did not consider here are 1/8-BPS black holes

in N = 8 ungauged supergravity in four and five dimensions. The appropriate index is known

explicitly [68], and the logarithmic corrections are known to match with the gravitational

counterpart [15,16]. In fact, in four dimensions the analysis can be pushed even further: it is

possible to show that the Rademacher expansion can be exactly reproduced by a gravitational

path integral [69–71]. For this reason, and because of its similarities with the black holes in

N = 4, this case was omitted here although it might be interesting to analyze it explicitly.

For the classes of black holes in 4D discussed in Sec. 5 there is an implicit coincidence.

The local contribution to the logarithmic correction alocal,4D is topological, meaning that

it is independent of the parameters of the black hole (e.g., electric or magnetic charges,

angular momentum). This coincidence was first noticed in [42], and it was attributed to

the properties of the theory: it is a result of the black hole being embedded in ungauged

supergravity.21 In contrast, if we consider supersymmetric black holes in gauged supergravity,

which are asympotically AdS4 rather than Mink4, one finds that alocal,4D is generically non-

topological [74, 75]. Only when the background is lifted to M-theory, the additional fields

coming for that uplift make agrav topological since any local contribution vanishes in an odd

number of dimensions [76–78].

In fact, whenever agrav is matched with a microscopic counting formula, the logarithmic

correction is topological. What explains this coincidence in CFT? Is it possible to engineer

a counting formula where the logarithmic correction is non-topological? Or is it possible to

justify from the CFT point of view that this correction must be topological? Our analysis

addresses this question for the index of a CFT2 that meets the HKS sparseness condition: the

logarithmic correction is always topological, both in the universal and non-universal regime.

There is also evidence of this for SCFT4 at large-N [30]. It would be interesting to extend

this reasoning to CFT3. A clear understanding of the microscopic origin of the logarithmic

corrections will have an important impact on the EFT that controls the gravitational path

integral as one connects the UV to the IR. In particular, ruling out non-topological corrections

in the UV would place strong constraints on how matter couples to gravity in the IR.

21For ungauged theories, the AdS2 × S2 background solution has vanishing Weyl tensor. This explains why

alocal,4D is independent of the parameters of the solution. However, the analysis of [42] applies to non-extremal

black holes that are continuously connected to the BPS black hole. For black holes in the non-BPS branch of

ungauged supergravity, we expect alocal,4D to be non-topological [72]. It is also non-topological for several 4D

EFTs that are not supersymmetric [73].
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A Conventions

In this appendix we summarize our conventions for the various approximations made when

extracting the leading and subleading behavior of the Fourier coefficients of wJfs. We use

• “+ · · · ” to denote terms that are suppressed compared to the leading term;

• “≈” to denote equality up to an order one factor;

• “∼” when we only keep track of the leading order scaling.

These conventions are best explained through an example. Let us consider the function

f(x) = π(x2 + x)e2πx + 1 + 23e−x . (A.1)

We are interested in approximating the behavior of f(x) at large values of x. In our conven-

tions, this means that

f(x) = πx2e2πx + · · · ,
f(x) ≈ x2e2πx ,

f(x) ∼ e2πx.

(A.2)
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B Crossing kernels for weak Jacobi forms

In this appendix we derive the crossing kernel P(k)

{n, j};{n′, j′} associated with wJfs of weight k and

index t. This kernel encodes the transformation rule associated to the modular transformation

φ

(
−1

τ
,
z

τ

)
= τke

2πitz2

τ φ(τ, z) , (B.1)

and it is defined by

P(k)

{n, j};{n′, j′} :=

∫
dτ dz τ−ke−2πi(τn+z j)e

2πi
τ (−n′+ j′z−tz2) . (B.2)

We have introduced the label (k) to indicate the weight of the kernel (we will omit this label

whenever k = 0). One can check that this kernel is the expression that appears in the crossing

equation, namely

ρ(n, j) =

∫
dτ dz e−2πi(τn+z j)φ(τ, z)

=

∫
dτ dz τ−ke−2πi(τn+z j)e−

2πitz2

τ φ

(
−1

τ
,
z

τ

)
=
∑
n′,ℓ′

c(n′, ℓ′)

∫
dτ dz τ−ke−2πi(τn+z j)e

2πi
τ (−n′+ℓ′z−tz2) .

(B.3)

As it is written, the integrals over τ and z in (B.2) need regularization. The integral over the z

variable is Gaussian, and to guarantee its convergence we deform the contour to z → (1− iϵ)z

for ϵ > 0. The resulting expression is∫ (1+iϵ)∞

(−1−iϵ)∞
dz e

2πi
(
−z j+ j′z

τ
− tz2

τ

)
=
ϵ→0

√
−iτ

2t
e

iπ( j′− jτ)2

2tτ . (B.4)

Plugging this result into (B.2) leads to an integral over the variable τ that naturally rearranges

itself in terms of the discriminants ∆, ∆′ and a j′ j-dependent phase

P(k)

{n, j};{n′, j′} = e−
iπ j′ j

t

∫
dτ τ−k

√
−iτ

2t
e
−2πi

(
∆′
τ
+∆τ

)
, (B.5)

where

∆′ = n′ − ( j′ )2

4t
, ∆ = n− j2

4t
. (B.6)

The contour that regularizes this integral is continuously connected to the real line but de-

pends on the sign of ∆.22 When ∆ > 0, we must close the contour in the lower half of the

complex plane, such that it surrounds the branch cut produced by the square root. When

∆ < 0, we must close the contour in the upper half of the complex plane. There is no branch

cut in this case and the integral evaluates to zero. See Fig. 1 for details.

22Since we are regularizing a distribution, it is important that the deformed contour is continuously connected

to the original contour.
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To solve the τ integral when ∆ > 0, we consider the change of variables τ = iσ/(2π∆).

The integral in σ reads

−1√
4π∆t

(
i

2π∆

)−k+1

e−
iπ j′ j

t

∫
γ

dσ

σk− 3
2
+1

e
16π2(−∆′∆)

4σ
+σ

=

√
2π2

t

(√
−∆

∆′

)k− 3
2

e
−πi

(
j′ j
t
+ k

2

)
Ik− 3

2

(
4π

√
−∆′∆

)
. (B.7)

Here, we have used the following representation of the Bessel function

Iν(z) =
1

2πi

(z
2

)ν ∫
γ

dσ

σν+1
eσ+

z2

4σ , (B.8)

where the contour γ encloses the negative real axis and surrounds the branch cut in a coun-

terclockwise direction. The final result is the following expression for the crossing kernel,

P(k)

{n, j};{n′, j′} =

√
2π2

t

(√
−∆

∆′

)k− 3
2

e
−πi

(
j′ j
t
+ k

2

)
Ik− 3

2

(
4π

√
−∆′∆

)
Θ(∆) . (B.9)

To check that this is the correct result, we verify that the kernel satisfies the property

τ−k exp

{
−2πi n′

τ
+

2πi j′z

τ
− 2πitz2

τ

}
=

∫ ∞

−∞
d j

∫ ∞

0
dn P(k)

{n, j};{n′, j′}e
2πi(nτ+ jz) . (B.10)

This integral can be solved analytically and validates (B.9).

C Weak Jacobi forms of matrix rank M

The notion of a weak Jacobi form can be extended to a situation where the form φ(τ, zi) is

defined on H×CM → C (see e.g. [79,80]). Such forms occur when the Kac-Moody algebra of

the CFT2 is generalized from just a single U(1) to having multiple currents whose algebra is

of rank M . Such a wJf of matrix rank M has a Fourier expansion of the form

φ
(
τ, zi

)
=
∑
n,ℓi

c (n, ℓi) e
2πi(nτ+ziℓi) , (C.1)

where

c(n, ℓi) = 0 unless n ≥ 0 . (C.2)

To describe the modular and elliptic properties of φ(τ, zi) we introduce a matrix tij ,

which corresponds to the killing form of the Kac-Moody algebra. As in Sec. 2, wJfs with

matrix rank M satisfy stringent transformation rules. Modular transformations are given by

φ

(
aτ + b

cτ + d
,

zi

cτ + d

)
= τ−ke2πi

cz2

cτ+dφ(τ, zi) ,

(
a b

c d

)
∈ SL(2,Z) , (C.3)
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Figure 1. Plot of the τ integrand in the definition of the crossing kernel. In this diagram, lighter

shading corresponds to a larger absolute value. The black line indicates the position of the branch cut

while the orange and blue lines are the contours of integration. If ∆ < 0, the blue contour closes, and

the integral evaluates to zero; if ∆ > 0, the orange contour surrounds the branch cut.

where k is the weight of the wJf and we use the shorthand notation z2 = zizjtij . Moreover,

the spectral flow transformation generalizes to

φ(τ, zi + λiτ + µi) = e−2πi(λ2τ+2λ·z)φ(τ, zi) , (C.4)

where λ2 = λiλjtij and λ · z = λizjtij . Here the spectral flow vectors λ and µ lie on lattices

Γ and Γµ, respectively, which are contained in ZM×M ; in addition, we have µiℓi ∈ Z. We will

describe the lattice Γ by a set of basis vectors v̂i ∈ ZM

λ ∈ Γ =

{
M∑
i=1

αiv̂i
∣∣∣ αi ∈ Z ∀ i

}
, (C.5)

and similarly for Γµ. In physically relevant cases, the lattices associated with spectral flow

symmetry are nontrivial. This is the case considered in Sec. 5.3, which is a specific instance

of string theory/M-theory [19,49].

The spectral flow symmetry implies that the coefficients of the wJf satisfy

c(n, ℓi) = c(n+ λiℓi + λiλjtij , ℓi + 2λjtij) . (C.6)

It follows from (C.6) that the coefficients c (n, ℓi) only depend on

∆ := n− 1

4
ℓ2 , ℓi mod 2v̂jtij , (C.7)

where ∆ is the discriminant. Another way to state the implications of (C.6) is that

c(n, ℓi) = c(m, ri) , (C.8)
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whenever n− 1
4ℓ

2 = m− 1
4r

2 and there exists λ ∈ Γ such that

λj =
1

2
tij(ri − ℓi) . (C.9)

Here tij is the matrix inverse of tij , i.e. tijt
jl = δ l

i .

In practice, spectral flow symmetry tells us that for any c (n, ℓi) coefficient of a wJf we

can find a spectral flow transformation to c (m, ri) with∣∣r2∣∣ ≤ det [T ]1/M , (C.10)

where T ∈ ZM×M is given by

T =

 t11⟨v̂1, v̂1⟩ · · · t1M ⟨v̂1, v̂M ⟩
...

. . .
...

tM1⟨v̂M , v̂1⟩ · · · tMM ⟨v̂M , v̂M ⟩

 . (C.11)

This bound can be understood as the maximal radius within the fundamental region of the

lattice Γ scaled by the matrix index tij , where we used the fact that the tij-scaled volume of

the fundamental region of Γ is given by

Vol(Γ) =
√

det[T ] . (C.12)

Crucially, (C.10) is the strongest bound on the length of r we can obtain using the symmetries

of wJfs.

An important consequence of the generalization to the spectral flow symmetry is that the

bound on the maximal polarity ∆0 is modified by the lattice spacings v̂. This can be shown

as follows. Consider a state c (n, ℓi) with discriminant ∆, and choose ri such that∣∣r2∣∣ ≤ det[T ]1/M , ri = ℓi + 2λjtij , (C.13)

where λ ∈ Γ. Performing a spectral flow transformation with this λ then leads to

c (n, ℓi) = c

(
∆+

1

4
r2, ri

)
= 0 ∀ ∆ < −r2

4
≤ −1

4
det[T ]1/M . (C.14)

Hence, we conclude that the maximal polarity ∆0 is bounded by

∆0 ≥ −1

4
det[T ]1/M . (C.15)

Note that for M = 1 the matrix tij reduces to a single integer t, and the lattices Γ and Γµ

are taken to be trivial, i.e. v̂1 = 1. Then the bound on ∆0 reduces to the familiar one given

in Sec. 2, that is

∆0 ≥ −t/4 . (C.16)
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In analogy with the previous appendix, we can define crossing kernels for wJfs of matrix

rank M . The crossing kernel is defined as

P(k,M)
{n,ri};{n′,ri′}

:=

∫
dτ τ−k

∫ M∏
i=1

dzi e−2πi(τn+ziri)e
2πi
τ (−n′+ziri′−z2) , (C.17)

where we have modified the label (k) → (k,M) to include the number of charges in the

crossing kernel. We can solve this integral by first evaluating the Gaussian integral over the

chemical potentials zi, and then evaluating the τ integral. The resulting expression is also

given in terms of a Bessel function such that

P(k,M)
{n,ri};{n′,ri′} =

√
4π2 det

(
tij

2

)(√
−∆

∆′

)k−M
2
−1

e−iπ(r′·r+ k
2 )Ik−M

2
−1

(
4π

√
−∆∆′

)
, (C.18)

where r′ · r = tijrirj .

D Rademacher expansion

We now describe the Rademacher expansion for wJfs of weight k and index t. The following

expansion is valid for all wJf of weight less than or equal to 1
2 ,

c(n, ℓ) =
∑
∆′<0

t∑
ℓ′=−t+1

c(n′, ℓ′)

∞∑
c=1

2π

c

(
|∆′|
∆

) 3−2k
4

I 3
2
−k

(
4π

c

√
∆|∆′|

)
Kl(∆, ℓ,∆′, ℓ′; c) , (D.1)

where I 3
2
−k

(
4π
c

√
∆|∆′|

)
is the Bessel function and the Kloosterman sum Kl(∆, ℓ,∆′, ℓ′; c) is

defined by

Kl(∆, ℓ,∆′, ℓ′; c) := ei
π
4

∑
0≤−d<c; (d,c)=1

ad=1 mod c

e2πi∆
d
c
[
M−1(γ)

]
ℓ′ℓ

e2πi∆
′ a
c , γ =

(
a b

c d

)
∈ SL (2,Z) .

(D.2)

The matrixM is a 2t-dimensional representation of SL(2,Z) that describes the transformation

properties of the standard theta functions of weight 1
2 and index t. In this paper, we follow

the conventions of [27] and use the explicit representation for M derived in [81] and given by

[
M−1(γ)

]
ℓ′ℓ

=
1

(2itc)
1
2

c−1∑
m=0

exp

[
2πi

(
a

c

(ℓ′ + 2tm)2

4t
− ℓ(ℓ′ + 2tm)

2tc
+

d

c

ℓ2

4t

)]
. (D.3)

E Properties of exponential lifts and the generating function for SymN(C)

In this appendix we provide the technical tools needed to understand the residues of Z(τ, z, σ).

The main tool we use is the simple relation between Z and the exponential lift of the seed

wJf φ(τ, z; C). Such an exponential lift is an example of a Siegel paramodular form. Siegel
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paramodular forms satisfy stringent transformation properties under the Siegel paramodular

group. Moreover the zeros and poles of Siegel paramodular forms can be understood using the

technology of so-called Humbert surfaces. We employ these properties to study the residues

of Z. This technology was used for the same purpose in [13, 16, 46], which this work is a

refinement and generalization of.

We start by defining Siegel paramodular forms through their transformation properties

under the Siegel paramodular group in E.1. Then in E.2 we introduce the exponential lift

of a wJf, and relate it to Z. E.3 summarizes how Humbert surfaces can be used to describe

the zeros and poles of Siegel paramodular forms, and we explain the simplifications that arise

when studying exponential lifts of wJf. Then in E.4 we apply the technology of Humbert

surfaces to find the dominant contribution to (4.5). We show that the dominant contribution

is given by the residue of a single pole, and we expand Z around this pole in E.5. Finally,

in E.6 we compute the weight of the function φ∞ — the function multiplying the dominant

pole of Z — which characterizes the growth of polar states in symmetric product orbifolds,

and is related in a simple way to ω in (3.22).

E.1 Fun with paramodular forms

In this section we define and give some useful properties of Siegel (para)modular forms. A

Siegel modular form is defined with respect to the Siegel modular group Sp(4,Z). We use

the shorthand notation

Ω =

(
τ z

z σ

)
. (E.1)

Using this notation, the Siegel upper half-plane H2 is characterized by

det[Im(Ω)] > 0 , Im(τ) , Im(σ) > 0 . (E.2)

Moreover, we will denote a matrix γ ∈ Sp(4,Z) as

γ =

(
A B

C D

)
, (E.3)

where the 2× 2 block matrices A, B, C, and D satisfy

ABT = BAT , CDT = DCT , ADT −BCT = 12 . (E.4)

The coordinates on the upper half-plane transform under the Siegel modular group as

γ(Ω) = (AΩ+B)(CΩ+D)−1 . (E.5)

Now we are ready to define a meromorphic Siegel modular form. A meromorphic function Φ

on the Siegel upper half-plane is a Siegel modular form of weight k if it satisfies the following

transformation rule under the Siegel modular group

Φ(γ(Ω)) = det[CΩ+D]kΦ(Ω) . (E.6)
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We denote the space of meromorphic Siegel modular forms of weight k by Mk. We can Fourier

expand Φ ∈ Mk in the σ variable to obtain

Φ(Ω) =
∑
t

ptφk,t(τ, z) , (E.7)

where p = e2πiσ. Due to the transformation rules under Sp(4,Z), it follows that the coefficients

in the Fourier expansion are weak Jacobi forms of weight k and index t. To see this more

explicitly we note that the transformation rules for wJfs (2.3) and (2.4) are respectively given

by

γ1 =


a 0 b 0

0 1 0 0

c 0 d 0

0 0 0 1

 , γ2 =


1 0 0 µ

λ 1 µ 0

0 0 1 −λ

0 0 0 1

 , (E.8)

where ad − bc = 1. It turns out that these elements, together with the element that inter-

changes τ and σ that is given by

γ3 =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 , (E.9)

generate the full Siegel modular group.

We can generalize Siegel modular forms to Siegel paramodular forms by restricting the

allowed transformations to a subgroup of Sp(4,Q). In particular, we are interested in the

paramodular group of level to, which is denoted by Γto , and can be defined as

Γto :=


Z toZ Z Z
Z Z Z Z/to
Z toZ Z Z
toZ toZ toZ Z

 ∩ Sp(4,Q) . (E.10)

This group has the following extension

Γ+
to = Γto ∪ ΓtoVto , where Vto :=

1√
to


0 to 0 0

1 0 0 0

0 0 0 1

0 0 to 0

 . (E.11)

Notice that γ1, γ2 ∈ Γto . Combining this with the fact that a paramodular form Φ ∈ Mk(Γto)

has to be invariant under

γ4 =


1 0 0 0

0 1 0 1/to
0 0 1 0

0 0 0 1

 , (E.12)
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it follows that the Fourier expansion of Φ that is given by

Φ(Ω) =
∑
t

ptφk,t , (E.13)

contains only multiples of to in the power of p. Hence t = toN and the coefficients correspond

to a series of wJfs of weight k and index toN . This should ring some bells: the Fourier

expansion of a paramodular form has many similarities with the generating function of a

symmetric product orbifold Z(τ, z, σ) as defined in (4.3). We make the connection explicit in

the next subsection.

E.2 Exponential lifts and Siegel paramodular forms

In analogy with the main text, we consider weak Jacobi forms of weight 0 and index to that

have integral coefficients c(n, ℓ)

φ(τ, z) =
∑

n∈Z≥0

ℓ∈Z

co(n, ℓ)q
nyℓ . (E.14)

We can construct a Siegel paramodular form from a wJf by taking the exponential lift

Exp-Lift(φ)(Ω) := qAyBptoA
∏

(n,ℓ,m)>0

(
1− qnyℓptom

)co(nm,ℓ)
. (E.15)

Here (n, ℓ,m) > 0 means n,m ∈ Z≥0 and ℓ ∈ Z such that m > 0 ∨ (m = 0 ∧ n > 0) ∨ (n =

m = 0 ∧ ℓ < 0), and

p = e2πiσ , A :=
1

24

∑
ℓ∈Z

co(0, ℓ) , B :=
1

2

∑
ℓ∈Z>0

ℓco(0, ℓ) . (E.16)

This defines a meromorphic modular form of weight k := 1
2co(0, 0) with respect to the

paramodular group Γ+
to [38]. The exponential lift can be split into two factors, one of which

can be related to the generating function for wJfs constructed via symmetric product orbifolds

Exp-Lift(φ)(Ω) = qAyBptoA
∏

(n,ℓ)>0

(
1− qnyℓ

)co(0,ℓ)
×
∏
n≥0
m>0
ℓ∈Z

(
1− qnyℓptom

)co(nm,ℓ)
, (E.17)

where (n, ℓ) > 0 denotes n > 0 ∨ (n = 0 ∧ ℓ < 0). The first factor is a form of weight k and

index toA that is almost the Hodge factor

ϕk,toA(τ, z) := qAyB
∏

(n,ℓ)>0

(
1− qnyℓ

)co(0,ℓ)
. (E.18)

When a CFT has a partition function that is a wJf φ of index to, then the generating function

of partition functions of the symmetric product orbifold of that theory is

Z(τ, z, σ) =
∑

N∈Z≥0

ptoNφ
(
τ, z; SymN (C)

)
=

ptoAϕk,toA(τ, z)

Exp-Lift(φ)(Ω)
. (E.19)
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Here φ
(
τ, z; SymN (C)

)
is the wJf connected to the N -th symmetric product orbifold, which

is related to the Hecke transform of φ (τ, z; C) through the equation

Z (τ, z, σ) = exp

( ∑
N∈Z>0

N−1ptoNφ (τ, z; C) |T−(N)

)
. (E.20)

We can show the invariance of Z under an S transformation using the modular properties

of the Hodge factor and the exponential lift. From (E.8) we see that the S transformation is

given by

γ =


0 0 1 0

0 1 0 0

−1 0 0 0

0 0 0 1

 , (E.21)

which maps

τ 7→ τ̂ = −1

τ
, σ 7→ σ̂ =

στ − z2

τ
, z 7→ ẑ = −z

τ
. (E.22)

Using the transformation rules of (Siegel) modular forms we see that

Exp-Lift(φ)(Ω) = (−τ)−kExp-Lift(φ)(Ω̂) ,

ϕk,toA(τ, z) = (−τ)−ke−2πitoAz2/τϕk,toA(τ̂ , ẑ) .
(E.23)

Therefore, we have

Z(τ, z, σ) =
ptoAϕk,toA(τ, z)

Exp-Lift(φ)(Ω)
= Z(τ̂ , ẑ, σ̂) . (E.24)

E.3 Zeros and poles of Siegel paramodular forms

In this section we discuss the zeros and poles of Siegel paramodular forms. We start with the

most general case, and then restrict to the forms interesting for this work: Siegel paramodular

forms that are exponential lifts of weight zero wJfs that have maximal polarity given by q0y±bo .

In other words, we are interested in the zeros and poles of Exp-Lift(φ) ∈ Mk

(
Γ+
to

)
where φ

is consistent with (2.9). Exponential lifts and their zeros and poles are described in Theorem

2.1 of [38], which we state here.

The exponential lift of a wJf has a product expansion as in (E.17). Therefore, its divisors

are easy to identify. We just need to satisfy qnyℓptom = 1 for one of the factors to diverge

or vanish, depending on the sign of co(nm, ℓ). Because the paramodular forms we consider

are invariant under Γ+
to , these divisors must come in orbits under the group. We can package

the orbits conveniently by introducing Humbert surfaces.23 We take five coprime integers

a, b, c, e, f , and define their discriminant as

D := b2 − 4toef − 4toac . (E.25)

23We use the notation of Sec. 1.3 of [38].

56



There is an action of Γ+
to that leaves D invariant, which allows us to package the orbits of the

divisors of the exponential lifts. The coprime integers a, b, c, e, and f give the divisors of the

exponential lift through the following quadratic equation:

tof(z
2 − τσ) + tocσ + bz + aτ + e = 0 . (E.26)

Since we are interested in exponential lifts of weight zero wJfs, we can use their additional

symmetries to simplify this expression. First, we use invariance under σ 7→ σ + 1/to to set

a = 0. We can then set c = 0 using the symmetry τ 7→ τ + 1. Finally, we can use the

symmetry z 7→ z+1 to map b to b− 2to, so that we only need to consider b mod 2to. We are

thus left with divisors of the form

tof(z
2 − τσ) + bz + e = 0 . (E.27)

Ref. [38] then showed that all divisors are given by Humbert surfaces, which encode the orbits

of Γ+
to , and are defined as

HD(b) := π+
to

(
{Ω ∈ H2 : âτ + b̂z + toσ = 0}

)
, (E.28)

with π+
to denoting the images under the paramodular group Γ+

to . To see that (E.27) is actually

in the Humbert surface HD(b), we use the S transformation (E.21), which maps (E.27) to

eτ + bz + ftoσ = 0 , (E.29)

so that we can identify
e

f
= â ,

b

f
= −b̂ . (E.30)

The multiplicity of the divisors (E.28) is given by

mD,b =
∑
n>0

co(n
2â, nb̂) =

∑
n>0

co

(
n2e

f
,
nb

f

)
. (E.31)

For reasons that will become clear later, we investigate f = −1. Since co(n, ℓ) = 0 when

n < 0 for wJfs, we see that for f = −1 only e ≤ 0 leads to a divisor with positive multiplicity.

Furthermore, we notice that for the most polar term of the underlying wJf, which is of the

form q0y−bo so that b = bo and e = 0, the multiplicity simplifies to just the ground state

degeneracy

mD0,bo = co(0,−bo) . (E.32)

E.4 Location of the dominant pole

Now that we understand the zeros and poles of Siegel paramodular forms, we can find the

dominant contribution to (4.5). As described in the main text, we are interested in the regime

∆|∆0| ≫ 1 and we assume that the integrand in (4.5) is dominated by the explicit exponential

p−tq−ny−ℓ.
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First, we note that Z is related to the exponential lift in a nontrivial way. We therefore

need to understand how the location of the zeroes and poles of Z are related to the zeros

and poles of the exponential lift. To see that the Hodge factor cannot change the location of

poles and zeroes we have to look at the σ dependence. The Humbert surfaces have nontrivial

dependence on σ, while from (E.26) it follows that the σ dependence of Z is related in a very

simple way to that of the exponential lift. We can thus conclude that the zeroes and poles of

Z are also given by Humbert surfaces.

Now that we know that the dominating pole is given by a Humbert surface we can

implement our assumption. This implies that we should look for the pole that maximizes the

explicit exponential p−tq−ny−ℓ. Therefore, we have to maximize

g(λ) = τn+ σt+ zℓ+ λ
(
tof(z

2 − τσ) + bz + e
)
, (E.33)

where we have introduced a Lagrange multiplier λ that constrains the maximum to coincide

with a pole of Z. It can be shown that g(λ) is extremized by

λ = ±i

√
2nt− ℓ2/2

D
, τ =

t

tofλ
, σ =

n

tofλ
, z = − 1

2tof

(
ℓ

λ
+ b

)
, (E.34)

such that at the saddle point, we have

log
(
p−tq−ny−ℓ

)
∼ − π

tof

√
D (4nt− ℓ2) . (E.35)

Because the discriminant D is positive, we have chosen the minus sign for λ. The leading

contribution comes from the zero with maximal discriminant and f = −1. Other values of f

give exponentially suppressed contributions to d(m,n, ℓ). The contributions from the zeros

with maximal discriminant and f ∈ Z<−1 will, once taken into account, reproduce the c > 1

terms in the Rademacher expansion (2.23).24 Restricting our analysis to just the f = −1

contribution is one origin for the nonperturbative error in (4.32). The discriminant reads

D = b2 + 4toe , (E.36)

which is maximized by setting b = bo and e = 0 (recall that to have a nonzero multiplicity

we need e ≤ 0).

To summarize, one of the integrals in (4.5) can be approximated by the residue of the

most dominant pole of Z, which is given by the zero with maximal discriminant D0 = (bo)
2.

Furthermore, contributions from other poles are exponentially suppressed. That is, we can

approximate (4.5) by the residue of a single pole that is located at

to(τσ − z2) + boz = 0 . (E.37)

We can map this pole to the much simpler expression

boẑ − toσ̂ = 0 , (E.38)

24To get an exact agreement with the Rademacher expansion, one also needs to carefully take into account

exponentially suppressed contributions originating from the deformation of the contour.
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using the S transformation (E.21), and the order of the pole is given by the ground state

degeneracy of the underlying wJf.

E.5 Expanding around the dominating pole

We can expand the exponential lift around the dominant pole boẑ − toσ̂ = 0 as follows

Exp-Lift(φ)(Ω̂) = ϕk,toA(τ̂ , ẑ)p̂
toA

∏
ℓ∈Z
n≥0
m>0

(
1− q̂nŷℓp̂tom

)co(nm,ℓ)
(E.39)

= ϕk,toA(τ̂ , ẑ)p̂
toA
(
1− p̂to ŷ−bo

)co(0,−bo) ∏
ℓ∈Z

n≥0,m>0
(m,n,ℓ)̸=(1,0,−bo)

(
1− q̂nŷℓp̂tom

)co(nm,ℓ)
(E.40)

≈ (2πi)co(0,−bo)ϕk,toA(τ̂ , ẑ)p̂
toA(boẑ − toσ̂)

co(0,−bo)
∏
ℓ∈Z

n≥0,m>0
(m,n,ℓ)̸=(1,0,−bo)

(
1− q̂nŷℓ+bom

)co(nm,ℓ)

(E.41)

= (2πi)co(0,−bo)ϕk,toA(τ̂ , ẑ)p̂
toA(boẑ − toσ̂)

co(0,−bo)
∏
ℓ̃∈Z
n≥0

(n,ℓ̃)̸=(0,0)

(
1− q̂nŷℓ̃

)f(n,ℓ̃)
(E.42)

= (2πi)co(0,−bo)ϕk,toA(τ̂ , ẑ)p̂
toA(boẑ − toσ̂)

co(0,−bo)φ∞(τ̂ , ẑ)−1 . (E.43)

Here in (E.40) we have isolated the factor responsible for the divisor boẑ− toσ̂ = 0. In (E.41)

we then expand the exponentials p̂ and ŷ, and keep only the leading term around boẑ−toσ̂ = 0.

This explains what we mean with ≈. Then in (E.42) and (E.43) we give a definition for the

remaining infinite product in terms of

ℓ̃ := ℓ+ bom, f(n, ℓ̃) :=
∞∑

m=1

co(nm, ℓ̃− bom) , (E.44)

φ∞(τ, z) :=
∏
n≥0
ℓ̃∈Z

(n,ℓ̃) ̸=(0,0)

(
1− qnyℓ̃

)−f(n,ℓ̃)
.

(E.45)

The function φ∞ encodes the growth of polar states in the limit m → ∞, see [10, 34] for

details.

Note that from the expansion of the exponential lift around the dominant pole, we can

trivially find the expansion of Z around the dominating pole

Z(τ̂ , σ̂, σ̂) ≈ (2πi)−co(0,−bo)(boẑ − toσ̂)
−co(0,−bo)φ∞(τ̂ , ẑ) . (E.46)
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E.6 Growth of polar states for symmetric product orbifolds

Finally, we derive the weight of φ∞ when the modular form has a slow-growing growth of

light states. This determines the parameter ω in (3.22).

Recall the definition

φ∞(τ, z) =
∏
n≥0
ℓ∈Z

(n,ℓ)̸=(0,0)

(
1− qnyℓ

)−f(n,ℓ)
=:
∑
n′,l′

d∞(n′, l′)qn
′
yl

′
, (E.47)

where the function f is defined as

f(n, ℓ) :=
∞∑

m=1

co(nm, ℓ− bom) . (E.48)

This function was first introduced in [34], where it was shown that f extracts the growth

of light states in the large central charge limit (∆0 → ∞), and that d∞ corresponds to the

regularized density of states of φ
(
τ, z; SymN (C)

)
in the limit N → ∞.25 Ref. [34] showed that

there are two possibilities for the values of f : they grow exponentially when the underlying wJf

has fast growth, and they are constants when the underlying wJf is slow growing. Therefore,

when the seed wJf is slow growing, φ∞ is a ratio of theta-like functions, of which we can

compute the weight.

In order to compute the weight it is convenient to introduce the function

g(n, ℓ) :=
∑
m∈Z

co(nm, ℓ− bom) , (E.49)

which is related to f according to

f(n, ℓ) = g(n, ℓ)− co(0, ℓ)− δn,0

∞∑
m=1

co(0, ℓ+ bom) . (E.50)

There are a couple of key facts about g(n, ℓ) coming from slow-growing forms that we will

use to derive the weights [10,34]:

i) g(n, ℓ) vanishes unless n = 0 or ton+ boℓ = 0 .

ii) g(n, ℓ) only depends on nb := n mod bo and ℓb := ℓ mod bo .

iii) g(n, ℓ) is given by

g(n, ℓ) =

{∑
m̂∈boZ−ℓ−nbto/bo

co(−nbm̂/bo − n2
bto/b

2
o, m̂) if ton+ boℓ = 0 or n = 0 ,

0 otherwise .
25Compared to [34] the summation range in f is slightly different. The difference is caused by the fact

that we consider symmetric product orbifolds, while [34] considered exponential lifts. The precise relation is

fhere(n, ℓ) = f there
R (n, ℓ)− co(0, 0). In fact fhere is equal to f̃ in [10].
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iv) g(n, ℓ) = f(n, ℓ) for n > 0 and |ℓ| > bo.

From i) and ii) it follows that all nonzero functions g will be of the form

g(boθ + nb,−(boθ + nb)κ) = g(nb, nbκ mod bo) , (E.51)

where κ := to/bo, and θ ∈ Z≥0.

Recall that

η(τ) ∼
∞∏
n=1

(1− qn) . (E.52)

Therefore, in order to obtain a weighted function we need

f(αn, ℓ) = β for all but finitely many n ∈ N , (E.53)

for some α ∈ N and β ∈ Z (here ℓ can either be zero, or proportional to n). Functions f

satisfying this property contribute −β/2 to the weight. Analogously,

f(n, αℓ) = β for all but finitely many ℓ ∈ N (E.54)

also leads to a contribution to the weight of −β/2 (here n can either be zero, or proportional

to ℓ). Note that
∞∏
n=1

(
1− q2n−1

)2 ∼ ϑ01(τ, 0)

η(2τ)
, (E.55)

carries no weight;26 only the eta-like factors will lead to a weight.

Our task is thus to identify from (E.50) all possible eta-like functions that can appear.

There are two possible sources for eta functions: nonzero values of g or nonzero co(0, 0). Let

us first consider nonzero values of g. The claim is then that all eta-like products contribute

to g(0, 0). Moreover, nonzero g(0, 0) sources two different flavors of eta functions sourced by

this nonzero value of g. First, there are eta functions sourced by

f(αn, καn) . (E.56)

To show this we consider generic α > 0 in (E.53), and see that it leads to a nonzero value of

g(0, 0) = β. Let α > 0, and set n′ = bon. Then we have

g(αn′,−αn′κ) = g(αbon,−αbonκ) = g(0, 0) . (E.57)

Second, there are eta functions sourced by

f(0, boℓ) = g(0, boℓ) = g(0, 0) , (E.58)

26We can generalize this statement to any product of the form
∏∞

n=1

(
1− qγn−δ

)
with γ and δ coprime

positive integers.
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for ℓ > 1. Finally, we evaluate g(0, 0) to obtain

g(0, 0) =
∑
m̂∈bZ

co(0, m̂) = co(0, 0) + 2co(0,−bo) . (E.59)

Next, we consider nonzero co(0, 0). Then f(n, 0) = −co(0, 0) for n > 0. Note that

f(n, ℓ) = −co(0, ℓ) = co(0,−ℓ) = f(n,−ℓ) lead to factors of the form ϑ1,1(τ, ℓz)/η(2τ), which

carry no weight. Therefore, the total weight equals

weight =
2g(0, 0)− co(0, 0)

2
= 2co(0,−bo) + co(0, 0)/2 . (E.60)

By a standard Laplace transform on the eta functions we finally obtain the following expres-

sion for ω

ω = −co(0,−bo)− co(0, 0)/4− 3/2 . (E.61)
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