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Abstract. The Thom polynomial of a singularity η expresses the cohomology class of

the η-singularity locus of a map in terms of the map’s simple invariants. In this informal

survey—based on two lectures given at the Isaac Newton Institute in 2024—we explore
various Thom polynomial concepts with examples.

1. Introduction

Let us consider the usual picture of the torus T = S1×S1 in Figure 1. Our goal with this
illustration is not only to represent the torus T but also to show a (smooth) map f : T → R2,
where R2 represents the flat piece of paper where the torus image appears. For clarity, we
have sketched the torus as transparent.

As a consequence of the Inverse Function Theorem, around most points of T this map
can be locally described by (x, y) 7→ (x, y). That is, local coordinate systems can be chosen
around such a point on the torus, and around its image in R2, so that the map f in these
coordinate systems is the identity map. We call such points A0-points of the map f .

Around certain other points of the torus the map can be locally written as (x, y) 7→
(x2, y)—see Figure 2 (left). We call these points the A1-points, or fold points of f . This set
of points consists of a circle and four open intervals. Lastly, at four special points on the
torus the map can be written locally as (x, y) 7→ (x3 + xy, y), see Figure 2 (right). These
points we call the A2-points, or cusp points of the map f .

What we described is an example of the stratification of the source manifold of a map
f : Mm → Nn to strata called singularity loci.

Thom polynomials express the cohomology class represented by the closure of such sin-
gularity loci in terms of simple invariants of the spaces and the map. More precisely, for
each singularity η, there is an associated multivariate polynomial Tp(η), known as the Thom
polynomial. By substituting the characteristic classes of the source manifold and the tar-
get manifold (pulled back to the source by the map) into this polynomial, we obtain the
cohomology class represented by the closure of the η-singularity locus.

An important point is that Tp(η) does not depend on the specific situation; it depends
only on the singularity. This property is sometimes emphasized by calling Tp(η) a “universal
polynomial.” For example, the Thom polynomial of the cusp singularity discussed above is
a2 + a1b1 + b21 + b2, where ai are the Stiefel-Whitney classes of the domain and bi are the

A0-point

A1-point

A2-point

Figure 1. A map of the torus to the plane. The map stratifies the source
(the torus) to A0-, A1-, and A2-points. The A0-points are dense open, the
A1-points form a circle and four open intervals, there are four A2-points.
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A1, fold: (x, y) 7→ (x2, y) A2, cusp: (x, y) 7→ (x3 + xy, y)

Figure 2. The of A1 and A2 singularities (R2, 0) → (R2, 0).

Stiefel-Whitney classes of the target surface (pulled back by f∗). If the target surface is the
plane or the sphere (where bi = 0), we find that the parity of the cusp points of f : M2 → R2

is the same as the parity of the Euler characteristic of M2 (that is, a2). In particular, a
generic map of T to R2 has an even number of cusps, while a generic map of the real
projective plane to R2 has an odd number of cusps.

While the previous example was over the reals, most of our discussions will be over
the complex numbers, and in higher dimensions. Consequently, Chern classes, rather than
Stiefel-Whitney classes, will be our characteristic classes.

Plan of the paper. We will first discuss the relevant concepts from singularity theory.
Then, we will review various versions of Thom polynomials. Throughout this survey, we
will emphasize examples over precisely phrased theorems. Our treatment of the subject is
both informal and incomplete (see Section 8) and is shaped by the author’s knowledge and
mathematical preferences. For a more formal and comprehensive survey, readers are advised
to consult [Ohm24a].
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Sciences, Cambridge, in the Spring of 2024. The author would like to thank the Institute
for support and hospitality during the programme New equivariant methods in algebraic
and differential geometry, where work on this paper was undertaken. This work was sup-
ported by EPSRC grant no EP/K032208/1. The author was partially supported by NSF
grants 2152309, 2200867. Special thanks to G. Bérczi, L. Fehér, and T. Ohmoto for helpful
discussions during the preparation of this paper.

2. Singularities of maps

A general reference of singularity theory is [AGLV98].

2.1. Singularities—first attempt. Let us discuss what we should mean by a “singularity”
η so that the construction of η-points of a map in the last section makes sense.

Let E(m,n) denote the vector space of holomorphich map germs from (Cm, 0) to (Cn, 0).
We will assume that m ≤ n and set ℓ = n−m ≥ 0. Germs are equivalence classes of maps
U → Cn defined in a neighborhood U of 0 ∈ Cm, satisfying 0 7→ 0. Two such maps represent
the same germ if they agree in a neighborhood of 0 ∈ Cm. A global map Mm → Nn, at
point p ∈ M , defines an element of E(m,n) only if coordinate charts are fixed around p
and f(p). Since there are no a priori choices of charts on a manifold, we need to build this
ambiguity in our definition of “singularity”.
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⇝ •
•

x 7→ x2-points

Figure 3. The singularity x 7→ x3 is not stable, it disappears at the per-
turbation x 7→ x3 − εx. (For ε < 0 the appearing x 7→ x2-points are com-
plex.)

Let Eo(m) ⊂ E(m,m) denote the subset of invertible germs, and observe that it is a group
by composition. Moreover, we have the action of Eo(m)× Eo(n) on E(m,n) by

(1) (α, β) · f = β ◦ f ◦ α−1,

and it encodes exactly the ambiguity of the choice of charts in the source and in the target.

Definition 2.1. An A-singularity (or “right-left singularity”) η is an orbit of the action (1).

With this definition the construction of Section 1 makes sense: let η be an A-singularity
from m to n dimensions, and let f : Mm → Nn be a map between complex manifolds.
Define the singularity locus

η(f) = {p ∈ M : the germ of f at p belongs to η}.

While this definition is mathematically sound, it presents a few practical issues. Firstly,
there are an overwhelming number of A—singularities–—trust me on this. Another issue is
that some A-singularities are irrelevant for us. For example, when m = n = 1, the germ of
x 7→ x3 does not appear in a generic map. This is because if we perturb x 7→ x3, it splits
into two x 7→ x2 singularities, as illustrated in Figure 3. Our term for this phenomenon is
that the A-singularity x 7→ x3 is not stable. For our purposes non-stable singularities will
be irrelevant.

The A-singularities x 7→ x, x 7→ x2, as well as the three singularities (from two to two
dimensions) appearing in Section 1 are stable.

Remark 2.2. According to our definition, A-singularities are orbits of an infinite-dimensional
group acting on an infinite-dimensional vector space, However, for practical purposes, we can
truncate the elements of the group and the vector space at a given order N . The technical
term for this truncation is the use of N -jets instead of germs. By doing so, the group and the
vector space become finite-dimensional. Although not every A-singularity can be detected
in a jet space for large N , the ones that cannot be detected are irrelevant for the theory of
Thom polynomials.

2.2. Singularities parametrized by algebras. Experience shows that the right notion of
singularities is achieved if we “glue together” the A-singularities with the same local algebra.

Definition 2.3. The local algebra Qf of a germ

f : (x1, . . . , xm) 7→ (f1, . . . , fn)

in E(m,n) is defined to be

C[[x1, . . . , xm]]/(f1, . . . , fn).

We will assume in the whole paper that Qf is finite dimensional. Again, just like the
germs that are not defined by polynomials, the ones for which Qf is infinite dimensional are
not relevant in Thom polynomial theory.
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Example 2.4. For f1 : x 7→ x2, f2 : x 7→ x3, f3 : x 7→ x2 + x3 we have

Qf1
∼= Qf3

∼= C[x]/(x2), Qf2
∼= C[x]/(x3).

For f4 : (x, y) 7→ (x, y), f5 : (x, y) 7→ (x2, y), f6 : (x, y) 7→ (x3 + xy, y), f7 : (x, y) 7→ (x3, y)
we have

Qf4
∼= C, Qf5

∼= C[x]/(x2), Qf6
∼= Qf7

∼= C[x]/(x3).

Observe that f6 and f7 do not belong to the same A-singularity, but their local algebras are
isomorphic. In fact, f6 is stable while f7 is not.

Example 2.5. The local algebra of any of the germs f8 : (x, y) 7→ (xy, x2 + y2), f9 : (x, y) 7→
(x2, y2), f10 : (x, y, u, v) 7→ (xy, x2+y2+ux+vy, u, v) is isomorphic to C[x, y]/(xy, x2+y2).
We denote this algebra by I22. The germs f8 and f9 are not stable, while f10 is stable.
In fact there are no stable A-singularities (C2, 0) → (C2, 0) with local algebra I22. There
are stable singularities (Cm, 0) → (Cn, 0) with local algebra I22 if and only if ℓ ≥ 0 and
m ≥ 3ℓ+ 4 (recall ℓ = n−m).

Definition 2.6. Let Q be a finite dimensional local algebra, and m ≤ n non-negative
integers. Define the “contact singularity” ηQ = ηQ(m,n) ⊂ E(m,n) to be the set of germs
whose local algebra is isomorphic to Q.

This definition may sound arbitrary, but in fact there is a geometric story behind it.
Namely, one can define a group K = K(m,n), the “contact group” acting on E(m,n)
that contains Eo(m) × Eo(n). Graphs of K-equivalent germs have the same contact with
Cm ×{0} ⊂ Cm ×Cn—hence the name. It is a theorem of Mather that belonging to the
same K-orbit is equivalent to having isomorphic local algebras—hence Definition 2.6 is in
fact geometric!

A second compelling case for Definition 2.6 is another classical theorem: given a Q, for
large enough ℓ and for large enough m compared to ℓ, the set ΣQ contains a dense-open
stable A-singularity. That is, closures of ηQ and closures of stable A-singularities are the
same for large ℓ and m.

Remark 2.7. How large do ℓ and m need to be for the mentioned theorem? The thresholds
are calculable invariants of the local algebra Q—the interested reader will find the relevant
theorems and algorithms when studying “miniversal unfoldings”, as well as “genotype” and
“prototype” germs for the algebra Q. One example is given in Example 2.5, here is another
one: for Q = C[x, y]/(x2, xy, y2) we need ℓ ≥ 1 and m ≥ 2ℓ+ 4.

2.3. The zoo of contact singularities for a given ℓ. Luckily the hierarchy of contact
singularities in E(m,n) are not independent for any m and n, but in fact essentially depend
on ℓ = n−m only. For example, for ℓ = 0 the contact singularities of codimension at most
8 are in Figure 4. For a concrete m only the codimension ≤ m ones appear for a stable
map. For example, for maps M2 → N2 we see the three possible singularities, A0, A1, A2

of Section 1.
It is important to point out a new phenomenon: in codimension 9 the hierarchy starts

to contain moduli. The algebras C[x, y, z]/(x2 − λyz, y2 − λxz, z2 − λxy) are typically not
isomorphic for different λ’s.

The task of classifying all algebras, even the ones that occur as local algebras of singu-
larities for a given ℓ, is of course hopeless. Yet, in various special cases the classification is
known, see eg. [dPW95]

It is natural to study the relation of such hierarchies for different ℓ’s. The first fact to
keep in mind is that as we increase ℓ new algebras appear. For example the algebra III22 =
C[x, y]/(x2, xy, y2) only appears for ℓ ≥ 1. (The reason is that its minimal presentation has
one more relations than generators.) Another fact is that the relative position of algebras
may change considerably as we increase ℓ. Let us illustrate this with pointing out that

codim(A6) = 6ℓ+ 6, codim(C[x, y]/(x2, y3)) = 5ℓ+ 7,
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Σ1

Σ11

Σ111

· · ·

Σ2

Σ21

Σ3

λ: moduli!

codim

0 A0

1 A1

2 A2

3 A3

4 A4 I22

5 A5 I23

6 A6 I24 I33

7 A7 I25 I34 (x2, y3)

8 A8 I26 I35 I44 (x2 + y3, xy2)

9 A9 · · · · · · Cλ

Figure 4. The zoo of small codimension contact singularities for ℓ = 0.
Notation: Am = C[x]/(xm+1), Iab = C[x, y]/(xy, xa + yb), (x2, y3) stands
for C[x, y]/(x2, y3), (x2 + y3, xy2) stands for C[x, y]/(x2 + y3, xy2). Cλ =
C[x, y, z]/(x2 − λyz, y2 − λxz, z2 − λxy), that is a codimension 10 singu-
larity for each concrete λ with λ(λ3 − 1)(8λ3 + 1) ̸= 0—their union is 9
codimensional. The ΣI -decorations of the figure are discussed in Section 2.4.

hence, for ℓ = 0 the singularity A6 is “above” the other one, but for large ℓ it is way “below”
it.

When ℓ is large enough so that ηQ exists in E(m,m + ℓ) then the formula for its codi-
mension is

codim(ηQ) = (dimC(Q)− 1)ℓ+ b(Q)

where b(Q) is also a computable algebraic invariant of Q. Hence as ℓ is large, the top of the
hierarchy of contact singularities starts with the small dimensional algebras, see Figure 5.

2.4. Thom-Boardman stratification. We started our journey to singularities with A-
singularities, and mentioned that there are too many of them. Hence, we glued some together
and obtained contact singularities, and found that there are essentially as many of them as
finite dimensional local algebras. One may argue that they are still too many. Indeed, there
is a remarkable even rougher stratification: the Thom-Boardman singularities.

Thom-Boardman singularities of order 1 are

Σi = {f ∈ E(m,n) : dimker f ′(0) = i}.
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appears for:
dim(Q) = 1 codim(A0) = 0ℓ+ 0 ℓ ≥ 0
dim(Q) = 2 codim(A1) = 1ℓ+ 1 ℓ ≥ 0
dim(Q) = 3 codim(A2) = 2ℓ+ 2 ℓ ≥ 0

codim(III22) = 2ℓ+ 4 ℓ ≥ 1
dim(Q) = 4 codim(A3) = 3ℓ+ 3 ℓ ≥ 0

codim(I22) = 3ℓ+ 4 ℓ ≥ 0
codim(III23) = 3ℓ+ 5 ℓ ≥ 1
codim(C[x, y, z]/(x, y, z)2) = 3ℓ+ 9 ℓ ≥ 6

· · · · · ·

Figure 5. The top of the hierarchy of contact singularities for large ℓ.

Thom-Boardman singularities of order 2 are intuitively defined by

Σij = {f ∈ E(m,n) : f ∈ Σi, f |Σi(f) ∈ Σj}.

We advice the reader to verify that both the fold (x, y) 7→ (x2, y) and the cusp (x, y) 7→
(x3 + xy, y) belong to Σ1, but the first one is Σ10 the latter one is Σ11.

The intuitive definition of higher order Thom-Boardman singularities is analogous. In
Figure 4 we indicated the Thom-Boardman types.

There is a simple formula for the codimension of Thom-Boardman singularities. For
order 1 it is: codim(Σi) = i(i+ ℓ). The story of what contact singularities occupy “most” of
a Thom-Boardman singularity has surprises. In the Σ2 Thom-Boardman type I22 is dense-
open for ℓ = 0 but III22 is dense-open for ℓ ≥ 1 (see the table above). A dense-open part
of the Σ3 Thom-Boardman type is a moduli of contact singularities for ℓ = 0 (see Figure
4) but has a dense open contact singularity for ℓ ≥ 6 (the last line in Figure 5). For any
multiindex I, for large enough ℓ the Thom-Boardman type ΣI contains a dense-open contact
singularity.

3. Thom polynomials

In the 1950s, René Thom made significant contributions to both the local theory of sin-
gularities and the global theory of cobordisms and characteristic classes. He also bridged
these seemingly distant areas, developing what is now known as the theory of Thom poly-
nomials [Tho56].

3.1. Definitions. Let η ⊂ E(m,n) be a singularity. For this now we mean a (locally closed)
subvariety invariant under at least the reparametrization group Eo(m)×Eo(n)—for example
an A-singularity, a contact singularity, or a Thom-Boardman singularity. Let us assume it
has pure (complex) codimension d.

The Thom polynomial of η

Tp(η) ∈ Z[a1, a2, . . . , am, b1, b2, . . . , bn]

is a multivariable polynomial, of degree d, with deg(ai) = deg(bi) = i, satisfying the defini-
tions below.

Definition 3.1 (Intuitive definition). For “nice” maps (discussed below) f : Mm → Nn

between complex compact manifolds the fundamental class of the closure of

η(f) = {p ∈ M : the germ of f at p belongs to η}

in H2d(M) equals the value of Tp(η), when we substitute ai = ci(TM), bi = f∗(ci(TN)) =
ci(f

∗(TN)).

Definition 3.2 (More precise definition). The Thom polynomial of η is the Eo(m)×Eo(n)-
equivariant fundamental class of η ⊂ E(m,n).
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A lot of explanations are in order. Let us start with Definition 3.2. The group Eo(m)×
Eo(n) and the space E(m,n) are infinite dimensional, yet via jet approximation (cf. Re-
mark 2.2) we deal with them as if they were finite dimensional. However, even in finite di-
mensional settings the concept of equivariant fundamental class is not an obvious one—note
for example that E(m,n) is not compact, only “equivariantly compact”. A number of precise
definitions exist for “equivariant fundamental class” [Kaz97, EG98, FR04, MS04, AF23], and
each one shares key properties with ordinary fundamental classes:

• its cohomological degree is 2d;
• restricted to an invariant set disjoint from η is 0;
• restricted to the smooth part of η it is the (equivariant) Euler class of its normal
bundle;

• behaves “nicely” with respect to pullback and push-forward.

Accepting the notion of equivariant fundamental class, Definition 3.2 puts Tp(η) in the ring

H∗
Eo(m)×Eo(n) E(m,n).

The space E(m,n) is (equivariantly) contractible, so it can be replaces with just a point,
and it is a fact that Eo(m) is homotopy equivalent to GLm(C). Hence we have that Tp(η)
is a degree 2d element in

H∗
GLm(C)×GLn(C)(pt) = H∗(BGLm(C)×BGLn(C)) = Z[a1, a2, . . . , am, b1, b2, . . . , bn],

the declared habitat of the Thom polynomial.
In the rest of this section we connect Definitions 3.1 and 3.2. This argument is called the

degeneracy loci interpretation of Thom polynomials. The argument is walking through the
chain of equalities:

(2)
[
η(f) ⊂ M

]
=
[
j−1
f

(
η(E)

)
⊂ M

]
= j∗f

([
η(E) ⊂ E

])
=
[
η(E) ⊂ E

]
= k∗f ([η ⊂ E(m,n)]) = [η ⊂ E(m,n)]|ai=ci(TM),bi=ci(TN).

Here is the explanation: to the map f : Mm → Nn we associate a fiber bundle E → M by
letting the fiber over p ∈ M be

{germs (M,p) → (N, f(p))} = {germs (U, p) → (V, f(p))} ∼= E(m,n),

where U and V are affine neighborhoods of p and f(p). The structure group of this bundle
is Eo(m) × Eo(n). Since η ⊂ E(m,n) is invariant under this group, η as a set is defined in
every fiber. We call the union of these η’s η(E). Moreover the map f induces an obvious
section jf of the bundle E → M .

The first equality in (2) is the observation that η(f) = j−1
f (η(E)), by definition. The

second equality follows from the consistency of fundamental class and pull-back. But let
us stop here: this consistency holds, if jf is transversal to η(E) in the right sense—this
transversality is exactly the requirement for the map f to be “nice” in Definition 3.1. The
third equality is just a topological fact: the total space of a bundle with contractible fiber
is homotopy equivalent to the base. This fact identifies their cohomologies, and any section
induces the identity between these cohomologies. The rest of the equalities follow from the
pull-back diagram

η(E) ⊂ E

M

η ⊂ E(m,n)

point

BEo(m)×Eo(n)
kf

where the specific situation η(E) ⊂ E is pulled back from the universal situation (the Borel
construction applied to η ⊂ E(m,n)), via the classifying map kf that, on cohomology, maps
ai 7→ ci(TM), bi 7→ f∗ci(TN).
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Notation. Our notation for Thom polynomials will be Tp( ), where in the parenthesis we
put enough information that specifies the singularity η.

3.2. Dependence on quotient variables only. The reader, no doubt, would like to see
examples for Thom polynomials, and is welcome to glimpse at later pages of this paper.
However, to avoid complicated, meaninglessly incomplete formulas like the 30-term expres-
sion

(3) Tp(A1,m = 10, n = 15) = a61 − a51b1 − 5a41a2 + . . .− a6 + b6,

first let us start with the following fundamental result.

Theorem 3.3 (Thom-Damon-Ronga theorem). The Thom polynomial of the contact sin-
gularity corresponding to the local algebra Q depends only on the “quotient variables” ci
defined by

1 + c1t+ c2t
2 + . . . =

1 + b1t+ b2t
2 + . . .

1 + a1t+ a2t2 + . . .
.

Moreover, when expressed in the quotient variables, the expression only depends on ℓ, not
on m and n individually.

For example, statement (3) can now be stated concisely as

Tp(A1,m = 10, n = 15) = c6,

and even better, the same holds for any n = m+ 5, and we just write (cf. (4) below)

Tp(A1, ℓ = 5) = c6.

3.3. First examples. The triviality Tp(Σ0) = 1 just encodes the fact that a generic map
is non-singular at almost all of the points of the source. The first non-trivial general Thom
polynomial example is

(4) Tp(Σ1, ℓ) = Tp(A1, ℓ) = cℓ+1.

To put this statement in context let us recall the following argument from differential
topology: if cℓ+1(f) = cℓ+1(f

∗TN − TM) is not 0 then f must have singularities, it cannot
be an immersion. Indeed, if f was an immersion then f∗TN − TM would be a rank ℓ
bundle, not just a virtual bundle—and hence its ℓ + 1’st Chern class would be 0. The
Tp(Σ1, ℓ) = cℓ+1 statement makes this “qualitative” statement “quantitative”: cℓ+1(f) is
exactly the fundamental class of the locus where f is not an immersion.

Our next example, the Giambelli-Thom-Porteous formula [Tho56, Por71], is also a key
formula of Schubert calculus:

Tp(Σr, ℓ) = det


cr+ℓ cr+ℓ+1 cr+ℓ+2 . . .

cr+ℓ−1 cr+ℓ cr+ℓ+1 . . .
. . .

. . . cr+ℓ cr+ℓ+1

. . . cr+ℓ−1 cr+ℓ


r×r

,

where the name of the right hand side is Schur polynomial s(r+ℓ)r (cf. Section 4.2).
Here are some random other Thom polynomials:

Tp(A2, ℓ = 0) = c21 + c2

Tp(A2, ℓ = 1) = c22 + c1c3 + 2c4

Tp(A3, ℓ = 0) = c31 + 3c1c2 + 2c3

Tp(I22, ℓ = 1) = 2c3c4 − 2c2c5 + c1c
2
3 − c1c2c4,

and the interested reader will find other concrete Thom polynomials on the Thom Polynomial
Portal [TPP].
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3.4. Methods of calculating Thom polynomials. Nobody knows how to calculate the
Thom polynomial of a random singularity. Nevertheless, some more-or-less effective methods
exist. They are based on one or more of the following geometric tools: resolution (or embed-
ded resolution), partial resolution, degeneration, eg. Gröbner degeneration, interpolation,
quotient constructions, Hilbert schemes.

It is also a remarkably successful method to collect structure theorems on Thom polyno-
mials, and hope that those structure theorems leave very little ambiguity in the coefficients
of a sought Thom polynomial. We already met one such structure theorem, Theorem 3.3.

In the rest of the paper we will meet some computational methods, and some structure
theorems. We start with the illustration of the ‘interpolation method’.

3.5. Thom polynomial of A4, ℓ = 0, via interpolation. Since the codimension of A4

for ℓ = 0 is 4, we know that

(5) Tp(A4, ℓ = 0) = Ac41 +Bc21c2 + Cc1c3 +Dc22 + Ec4

for some integers A,B,C,D,E. The fact is that we can calculate A,B,C,D,E as the unique
solution of the system of equations:

A(a)4 +B(a)2(−a2) +C(a)(a3) +D(−a2)2 +E(−a4) = 0
A(2a)4 +B(2a)2(−2a2) +C(2a)(2a3) +D(−2a2)2 +E(−2a4) = 0
A(3a)4 +B(3a)2(−3a2) +C(3a)(3a3) +D(−3a2)2 +E(−3a4) = 0
A(4a)4 +B(4a)2(−4a2) +C(4a)(4a3) +D(−4a2)2 +E(−4a4) = 24a4

A(a+ b)4 +B(a+ b)2(−a2 + ab− b2) + C(a+ b)(a3 − a2b− ab2 + b3)+

D(−a2 + ab− b2)2 + E(−a4 + a3b+ a2b2 + ab3 − b4) = 0.

The first four equations are in Z[a] and the last one is in Z[a, b]. Together they form a
system of linear equations for A,B,C,D,E with the unique solution A = 1, B = 6, C = 9,
D = 2, E = 6, concluding

(6) Tp(A4, ℓ = 0) = c41 + 6c21c2 + 9c1c3 + 2c22 + 6c4.

How did we get the five equations? Let us explain the 4th one. It comes from applying the
defining property of the Thom polynomial

(7) Tp(A4)|c=c(f) = [A4(f)]

to the map f : C4 → C4

(8) f : (x, y1, y2, y3) 7→ (x5 + y3x
3 + y2x

2 + y1x, y1, y2, y3),

well, in a sophisticated way. Namely, first notice that the map (8) has a U(1) symmetry:
multiplying the coordinates of the source by (α, α4, α3, α2) multiplies the coordinates of the
target by (α5, α4, α3, α2), for α ∈ U(1). In effect, we can consider (7) is U(1)-equivariant
cohomology. The right hand side is the class of 0 in C4 (with the action (α, α4, α3, α2)),
which is hence the Euler class a(4a)(3a)(2a) = 24a4 of the representation. The left hand
side is (5) with ci being the Taylor coefficients of

c(f) =
(1 + 5a)(1 + 4a)(1 + 3a)(1 + 2a)

(1 + a)(1 + 4a)(1 + 3a)(1 + 2a)
=

1 + 5a

1 + a
= 1 + 4a︸︷︷︸

c1

−4a2︸ ︷︷ ︸
c2

+4a3︸ ︷︷ ︸
c3

−4a4︸ ︷︷ ︸
c4

+ . . . .

We obtain exactly the non-homogeneous equation listed above. The other, homogeneous,
equations are obtained similarly, by applying (7) to maps not having A4-points at all: namely
to the ‘prototypes’ of the singularities A1, A2, A3, and I22 (with their symmetries):

(x) 7→ (x2)
(x, y) 7→ (x3 + xy, y)

(x, y1, y2) 7→ (x4 + y2x
2 + y1x, y1, y2)

(x, y, u, v) 7→ (x2 + uy, y2 + vx, u, v).
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The method just described is called the “interpolation” method [Rim01, Rim00]. It
depends on understanding the symmetries of singularities, and it reduces the calculation of
a Thom polynomial to solving a system of linear equations (alternatively, finding the lowest
degree generator of the intersection of a bunch of ideals in a polynomials ring).

When this method works, it is surprisingly effective. It has, however, limitations: it can
be shown to work for a singularity η if all the singularities ζ with codim(ζ) ≤ codim(η)
satisfy a non-vanishing Euler class condition. This condition holds for all singularities until
the appearance of moduli. For example, for ℓ = 0 the interpolation method can calculate
the Thom polynomials of exactly the codim ≤ 8 singularities in Figure 4.

It is important to point out another limitation of the interpolation method: it considers
the Thom polynomials for the same algebra but different ℓ completely different problems.
Hence it is not well positioned to discover structures we will start describing in the next
section.

4. Thom series

4.1. Thom polynomials for various ℓ values. Consider the Thom polynomial of the
contact singularity A3 for ℓ = 0, 1, 2, respectively [BFR03]:

c31 +3c2c1 +2c3,
c32 +3c3c2c1 +2c4c

2
1 +c23 +7c4c2 +10c5c1 +12c6,

c33 +3c4c3c2 +2c5c
2
2 +c24c1 +7c5c3c1 +10c6c2c1 +12c7c

2
1 +60c8c1 +26c7c2 + . . ..

The pattern becomes clearer if we imagine every monomial to be a product of exactly
three ci variables—we call this “three” the width of the monomials. For this, we observe
that there are no monomials whose width is ≥ 4, and the monomial whose width is strictly
less than 3 we formally multiply by the appropriate c0-power (c0 = 1).

Then each line is obtained from the line below it by the “lowering” ♭ operation, where
(cicjck)

♭ = ci−1cj−1ck−1. Observe that, for example, (c23)
♭ = (c3c3c0)

♭ = c2c2c−1 = 0, and
indeed,

Tp(A3, ℓ)
♭ = Tp(A3, ℓ− 1)

holds for ℓ > 1.
It is tempting to define the raising operator (cicjck)

# = ci+1cj+1ck+1, and expect that
Tp(A3, ℓ)

# = Tp(A3, ℓ + 1), but—as the examples above show—this idea determines only
some of the monomials of Tp(A3, ℓ+ 1), exactly those whose ♭-image is not 0.

The right way of encoding the structure we just illustrated is to consider the limit object
Tp(A3, ℓ = ∞), called Thom series for A3, (with shifted indices) as follows:

Ts(A3) = d30 + 3d1d0d−1 + 2d2d
2
−1 + d1d

2
−2 + 7d2d0d−2 + 10d3d−1d−2 + . . . .

Then we have

Tp(A3, ℓ) = Ts(A3)|di=ci+ℓ+1
.

The point is that Tp(A3, ℓ) for all ℓ is determined by just one formal power series Ts(A3) ∈
Z[[. . . , d−2, d−1, d0, d1, d2, . . .]].

The described A3 example, namely, the existence of one Thom series

Ts(η) ∈ Z[[. . . , d−2, d−1, d0, d1, d2, . . .]]

from which all Tp(η, ℓ)’s are obtained by the ci = di+ℓ+1 substitution holds for a wide
class of contact singularities and Thom-Boardman singularities (and is believed to hold for
all) [FR07].

The width and the degree of the Thom series are easily identifiable invariants of η. For
example, if η is a contact singularity ηQ, then the width is dim(Q)− 1.
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4.2. Thom series in Schur expansions. It is often worth expressing Thom polynomials
not in Chern monomial basis, but in the basis of Schur polynomials:

sλ = det(cλi+j−i)i,j (where λ is a partition).

For example

(9)
Tp(A2, ℓ = 0) = s11 + 2s2
Tp(A2, ℓ = 1) = s22 + 2s31 + 4s4,
Tp(A2, ℓ = 2) = s33 + 2s42 + 4s51 + 8s6.

For such expressions the Thom series phenomenon takes this form: there exists a formal
expression

(10) Ts(η) =
∑
λ

pλSλ

where λ’s are weakly decreasing integer sequences of a fixed length (the “width” above),
pλ ∈ Z, and for any specific ℓ we have

Tp(η, ℓ) = Ts(η)#(l+1) :=
∑
λ

pλsλ1+ℓ+1,λ2+ℓ+1,....

The Thom series of A2 in this Schur form is given by:

Ts(A2) = S00 + 2S1,−1 + 4S2,−2 + 8S3,−3 + . . . .

As the reader may have noticed, we use the same notation for the Thom series regardless of
whether it is expressed as a formal power series in di variables or in the Schur form (10).

In the next three sections we will describe three different ways of encoding the whole Thom
series by just “finite information.” Yet, even that finite information is very challenging to
study. For example, the Thom series of A7 in unknown.

4.3. Finite encoding of Thom series à la [BS12]. A remarkable new method for pre-
senting Thom series was found in [BS12], with a clarifying re-interpretation in [Kaz]. This
approach constructs partial resolutions of singularity loci using the “test curve method”
or through the “space of non-associative algebras.” Equivariant localization and its residue
formalism are applied to the partial resolution to obtain formulas for Thom series. For
example

Ts(A3) = − Res
z1=∞

Res
z2=∞

Res
z3=∞

(
q(z1, z2, z3)

(2z1 − z2)(2z1 − z3)(z1 + z2 − z3)
×

∏
1≤i<j≤3

(zi − zj) ·

 3∏
i=1

∞∑
j=−∞

dj

zji

 dz3
z3

dz2
z2

dz1
z1

 ,

where q(z1, z2, z3) = 1.
For other algebras Q the nature of the formula is similar: The number of the auxiliary

zi variables is dim(Q) − 1. The factors in the second line generalize the obvious way. The
denominator of the fraction in the first line is also a more-or-less obvious invariant of Q,
it is always a product of linear factors. The only non-obvious ingredient in general is the
q-polynomial in the numerator. (The trivial value q = 1 for Q = A3 is misleading.)

It is hence the q-polynomial that is the “finite” encoding of the whole Thom series. The
polynomial q has a geometric meaning, it is itself an equivariant fundamental class of a
variety in a finite dimensional vector space. The vector space is the space of (not necessarily
associative) algebras with some numerical characteristics. The subvariety whose fundamen-
tal class is q is the collection of points corresponding to associative algebras isomorphic
to Q.

In effect, the calculation of the Thom series of Q is reduced to understanding how alge-
bras isomorphic to Q sit in the space of algebras. While this reduction is satisfying, it is



12 R. RIMÁNYI

disheartening that—in general—we do not know algebras very well. For a general Q we do
not know the q polynomial.

In small examples, however, q can be computed. For example for Q = A5 = C[x]/(x6)
we have

q = (z5 − 2z1 − z2)(2z
2
1 + 3z1z2 − z1z5 + zz2z3 − z2z4 − z2z5 − z3z4 + z4z5),

but the q-polynomial of, say, A10 seems way beyond the scope of our present understanding
of algebra/geometry.

Remark 4.1. The iterated residue form above may look complicated at the first sight. In
fact, it is very explicit. One takes the appropriate expansion

∑
ijk auvwz

u
1 z

v
2z

w
3 of the ra-

tional function. The effect of multiplying with
∏∑

dj/z
j
i and taking residues is that the

monomial zu1 z
v
2z

w
3 turns to dudvdw. Hence, the formula above almost identifies Ts(A3) with

the expansion of a rational function. The simple but subtle difference is that terms with
permuted u, v, w-exponents give the same d-monomial.

Remark 4.2. When setting up the “space of algebras” one has the freedom of choosing a
filtration on the algebra Q. For any such filtration a residue form of the Thom series is
obtained (with the non-obvious ingredient q). It is a fact that for some filtration choices the
q-polynomial is much easier to find than for others, see examples in [Kaz, TPP]. We cannot
illustrate this phenomenon with A3, which has only one filtration.

Remark 4.3. We have not provided a precise definition of the q-polynomial or its geometric
origin. Therefore, the reader must take on faith that its geometry is governed by a Borel
group action. The non-reductive nature of Borel groups presents a significant challenge in
advancing this approach further (cf. Section 4.5).

4.4. Finite encoding of Thom series a la [FR12]. In [FR12] a partial geometric reso-
lution (pioneered by J. Damon [Dam72]) and singular equivariant localization methods are
used to reduce the Thom series TpQ to finitely many rational functions.

Let us illustrate the nature of such formulas by an example. Let A = {a1, . . . , am},
B = {b1, . . . , bn}, and define R(X,Y ) =

∏
y∈Y,x∈X(y − x). We claim

Tp(A2,m → n) =

n∑
i=1

R(W1, B)

e1 · R(W1, A1)
+

∑
1≤i<j≤n

R(W2, B)

e2 · R(W2, A2)
,

where W1 = {αi, 2αi}, A1 = A − {ai} and W2 = {αi, αj}, A2 = A − {ai, aj}, and, most
notably

e1 = 1, e2 =
1

3
(a1 − 2a2)(a2 − 2a1).

Some explanations are in order. The two summations correspond to the two possible mono-
mial ideal types of length 3, namely: (x3) ◁C[x] and (x2, xy, y2) ◁C[x, y]. Some ingredients
of the formula are obvious: Wi are torus weights on the quotient by the monomial ideal, Ai

just record the a variables not used in the monomial ideal. The only non-obvious ingredient,
coming from geometry, are the classes ei.

The example we gave generalizes to any algebra Q. If dim(Q) = µ+1 the formula breaks
into terms corresponding to the length µ + 1 monomial ideal types. In these terms all but
the rational functions ei are obvious. In summary: the Thom polynomials Tp(Q,m → n)
for all m,n, equivalently the Thom series Ts, is determined by a finite sequence of rational
functions ei.

On the one hand, the ei classes have geometric meaning, on the other hand, they satisfy
intriguing algebraic relations [FR12]. The interplay of the two worlds makes the ei (and
hence the Thom polynomials Tp(Q, ℓ) for all ℓ) calculable for algebras of small dimension.

An interesting consequence is the technique of reverse engineering: if we know Tp(Q) for
some m,n explicitly (say, by interpolation, see Section 3.5), we can use that information to
find all ei, and then we have the Thom polynomial for all m,n.
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4.5. Finite encoding of Thom series a la [Bér]. An improvement of the method of
Section 4.3 is presented in [Bér]. As we pointed out, the geometry behind that approach
is a non-reductive group action. Recent advances on understanding non-reductive actions
and quotients lead G. Béczi to modify the resolution based on “test-curves” to another one
which is toric in nature. The price to pay is that the resolution is now an iterated one,
and the structure of the iteration is arranged in a tree. The key ingredient of the obtained
formula is a sum whose terms correspond to the leaves of the tree. Each such contribution is
of very simple structure—one only needs to work with products of linear factors as opposed
to general polynomials. For more details we refer the reader to the paper [Bér], here we only
show one example:

Ts(A4) = Res
z1=∞

Res
z2=∞

Res
z3=∞

Res
z4=∞

(
G(z1, z2, z3, z4)×

∏
1≤i<j≤4

(zi − zj) ·

 4∏
i=1

∞∑
j=−∞

dj

zji

 dz4
z4

dz3
z3

dz2
z2

dz1
z1

 ,

where

G =

1
(2z1−z2)(z1+z2−z3)

− 1
(z1+z3−z4)

(z2 + z3 − z1 − z4)(z1 + z2 − z4)(2z1 − z3)(2z1 − z4)
.

5. Real singularities

In this section we consider maps f : Mm → Nn between real manifolds, and correspond-
ingly real singularities η ⊂ {(Rm, 0) → (Rn, 0)}. We are interested in Thom polynomials
expressing the fundamental class of the closure of η-points of f , in terms of the characteristic
classes of f .

The first new phenomenon is that real singularity loci do not necessarily carry a funda-
mental class. One of the geometric reasons is that η-points of a map are just semi-algebraic
sets, like a semicircle: the topological closure is not necessarily a cycle.

5.1. Cohomology with Z2 coefficient, Stiefel-Whitney classes. If we aim at Thom
polynomials in Z2-coefficient cohomology, then the mentioned difficulty is essentially the
only one. This is the content of the Borel-Haefliger theorem [BH61]. Namely, if

ηR ⊂ {(Rm, 0) → (Rn, 0)} and ηC ⊂ {(Cm, 0) → (Cn, 0)}

are the real and complex ‘forms’ of each other, then the Z2 coefficient Thom polynomial
of ηR is obtained from the Thom polynomial of ηC by replacing Chern classes ci with the
corresponding Stiefel-Whitney classes wi, and reducing the coefficients mod 2. For example,
since the Thom polynomial

Tp(Σ3, ℓ = 0) = det

c3 c4 c5
c2 c3 c4
c1 c2 c3

 = c33 + c24c1 + c5c
2
2 − 2c4c3c2 − c1c3c5,

we have that the Z2-coefficient Thom polynomial of the Σ3 real singularity is

w3
3 + w2

4w1 + w5w
2
2 + w1w3w5.

5.2. Cohomology with Z or Q coefficients, Pontryagin classes [Ron71, FR02, CST].
We meet a richer structures if we want to find Thom polynomials of real singularities with
Q or even Z coefficients. Here is an example [FR02]:

Tp(η1 − 2η2, ℓ = 0) =
(
3p21 + 9p2

)
+
(
v21v2v4 + v1v2v5 + v1v3v4 + v3v5

)
.

The right hand side is a characteristic class of f (that is, of f∗TN−TM) as before, but now
the classes are not Chern classes. The pi denote Pontryagin classes and the v-monomials
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•

η1 = R[x, y]/(x2 + y3, xy2)

η2 = R[x, y]/(x2 + y2, x4)
R[x, y]/(x3 + y3, y4)

· · ·
· · ·

· · ·

Figure 6. The picture of the 8-codimensional singularities Σ1 and Σ2 in a
normal slice to a 9-codimensional singularity.

vivjvk are the unique integer lifts of the Stiefel-Whitney monomials wiwjwk. These v-
monomials are 2-torsion elements in Z-coefficient cohomology. The Q-coefficient Thom
polynomial is hence 3p21 + 9p2.

What needs more explanation is the left hand side: we stated the Thom polynomial
of what? The answer is that our cycle is the (closure of the) singularity locus for η1 =
R[x, y]/(x2 + y3, xy2) (with a particular orientation, not described here) minus twice the
singularity locus for η2 = R[x, y]/(x2 + y2, x4) (with a particular orientation, not described
here).

Several non-trivial statements are encoded in the last sentence. First: these two singu-
larity loci have 8 real codimension and are both co-orientable. If a singularity locus in not
co-orientable, then even if it had no boundary (at more complicated singularities) it would
not carry an integer coefficient cohomology class in an oriented manifold—this is another of
the geometric difficulties we alluded to above. Second: the local picture of η1- and η2-loci
near the 9-codimensional singularity R[x, y]/(x3 + y3, y4) is illustrated in Figure 6. Ac-
cordingly, only (the closure of) η1 − 2η2 (or its integer multiples) forms a cycle around this
point, no other linear combination of η1 and η2. Third: there are no other codimension 9
singularities besides R[x, y]/(x3 + y3, y4) in the boundary that would make η1 − 2η2 not a
cycle.

The geometric information needed to find similar linear combinations of real singularities
is organized into the so-called Vassiliev algebraic complex [Kaz97], a cousin of the famous
Vassiliev complex in knot theory.

6. Generalized Thom polynomial concepts

6.1. The landscape of charactersitic classes. According to Definition 3.2, the Thom
polynomial of a singularity η is an (equivariant) cohomological fundamental class of the
subvariety η in a vector space.

Some notable generalizations of the concept cohomological fundamental class are arranged
in the table

(11)

fundamental class ℏ-deformed fundamental class
H∗ ∃! Chern-Schwartz-MacPherson class
K ∃∃∃ motivic Chern class
Ell ∄ elliptic class (with Kähler variables).

That is, we consider the three generalized cohomology theories whose associated formal
group laws are 1-dimensional algebraic groups: cohomology, K theory, and elliptic cohomol-
ogy.

It turns out that in K theory there are three non-equivalent “fundamental class” concepts:
(i) the class of the structure sheaf, (ii) the class of the structure sheaf of a resolution,
pushed forward, and (iii) well, a third one we will meet soon. It is a theorem that in elliptic
cohomology there is no fundamental class concept that does not depend on choices.

Remarkably, there is a one-parameter (ℏ) deformation of the fundamental class concept,
in all three theories. The cohomological (called Chern-Schwartz-MacPherson, CSM) class,
and the K theoretic (called motivic Chern, MC) class were defined classically, as classes
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satisfying an additivity (motivic) property, and also being consistent with push-forward
maps.

At certain asymptotics the CSM class recovers the cohomological fundamental class. The
ℏ = 1 substitution of the MC class is the “third” version of K theoretic fundamental class.
The three K theoretic fundamental classes of a singular set η coincide if η has only “mild”
singularities. At the K → H∗ reduction all three reduce to the cohomological fundamental
class.

Motivated by the works of Okounkov, Maulik, Aganagic, which relate characteristic
classes to Geometric Representation Theory, as well as definitions of Borisov-Libgober,
the “right” concept of the ℏ-deformed elliptic fundamental class has been defined in cer-
tain contexts [RW20, KRW20]. Unfortunately, these contexts do not yet encompass Thom
polynomials. Furthermore, even in these contexts, the ℏ-deformed elliptic class inherently
depends on a new set of parameters known as Kähler (or dynamical) parameters.

Remark 6.1. It is tempting to think that an elliptic fundamental class could be defined by
specializing the new parameters and ℏ. However, it turns out that at that specialization
the ℏ-deformed elliptic classes have poles. This fact is another incarnation of the result
mentioned above on the non-existence of elliptic fundamental class.

Suppose we know the ℏ-deformed classes for the singular set η in a smooth ambient space.
What new information do these classes provide? They determine the Euler characteristics
(for CSM class), the χy-genus (for MC class), and the elliptic genus (for elliptic class) of
various sections of η.

The question relevant to us is: do the generalizations of Table (11) exist for Thom poly-
nomials? If so, can they be computed and applied in geometry? We summarize the currently
known partial answers in the next few sections.

6.2. K theory Thom polynomials [RS23]. The simplest K theory Thom polynomials
are objects in “K theory Schubert Calculus”. Namely, the K theory Thom polynomials—
denoted by KTp—are known for the Thom-Boardman singularities of order 1:

KTp(Σr, ℓ) = gr + ℓ, r + ℓ, . . . , r + ℓ︸ ︷︷ ︸
r

.

Here gλ is a Grothendieck polynomial, the K theoretic analogue of the Schur polynomial.
Below are the K theory Thom polynomials for the A2 = C[t]/(t3) singularity for ℓ = 0,

1, 2, respectively:

(g11+2g2) −(2g21+g3) +(g31),
(g22+2g31+4g4) −(2g32+5g41 +4g5) +(g42 +4g51 +g6) −(g61),
(g33+2g42+4g51+8g6)−(2g43+5g52 +12g61+12g7)+(g53 +4g62 +13g71+ . . .) − . . ..

The structure is worth studying. First, each partition that occurs as a g-subscript has
exactly two parts λ = (ij) (note that eg. g4 = g40).

The first parenthesis in each row recovers the corresponding cohomology Thom polyno-
mial, if we formally replace Grothendieck polynomials gλ with Schur polynomials sλ, cf. (9).
This part displays the “Thom series” stabilization of Section 4.1, and could be encoded by
the infinite expression

G00 + 2G1,−1 + 4G2,−2 + . . . ,

via Gij = gi+ℓ+1,j+ℓ+1, cf. Section 4.2.
However, this stabilization seemingly breaks down at the higher order terms that contain

the new geometric information (compared to cohomology) supported on non-top dimensional
strata of A2 ⊂ E(m,m+ ℓ).

The stabilization, however, can be salvaged—because of the fascinatingly combinatorics
of Grothendieck polynomials. To illustrate this, let us apply the lowering operation ♭ to the
second line above. We obtain:

(g11 + 2g20 + 4g3,−1)− (2g21 + 5g30 + 4g4,−1) + (g31 + 4g40 + g5,−1)− (g50).
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As mentioned, gi0 = gi. However, while for Schur polynomials si,<0 = 0, for Grothendieck
polynomials we have gi,<0 = gi,0 = gi. Therefore, the last displayed expression further
equals

(g11 + 2g20 + 4g3)− (2g21 + 5g3 + 4g4) + (g31 + 4g4 + g5)− (g5),

which, after cancelling terms in different parentheses, recovers the top line in the above
table: KTp(A2, ℓ = 0). What we learned is that

KTp(A2, ℓ = 1)♭ = KTp(A2, ℓ = 0)

holds, even though the left hand side is a “non-economical” way of naming the right hand
side.

The described phenomenon holds for all ℓ. We obtain that there is a K theory Thom
series for A2

KTs(A2) = (G00 + 2G1,−1 + . . .)− (2G10 + 5G2,−1 + 12G3,−2 + 28G4,−3 + . . .)+

(G20 + 4G3,−1 + 13G4,−2 + 38G5,−3 + . . .)− . . .

that determines KTp(A2, ℓ) for all ℓ via Gij = gi+ℓ+1,j+ℓ+1. Moreover, the “finite infor-
mation” result of Section 4.3 also extends to K theory: the coefficients of KTs(A2) are the
coefficients of the appropriate Laurent expansion of

1− 2x2 + x2
1

x2 − 2x1 + x2
1

.

Remark 6.2. As we mentioned in Section 6.1 there are three different notions for K theory
fundamental classes, and hence, for K theory Thom polynomials. All KTp’s presented in
this section are the “structure sheaves of a resolution pushed forward” version.

6.3. Segre-Schwartz-MacPherson (SSM) Thom polynomials. Recall that the con-
cept of fundamental class [Σ ⊂ M ] of a possibly singular subvariety Σ in M is consistent
both with respect to pull-back

for
f : M → N

∪
Σ

we have [f−1(Σ) ⊂ M ] = f∗([Σ ⊂ N ]),

and with respect to push-forward

for
f : M → N

∪
Σ

we have [f(Σ) ⊂ N ] = f∗([Σ ⊂ M ]),

under the appropriate assumptions on f . The CSM (Chern-Schwartz-MacPherson) class is
a 1-parameter deformation of the fundamental class

csm(Σ ⊂ M) = [Σ ⊂ M ] + higher order terms ∈ H∗(M)

such that:

(i) It is consistent with push-forward (in a sense that involves the Euler-characteristic
of fibers of the map).

(ii) Its SSM (Segre-Schwartz-MacPherson) version

ssm(Σ ⊂ M) =
csm(Σ ⊂ M)

c(TM)
∈ H∗∗(M)

is consistent with pull-back (with appropriate transversality assumption on the
map).

(iii) CSM classes satisfy normalization: if i : Σ ⊂ M is a smooth closed subvariety then
csm(Σ ⊂ M) = i∗(c(TΣ)).

(iv) The CSM class is defined for all constructible functions on the ambient space, where
the csm(Σ ⊂ M) concept corresponds to the indicator function of Σ. In this gener-
ality CSM classes (hence SSM classes too) are additive:

csm(αf + βg) = α csm(f) + β csm(g).
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In fact, a precise definition of the CSM class should start with property (iv), and in this
language CSM is a natural transformation between the functor of constructible functions
and (Borel-Moore) homology. Our version is its Poincaré dual in the ambient space.

The listed four properties (i)–(iv) make CSM classes powerful tools of enumerative geom-
etry. For example, from the higher order terms of csm(Σ ⊂ M) one can calculate the Euler
characteristics of various sections of Σ, see [Alu13].

The CSM-, or more precisely, the SSM-deformation of Thom polynomials are due to
Ohmoto [Ohm16]. Various terms of SSM Thom polynomials can be calculated via geometry
[Ohm16, NO] or an analogue [RV18, FR18] of the interpolation property of Maulik-Okounkov
stable envelopes [MO19]. For example, we have

ssm-Tp(A1, ℓ = 0) = c1 +
(
−2c21 − c2

)
+
(
3c31 + c3 + 3c1c2

)
+
(
−4c41 − 6c21c2 − 7c1c3 + 3c22 − c4

)
+ . . . ,

or the same in Schur basis

(12) ssm-Tp(A1, ℓ = 0) = s1 − (2s11 + 3s2) + (3s111 + 9s21 + 7s3)

− (4s1111 + 18s211 + 11s22 + 28s31 + 15s4) + . . . .

In [FM24] the construction of the real version of SSM Thom polynomials is announced.

6.4. Motivic Segre (MS) Thom polynomials. In cohomology the fundamental class
concept [Σ ⊂ M ] ∈ H∗(M) for a singular subvariety Σ ⊂ M is consistent with push-forward
and pull-back. As mentioned, in K theory there are two versions for the concept fundamental
class: the class of the structure sheaf, and the class of a structure sheaf of a resolution pushed
forward. Roughly speaking, the first one is consistent with pull-back, and the second one
is consistent with push-forward. Neither are consistent with respect to the other operation.
The two concepts coincide if the singularity is mild (eg. rational).

Hence it is remarkable that an ℏ-deformed fundamental class concept exist that is consis-
tent with both push-forward and pull-back (in a certain sense) [BSY10, Ohm16, FRW21].
This characteristic class is called the motivic Chern class, often denoted by mc, mcy, or
mcℏ. The subscript is the deformation parameter, which is y classically (cf. Hirzebruch’s
χy genus), but we prefer ℏ showing its place in the landscape described in Section 6.1.

At ℏ = 0 the motivic Chern class is the “third” K theoretic fundamental class version we
alluded to in Section 6.1. In general it is different from the two mentioned above [Feh21],
but for Σ with mild singularities it coincides with both.

Here is an informative summary of some properties of motivic Chern classes (cf. the
properties of cohomological CSM classes of Section 6.3):

(i) It is consistent with push-forward (in a sense that involves the χy-genus of the fibers
of the map).

(ii) Its MS (motivic Segre) version

ms(Σ ⊂ M) =
mc(Σ ⊂ M)

cK(TM)
∈ K(M)[[ℏ]]

is consistent with pull-back (with appropriate transversality assumption of the map).
Here cK stands for total Chern class of a bundle in K theory. For example cK(L) =
1 + ℏL∗ for a line bundle L.

(iii) The MC classes satisfy normalization: if i : Σ ⊂ M is a smooth closed subvariety
then mc(Σ ⊂ M) = i∗(c

K(TΣ)).
(iv) The MC class is defined for all morphisms f : A → M of algebraic varieties, where

the mc(Σ ⊂ M) concept corresponds to the inclusion map Σ ⊂ M . In this generality
MC classes (hence MS classes too) are motivic:

mc(αf + βg) = αmc(f) + βmc(g).
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In fact, a precise definition should start with property (iv) in the language of mc being a
natural transformation between the functors Var(−) andK(−)[ℏ]. Here Var(M) is generated
by classes of maps A → M , where A can be singular, and f is not necessarily proper, modulo
additivity relations [BSY10].

The listed four properties (i)–(iv) make MC classes powerful tools of enumerative geom-
etry, even more so than CSM classes: The CSM class can be recovered from the MC class
by a simple algebraic procedure see eg. [FRW21, Rem 2.4].

Despite their importance, hardly anything is known about motivic Segre Thom polyno-
mials. Some initial results are summarized in [FR24]. A sample result is the motivic Segre
Thom polynomial of the closure of the A2 singularity, namely:

(13) ms-Tp(A2, ℓ = 0) =
1

(1 + ℏ)2
(
g11 + 2g2

)
− 1

(1 + ℏ)3
(
(−2 ℏ)g111 + (2− 5 ℏ)g21 + (1− 5 ℏ)g3

)
+

1

(1 + ℏ)4
(
(3 ℏ2)g1111 + (−7 ℏ+8 ℏ2)g211 + (1− 13 ℏ+11 ℏ2)g31 + . . .

)
+ . . . .

(The first coefficient that is unknown is that of g22.) Notice that the ℏ = 0 substitution
recovers the K theoretic Thom polynomial

KTp(A2, ℓ = 0) = (g11 + 2g2)− (2g21 + g3) + (g31)

from Section 6.2.

Remark 6.3. The ℏ = −1/(s− 1) substitution in the ms-Tp above gets rid of denominators:

(14)
1

s2
ms-Tp(A2, ℓ = 0) =

(
g11 + 2g2

)
+
(
(2 + 3s)g111 + (5 + 12s)g21 + (5 + 12s)g3

)
+ . . . ,

displaying further positivity (and other) properties of the coefficients.

7. Positivity

In our summary of various versions of Thom polynomials we focused on their stability
structure theorems—such as Theorem 3.3 and Section 4.1. Another intriguing bouquet of
structure theorems/conjectures is about the signs of the coefficients of various expansions
of Thom polynomials.

7.1. Schur type positivities. The reader probably already noticed Schur-positivity in
many examples in earlier sections.

Theorem 7.1. [PW07] The expansion of Thom series of contact singularities in Schur
polynomials have non-negative coefficients.

The proof is based on a geometric observation. Therefore the algebraic forms of Thom
series, such as those in Sections 4.3–4.5, must automatically produce Schur-positive expan-
sions. This fact imposes convex geometric constraints on the ingredients of those formulas,
such as the q-polynomial of Section 4.3.

Schur-positivity seems to extend to the following versions:

• The K theory Thom polynomials of Section 6.2. Here the rule is alternating sign of
the Grothendieck polynomial expansion—both in the “economical” version of the
formula and the “stable” version; see [RS23].

• All known SSM Thom polynomials (cf. Section 6.3) of contact singularities satisfy
an alternating sign rule in their Schur expansions with respect to cohomological
degree, see eg. (12), as well as [TPP].
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• Much fewer coefficients of much fewer motivic Segre Thom polynomials are known,
but they all seem to satisfy obvious sign rules in their Grothendieck expansions, see
the different examples: (13) and (14). In analogous situations, besides sign rules,
many log-concavity properties have been observed too. Hence it is natural to predict
that log-concavity will hold in one way or another for Grothendieck expansions of
motivic Segre Thom polynomials.

Remark 7.2. Why are the Schur expansion and its K-theory counterpart, the Grothendieck
expansion, considered the natural expansions for geometrically relevant polynomials? One
answer lies in geometry: Schur and Grothendieck polynomials represent the fundamental
classes of Schubert varieties in Grassmannians, which are essential components of geometric
structures. However, for SSM Thom polynomials, it may be even more natural to expand
in the basis of SSM classes of Schubert varieties (cf. [FR18, PR22]). These functions are
known as s-tilde functions [FR18, §8.1]. Indeed, the known SSM Thom polynomials exhibit
s-tilde positivity, as demonstrated in [TPP]. The analogous property in K-theory involves
MS Thom polynomials expanded in the motivic Segre classes of Schubert varieties.

7.2. Monomial positivity for Morin singularities. In algebraic combinatorics certain
polynomials satisfy not only Schur positivity but a stronger property: e-positivity. For
Thom polynomials this property translates to positive coefficients, when we expand in Chern
monomials. For example

Tp(A5, ℓ = 0) = c51 + 10c31c2 + 25c21c3 + 10c1c
2
2 + 38c1c4 + 12c2c3 + 24c5

= s11111 + 14s2111 + 35s221 + 71s311 + 92s32 + 154s41 + 120s5

is not only Schur positive but also monomial positive. In general, only the weaker Schur
positivity holds:

Tp(I24, ℓ = 0) = 2c21c
2
2 + 3c32 − 2c31c3 + 2c1c2c3 − 3c23 − 5c21c4 + 9c2c4

= 2s2211 + 5s222 + 12s321 + 4s33 + 16s42 + 6s51 + 6s6.

As observed in [Rim01], for singularities that are not of type Ak (i.e., not “Morin singulari-
ties”), the monomial expansion necessarily includes both positive and negative coefficients.
This leaves the case of Morin singularities. Interestingly, all known Thom polynomials of
Morin singularities are monomial positive [Rim01, Conj. 5.5]. Although this conjecture has
remained open for over 20 years, it has established connections to other areas of mathemat-
ics, such as the Green-Griffiths-Lang conjecture and hyperbolicity questions [Bér19].

8. What else should have been covered in this paper?

We conclude this informal survey on Thom polynomials with a list of topics that deserve
to be mentioned.

8.1. Singularities of maps with structures. We studied singularities of “general” maps.
In certain applications, however, the natural maps are not generic; they possess additional
structures. For example, they may be Lagrange maps, Legendre maps, or have specific
symmetries, or special incidences with another object. We direct the reader to [Kaz03a,
Kaz03b] and references therein.

8.2. Thom polynomials of right-left singularities. We discussed right-left singularities
in Section 2.1, but we did not explore the properties of their Thom polynomials or their
relevance in geometry. For more information, see [SO18] and the references therein.

8.3. The case ℓ < 0. Maps from larger to smaller dimensional spaces have positive-
dimensional fibers, and consequently, both their local and global singularity theory behave
differently. Thom polynomial theory exists in this context as well; see for example [Kaz06].
Matszangosz and Fehér announced that they found the analogue of Thom series for singu-
larities with ℓ < 0.
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8.4. Avoiding ideals. [FR04, Ter09] The Thom polynomial is the fundamental class of a
singularity locus, and hence it is naturally supported on the singularity locus. There are,
however, other polynomials in the same variables that are also supported on the same locus.
These polynomials form an ideal known as the “avoiding ideal” of the singularity. If any
element of the avoiding ideal of η is non-zero for a map f : M → N , then the map f must
contain η points (or worse)—meaning that η cannot be avoided. An avoiding ideal shares
a property with a homogeneous principal ideal: its lowest degree part is one-dimensional,
spanned by the Thom polynomial. Determining all the ideal generators of avoiding ideals is
an intriguing question with promising applications.

8.5. Hierarchy of singularities measured by Thom polynomials. [Rim01, FP09] Un-
derstanding concrete Thom polynomials has implications for classical local singularity the-
ory, too. In particular, Thom polynomials contribute to understanding the hierarchy of
singularities. By knowing the Thom polynomial of η and the symmetries of ζ, one can
define and compute an “incidence class” I(η, ζ). If this class is non-zero, it indicates that η
singularities must exist in any neighborhood of ζ, signifying their adjacency in the hierarchy
of singularities.

8.6. Multi-singularity formulas. The theory of Thom polynomials can be extended to
multi-singularities. This extension is arguably the most powerful interface of Thom poly-
nomials with enumerative geometry. A multi-singularity is a multiset of singularities η =
{η1, η2, . . . , ηr} with a distinguished element η1. The η points of a map f : Mm → Nn are
the points x1 in M such that f(x1) has exactly r preimages x1, . . . , xr, and the singularity of
f at xi is ηi. In multi-singularity theory, one seeks universal formulas for multi-singularity
loci and their f -images. The simplest case is η = {A0, A0}, where we aim to find the
cohomology class of the double point locus of a map f : M → N . The double point formula

[{A0, A0}(f)] = f∗([f(M)])− cℓ(f)

is just the tip of the iceberg. Recent developments in multi-singularity formulas reveal con-
nections to interpolation [Kaz03b, MR10], tautological integrals on Hilbert schemes [BS21],
and algebraic cobordism [Ohm24b].
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[BSY10] J.-P. Brasselet, J. Schürmann, and S. Yokura. Hirzebruch classes and motivic Chern classes for
singular spaces. J. Topol. Anal., 2(1):1–55, 2010.
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