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Abstract. We provide a criterion for establishing lower bounds on the rate of convergence in

f -variation of a continuous-time ergodic Markov process to its invariant measure. The criterion

consists of novel super- and submartingale conditions for certain functionals of the Markov process.

It provides a general approach for proving lower bounds on the tails of the invariant measure and

the rate of convergence in f -variation of a Markov process, analogous to the widely used Lyapunov

drift conditions for upper bounds. Our key technical innovation produces lower bounds on the

tails of the heights and durations of the excursions from bounded sets of a continuous-time Markov

process using path-wise arguments.

We apply our theory to elliptic diffusions and Lévy-driven stochastic differential equations with

known polynomial/stretched exponential upper bounds on their rates of convergence. Our lower

bounds match asymptotically the known upper bounds for these classes of models, thus establishing

their rate of convergence to stationarity. The generality of the approach suggests that, analogous to

the Lyapunov drift conditions for upper bounds, our methods can be expected to find applications

in many other settings.
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1. Introduction

Quantifying the rate of convergence of a Markov process X towards its invariant measure π is

a fundamental problem in probability and its applications (see [11,26] and the references therein).

The literature typically focuses on upper bounds on the rates of convergence (see e.g. [9, 13, 28]).

One of the most effective approaches to address this problem is via Lyapunov functions and the

corresponding drift conditions. This approach has been widely used since the seminal work of

Meyn and Tweedie [26, 27] and, due to its broad applicability and robustness, remains one of the

most popular methods for quantifying upper bounds on the convergence rates of Markov processes.

However, an important limitation of this method, particularly in the case when the upper bounds

are subexponential, is the lack of the corresponding lower bounds, which would allow the user to

establish the rates of convergence to stationarity. In this paper we develop a theory based on novel
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drift conditions that yield lower subexponential bounds on the rates of convergence in a general

setting. We apply it to models previously studied using Lyapunov functions for upper bounds and

establish asymptotically matching lower bounds.

Our results can be summarized as follows: take a Lyapunov function V : X → [1,∞) (where X
is the state space of X), which may (but need not) satisfy the upper bound drift conditions in [9]

(also given in (10) below). Construct scalar functions φ : (0, 1] → R+ and Ψ : [1,∞) → [1,∞) such

that, outside of a compact set, the following processes

(1) 1/V (X)−
∫ ·

0
φ ◦ (1/V )(Xs)ds and Ψ ◦ V (X)

are a supermartingale and a submartingale, respectively. Then we obtain lower bounds on the tails

of the return times of X to compact sets, the tails of the invariant measure π of X and the rate of

convergence in f -variation (including total variation) distance of the law of Xt to π.

Building on ideas in [13, 15], we provide general Foster-Lyapunov-type drift conditions imply-

ing lower bounds for all times on the convergence rates of ergodic Markov processes. The super-

and submartingale properties of the processes in (1) are typically verified using the infinitesimal

characteristics of X and Itô’s formula. In conjunction with the classical drift conditions for up-

per bounds [9, 12, 28], our results offer a comprehensive and robust approach to quantifying the

convergence rate of ergodic Markov processes.

As pointed out in [13, Sec. 5], deriving a lower bound on the rate of convergence to stationarity

typically requires a deep understanding of the tail of the invariant measure, which is available only

in very special cases (e.g. Langevin diffusions). The main contribution of this paper consists of

providing a robust framework for deriving lower bounds on the convergence rates without prior

knowledge of the tail behavior of the invariant measure. For example, in the context of (possibly

Lévy-driven) stochastic differential equations with multiplicative noise, our theory makes it possible

to establish lower bounds on f -variation for all times (as opposed to along a sparse sequence of

times going to infinity as in [15]). To the best of our knowledge, such results were previously only

available for Langevin diffusions [15, Thm 2.1], cf. Section 2.6 below.

The remainder of the paper is structured as follows. Section 2 states the novel L-drift condition

and formulates our main theorems for ergodic Markov processes. Section 3 presents the applica-

tions of the results of Section 2 to classes of models, studied in [9, 12], exhibiting subexponential

(and exponential) ergodicity. Sections 4 and 5 contain the proofs of the results of Section 2. More

precisely, Sections 4 states and proves lower bounds for the tails of return times to bounded sets

for càdlàg semimartingales. Section 5 applies these results in the context of càdlàg ergodic Markov

processes to prove the theorems of Section 2. The proofs of the results, stated in Section 3, for

ergodic elliptic diffusions, Lévy-driven stochastic differential equations and hypoelliptic stochastic

damping Hamiltonian system are in Section 6. Finally, Section 7 offers concluding remarks, high-

lights some open questions and describes future directions of research. (See [3] for short YouTube

presentations describing the applications and proofs of our main results.)

https://youtu.be/r3eiRywC0js?si=XAuPbHMpDoe-bHud
https://youtu.be/r3eiRywC0js?si=sJ_NA4GuQP8cVGcJ
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2. Main results

2.1. Basic definitions. Let X = (Xt)t∈R+ , where R+ := [0,∞), be a strong Markov process

on a filtered space (Ω,F , (Ft)t∈R+), taking values in a locally compact separable metric space

X , endowed with the Borel σ-algebra B(X ). For any x ∈ X , denote by Px and (resp. Ex) the

associated probability measure (resp. expectation), satisfying Px(X0 = x) = 1, and assume that

X has càdlàg (i.e. right-continuous paths with left limits) paths. The process X is ν-irreducible

(resp. Harris recurrent), where ν is a σ-finite measure on B(X ), if for every A ∈ B(X ), such that

ν(A) > 0, and x ∈ X we have Ex[
∫∞
0 1{Xt ∈ A}dt] > 0 (resp. Px(

∫∞
0 1{Xt ∈ A}dt = ∞) =

1). The probability measure π on (X ,B(X )) is an invariant measure for X if for all bounded

measurable functions g : X → R+ and t ∈ R+ we have
∫
X Ex[g(Xt)]π(dx) =

∫
X g(x)π(dx). A

Harris recurrent process is positive Harris recurrent if it admits an invariant measure. For any

measurable function f : X → [1,∞), the f -variation of a signed measure µ on (X ,B(X )) is given

by ∥µ∥f := sup{|
∫
X g(x)µ(dx)| : g : X → R measurable, |g| ≤ f}. In the special case f ≡ 1

we obtain the total variation ∥µ∥TV := ∥µ∥f of the measure µ. The process X is ergodic if

limt→∞ ∥Px(Xt ∈ ·)− π(·)∥TV = 0 for all x ∈ X .

As we are interested in convergent Markov processes, unless explicitly stated otherwise, the

following standard assumption holds throughout the paper: X = (Xt)t∈R+ is an ergodic, positive

Harris recurrent Markov process with càdlàg paths and invariant measure π on (X ,B(X )).

2.2. Lower bounds: the tails of π and f-variation. The lower bounds on the tails of the

invariant measure and the rate of convergence ofX will be implied by the following L-drift condition.

Assumption (L(V ,φ,Ψ)). Let V : X → [1,∞) be a continuous function, such that, for all x ∈ X ,

lim supt→∞ V (Xt) = ∞ Px-a.s. Assume also there exists ℓ0 ∈ [1,∞) such that (i) and (ii) hold.

(i) Let φ : (0, 1] → R+ be non-decreasing1 and continuous, such that r 7→ rφ(1/r) is decreasing on

[1,∞) and limr→∞ rφ(1/r) = 0. Assume that for b ∈ R+ and any x ∈ X , the process

1/V (X)−
∫ ·

0
φ(1/V (Xu))du− b

∫ ·

0
1{V (Xu) ≤ ℓ0}du is an (Ft)-supermartingale under Px.

(ii) Let Ψ : [1,∞) → [1,∞) be a differentiable, increasing, submultiplicative2 function satisfying

the following: for any ℓ ∈ (ℓ0,∞), there exists a constant Cℓ ∈ (0,∞) such that

(2) Px(T
(r) < S(ℓ)) ≥ Cℓ/Ψ(r) for all r ∈ (ℓ+ 1,∞) and x ∈ {ℓ+ 1 ≤ V },

where T (r) := inf{t ≥ 0 : V (Xt) > r} and S(ℓ) := inf{t ≥ 0 : V (Xt) < ℓ}.

In applications, the L-drift condition L(V ,φ,Ψ) is verified via the infinitesimal generator ofX, see

Theorem 2.7, Subsection 2.4 and examples in Section 3 below. In particular, the exit probability

estimate in (2) is typically implied by a submartingale property of the (appropriately stopped)

process Ψ(V (X)), see Lemma 2.8 below for details.

1A non-decreasing function may have intervals of constancy, while an increasing function does not; similarly for

non-increasing and decreasing.
2A function Ψ : [1,∞) → [1,∞) is submultiplicative if it satisfies Ψ(r1 + r2) ≤ CΨ(r1)Ψ(r2) for some constant

C ∈ (0,∞) and all r1, r2 ∈ [1,∞) [34, Def. 25.2].
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Theorem 2.1 gives a lower bound on the tail of invariant measure π of the process X under

Assumption L(V ,φ,Ψ). Our lower bounds are in terms of the functions V , φ, Ψ and a logarithmic

correction:3 for any ε, q ∈ (0, 1), define the function

(3) Lε,q(r) := rφ(1/r)Ψ(2r/(1− q))(log log r)ε, r ∈ [1,∞).

Theorem 2.1 (Tails of the invariant measure). Let Assumption L(V ,φ,Ψ) hold. Then for any

q, ε ∈ (0, 1) there exists a constant cε,q ∈ (0, 1) such that

(4) cε,q/Lε,q(r) ≤ π(x ∈ X : V (x) ≥ r) for all r ∈ [1,∞).

Theorem 2.2 provides a lower bound on the rate of f -variation convergence of X to its invariant

measure π under Assumption L(V ,φ,Ψ).

Theorem 2.2 (Lower bounds for f -variation). Let Assumption L(V ,φ,Ψ) hold. Consider a func-

tion f : X → [1,∞), satisfying f = f⋆ ◦ V for some differentiable f⋆ : [1,∞) → [1,∞). Assume

further that (a) and (b) hold.

(a) Let a continuous function h : [1,∞) → [1,∞) be such that the function g := h/f⋆ is increasing

(and without loss of generality g(1) = 1) and limr→∞ g(r) = ∞. Let v : X × R+ → [1,∞) be

increasing in the second argument and satisfy

Ex[h ◦ V (Xt)] ≤ v(x, t) for all x ∈ X and t ∈ R+.

(b) Pick ε, q ∈ (0, 1) and a constant cε,q ∈ (0, 1), such that the inequality in (4) holds with the

function Lε,q, and consider a continuous function a : [1,∞) → R+, satisfying

a(t) ≤ f⋆(g
−1(t))cε,q/Lε,q(g

−1(t)) for all t ∈ [1,∞),

where g−1 is the inverse of the increasing function g in (a). Suppose also that the function A(t) :=

ta(t) is increasing, limt→∞A(t) = ∞ and denote its inverse by A−1.

Define the function rf : X × [1,∞) → R+ by rf := a ◦A−1 ◦ (2v). Then

(5) rf (x, t)/2 ≤ ∥Px(Xt ∈ ·)− π(·)∥f for all x ∈ X and t ∈ [1,∞).

We obtain the lower bound on the rate of convergence in the total variation distance by choosing

f⋆ ≡ 1 (and hence f = f⋆ ◦ V ≡ 1) in the previous theorem.

Corollary 2.3 (Lower bounds for total variation). Let Assumption L(V ,φ,Ψ) hold and set f⋆ ≡ 1.

Assume there exist continuous functions h, a : [1,∞) → R+ and v : X × R+ → [1,∞), satisfying

conditions (a) and (b) in Theorem 2.2. Let r1 : X × [1,∞) → R+, r1 := a ◦ A−1 ◦ (2v), be as in

Theorem 2.2. Then the following lower bound holds

(6) r1(x, t)/2 ≤ ∥Px(Xt ∈ ·)− π(·)∥TV for all x ∈ X and t ∈ [1,∞).

Remark 2.4. (a) The lower bound in Theorem 2.2 is obtained by comparing the tail (with respect

to V ) of the invariant measure π to the tail of marginal distribution of V (Xt) at time t. The

function h in condition (a) of Theorem 2.2 aims to maximise the growth of r 7→ rπ({h ◦V ≥ r}) as
r → ∞ with respect to the growth of t 7→ Ex[h ◦ V (Xt)] as t → ∞, since this expectation controls

the tail of h ◦ V (Xt) via Markov’s inequality (see also Remark 5.2 below for more details).

3In this paper we adopt the convention that log x equals 1 for x ∈ (0, e) and the natural logarithm on [e,∞).
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(b) Given a Lyapunov function V , our methods generate lower bounds on the f -variation distances

with the property that the level sets of functions f form a subset of the level sets of V . This is

analogous to results concerning the upper bounds using a Lyapunov function V , see e.g. [9, Thm 3.2].

(c) The L-drift condition L(V ,φ,Ψ) is not restricted to Markov processes with a subexponential

invariant measure and rates of convergence. Indeed, in Section 3.1.3 below, Theorems 2.1 and 2.2

yield exponential lower bounds both on the tails of the invariant measures and the convergence

rates in a class of elliptic diffusion models where exponential upper bounds are known.

(d) By Theorem 2.1, the function a(t) in Assumption (b) of Theorem 2.2 (with f ≡ 1) provides

a lower bound on the tail of π. In applications it is often simpler to work with some function a

rather than the actual lower bound on the tail of π provided by Theorem 2.1, since the rate of

convergence in Theorem 2.2 is given in terms of the inverse of t 7→ A(t) = ta(t). In particular, under

assumptions of Theorem 2.2, inequality (4) implies 0 < f⋆(r)cε,q/Lε,q(r) ≤ f⋆(r)π(V ≥ r) → 0 as

r → ∞, making the growth of A(t) (as t → ∞) sublinear. This typically leads to subexponential

decay of a ◦A−1 and thus subexponential lower bounds on f -variation.

(e) The iterated logarithm term in (3), and thus in (5), is an artefact of the proof of Theorem 2.1,

where the lower bounds on modulated moments are used to establish lower bounds on the invariant

measure π. In all our examples in Section 3, the iterated logarithm term is negligible, suggesting

that it will not affect other applications. While we cannot fully remove this term, it is possible to

modify the proof so that only arbitrarily many (instead of two) iterations of the logarithm remain.

(f) The submultiplicative function [34, Def. 25.2] (cf. footnote on page 3) Ψ in L(V ,φ,Ψ) transforms

the process V (X) into a submartingale. The function Ψ features in lower bounds in our theorems

through definition (3). Since a product of submultiplicative functions is submultiplicative and,

by [34, Prop. 25.4], r 7→ g(cr + γ)α (where c, γ, α > 0) is submultiplicative if g is, it follows that

r 7→ ra(log r)d exp(brp) is submultiplicative for (i) b > 0 and p ∈ (0, 1), (ii) b = 0 and a > 0 or (iii)

b = a = 0 and d ≥ 0. This form is similar to the subgeometric rate functions used in [9, 12]. In

fact, the rate functions in [9,12] are submultiplicative [35, Eq. (5)], a crucial fact used in the proofs

of [9, 12].

2.3. Modulated moments for the process. A classical approach to the stability of Markov

processes relies heavily on decomposing the path of the process as the sum of excursions from some

petite set (see definition of a petite set in (28) in Section 5.2 below). Many results, including bounds

on the invariant measure, the rate of convergence and moderate deviations have been established

using such decomposition (see [10] and the references therein for more details). It is thus natural for

quantitative bounds on the tail of the modulated moments (i.e. expectations of additive functionals

of excursions from petite sets) to contain essential information necessary for bounding the rate of

convergence to the invariant measure and related quantities.

The upper bounds on the modulated moments are well understood, see e.g. [9, 10]. In contrast,

very little is known about the lower bounds on modulated moments. There are some known results

regarding the finiteness of return time moments, e.g. [23], which however are not sufficiently strong

to either characterize the tail behavior of the return time or complement the findings of [9, Thm 4.1]

for general ergodic Markov processes. In the following theorem, we both generalize and strengthen
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these results by accommodating a broader range of processes and providing lower bounds for the

tail behavior. Moreover, in Section 3, we show that, for a wide range of models used in applications,

our lower bounds on the return times match the upper bounds from [9].

For a set D ∈ B(X ) and δ ∈ (0,∞), let τD(δ) := inf{t > δ : Xt ∈ D} (with convention

inf ∅ := ∞) be the first hitting time of D after time δ (recall that τD(δ) is an (Ft)-stopping

time by [16, Thm 1.27]). In Theorem 2.5 we provide, under the L-drift condition L(V ,φ,Ψ),

lower bounds on the tails of return times to arbitrary subsets of sublevel sets of the Lyapunov

function V . Crucially, in Section 5.2 below, we prove that, under the L-drift condition, all petite

sets are contained in the sublevel sets of V , making Theorem 2.5 applicable to any petite set of X.

Theorem 2.5. Let Assumption L(V ,φ,Ψ) hold. Consider a set D ∈ B(X ), with D ⊂ {V ≤ m}
for some m ∈ (1,∞), and fix q ∈ (0, 1) and ε = (1− q)/2. Then the following statements hold.

(a) Let h : [1,∞) → [1,∞) be a non-decreasing continuous function and Gh the inverse of the

increasing continuous function v 7→ εh(v)/(vφ(1/v)) on [1,∞). Then for every x ∈ X there exist

constants C, r0, δ ∈ (0,∞), such that

Px

(∫ τD(δ)

0
h ◦ V (Xs)ds ≥ r

)
≥ C

Ψ(2Gh(r)/(1− q))
for all r ∈ (r0,∞).

(b) Let G1 be the inverse of the increasing continuous function v 7→ ε/(vφ(1/v)) on [1,∞). Then

for every x ∈ X there exist constants C, δ, t0 ∈ (0,∞), such that

Px(τD(δ) ≥ t) ≥ C

Ψ(2G1(t)/(1− q))
for all t ∈ (t0,∞).

Remark 2.6. The proof of Theorem 2.5 in Section 5 below in fact shows that the inequalities

in Theorem 2.5 hold for every δ ∈ (0,∞), satisfying Px(V (Xδ) > r) > 0 for all x ∈ X and

r ∈ [1,∞). This condition holds for all δ > 0 in the models of Section 3 below, because their

marginal distributions at positive times have full support with respect to the Lebesgue measure.

2.4. How are Theorems 2.1, 2.2 and 2.5 applied in practice? Continuous-time Markov

processes, where upper bounds on the rate of convergence have been established, are typically

Feller [9,12]. It is thus natural to give sufficient conditions for the assumptions of Theorems 2.1, 2.2

and 2.5 in terms of the infinitesimal characteristics of X expressed via its extended generator. In

this section we first provide tools for verifying the assumptions of our main theorems using the

generator of the process and then discuss their application in practice.

2.4.1. Generators and drift conditions. Following the monograph [8, Ch 1, Def (14.15)], let D(A)

denote the set of measurable functions g : X → R with the following property: there exists a

measurable h : X → R, such that, for each x ∈ X , t → h(Xt) is integrable Px-a.s. and the process

g(X)− g(x)−
∫ ·

0
h(Xs)ds is a Px-local martingale.

Then we write h = Ag and call (A,D(A)) the extended generator of the process X. Define the

left limit at t ∈ (0,∞) of the process X by Xt− := lims↑tXs and X0− = X0. The following

theorem provides a sufficient condition for the validity of Assumptions (i) and (ii) in the L-drift

condition L(V ,φ,Ψ).
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Theorem 2.7. Let a continuous V : X → [1,∞) satisfy lim supt→∞ V (Xt) = ∞ Px-a.s., all x ∈ X .

(a) Let φ : (0, 1] → R+ be a non-decreasing, continuous function, such that r 7→ 1/(rφ(1/r)) is

increasing on [1,∞) and limr→∞ 1/(rφ(1/r)) = ∞. If 1/V ∈ D(A) and there exist b, ℓ0 ∈ (0,∞)

such that

(7) A(1/V )(x) ≤ φ(1/V (x)) + b1{V (x) ≤ ℓ0} for all x ∈ X ,

then the process in L(V ,φ,Ψ)(i) is a supermartingale.

(b) Let Ψ : [1,∞) → [1,∞) be a differentiable, increasing, submultiplicative function. Assume X has

bounded jumps: for some constant d ∈ R+, we have Px (V (Xt)− V (Xt−) ≤ d for all t ∈ R+) = 1

for each x ∈ X . If Ψ ◦ V ∈ D(A) and there exist c, ℓ0 ∈ (0,∞) such that

(8) A(Ψ ◦ V )(x) ≥ −c1{V (x) ≤ ℓ0} for all x ∈ X ,

then inequality (2) in L(V ,φ,Ψ)(ii) holds for every ℓ ∈ (ℓ0,∞) and some constant Cℓ ∈ (0,∞).

If X has bounded jumps, Theorem 2.7 has a natural converse: Assumption L(V ,φ,Ψ)(i) and

the submartingale property in (9) of Lemma 2.8 below (which implies L(V ,φ,Ψ)(ii)) yield the

inequalities in (7) and (8) involving A(1/V ) and A(Ψ ◦ V ), respectively. As this fact is not used in

the paper, the details are omitted.

We proceed with Lemma 2.8, which provides a key step in the proof of Theorem 2.7(b). We

state it here because it is of independent interest in applications as it gives a sufficient condition for

the bound on the exit probability in L(V ,φ,Ψ)(ii) in terms of the submartingale condition in (9)

below. Denote t ∧ s := min{s, t}, t, s ∈ R+, and recall T (r) = inf{t ≥ 0 : V (Xt) > r}, r ∈ R+.

Lemma 2.8. Let a continuous V : X → [1,∞) satisfy lim supt→∞ V (Xt) = ∞ Px-a.s., for all

x ∈ X . Let Ψ : [1,∞) → [1,∞) be a differentiable, increasing, submultiplicative function. Assume

that for some d ∈ R+, we have Px(V (Xt)− V (Xt−) ≤ d for all t ∈ R+) = 1 for each x ∈ X . If for

some ℓ0, c ∈ (0,∞) and all r ∈ (ℓ0,∞), the process

(9) Ψ ◦ V (X·∧T (r)) + c

∫ ·∧T (r)

0
1{V (Xu) ≤ ℓ0}du is an (Ft)-submartingale under Px

for all x ∈ X , then the condition L(V ,φ,Ψ)(ii) holds with functions V and Ψ.

Remark 2.9. If X has jumps with heavy tails, a submartingale argument of Lemma 2.8 may fail

to imply the inequality in Assumption L(V ,φ,Ψ)(ii). This is because the overshoot of the process

Ψ◦V (X) need not be integrable (see e.g. the class of models in Section 3.2 below). It is thus crucial

that condition (ii) in Assumption L(V ,φ,Ψ) is given in terms of the probability Px(T
(r) < S(ℓ))

directly, rather than the submartingale property of Ψ ◦ V (X). As demonstrated in Section 3.2,

in such heavy-tailed cases it is possible to apply path-wise arguments directly to obtain the lower

bound on Px(T
(r) < S(ℓ)), see Section 6.2 for details.

The expected growth condition assumed in Theorem 2.2(a) is easily verified via Lemma 2.10.

Lemma 2.10. Let H : X → [1,∞) be continuous with H ∈ D(A) and let ξ : [1,∞) → [1,∞)

be concave, non-decreasing and differentiable, satisfying AH ≤ ξ ◦ H on X . Define the function
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Ξ(u) :=
∫ u
1 ds/ξ(s) for u ∈ [1,∞). Then we have

Ex[H(Xt)] ≤ Ξ−1(Ξ(H(x)) + t) for all x ∈ X and t ∈ R+.

Lemma 2.10 plays a key role in establishing the upper bound on the expected growth of the

process h ◦ V (X) in condition (a) of Theorem 2.2. If ξ is constant, the bound on Ex[h ◦ V (Xt)] is

linear in time. Crucially Lemma 2.10 permits an unbounded ξ, thus allowing the process h◦V (X) to

exhibiting superlinear expected growth. This is key for establishing matching stretched exponential

(see Sections 3.1.2 and 6.1.2 below) and exponential (Sections 3.1.3 and 6.1.3 below) lower bounds

on the rate of convergence.

2.4.2. How to find functions φ, Ψ (in L(V ,φ,Ψ)) and h (in Theorem 2.2(a)) for a given Lyapunov

function V ? The classical Lyapunov drift condition [9,12,28] requires the process V (X) to satisfy

the supermartingale condition in (10) below. If such V is available, verifying L(V ,φ,Ψ) reduces to

finding scalar functions φ and Ψ, such that 1/V (X)−
∫ ·
0 φ◦(1/V )(Xs)ds and Ψ◦V (X) are a super-

and a submartingale, respectively. Since Ψ is increasing, the Lyapunov function V : X → [1,∞)

determines the level sets of Ψ ◦ V , while Ψ : [1,∞) → [1,∞) modulates only the growth of Ψ ◦ V .

Thus, identifying Ψ is typically straightforward if V is given and the task is to find the slowest

growing Ψ so that Ψ◦V (X) is a submartingale. Identifying φ for a given V is also typically a simple

task, as it reduces to bounding the drift of 1/V (X) using Theorem 2.7(a) in Subsection 2.4.1.

The lower bound on the rate in Theorem 2.2 is based on the comparison of the tails of π and

the law of Xt. Recall from Remark 2.4(a) that the role of the function h in assumption (a) of

Theorem 2.2 is to balance a lower bound on r 7→ rπ({h ◦ V ≥ r}) and an upper bound on the

t 7→ Ex[h◦V (Xt)]. Typically, a good choice for h is such that r 7→ rπ({h◦V ≥ r}) grows to infinity

as r → ∞ at a polynomial (necessarily sublinear) rate, see Remark 5.2 below for more details.

Lemma 2.10, applied to H = h ◦ V , yields the desired upper bound on t 7→ Ex[h ◦ V (Xt)] (and

hence by Theorem 2.2 a lower bound on the rate of convergence).

2.5. Sketch of the proofs of the main results: Theorems 2.1, 2.2 and 2.5. The L-drift

condition L(V ,φ,Ψ) is the crucial ingredient of all the main theorems. The following implications

constitute key steps in their proofs:

L(V ,φ,Ψ)
(I)
==⇒

Lower bounds

on the tails of

return times to

bounded sets

(Thm 2.5)

(II)
==⇒

Lower bounds

on the tails of

invariant measure

(Thm 2.1)

(III)
===⇒

Lower bounds on

convergence rates

(Thm 2.2)

Table 1. The sequence of implications from L-drift conditions to convergence rates.

We now describe informally each of these implications. Implication (I) in Table 1 above requires

a lower bound on the return time of X to a sublevel set {V ≤ ℓ} of the Lyapunov function V (see

Figure 1). Under the L-drift condition L(V ,φ,Ψ)(i), the process 1/V (X)−
∫ ·
0 φ ◦ (1/V )(Xs)ds is a

supermartingale when V (X) is above level ℓ, implying an upper bound on the tail of the supremum

of 1/V (X). This upper bound can be converted into a lower bound on the tail of the return time
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V (x)

Px(T
(rq) < S(ℓ)) ≥ Cℓ/Ψ(rq)

rq := 2r
1−q

V

S(ℓ) t

Px(S(ℓ) ≥ (1− q)/(2φ(1/r)r)) ≥ qPx(T
(rq) < S(ℓ))

T (rq)

r
PX

T
(rq)

(S(r) ≥ (1− q)/(2φ(1/r)r)) ≥ q

S(r)

ℓ

Figure 1. Establishing the lower bound in Theorem 2.5 (implication (I)) requires

conditions (i) and (ii) in Assumption L(V ,φ,Ψ) to obtain lower bounds on the

duration S(ℓ) and the height sups∈[0,S(ℓ)]
V (Xs) of an excursion from the com-

pact set {V ≤ ℓ}. The bound on the height (blue inequality) follows directly

from L(V ,φ,Ψ)(ii), while the lower bound on the duration (red inequality) requires

a more involved argument (in Lemma 4.2 below) using the supermartingale

in L(V ,φ,Ψ)(i).

of V (X) below a level ℓ. The argument requires only the supermartingale property, see Lemma 4.2

below for details. In short, we first wait until the process V (X), started from V (x) > ℓ, reaches a

large level rq = 2r/(1−q) for r ≫ ℓ and any q ∈ (0, 1), before descending below ℓ. By L(V ,φ,Ψ)(ii)

we have the blue lower bound on the exit probability in Figure 1. On this event, once the process

V (X) is at V (XT (rq)), we apply the supermartingale property in L(V ,φ,Ψ)(i) to obtain the green

lower bound on the tail of the return time S(r), which implies the red lower bound. Since q ∈ (0, 1)

is arbitrary, these estimates imply boundedness of any petite set of X (Lemma 5.4 below) as well

as lower bounds on the tail probability Px

(∫ τD(δ)
0 h ◦ V (Xs)ds ≥ r

)
of the additive functional of

the excursion from any bounded set D, for x ∈ D, δ > 0 and τD(δ) = inf{t > δ : Xt ∈ D}
(Theorem 2.5).

Implication (II) in Table 1 above uses the fact that, under L(V ,φ,Ψ), all petite sets of X are

bounded and, crucially, that the lower bounds on the probability Px

(∫ τD(δ)
0 h ◦ V (Xs)ds ≥ r

)
hold

for all non-decreasing functions h : [1,∞) → [1,∞). These facts, together with the well-known

characterisation of Meyn and Tweedie in [25, Thm 1.2(b)] of the integrability with respect to π,

yield a lower bound on the tail of the invariant measure π in Theorem 2.1.

Implication (III) in Table 1 above requires a comparison of the lower bound on the tail of the

invariant measure π, obtained via implication (II), with the upper bound on the tail of the law

of V (Xt), controlled by the expected growth of the process V (X). Finally, an application of

Lemma 5.1, which is generalisation to f -variation norms of [15, Thm 3.6] (see also [13, Thm 5.1]),

yields our lower bound on the rate of convergence in Theorem 2.2.

2.6. Related literature.
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Lyapunov functions and lower bounds. A general Lyapunov-function approach to lower bounds

on the total variation distance along a sequence of times tending to infinity is developed in [15].

A key step [15, Thm 3.6] consists of converting lower bounds on the tails of the invariant measure

to the lower bounds on the total variation, an idea also exploited in the present paper (see its

generalisation from total to f -variation in Lemma 5.1 below). Crucially, in [15, Thm 3.2], Hairer

gives criteria (based on ideas from [38]) for establishing lower bounds on total variation along a

sequence of times tending to infinity when the invariant measure is not explicitly known. These

criteria can be summarised briefly as follows: let W1 and W2 be C2-functions on Rn such that

W1/W2 → 0 as W1 → ∞ and the inequalities AW1 ≥ 0 and AW2 ≤ F hold outside a compact set

for some function F , where A denotes the generator of X. Under these conditions [15, Thm 3.2]

implies
∫
Fdπ = ∞ and, together with [15, Thm 3.6], yields a sequence of times tn → ∞ at which

a lower bound on the total variation (based on non-integrability of F ) holds.

The critical step in [15] consists of finding a non-integrable function F , which essentially amounts

to the function AW2 being non-integrable:
∫
AW2dπ = ∞. Consequently, the lower bounds on

the tails of π hold only along a (possibly sparse) sequence of levels, yielding a (possibly sparse)

sequence of times tn → ∞ at which the lower bound on the total variation can be established. In

contrast, our approach provides lower bounds for all times by essentially analysing lower bounds as

upper bounds of 1/V (X) (as usual V denotes a Lypuanov function for X). In the language of [15]

this involves estimating the drift A(1/V ), and then using path-wise arguments for semimartingales

(Lemma 4.2 below) to characterise
∫
h ◦ V dπ = ∞ for all increasing scalar functions h. This idea

allows us to establish lower bounds on the tails of π for all levels and hence get lower bounds on the

convergence rate in f -variation for all times. Moreover, this suggests that establishing lower bounds

for all times using the approach in [15] directly would at the very least require a sufficiently rich

family of functions W
(κ)
2 , satisfying the assumptions of [15, Thm 3.2] (and hence

∫
AW

(κ)
2 dπ = ∞)

for all values of the parameter κ.

In the context of elliptic diffusions studied in Section 3.1 below, our results may be viewed as

a generalisation of the bounds along tn → ∞, obtained via [15, Thm 3.2], to all times t ∈ [1,∞).

If the process X has jumps with heavy tails as in Section 3.2 below, [15, Thm 3.2] appears to be

difficult to apply: for the Lévy-driven stochastic differential equation of Section 3.2, W1 is either not

integrable with respect to the jump measure of X or, if it is, we have AW1 < 0 outside of a compact

(see the formula for A in equation (44) and Remark 6.6 below for details). This makes the condition

0 ≤ AW1 < ∞ hard to satisfy outside of any compact set. Finally, it is feasible that our methods

could yield novel insights for the hypoelliptic Hamiltonian system studied in [15] and possibly

extend the result on lower bounds in [15, Thm 1.1] to all times. The function W1 in [15, eq. (5.15)],

satisfying AW1 ≥ 0 and thus making W1(X) a submartingale, is a natural candidate for Ψ ◦ V in

the L-drift condition L(V ,φ,Ψ)(ii). Determining the function V and estimating the asymptotic

behaviour of A(1/V ), so that L(V ,φ,Ψ)(i) holds, would enable the application of our results. This

is left for future research.

Lyapunov functions and upper bounds. The rate of convergence to invariant measures of

ergodic Markov processes has been studied extensively. The majority of the modern literature,

based on a probabilistic approach using Lyapunov functions, dates back to the seminal work of

Meyn and Tweedie in the 1990s [25, 27, 28] and primarily focuses on the upper bound estimates.



SUBEXPONENTIAL LOWER BOUNDS FOR f -ERGODIC MARKOV PROCESSES 11

These results have since been further improved and generalised. Notable contemporary versions

can be found in [2, 9] and Hairer’s lecture notes [13], see also monograph [11] and the references

therein. Briefly, if for some continuous V : X → [1,∞), increasing, differentiable, concave ϕ :

[1,∞) → [1,∞), a closed petite set (defined in (28) below) A ∈ B(X ) and a constant b ∈ R+, the

process

(10) V (X) +

∫ ·

0
ϕ ◦ V (Xu)du− b

∫ ·

0
1{Xu ∈ A}du is a supermartingale,

the following statements hold (see e.g. [9]):

(a) the process X is Harris recurrent with invariant measure π and
∫
X ϕ ◦ V (x)π(dx) < ∞;

(b) r∗(t)∥Px(Xt ∈ ·)− π(·)∥TV ≤ CV (x), where r∗(s) := ϕ ◦H−1
ϕ (s) and Hϕ(u) =

∫ u
1

ds
ϕ(s) , u ≥ 1.

Since this approach relies on transforming the state space with a Lyapunov function V , key

information may be lost, potentially resulting in poor upper bound estimates on the convergence

rate (see the motivating example in Section 3.1 below; see also Example 3.5). This naturally

motivates a general study of lower bounds in the context of Lyapunov functions presented in this

paper, particularly in the case when the upper bounds on the rate of convergence are subexponential.

As explained in Section 2.4, our results naturally augment the existing Lyapunov function approach

for the stability of Markov processes and provide a robust method for checking the quality of upper

bound estimates obtained via a given Lyapunov function.

Poincaré inequalities and the rates of convergence. These functional analytic techniques

typically work directly with the infinitesimal generator and are thus not dependent on the poten-

tially suboptimal choice of a Lyapunov function (see e.g. [2, 30]). However, due to their analytical

nature, such methods often require more restrictive (typically global rather than local) assump-

tions on the behavior of the transition operator of the process. Additionally, even under strong

assumptions (e.g. reversibility), the literature addressing lower bounds remains sparse.

Potential theory and Lévy-driven Ornstein-Uhlenbeck (OU) processes. A potential the-

oretic approach for the stability of a class of Lévy-driven OU-processes, arising as limits of mul-

ticlass many-server queues, has been developed in [1, 32]. In contrast to our results, the lower

bounds [32, Thm 1.2] for the general case of their models hold along a sequence of times tn → ∞.

The theory in [32] gives no information on the sparsity of the sequence (tn)n∈N. However, in some

special cases of the models in [1,32], matching lower and upper bounds for all t ∈ [1,∞) are estab-

lished using Hairer’s result [13, Thm 5.1]. In these special cases, the precise decay of the tails of

the invariant measure of the model in [1] is established using analytical methods.

Mixing coefficients of Rosenblatt and Kolmogorov. Convergence to stationarity of an er-

godic Markov process can also be quantified via Rosenblatt’s and Kolmogorov’s mixing coefficients.

Veretennikov [36] provides upper bounds on the coefficients for polynomialy ergodic elliptic diffu-

sions, cf. Section 3.1.1 below. In the special case when the noise is additive, the corresponding

lower bounds on the coefficients are given in [37] (for discrete-time additive-noise case see [18]).

Markov Chain Monte Carlo. The vast majority of the convergence theory for Markov Chain

Monte Carlo algorithms concerns upper bounds, see e.g. [11] and the references therein. In com-

parison, lower bounds on the rate of convergence are sparse. Some recent model dependent results
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are given in [5,6]. However, the tools used appear to be hard to extend to general ergodic Markov

processes discussed in this paper.

Ergodic theory. Convergence of a Markov process to its invariant measure is closely related to

the decay of correlations and the mixing of dynamical systems in ergodic theory. In this setting,

seminal papers [22, 33] establish asymptotically matching polynomial upper and lower bounds on

the mixing rates using operator renewal theory. This approach extends a classical probabilistic

result of Rogozin, bounding the remainder term in the renewal theorem [31].

It would be natural to consider extending Rogozin’s approach to obtain lower bounds on the

convergence rates of Markov processes towards their invariant measures. While this might be

achievable, as suggested in [24], employing renewal theory would likely require much stronger

assumptions on the process than in the present paper. Moreover, in this context, lower bounds

on the rates of convergence can be established only if both upper and lower bounds on the model

parameters are assumed to match. In contrast, as demonstrated by the examples in Section 3,

our approach yields asymptotically matching lower bounds on the rate of convergence even for the

models with oscillating parameters. Adapting the techniques from [22,33] to the context of ergodic

Markov processes studied in this paper would appear to lead to weaker results.

3. Applications to elliptic diffusions, Lévy-driven SDEs and hypoelliptic

stochastic damping Hamiltonian systems

We now apply the results of Section 2 to stochastic models used across probability and its

application. We mostly consider models where Lyapunov drift conditions have been developed to

obtain upper bounds on the rates of convergence. The examples are chosen to demonstrate the

robustness and the complementary nature of our approach to the existing theory for upper bounds:

we cover the classes of models studied in [9, Sec. 5] and [12, Sec. 3]. In particular, we analyse

models exhibiting polynomial, stretched exponential and exponential ergodicity and in all cases

provide lower bounds, which asymptotically match known upper bounds. More precisely, we give

lower bounds in f -variation for polynomially ergodic elliptic and hypoelliptic diffusions, studied

in [12, Sec. 3] and [9,39], respectively. For brevity, in all other examples we consider total variation

(even though our methods could handle f -variation in these cases) and show that our lower bounds

match asymptotically the upper bounds in [9, 12].

The proofs of the results in this section, contained in Section 6 below, typically involve verifying

Assumption L(V ,φ,Ψ) via Theorem 2.7 and the condition in (a) of Theorem 2.2 via Lemma 2.10.

In all examples of this section, the dependence of the multiplicative constant on the initial position

x ∈ X can be obtained explicitly from our main estimate in (5) of Theorem 2.2. However, for ease

of presentation, the explicit dependence on the starting point has been omitted.

3.1. Elliptic diffusions. In this section we apply our results to obtain lower bounds on the rate of

convergence to stationarity of elliptic diffusions. We first introduce the general form of the model

and give a simple motivating example. In Sections 3.1.1 and 3.1.2 we discuss the polynomial and

stretched exponential cases, respectively. We stress that our assumptions allow multiplicative noise

with unbounded instantaneous variance of the process. Example 3.5 of Section 3.1.1 demonstrates

the necessity of two-sided asymptotic assumptions on the coefficients (used in this section) for
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obtaining the actual rate of convergence to stationarity. It also shows that upper bounds on the

rate of convergence, established in [9,12,36] using asymptotic upper bounds on the coefficients only,

may be orders of magnitude larger than the actual convergence rate.

Section 3.1 concludes with the class of elliptic diffusions exhibiting exponential ergodicity (see

Section 3.1.3 below). Even though our main focus is on subexponential ergodicity, Section 3.1.3

shows that our methods for lower bounds are also applicable to the exponentially ergodic case.

For n ∈ N, let the process X = (Xt)t∈R+ with state space X := Rn be the unique strong solution

of the stochastic differential equation (SDE)

(11) Xt = X0 +

∫ t

0
b(Xs)ds+

∫ t

0
σ(Xs)dBs,

where the functions b : Rn → Rn and σ : Rn → Rn×n are locally Lipschitz (i.e. for every l > 0

there exists a finite constant cl such that |b(x)− b(y)|+ |σ(x)− σ(y)| ≤ cl|x− y| for all x, y ∈ Rn

with |x|, |y| < l), and (Bt)t∈R+ a standard n-dimensional Brownian motion. Here and throughout

we denote by | · | and ⟨·, ·⟩ the Euclidean norm and standard scalar product on Rn, respectively. In

particular, |x|2 = ⟨x, x⟩ for all x ∈ Rn. Let Σ := σσ⊺, where σ⊺ is the transpose of the matrix σ, be

uniformly elliptic: ⟨Σ(x)y, y⟩ ≥ δa|y|2 for some δa > 0 and all y, x ∈ Rn. The diffusion X in (11) is

assumed to be ergodic with an invariant measure π.

Motivating example: Consider the following toy example of an elliptic SDE (11) with n = 1 (i.e.

X = R), σ ≡ 1, and b(x) = −x/|x| for all |x| > 1. Applying the generator A of X to the Lyapunov

function V (x) = 1+x2 yields AV (x) ≤ −V (x)1/2 for all x ∈ R with |x| large. Then, for every initial

condition x ∈ R, an application of the drift condition from [9, Thms 3.2 and 3.4] (see (10) above)

with V (x) = 1 + x2 (and ϕ(r) proportional to
√
r as r → ∞) implies the following upper bound:

∥Px(Xt ∈ ·) − π(·)∥TV ≤ Cx/t for all t ∈ [1,∞) and some constant Cx ∈ (0,∞). Given that the

process X is in fact exponentially ergodic (use [9, Thms 3.2 and 3.4] with V (x) = exp(|x|) for large
|x|), it is evident that the upper bounds obtained through Lyapunov drift condition (10) may be ex-

ceedingly inaccurate. Furthermore, this example demonstrates that the classical Lyapunov-function

theory for upper bounds is not sufficient for characterising the processes that are subexponentially

ergodic. We now apply the results in Section 2 to address this problem by establishing the actual

subexponential rate of convergence using our Lyapunov-function drift conditions in L(V ,φ,Ψ).

3.1.1. Polynomial tails. The following assumption ensures polynomial upper bounds on the tails of

the invariant measure and the rate of convergence in total variation [12, Sec 3.2], [36]. Recall that

a function g : Rn → R satisfies g(x) = o(1) as |x| → ∞ if lim|x|→∞ supu∈Rn,|u|=1 g(u|x|) = 0.

Assumption Ap. There exist α, β, γ ∈ (0,∞) and ℓ ∈ [0, 2), such that 2−ℓ < 2+(2α−γ)/β =: mc

and the coefficients b and Σ = σσ⊺ of (11) satisfy (as |x| → ∞)

⟨b(x), x/|x|⟩/|x|ℓ−1 = −α+ o(1), ⟨Σ(x)x/|x|, x/|x|⟩/|x|ℓ = β + o(1), Tr(Σ(x))/|x|ℓ = γ + o(1).

As defined in [12], Langevin tempered diffusion on Rn, given by a smooth π̃ : Rn → (0,∞)

(proportional to the density of π on Rn), satisfies SDE (11) with coefficients Σ(x) = In/π̃(x)
2d,

where In is the identity matrix and d ≥ 0, and b(x) = (1 − 2d)∇(log π̃)(x)/(2π̃(x)2d), where ∇
denotes the gradient. If d = 0, we get the classical Langevin diffusion with bounded volatility.

This is an important class of diffusions because, by construction, their invariant measure equals π.
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They satisfy Assumption Ap when 1/π̃(x)2d is proportional to |x|ℓ, with ℓ ∈ [0, 2), and ⟨∇π̃(x), x⟩
is proportional to π̃(x) as |x| → ∞.

When π has polynomial tails, upper bounds for the convergence in total variation for Langevin

tempered diffusions on Rn (as well as their generalisation in Assumption Ap) were studied in [12,

Sec 3.2]. In this section we apply our methods under Assumption Ap to obtain matching lower

bounds for the results in [12], establishing the rate of convergence to stationarity.

Theorem 3.1. Let Assumption Ap hold. Pick k ∈ [0, ℓ+ (2α− γ)/β) and fix the critical exponent

αk := mc/(2− ℓ)− 1− k/(2− ℓ) = (2(α+ β)− γ)/((2− ℓ)β)− 1− k/(2− ℓ). Then for the function

fk(x) := 1 + |x|k, a starting point x ∈ Rn and ε > 0, there exists a constant ck,ε ∈ (0,∞) such that

ck,ε/t
αk+ε ≤ ∥Px(Xt ∈ ·)− π(·)∥fk for all t ∈ [1,∞).

The next result provides lower bounds on the tail of the invariant measure π and the return time

τD(δ) = inf{t > δ : Xt ∈ D} of the diffusion X to a bounded set D ∈ B(Rn) after time δ > 0.

Theorem 3.2. Let Assumption Ap hold and recall 0 < 2− ℓ < mc = 2 + (2α− γ)/β.

(a) For every ε > 0, there exists cπ ∈ (0,∞) such that

cπ/r
mc+ℓ−2+ε ≤ π({|x| ≥ r}) for all r ∈ [1,∞).

(b) For any x ∈ Rn, any bounded set D ∈ B(Rn) and arbitrary ε, δ ∈ (0,∞), there exists a constant

cτ ∈ (0,∞), such that

cτ/t
mc/(2−ℓ)+ε ≤ Px(τD(δ) ≥ t) for all t ∈ [1,∞).

The proofs of Theorems 3.1 and 3.2 use the L-drift condition L(V ,φ,Ψ), where V , φ and Ψ exhibit

polynomial growth. The functions φ and Ψ are obtained directly from the generator inequalities

of Theorem 2.7 and are also polynomial, see Section 6.1.1 below for details.

Remark 3.3 (matching rates). As mentioned above, our lower bounds in Theorem 3.1 on the

f -variation distance matches the upper bounds in [12]. Recall from Theorem 3.1 the parameters

k, αk and the function fk. Then, for every ε > 0, there exist constants ck,ε, Ck,ε ∈ (0,∞) such that

(12) ck,ε/t
αk+ε ≤ ∥Px(Xt ∈ ·)− π(·)∥fk ≤ Ck,ε/t

αk−ε for all t ∈ [1,∞).

Analogous bounds could be established for the tails of the invariant measure π and the return time

τD(δ). Put differently, in conjunction with [12], Theorems 3.1 and 3.2 imply the convergence rate to

stationarity and the decay of the tails of the invariant measure and the return times in logarithmic

scale:

lim
t→∞

log ∥Px(Xt ∈ ·)− π(·))∥fk
log t

= αk, lim
t→∞

logPx(τD(δ) > t)

log t
= mc/(2− ℓ),

lim
t→∞

log π({|x| ≥ r})
log r

= mc + ℓ− 2.

Remark 3.4 (oscillating coefficients). Note that Assumption Ap requires matching upper and

lower bounds on the asymptotic behaviour (as |x| → ∞) of the coefficients of SDE (11). The
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following is a natural generalisation of Assumption Ap, allowing oscillating coefficients: for all

x ∈ Rn outside of some compact set it holds that γL ≤ Tr(Σ(x))/|x|ℓ ≤ γU ,

−αL ≤ ⟨b(x), x/|x|⟩/|x|ℓ−1 ≤ −αU & βL ≤ ⟨Σ(x)x/|x|, x/|x|⟩/|x|ℓ ≤ βU

for some constants γL, γU , αL, αU , βL, βU ∈ (0,∞). Under this assumption, the lower bounds in

Theorem 3.1 and 3.2 remain valid with with mL
c = 2 + (2αL − γL)/βL (instead of mc). While a

slight modification of the proofs of Theorems 3.1 and 3.2 is necessary, the same polynomial class of

Lyapunov functions can be used. The details are omitted for brevity. The upper bounds depend

on mU
c = 2 + (2αU − γU )/βU and can be obtained from the classical theory [12]. The discrepancy

between mL
c > mU

c leads to an asymptotic gap between the lower and upper bounds on the rate of

convergence. As demonstrated by the following example, this gap is not an artefact of our methods.

Example 3.5 below also shows that upper bounds on the coefficients alone, assumed in [12, Remark

after Thm 16], are insufficient to deduce the rate of convergence in the sense of (12).

Example 3.5. Let the function π : R → (0,∞) be a positive thrice continuously differentiable

density on R (up to a normalizing constant). The one-dimensional SDE

(13) dXt = (log π)′(Xt)dt+
√
2dBt.

is an example of an elliptic diffusion of the form (11) in R.
Assumption Ap above is given in terms of the limits of the coefficients of SDE (11) as |x| → ∞.

This differs from the assumptions in [12, Sec 3.2], where only the asymptotic upper bounds on the

model parameters are assumed. In particular, in the context of SDE (13), the results from [12,

Sec 3.2] imply the following: if lim sup|x|→∞ x(log π)′(x) = −α for some α ∈ (1,∞), then for every

x ∈ R and ε > 0 there exists a constant C > 0, such that ∥Px(Xt ∈ ·) − π(·)∥TV ≤ C/t(α−1)/2−ε

holds for all t ∈ [1,∞). However, as we shall now see, an upper bound on the drift in (13) is not

sufficient to determine the actual rate of convergence to the invariant measure.

Fix α ∈ (1,∞). Then for every k ∈ (α,∞), there exists an invariant density π, such that the

following statements hold: lim sup|x|→∞ x(log π)′(x) = −α and, for every x ∈ R and ε > 0, there

exist constants c′, C ′ ∈ (0,∞) such that

(14) c′/t(k−1)/2 ≤ ∥Px(Xt ∈ ·)− π(·)∥TV ≤ C ′/t(k−1)/2−ε for all t ∈ [1,∞),

where the process X follows SDE (13) with X0 = x. The proof of (14) is in Section 6.1.1 below.

This example demonstrates that, assuming only upper bounds on the coefficients of the diffusion

in (11) (as in [12, Sec 3.2]), may result in the upper bound on the rate being greater than the actual

rate of convergence by any polynomial order. In contrast, if we assume matching lower and upper

bounds on the drift of (13) (i.e. (log π)′(x) = −α/x(1 + o(1)) as |x| → ∞), the bounds in (12)

imply (14) with k = α.

Remark 3.6 (Can the drift in (11) point away from the origin?). In Assumption Ap we

stipulate that the drift b, while possibly vanishing at infinity, assymptotically points towards the

origin. It is natural to ask whether this assumption can be relaxed by allowing the drift b to oscillate

between pointing towards and away from the origin as |x| → ∞.4 An example of such a process is

4We thank the anonymous referee for drawing our attention to this natural question.
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given in [20, Example 2.5] by a Langevin diffusion: for a constant c ∈ (0, 1), let X follow the SDE

(15) dXt = b(Xt)dt+ dBt, where b(x) = −(cos(x) + c)x/|x| for all x ∈ R with large |x|.

In [20] it is proved that ∥Px(Xt ∈ ·) − π(·)∥TV ≤ Cαt
α/(1−α) for any α ∈ (0, 1) and all t ∈ [1,∞)

(and some constant Cα > 0). It is natural to enquire whether a subexponential lower bound can

be obtained for such a process.

This question is highly non-trivial in general since a sharp upper bound on the rate of convergence

is not clear. The answer to it will depend on the details of the model. More specifically, the diffusion

in (15) is in fact exponentially ergodic,

(16) ∥Px(Xt ∈ ·)− π(·)∥TV ≤ C0 exp(−C1t) for constants C0, C1 ∈ (0,∞) and all t ∈ [1,∞),

as can be seen by a direct calculation using an appropriate Lyapunov function (see end of Sec-

tion 6.1.1 below), related to the one used in Example 3.5 above. In particular, the diffusion in (15)

demonstrates that achieving (exponential) ergodicity does not require the drift to be directed to-

wards the origin everywhere outside of a compact set. As the diffusionX in (15) exhibits exponential

ergodicity, subexponential lower bounds cannot be established in this example.

3.1.2. Stretched exponential tails. Under the following assumption, the processX exhibits stretched

exponential ergodicity.

Assumption Ase. There exist constants p ∈ (0, 1) and ℓ ∈ [0, 2p), such that the coefficients b and

Σ = σσ⊺ in (11) satisfy the following asymptotic assumptions: lim sup|x|→∞Tr(Σ(x))/|x|ℓ < ∞
and

−αL ≤ ⟨b(x), x/|x|⟩/|x|ℓ−p ≤ −αU & βL ≤ ⟨Σ(x)x/|x|, x/|x|⟩/|x|ℓ ≤ βU ,

for all x outside of some compact set and some constants αL, αU , βL, βU ∈ (0,∞).

Assumption Ase covers tempered Langevin diffusions exhibiting stretched exponential ergodicity,

studied in [9, Sec 5.2]. In particular, parameters β ∈ (0, 1) and d ∈ [0, 1/β − 1) (in the notation

of [9, Sec 5.2]), are included in the cases p = β − 1 and ℓ = 2βd. Moreover, the case ℓ = 0 includes

Langevin diffusions.

The main result, Theorem 3.7 below, establishes lower bounds on the tail of the invariant measure

π, the rate of convergence towards the invariant measure in the TV-distance and the tail of the

return time τD(δ) = inf{t > δ : Xt ∈ D} of X to a bounded set D ∈ B(Rn) after time δ > 0.

Theorem 3.7. Let Assumption Ase hold.

(a) There exist cπ, uπ ∈ (0,∞) such that

cπ/ exp(uπr
1−p)) ≤ π({|x| ≥ r}) for all r ∈ [1,∞).

(b) For every x ∈ Rn, δ > 0 and a bounded set D ∈ B(Rn), there exist cτ , uτ ∈ (0,∞) such that

cτ/ exp(uτ t
(1−p)/(1+p−ℓ)) ≤ Px(τD(δ) ≥ t) for all t ∈ [1,∞).

(c) For every x ∈ Rn there exist cTV, uTV ∈ (0,∞) such that

cTV/ exp(uTVt
(1−p)/(1+p−ℓ)) ≤ ∥Px(Xt ∈ ·)− π(·)∥TV for all t ∈ [1,∞).
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In the proof of Theorem 3.7 we work with the L-drift condition L(V ,φ,Ψ), where the Lya-

punov function V grows polynomially, while Ψ grows at the stretched exponential rate with the

“stretching” parameter 1−p. The function φ is again polynomial and is obtained directly from the

generator inequalities in Theorem 2.7. Like Ψ, the function h in Assumption (a) of Theorem 2.2

grows at the stretched exponential rate with parameter 1−p, see Section 6.1.2 below for the details

of the proof of Theorem 3.7.

Remark 3.8 (matching rates). The class of models defined by Assumption Ase contains elliptic and

tempered Langevin diffusions studied in the context of upper bounds in [9, Sections 5.1 and 5.2]. The

techniques of [9] can be applied to obtain upper bounds for all models covered by Assumption Ase.

Our lower bounds in Theorem 3.7 match these upper bounds. More precisely, there exist constants

cTV, CTV, uTV, UTV ∈ (0,∞) such that

(17) cTV/ exp(uTVt
(1−p)/(1+p−ℓ)) ≤ ∥Px(Xt ∈ ·)− π(·)∥TV ≤ CTV/ exp(UTVt

(1−p)/(1+p−ℓ))

holds for all t ∈ [1,∞). Analogous bounds hold for the tails of the invariant measure π and the

return time τD(δ).

Remark 3.9 (matching constants). Assumption Ase cannot ensure that constants uπ, uτ , uTV

in the exponents in Theorem 3.7 are only ε-away from optimal constants in upper bounds. This is

because, under Assumption Ase, the coefficients of the SDE in (11) may oscillate asymptotically as

|x| → ∞. However, assuming that

⟨b(x), x/|x|⟩/|x|−p = −α+o(|x|p−1), ⟨Σ(x)x/|x|, x/|x|⟩ = β+o(|x|p−1) & Tr(Σ(x)) = γ+o(1),

as |x| → ∞, for some constants p ∈ (0, 1), α, β, γ ∈ (0,∞), it is possible to prove

lim
r→∞

r(1−p) log π({|x| ≥ r}) = 2α/(β(1− p)) = α−(1−p)/(1+p) lim
t→∞

t(1−p)/(1+p−ℓ) logPx(τD(δ) ≥ t).

Limit inferiors in these limits follow from the theory developed in this paper. However, they require

a more involved Lyapunov function (i.e. a product of a polynomial and stretched exponential

functions) than the one in the proof of Theorem 3.7. Upper bounds in these limits follow from [9,

Thm 5.3]. Moreover, for the constants in the exponents for the total variation distance in (17), we

can show UTV/uTV < 2 + ε. We omit the details for brevity.

3.1.3. Exponential tails. In this section we demonstrate that our methods may also be used to

derive lower bounds on the rate of convergence of certain exponentially ergodic processes.

Assumption Ae. The coefficients b and Σ = σσ⊺ in (11) satisfy the following asymptotic assump-

tions: lim sup|x|→∞Tr(Σ(x)) < ∞ and

−αL ≤ ⟨b(x), x/|x|⟩ ≤ −αU & βL ≤ ⟨Σ(x)x/|x|, x/|x|⟩ ≤ βU

for all x outside of a compact set and some constants αL, αU , βL, βU ∈ (0,∞).

Theorem 3.10. Let Assumption Ae hold.

(a) There exist cπ, uπ ∈ (0,∞) such that

cπ/ exp(uπr) ≤ π({|x| ≥ r}) for all r ∈ [1,∞).
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(b) For every x ∈ Rn, δ ∈ (0,∞) and a bounded set D ∈ B(Rn) there exist cτ , uτ ∈ (0,∞) such that

cτ/ exp(uτ t) ≤ Px(τD(δ) ≥ t) for all t ∈ [1,∞).

(c) For every x ∈ Rn there exist cTV, uTV ∈ (0,∞) such that

cTV/ exp(uTVt) ≤ ∥Px(Xt ∈ ·)− π(·)∥TV for all t ∈ [1,∞).

The L-drift condition L(V ,φ,Ψ) in the proof of Theorem 3.10 uses V and Ψ, which exhibit

polynomial and exponential growth, respectively. As in the examples of Sections 3.1.1 and 3.1.2,

the function φ is polynomial and follows directly from the generator inequalities in Theorem 2.7.

The details of the proof of Theorem 3.10 are in Section 6.1.3 below.

Remark 3.11 (matching rates). Exponential upper bounds on the results in Theorem 3.10 can be

obtained, for example, by applying results from [9, Sec 3] and estimates in Proposition 6.3 below.

In particular, there exist constants CTV, UTV ∈ (0,∞) such that

cTV/ exp(uTVt) ≤ ∥Px(Xt ∈ ·)− π(·)∥TV ≤ CTV/ exp(UTVt) for all t ∈ [1,∞).

Similar bounds hold for the tails of the invariant measure π and the return time τD(δ). Moreover,

ensuring that the constants uπ, uτ , uTV in the exponents in Theorem 3.10 are close to their optimal

constants in the upper bounds would require stronger assumptions and a more involved choice of

Lyapunov functions. As the focus of the present paper is on subexponential ergodicity, the details

are omitted.

3.2. Lévy-driven SDE. In this section we apply the results of Section 2 to a solution X of a

Lévy-driven SDE taking values in X = R. More precisely, let X follow the SDE

(18) dXt = −µXtdt+ σ(Xt−)dLt,

where µ ∈ (0,∞), σ : R → R+ is Lipschitz with 0 < infx∈R σ(x) ≤ supx∈R σ(x) < ∞ and L is a

pure-jump Lévy process with Lévy measure ν (cf. [34, Ch. 1]). Such X exists and is unique for any

starting point X0 = x ∈ R [29, Thm V.6]. The drift and the Gaussian component of L are zero

as they do not influence the asymptotic behaviour of X when ν has heavy tails and σ is bounded.

Adding them would require only a minor modification of the proof of Theorem 3.12 below.

Assumption AL. Assume that for some mc ∈ (1,∞), the Lévy measure ν satisfies

0 < lim inf
r→∞

(log r)mcν([r,∞)) ≤ lim sup
r→∞

(log r)mcν([r,∞)) < ∞ and

0 = lim sup
r→−∞

ν((−∞, r])(log |r|)mc+1.

As we shall see, when the jumps of L have very heavy tails (as in Assumption AL), X does not

exhibit exponential ergodicity. Recall that τD(δ) = inf{t > δ : Xt ∈ D} is the return time of the

process X to a bounded set D ∈ B(Rn) after time δ > 0.

Theorem 3.12. Let Assumption AL hold and the process X satisfy SDE (18) above.

(a) For any ε > 0 there exists a constant cπ ∈ (0,∞) such that

cπ/(log r)
mc−1+ε ≤ π([r,∞)) for all r ∈ [1,∞).
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(b) For every x ∈ R, ε, δ > 0 and bounded set D ∈ B(R), there exists cτ ∈ (0,∞) such that

cτ/t
mc+ε ≤ Px(τD(δ) ≥ t) for all t ∈ [1,∞).

(c) For any x ∈ R and ε > 0 there exists a constant cTV ∈ (0,∞) such that

cTV/t
mc−1+ε ≤ ∥Px(Xt ∈ ·)− π∥TV for all t ∈ [1,∞).

The L-drift condition L(V ,φ,Ψ) in the proof of Theorem 3.12 uses the Lyapunov function V with

logarithmic growth. This is necessary to ensure the integrability of the marginals of the process

V (X). The function Ψ has polynomial growth as does φ (the latter is again obtained from the

generator inequalities in Theorem 2.7). The function h in Assumption (a) of Theorem 2.2 is taken

to be polynomial with the “largest” growth rate, such that the marginals of the process h ◦ V (X)

remain integrable. The proof of Theorem 3.12 is in Section 6.2 below.

Remark 3.13 (matching rates). Theorem 3.12 is applicable to general pure-jump Lévy drivers

with two-sided jumps and arbitrary path variation. In particular, it covers the simpler model

studied in [12] with additive noise, where it is assumed that σ ≡ 1 and ν((−∞, 1]) = 0 (making L

a compound Poisson process with positive jumps and, consequently, X = R+ for X0 = x ∈ R+).

Our lower bounds match the upper bounds from [12], i.e. for some cTV, CTV ∈ (0,∞) we have

cTV/t
mc−1+ε ≤ ∥Px(Xt ∈ ·)− π∥TV ≤ CTV/t

mc−1−ε for all t ∈ [1,∞).

Analogous bound holds for the tail of the invariant measure π and the return time τD(δ).

Remark 3.14. Theorem 3.12 and Remark 3.13 show that the process X in (18) converges to station-

arity at a polynomial rate even though its invariant measure has a logarithmically heavy positive

tail. Since Assumption AL stipulates that the negative tail of the Lévy measure ν is orders of mag-

nitude thinner than its positive tail, we prove Theorem 3.12 in Section 6.2 below using a Lyapunov

function (45), which is bounded on the negative half-line.

The asymmetry in Assumption AL is also visible in the invariant measure π. If, for example,

ν((−∞, r]) decays polynomially, then the form of the extended generator ofX in (44) below, applied

to an appropriate polynomial Lyapunov function V , tends to +∞ (as r → −∞) at the same rate as

V itself. This follows by a similar argument to the one in the proof of Proposition 6.4(a) below. In

this case, by [9, Prop. 3.1] and the Markov inequality, we obtain a polynomial upper bound on the

tail π((−∞, r]) as r → −∞. Moreover, by the same argument, if ν((−∞, r]) decays exponentially

as r → −∞, so does π((−∞, r]).

3.3. Stochastic damping Hamiltonian system. Consider the hypoelliptic diffusionX = (Z, Y ),

where Zt (resp. Yt) is the position (resp. velocity) at time t of a physical system moving in Rn,

satisfying the following SDE: dZt = Ytdt and dYt = σ(Zt, Yt)dBt − (c(Zt, Yt)Yt +∇U(Zt))dt. Here

the gradient ∇U(Zt) is a friction force, c(Zt, Yt)Yt a damping force and σ(Zt, Yt)dBt a random force,

with B being the standard n-dimensional Brownian motion, acting on the system at (Zt, Yt). Ex-

ponential convergence to the invariant measure of this class of models has been studied extensively,

see e.g. [21, 39].
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Our primary focus is on deriving lower bounds in cases where subexponential upper bounds

on the rate of convergence have been established. We thus consider a one-dimensional example

previously studied in the context of subexponential upper bounds [9]:

(19) dZt = Ytdt, dYt = σdBt − (cYt + U ′(Zt))dt,

where U : R → R is in C2(R) and σ, c ∈ (0,∞) are positive constants. We are interested in the

case when the invariant measure of the process X = (Z, Y ) has polynomial tails.

Assumption AH. Let the function U ∈ C2(R) be such that zU ′(z) = a + o(1) as |z| → ∞ for

some a ∈ (0,∞). Assume also that the constants σ, c ∈ (0,∞) in (19) satisfy ac/σ2 > 1/2.

The next result provides matching polynomial lower and upper bounds on the rate of convergence

to stationarity in f -variation of the hypoelliptic diffusion in (19) (proof is in Section 6.3 below).

The parameter m = 0 in Theorem 3.15 corresponds to total variation.

Theorem 3.15. Let Assumption AH hold and pick m ∈ [0, 2ac/σ2 − 1). Then for the function

fm(z, y) := 1 + |z|m, any x = (z, y) ∈ Rn and ε > 0, there exist cm,ε, Cm,ε ∈ (0,∞) such that

cm,ε/t
ac/σ2−1/2−m/2+ε ≤ ∥Px(Xt ∈ ·)− π(·)∥fm ≤ Cm,ε/t

ac/σ2−1/2−m/2−ε for all t ∈ [1,∞).

The upper bound on the rate of convergence in Theorem 3.15 is obtained by applying the drift

condition in [9] (see (10) above) to an appropriate Lyapunov function (inspired by [39]). Note that

the model in Theorem 3.15 has not been analysed in [9], where a hypoelliptic diffusion in (19) with

stretched exponential tails is considered. Following [15], the matching lower bound in Theorem 3.15

is obtained by comparing the tails of Xt and π via Lemma 5.1. This lower bound does not require

a verification of the L-drift condition L(V ,φ,Ψ), because the invariant measure π of the process

in (19) has a known density proportional to (z, y) 7→ exp(−2c/σ2(y2/2 + U(z))).

The Lyapunov function Vu used to obtain the upper bound in Theorem 3.15 also yields polynomial

upper bounds on the tail of return times. By analogy with all other models discussed in Section 3,

it would be natural to use the same Vu to establish the L-drift condition L(V ,φ,Ψ). However, a

function φ, which makes the process 1/Vu(X) into a supermartingale, cannot satisfy the growth

conditions in L(V ,φ,Ψ)(i). Thus, unlike in the other models of this section, a different Lyapunov

function Vl for lower bounds is needed. Such a Vl exists but it only yields exponential lower bounds

on the tails of return times. The reason for this discrepancy is that Vu necessarily mainly depends

on the heavy-tailed component Z, while Vl has to mostly depend on the light-tailed component Y .

4. Return times to bounded sets for semimartingales

This section develops a general theory for the analysis of return times of continuous-time semi-

martingales to bounded sets. The main result in this section, Lemma 4.2, is a far reaching general-

isation of the approach dealing with return times initiated in [4, Sec 3] to stochastic processes with

jumps and/or unbounded variance. Throughout this section we fix a probability space (Ω,F ,P)
with a right-continuous filtration (Ft)t∈R+ . We begin with an elementary maximal inequality.

Proposition 4.1 (Maximal inequality). Let (Ft)t∈R+ be a right-continuous filtration and ξ =

(ξt)t∈R+ an (Ft)-adapted process with càdlàg paths taking values in [0, 1]. Define an (Ft)-stopping

time τr := inf{t ∈ R+ : ξt > r} (recall inf ∅ = ∞) and assume that, for some r > 0 and a locally
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bounded measurable function f : R+ × [0, 1] → R+, the process (ξt∧τr −
∫ t∧τr
0 f(u, ξu)du)t∈R+ is an

(Ft)-supermartingale. Then, for any s ∈ (0,∞), we have

P
(

sup
0≤u<s

ξu > r
∣∣∣F0

)
≤ r−1

(
ξ0 + E

[∫ s∧τr

0
f(u, ξu)du

∣∣∣F0

])
a.s.

Proof. Pick any s ∈ (0,∞) and consider an (Ft)-stopping time τr ∧ s, bounded above by s. Note

that sup0≤u<τr∧s ξu ≤ r. Since f is bounded on the compact set [0, s]× [0, r], there exists a constant

C ∈ (0,∞) such that sup0≤u<τr∧s f(u, ξu) ≤ C a.s. Thus we obtain

(20) 0 ≤ E
[∫ τr∧s

0
f(u, ξu)du

∣∣∣F0

]
≤ Cs < ∞ a.s.

Since (ξt∧τr −
∫ t∧τr
0 f(u, ξu)du)t∈R+ is an (Ft)-supermartingale, ξτr∧s −

∫ τr∧s
0 f(u, ξu)du is in-

tegrable and E[ξτr∧s −
∫ τr∧s
0 f(u, ξu)du|F0] ≤ ξ0. The inequality in (20) and the fact that ξ is

non-negative imply the following:

E[ξτr∧s|F0] = E
[
ξτr∧s −

∫ τr∧s

0
f(u, ξu)du

∣∣∣F0

]
+ E

[∫ τr∧s

0
f(u, ξu)du

∣∣∣F0

]
≤ ξ0 + E

[∫ τr∧s

0
f(u, ξu)du

∣∣∣F0

]
.(21)

Moreover, by the definition of τr in the proposition we have {supu∈[0,s) ξu > r} = {τr < s} a.s.

Since ξ is càdlàg, on the event {τr < s} we have ξτr∧s = ξτr ≥ r a.s. Thus, by (21), we have

P
(

sup
0≤u<s

ξu > r
∣∣∣F0

)
= P

(
τr < s

∣∣∣F0

)
≤ r−1 E[ξτr∧s1{τr < s}|F0] ≤ r−1 E[ξτr∧s|F0]

≤ r−1

(
ξ0 + E

[∫ τr∧s

0
f(u, ξu)du

∣∣∣F0

])
,

implying the proposition. □

Proposition 4.1 will be applied in the proof of Lemma 4.2 with a continuous function f . To

state the lemma, consider an (Ft)-adapted process κ := (κt)t∈R+ with càdlàg paths, taking values

in [1,∞). Let T denote the set of all [0,∞]-valued stopping times with respect to (Ft)t∈R+ . For

any ℓ, r ∈ R+ and stopping time T ∈ T , define the first entry times (after T ) by

λℓ,T := T + inf{s ∈ R+ : T < ∞, κT+s < ℓ},(22)

ρr,T := T + inf{s ∈ R+ : T < ∞, κT+s > r},(23)

where inf ∅ = ∞. If T = 0, we write λℓ := λℓ,0 and ρr := ρr,0.

Lemma 4.2. Let κ = (κt)t∈R+ be a [1,∞)-valued (Ft)-adapted process with càdlàg paths, satisfying

lim supt→∞ κt = ∞ a.s. Suppose that there exist a level ℓ ∈ (1,∞) and a non-decreasing continuous

function φ : (0, 1] → R+, such that the process(
1/κ(ρrq+t)∧λr,ρrq

−
∫ (ρrq+t)∧λr,ρrq

ρrq

φ(1/κu)du

)
t∈R+

is an (Fρrq+t)-supermartingale
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for every q ∈ (0, 1) and r ∈ (ℓ,∞), where rq := 2r/(1 − q). Pick any q ∈ (0, 1), ε ∈ (0, (1 − q)/2]

and a non-decreasing function f : R+ → R+. Then for every r ∈ (ℓ,∞) we have

(24) P
(∫ λℓ

0
f(κs)ds ≥ f(r)ε/(rφ(1/r))

∣∣∣F0

)
≥ qP(ρrq < λℓ|F0) a.s.

Remark 4.3. (I) The assumption lim supt→∞ κt = ∞ a.s. in Lemma 4.2 implies P(ρr < ∞) = 1 for

all r ∈ [1,∞), making κρrq well defined. The main step in the proof of inequality (24) in Lemma 4.2

consists of establishing the following: with probability at least q, after reaching the level rq, the

process κ spends more than ε/(rφ(1/r)) units of time before returning below the level r.

(II) Note that f ≡ 1 in Lemma 4.2 yields a lower bound on the tail probability P(λℓ ≥ t|F0). In

applications of Lemma 4.2 it is crucial that q can be taken arbitrarily close to 1. This allows us to

conclude that for any fixed time t and starting point κ0 larger than the level 2Gf (t)/(1 − q), the

process does not leave (ℓ,∞) before time t with probability q. In particular, this will imply that

petite sets of a Markov process satisfying L(V ,φ,Ψ) are necessarily bounded (Lemma 5.4 below).

(III) The null set where the inequality in (24) fails to hold may vary with r. However, when applying

Lemma 4.2 in this paper, we only require the case where F0 is a trivial σ-algebra, making (24) hold

for all r ∈ (ℓ,∞) simultaneously.

Proof of Lemma 4.2. Pick q ∈ (0, 1) and r ∈ (ℓ,∞). Note that the inequality in (24) holds for all

ε ∈ (0, (1 − q)/2] if it holds for ε = (1 − q)/2 (the right-hand side of (24) does not depend on ε,

while the probability on the left-hand side is decreasing in ε). We may thus fix ε = (1− q)/2.

We start by showing that, once the process κ reaches the level rq = 2r/(1− q), with probability

at least q it takes ε/(rφ(1/r)) units of time for κ to return to the interval [1, r). More precisely, we

now establish the following inequality:

(25) P(λr,ρrq ≥ ρrq + ε/(rφ(1/r))|Fρrq ) ≥ q a.s.

By the non-confinement assumption lim supt→∞ κt = ∞, we have ρrq < ∞ a.s. Define the càdlàg

process (ξt)t∈R+ by ξt := 1/κρrq+t. Note that τ1/r = inf{t > 0 : ξt > 1/r} = λr,ρrq −ρrq by (22) and

hence t∧τ1/r = ((ρrq +t)∧λr,ρrq )−ρrq . Moreover, by the definition of τ1/r, we have {supu∈[0,s) ξu >

1/r} = {τ1/r < s} a.s. for any s ∈ R+. By assumption, the process (ξt∧τ1/r −
∫ t∧τ1/r
0 φ(ξu)du)t∈R+ is

an (Fρrq+t)-supermartingale. Moreover, since φ : (0, 1] → R+ is non-decreasing and continuous, it

has a unique extension (via its right-limit at 0) to a continuous function φ : [0, 1] → R+. Applying

Proposition 4.1 (with a continuous function f(u, s) = φ(s)) to ξ and the stopping time τ1/r yields

P(λr,ρrq < ρrq + t|Fρrq ) = P(τ1/r < t|Fρrq ) = P( sup
0≤u<t

ξu > 1/r|Fρrq )

≤ r

(
ξ0 + E

[∫ t∧τ1/r

0
φ(ξu)du

∣∣∣Fρrq

])
= r

(
1/κρrq + E

[∫ (ρrq+t)∧λr,ρrq

ρrq

φ(1/κu)du
∣∣∣Fρrq

])
≤ r

(
1/rq + φ(1/r)E

[
(ρrq + t) ∧ λr,ρrq − ρrq |Fρrq

])
≤ r(1/rq + φ(1/r)t) = (1− q)/2 + rφ(1/r)t, t ∈ (0,∞),
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where the second inequality holds by the following facts: φ is a non-decreasing function and the

inequality 1/κu ≤ 1/r is valid on the event {ρrq < u < (ρrq + t) ∧ λr,ρrq }. The third inequality is a

consequence of the fact ((ρrq + t) ∧ λr,ρrq )− ρrq = τ1/r ∧ t ≤ t, while the last equality follows from

the definition of rq. By taking complements, we get

P(λr,ρrq ≥ ρrq + t|Fρrq ) ≥ 1− ((1− q)/2 + rφ(1/r)t).

Setting t = ε/(rφ(1/r)) and recalling ε = (1− q)/2, we obtain (25).

Note that on the event {λr,ρrq ≥ ρrq + ε/(rφ(1/r))}, for any non-decreasing function f , we have

f(κρrq+t) ≥ f(r) for all t ∈ [0, ε/(rφ(1/r))]. Since r > ℓ, on the event {ρrq < λℓ}, the inequality

λℓ ≥ λr,ρrq holds, implying the following inclusion:

{∫ λℓ

0
f(κt)dt ≥ f(r)ε/(rφ(1/r))

}
⊃ {ρrq < λℓ} ∩ {λr,ρrq ≥ ρrq + ε/(rφ(1/r))}.

By the inequality in (25), we thus obtain the inequality in (24):

P

(∫ λℓ

0
f(κt)dt ≥ f(r)ε/(rφ(1/r))

∣∣∣F0

)
≥ E

[
1{ρrq < λℓ}P

(
λr,ρrq > ρrq + ε/(rφ(1/r))|Fρr

) ∣∣F0

]
≥ qP(ρrq < λℓ|F0) a.s. □

5. Lower bounds on the ergodicity of Markov processes

5.1. A lower bound on the f-variation rate of a Markov process. In this subsection we

consider a strong Markov process X = (Xt)t∈R+ on a general metric space X with invariant measure

π on B(X ) (see Section 2.1 for definitions). The following lemma generalizes to f -variation the lower

bound in [15, Thm 3.6] on the total variation between π and the law of Xt. The key assumption in

Lemma 5.1 is the lower bound on the decay of the tail of the integral of f with respect to π. We

stress that Lemma 5.1 does not require the L-drift condition L(V ,φ,Ψ).

Lemma 5.1. Let X be a Markov process with an invariant measure π on the state space X . Let

functions H, f,G : X → [1,∞) be such that f(x)G(x) = H(x) for all x ∈ X and (a) & (b) hold.

(a) There exists a function a : [1,∞) → (0, 1] such that the function A(r) := ra(r) is increasing,

limr↑∞A(r) = ∞ and
∫
{G≥r} f(x)π(dx) ≥ a(r) for all r ∈ [1,∞).

(b) There exists a function v : X × R+ → [1,∞), increasing in the second argument and satisfying

Ex[H(Xt)] ≤ v(x, t) for all x ∈ X and t ∈ [1,∞).

Then the following bound holds for every t ∈ [1,∞) and x ∈ X :

∥π(·)− Px(Xt ∈ ·)∥f ≥
(
a ◦A−1 ◦ (2v)

)
(x, t)/2.
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Proof. It follows from the definition of f -variation distance and Markov inequality that, for every

t ∈ R+ and every r ≥ 1, one has the lower bound

∥π(·)− Px(Xt ∈ ·)∥f ≥
∫
{G≥r}

f(x)π(dx)− Ex[f(Xt)1{G(Xt) ≥ r}]

≥ a(r)− 1

r
Ex[f(Xt)G(Xt)1{G(Xt) ≥ r}]

≥ a(r)− 1

r
Ex[H(Xt)] ≥ a(r)− v(x, t)

r
.

Let r = r(t) be the unique solution to the equation ra(r) = 2v(x, t). Put differently we have

r(t) = A−1(2v(x, t)) for all t ∈ [1,∞) and v(x, t)/r(t) = a(r(t))/2. Thus we obtain

a(r(t))− v(x, t)/r(t) = a(r(t))/2 = a(A−1(2v(x, t)))/2,

which, combined with the previous display, concludes the proof. □

Remark 5.2. In applications of Lemma 5.1 in practice, a good choice of H = f ·G (recall that f is

given by the variation norm) requires balancing (I) and (II) below.

(I) It is beneficial to choose H so that the lower bound a(r) on the tail π({G ≥ r}) is such that

A(r) = ra(r) tends to infinity polynomially. This is because a slower (logarithmic) growth in A

would imply a faster (stretched exponential) growth in v of A−1 ◦ (2v), making the lower bound

a ◦ A−1 ◦ (2v) smaller (recall that a(r) → 0 as r → ∞). In particular, this requires H to grow

sufficiently fast.

(II) The growth of v(x, t) is often obtained via the application of Lemma 2.10. In particular this

lemma relies on bounding AH (differently put, the derivatives of H) by a concave function of H,

introducing a restriction on the growth of H.

To see how the choice of H plays out in specific models, see applications of Theorem 2.2 and

Corollary 2.3 in Section 6 below, where H = h ◦ V , V is the Lyapunov function and h an arbitrary

function chosen with (I) and (II) above in mind.

5.2. Return time estimates and petite sets. The main estimate required in the proofs of our

main theorems, stated in Section 2 above, is given in Proposition 5.3. It essentially bounds from

below the tail of the return time S(ℓ) of the process X into the set {V < ℓ}.

Proposition 5.3. Let Assumption L(V ,φ,Ψ) hold. Then there exists ℓ0 ∈ [1,∞) such that the

following holds: for any ℓ ∈ (ℓ0,∞) there exists Cℓ ∈ (0,∞), such that for any x ∈ {ℓ+ 1 ≤ V }, a
non-decreasing continuous function h : R+ → R+, q ∈ (0, 1) and ε ∈ (0, (1− q)/2], inequality (26)

holds for all times t > h(ℓ)ε/(ℓφ(1/ℓ)),

(26) Px

(∫ S(ℓ)

0
h ◦ V (Xs)ds ≥ t

)
≥ q1{V (x) < 2Gh(t)/(1− q)} Cℓ

Ψ(2Gh(t)/(1− q))
+ q1{V (x) ≥ 2Gh(t)/(1− q)}.

In (26), Gh : (h(ℓ)ε/(ℓφ(1/ℓ)),∞) → (ℓ,∞) is the inverse of r 7→ h(r)ε/(rφ(1/r)) on (ℓ,∞).

The proof of Proposition 5.3 is based on Lemma 4.2 and requires us to show that Assump-

tion L(V ,φ,Ψ) implies the assumptions of Lemma 4.2 for the process κ = V (X).
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Proof. Consider the process κ = V (X). Recall the definition of the return time λℓ,T and the first-

passage time ρr,T (where ℓ, r ∈ (0,∞) and T an (Ft)-stopping time) for the process κ in (22)

and (23) respectively. As in Section 4, we denote λℓ = λℓ,0 and ρr = ρr,0. Note that, by

Assumption L(V ,φ,Ψ), we have S(ℓ) = λℓ and T (r) = ρr and the process κ satisfies the non-

confinement property for every starting point x ∈ X , i.e. Px(lim supt→∞ κt = ∞) = 1. Moreover,

by L(V ,φ,Ψ)(i), there exists ℓ0 ∈ [1,∞) such that, for every r ∈ (ℓ0,∞), the process(
1/κ(ρrq+t)∧λr,ρrq

−
∫ (ρrq+t)∧λr,ρrq

ρrq

φ(1/κu)du

)
t∈R+

is an (Fρrq+t)-supermartingale under Px (since
∫ λr,ρrq
ρrq

1{κu ≤ ℓ0}du = 0 Px-a.s.) for every x ∈ X ,

where rq := 2r/(1−q). Thus, by the inequality in (24) of Lemma 4.2, for any ℓ ∈ [ℓ0,∞), r ∈ (ℓ,∞),

non-decreasing function h : R+ → R+, q ∈ (0, 1) and ε ∈ (0, (1− q)/2] we have

(27) Px

(∫ λℓ

0
h(κs)ds ≥ εh(r)/(rφ(1/r))

)
≥ qPx(ρrq < λℓ).

Recall that by L(V ,φ,Ψ)(i) the function r 7→ h(r)ε/(rφ(1/r)) is continuous and increasing on

[1,∞) (and thus invertible on (ℓ0,∞)), with inverse Gh is defined on t ∈ (h(ℓ0)ε/(ℓ0φ(1/ℓ0)),∞).

For any t > h(ℓ)ε/(ℓφ(1/ℓ)), set r = Gh(t) > ℓ and note rq = 2Gh(t)/(1−q) > ℓ+1. The inequality

in (26) follows from (27) and inequality (2) in L(V ,φ,Ψ)(ii) for all x ∈ {ℓ+ 1 ≤ V }, since on the

subset x ∈ {rq ≤ V } we have Px(ρrq < λℓ) = Px(T
(rq) < S(ℓ)) = 1 by definition. □

A non-empty measurable set B ∈ B(X ) is petite (for the Markov process X) if there exist a

probability measure a on B(R+) and a finite measure νa on B(X ) with νa(X ) > 0, satisfying

(28)

∫ ∞

0
Px(Xt ∈ ·)a(dt) ≥ νa(·) for all x ∈ B.

The following lemma shows that, under Assumptions L(V ,φ,Ψ), every petite set for X belongs

to a sublevel set of the Lyapunov function V .

Lemma 5.4 (Under L-drift condition, petite sets are bounded). Let L(V ,φ,Ψ) hold. Assume that

a set B ∈ B(X ) is petite for the process X. Then there exists r0 ∈ (1,∞) such that B ⊂ {V ≤ r0}.

The proof of this lemma is based on a simple idea, which we first explain informally. Since νa

in (28) is a non-zero measure, we have νa(D) > 0 for some compact set D. Denote by τD(0) :=

inf{t > 0 : Xt ∈ D} the first time X is in D and let τa be an independent random time with law

a (in (28)). Pick t0 ∈ (0,∞) such that P(τa > t0) ≤ νa(D)/2 and note {Xτa ∈ D, τa ≤ t0} ⊂
{τD(0) ≤ t0}. Since, by (28), it holds

νa(D) ≤ Px(Xτa ∈ D) ≤ νa(D)/2 + Px(Xτa ∈ D, τa ≤ t0) ≤ νa(D)/2 + Px(τD(0) ≤ t0),

we get 0 < νa(D)/2 ≤ Px(τD(0) ≤ t0) for all starting points x in the petite set B. However,

under the L-drift condition L(V ,φ,Ψ) (by Proposition 5.3) we have Px(τD(0) ≤ t0) ≤ 1− q for any

q ∈ (0, 1) and all x with V (x) sufficiently large. Hence B must be contained in a sublevel set of V .

Proof of Lemma 5.4. Let B be an arbitrary petite set with a probability measure a on B(R+) and

a non-zero measure νa on B(X ) such that (28) holds. Since ∪∞
ℓ=1{V ≤ ℓ} = X and, by (28),

1 ≥ νa(X ) > 0, there exists ℓ1 ∈ (1,∞) such that c := νa({V ≤ ℓ1}) ∈ (0, 1]. By Proposition 5.3
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(with h ≡ 1), there exist ℓ0 ∈ [ℓ1,∞) such that for every q ∈ (0, 1), ε = (1 − q)/2 and x ∈ X we

have

(29) Px(S(ℓ0) ≥ t) ≥ q for all t ∈ (ε/(ℓ0φ(1/ℓ0)),∞) and x ∈ {V ≥ 2G1(t)/(1− q)},

where G1 : (ε/(ℓ0φ(1/ℓ0)),∞) → (ℓ0,∞) is the inverse of the function r 7→ ε/(rφ(1/r)). Since a is

a probability measure on B(R+), there exists t1 ∈ (ε/(ℓ0φ(1/ℓ0),∞) with a([t1,∞)) < c/2.

Pick q ∈ (1 − c/2, 1) and define r0 := 2G1(t1)/(1 − q). Since G1 is increasing, we have r0 >

G1(t1) > ℓ0 ≥ ℓ1. Moreover, since the return times satisfy S(ℓ0) ≤ S(ℓ1), for any x ∈ {V ≥ r0} the

inequality in (29) yields Px(S(ℓ1) < t1) ≤ Px(S(ℓ0) < t1) < 1− q < c/2.

For x ∈ {V ≥ r0}, the inequalities Px(V (Xt) ≤ ℓ1) ≤ Px(S(ℓ1) < t) ≤ Px(S(ℓ1) < t1) < c/2

hold for all t ∈ [0, t1]. Since a([t1,∞)) < c/2, by (28) the following inequalities hold for all

x ∈ B ∩ {V ≥ r0},

c = νa({V ≤ ℓ1}) ≤
∫ ∞

0
Px(V (Xt) ≤ ℓ1)a(dt) ≤

∫ t1

0
Px(V (Xt) ≤ ℓ1)a(dt) + a([t1,∞)) < c,

implying B ∩ {V ≥ r0} = ∅. Put differently, B ⊂ {V < r0} and the lemma follows. □

5.3. Proofs of the main results. We begin with the proof of the lower bounds on modulated

moments stated in Theorem 2.5 above. This theorem will play a crucial role in the analysis of the

stability of X and, more specifically, in the proof of Theorem 2.1.

Proof of Theorem 2.5. Fix a set D ∈ B(X ), contained in {V ≤ m} for some m ∈ (1,∞), q ∈ (0, 1)

and ε = (1 − q)/2. Since the function h : [1,∞) → [1,∞) in Theorem 2.5 is continuous and non-

decreasing by assumption, Proposition 5.3 implies that there exist ℓ0 ∈ (m,∞) and Cℓ0 ∈ (0, 1),

such that the inequality in (26) holds for h, ℓ = ℓ0 and all r ∈ (ℓ0,∞).

By L(V ,φ,Ψ), the function r 7→ εh(r)/(rφ(1/r)) on (ℓ0,∞) is increasing and tends to infinity.

Define r0 := εh(ℓ0)/(ℓ0φ(1/ℓ0)) and denote by Gh : (r0,∞) → (ℓ0,∞) its increasing inverse. Since

Cℓ0 ∈ (0, 1) and Ψ : [1,∞) → [1,∞), for all x ∈ {V ≥ ℓ0+1} and r ∈ (r0,∞), the inequality in (26)

yields

(30) Px

(∫ S(ℓ0)

0
h ◦ V (Xs)ds ≥ r

)
≥ qCℓ0

Ψ(2Gh(r)/(1− q))
.

Note that Ex[
∫∞
0 1{V (Xs) > ℓ0 + 1}ds] > 0. Indeed, if Px(V (Xs) > ℓ0 + 1) = 0 for Lebesgue

almost every s ∈ R+, the right-continuity of X would imply sups∈R+
V (Xs) ≤ ℓ0 + 1 Px-a.s.,

contradicting the assumption lim supt→∞ V (Xt) = ∞ Px-a.s. In particular, since the expectation

is positive, there exists δ > 0 satisfying Px(V (Xδ) > ℓ0 + 1) > 0.

Recall that τD(δ) = inf{t > δ : Xt ∈ D} is the first time, after time δ ≥ 0, the process X hits

the set D ∈ B(X ) fixed above. By conditioning at time δ, applying the Markov property of X and
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the inequality in (30), we obtain the following lower bound

Px

(∫ τD(δ)

0
h ◦ V (Xs)ds ≥ r

)
≥ Px

(∫ τD(δ)

δ
h ◦ V (Xs)ds ≥ r, V (Xδ) > ℓ0 + 1)

)

≥ Ex

[
1{V (Xδ) > ℓ0 + 1} · PXδ

(∫ τD(0)

0
h ◦ V (Xs)ds ≥ r

)]

≥ Ex

[
1{V (Xδ) > ℓ0 + 1} · PXδ

(∫ S(ℓ0)

0
h ◦ V (Xs)ds ≥ r

)]
≥ qCℓ0Px(V (Xδ) > ℓ0 + 1)/Ψ(2Gh(r)/(1− q)) for r ∈ (r0,∞),

where the third inequality follows from the fact that, since D ⊂ {V ≤ m} and m ≤ ℓ0, starting

from any point in {V > ℓ0 + 1} the first hitting time τD(0) satisfies S(ℓ0) ≤ τD(0). Since δ was

chosen so that Px(V (Xδ) > ℓ0 + 1) > 0, setting C := qCℓ0Px(V (Xδ) > ℓ0 + 1) concludes the proof

of part (a). Part (b) is a special case of part (a) for the function h ≡ 1. □

The following corollary combines the lower bounds of Theorem 2.5 with the fact that, under

Assumption L(V ,φ,Ψ), any petite set of X is contained in a sublevel set of the Lyapunov function

V (see Lemma 5.4 above). The result provides a sufficient condition (in the form of an integral

test) for the divergence of the expectation with respect to invariant measure π of a non-decreasing

function composed with V .

Corollary 5.5. Let Assumption L(V ,φ,Ψ) hold. Then for every q ∈ (0, 1) and a non-decreasing

function h : [1,∞) → [1,∞), the following implication holds:

(31) ∃r′ ∈ (0,∞) s.t.

∫ ∞

r′

1

Ψ(2Gh(r)/(1− q))
dr = ∞ =⇒

∫
X
h ◦ V (x)π(dx) = ∞,

where Gh is the inverse of the increasing function r 7→ (1− q)h(r)/(2rφ(1/r)).

Proof. By the standard assumption in the paper, stated above Assumption L(V ,φ,Ψ), the process

X is positive Harris recurrent. The seminal result [25, Thm 1.2(b)] implies that a measurable

h : [1,∞) → [1,∞) satisfies the implication:∫
X
h ◦ V (x)π(dx) < ∞ =⇒ ∃ closed petite D s.t. ∀δ > 0, sup

x∈D
Ex

[∫ τD(δ)

0
h ◦ V (Xs)ds

]
< ∞.

By Lemma 5.4, every petite set D for X satisfies D ⊂ {V ≤ r0} for some r0 ∈ [1,∞). Thus,

Theorem 2.5 implies that for a non-decreasing h : [1,∞) → [1,∞), every closed petite set D and

any x ∈ D, there exist δ > 0 and C ∈ (0,∞) such that

Ex

[∫ τD(δ)

0
h ◦ V (Xs)ds

]
=

∫ ∞

0
Px

(∫ τD(δ)

0
h ◦ V (Xs)ds ≥ r

)
dr ≥

∫ ∞

r0

C

Ψ(2Gh(r)/(1− q))
dr

for some sufficiently large r0 ∈ (0,∞), where Gh is the inverse of the increasing function r 7→
(1 − q)h(r)/(2rφ(1/r)). If the assumption in the implication in (31) holds, then the last integral

in the previous display must also be infinite because the function r 7→ 1/Ψ(2Gh(r)/(1 − q)) is

continuous and thus locally bounded. The criterion in [25, Thm 1.2(b)] stated above thus yields

the conclusion of the implication in (31). □
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The implication in (31) in Corollary 5.5 is at the core of the proof of Theorem 2.1. It is key that

integral test (31) covers all non-decreasing functions h, not only the polynomial ones.

Proof of Theorem 2.1. Pick q, ε ∈ (0, 1) and note that the statement in display (4) of the theorem

is equivalent to the following:

∃r0 ∈ (0,∞) such that, 1/Lε,q(r) ≤ π({x ∈ X : V (x) ≥ r}) for all r ∈ [r0,∞),

where Lε,q(r) = rφ(1/r)Ψ(2r/(1− q))(log log r)ε. Assume L(V ,φ,Ψ) holds.

The proof is by contradiction. Assume that there exists ε > 0, such that for every r0 ∈ (0,∞)

there exists r1 ∈ [r0,∞) satisfying 1/Lε,q(r1) > π({x ∈ X : V (x) ≥ r1}). We may pick r0 > 1

and r1 > exp(exp(exp(1)))r0. Recursively we can define an increasing sequence (rn)n∈N, satisfying

rn+1 > exp(exp(exp(n + 1)))rn and 1/Lε,q(rn) > π({x ∈ X : V (x) ≥ rn}) for all n ∈ N. In

particular, since r0 > 1, we have

(32) log log rn > exp(n) for all n ∈ N.

Using the sequence (rn)n∈N, we construct a non-decreasing function h : [1,∞) → [1,∞), satisfying∫
X h ◦ V (x)π(dx) < ∞ and the assumption of the implication in (31).

Define the function µ : R+ → R+ by µ(r) := 1 for r ∈ [0, r1) and µ(r) := 1/Lε,q(rn) for r ∈
[rn, rn+1), n ∈ N. Since the function r 7→ π({V ≥ r}) is non-increasing, we have π({V ≥ r}) ≤ µ(r)

for all r ∈ R+. Let h : [1,∞) → [1,∞) be a differentiable function such that h(r) = 1 for r ∈ [1, r1).

For n ∈ N \ {1} and r ∈ [rn, rn+1) we define the derivative of h by

(33) h′(r) =

rφ(1/r)Ψ(2(rn + 1)/(1− q))(log log rn)
ε/2, r ∈ [rn, rn + 1);

1/(rn(rn+1 − rn)), r ∈ [rn + 1, rn+1).

Since, by Assumption L(V ,φ,Ψ), r 7→ rφ(1/r) is decreasing and Ψ is differentiable, increasing and

submultiplicative (i.e. Ψ(2(rn+1)/(1−q)) ≤ Ψ(2rn/(1−q))Ψ(2/(1−q)) for all rn ∈ [1,∞); without

loss of generality we assume here that the constant C in definition of a submultiplicative function

in footnote on page 3 equals one, since we may substitute Ψ in L(V ,φ,Ψ)(ii) with CΨ if C > 1),

we have

h′(r)µ(r) ≤

Ψ(2/(1− q))(log log rn)
−ε/2, r ∈ [rn, rn + 1);

1/(rn(rn+1 − rn)), r ∈ [rn + 1, rn+1).

The identity 1 +
∫ V (x)
1 h′(r)dr = h(V (x)) for all x ∈ X and Fubini’s theorem imply the equality∫

X h(V (x))π(dx) = 1 +
∫∞
1 h′(r)π({V ≥ r})dr. Recall π({V ≥ r}) ≤ µ(r) for r ∈ R+ and note∫

X
h(V (x))π(dx) = 1 +

∫ ∞

r1

h′(r)π({V ≥ r})dr ≤ 1 +

∫ ∞

r1

h′(r)µ(r)dr

= 1 +

∞∑
n=1

(∫ 1+rn

rn

h′(r)µ(r)dr +

∫ rn+1

1+rn

h′(r)µ(r)dr

)

≤ 1 + Ψ(2/(1− q))

∞∑
n=1

(log log rn)
−ε/2 +

∞∑
n=1

1/rn < ∞,(34)

where the final inequality follows from (32), which makes both sums in (34) clearly finite.



SUBEXPONENTIAL LOWER BOUNDS FOR f -ERGODIC MARKOV PROCESSES 29

Recall that the function u 7→ (1 − q)h(u)/(2uφ(1/u)) is increasing on [1,∞) by L(V ,φ,Ψ) and

define r′ := (1− q)h(1)/(2φ(1)) > 0 (in fact h(1) = 1). Denote by Gh : [r′,∞) → [1,∞) the inverse

and introduce the substitution r = (1− q)h(u)/(2uφ(1/u)) into the following integral:∫ ∞

r′
2/((1− q)Ψ(2Gh(r)/(1− q)))dr =

∫ ∞

1
(h(u)/(uφ(1/u)))′/Ψ(2u/(1− q))du

=

∫ ∞

1
(h′(u)/(uφ(1/u)) + (1/(uφ(1/u)))′h(u))/Ψ(2u/(1− q))du

≥
∞∑

n=n0

∫ 1+rn

rn

uφ(1/u)Ψ(2(rn + 1)/(1− q))(log log rn)
ε/2

Ψ(2u/(1− q))uφ(1/u)
du

≥
∞∑

n=n0

∫ 1+rn

rn

(log log rn)
ε/2du =

∞∑
n=n0

(log log rn)
ε/2 = ∞.(35)

The first inequality follows from the definition of h′ given in (33) above and the fact that the

function u 7→ 1/(uφ(1/u)) is continuous and increasing and hence almost everywhere differentiable

with a non-negative derivative. The second inequality in the previous display follows from the fact

that Ψ is increasing by Assumption L(V ,φ,Ψ). The divergence of the sum is a consequence of the

inequality in (32). By Corollary 5.5, the inequality in (35) implies
∫
X h ◦ V (x)π(dx) = ∞, which

contradicts (34) and concludes the proof of Theorem 2.1. □

The drift condition on the Lyapunov function V in Assumption L(V ,φ,Ψ) and the lower bound

on the invariant measure π from Theorem 2.1 are the key ingredients in the proof of the lower

bound on the rate of convergence in total variation. For the f -variation distance we require the

following corollary of Theorem 2.1.

Corollary 5.6. Let Assumption L(V ,φ,Ψ) hold. Let f⋆ : [1,∞) → [1,∞) be a differentiable

function and consider an increasing continuous g : [1,∞) → [1,∞), satisfying limr→∞ g(r) = ∞.

Then, for every ε, q ∈ (0, 1) and the function Lε,q in (3), there exists cε,q ∈ (0,∞) such that

(36)

∫
{g◦V≥r}

f⋆ ◦ V (x)π(dx) ≥ cε,qf⋆(g
−1(r))/Lε,q(g

−1(r)) for all r ∈ [1,∞).

Proof. Pick ε, q ∈ (0, 1). Then, by Theorem 2.1, there exists a constant cε,q ∈ (0,∞) such that

π({V ≥ g−1(r)}) ≥ cε,q/Lε,q(g
−1(r)) for all r ∈ [1,∞).

Using the inequality above along with the facts that f is differentiable and g is continuous

increasing and thus has an inverse g−1, we obtain∫
{g◦V≥r}

f⋆ ◦ V (x)π(dx) =

∫
{V≥g−1(r)}

(
f⋆(1) +

∫ V (x)

1
f ′
⋆(y)dy

)
π(dx)

= f⋆(1)π({V ≥ g−1(r)}) +
∫ ∞

1
f ′
⋆(y)π({V ≥ max{g−1(r), y}})dy

≥ f⋆(1)π({V ≥ g−1(r)}) +
∫ g−1(r)

1
f ′
⋆(y)π({V ≥ g−1(r)})dy

= f⋆(g
−1(r))π({V ≥ g−1(r)}) ≥ cε,qf⋆(g

−1(r))/Lε,q(g
−1(r)). □

We now establish the lower bound on the convergence in f -variation in Theorem 2.2.
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Proof of the Theorem 2.2. By Assumption (a) in Theorem 2.2, a differentiable f⋆ : [1,∞) →
[1,∞) and continuous h, g : [1,∞) → [1,∞) satisfy g = h/f⋆ on [1,∞), with g increasing and

limr→∞ g(r) = ∞. Moreover, there exists a function v : X × R+ → [1,∞), increasing in t, such

that Ex[h ◦ V (Xt)] ≤ v(x, t) for all x ∈ X and t ∈ R+. By Corollary 5.6, for any ε, q ∈ (0, 1) there

exists a constant cε,q ∈ (0,∞), such that the inequality in (36) holds.

Any function a : [1,∞) → R+, satisfying Assumption (b) in Theorem 2.2 (i.e. the inequality

a(r) ≤ cε,qf⋆(g
−1(r))/Lε,q(g

−1(r)) holds for r ∈ [1,∞) and the function r 7→ ra(r) is increasing

with limr→∞ ra(r) = ∞), by (36) also satisfies Assumption (a) of Lemma 5.1 with f = f⋆ ◦ V and

G := g ◦ V . As observed in the previous paragraph, the functions H := h ◦ V and v(x, t) satisfy

the condition in Assumption (b) of Lemma 5.1: Ex[H(Xt)] ≤ v(x, t) for all x ∈ X and t ∈ R+. An

application of Lemma 5.1 concludes the proof of the theorem. □

Proof of Lemma 2.8. Pick ℓ ∈ (ℓ0,∞), r ∈ (ℓ + 1,∞) and x ∈ {ℓ + 1 ≤ V < r}, and recall the

definitions T (r) := inf{t ≥ 0 : V (Xt) > r} and S(ℓ) := inf{t ≥ 0 : V (Xt) < ℓ}. Assumption of the

lemma implies that for some d ∈ [1,∞), we have V (XT (r)) − V (XT (r)−) ≤ d Px-a.s, and since Ψ

is increasing we obtain Ψ ◦ V (Xt∧S(ℓ)∧T (r)) ≤ Ψ(r + d) for all t ∈ R+ Px-a.s. Moreover, given that

ℓ ∈ (ℓ0,∞) it follows that
∫ ·∧S(ℓ)∧T (r)

0 1{V (Xu) ≤ ℓ0} ≡ 0 Px-a.s. Thus, by the assumption of the

lemma and the optional sampling theorem the process Ψ ◦V (X·∧S(ℓ)∧T (r)) is an (Ft)-submartingale

under Px.

We establish a lower bound on Px(T
(r) < S(ℓ)) as follows. By assumption in Lemma 2.8 we

have lim supt→∞ V (Xt) = ∞ Px-a.s., which implies T (r) ∧ S(ℓ) ≤ T (r) < ∞ Px-a.s. The dominated

convergence theorem and the monotonicity of Ψ yield

Ψ(V (x)) ≤ lim
t→∞

Ex[Ψ ◦ V (Xt∧S(ℓ)∧T (r))] = Ex[Ψ ◦ V (XS(ℓ)∧T (r))] ≤ Ψ(ℓ) + Px(T
(r) < S(ℓ))Ψ(r + d).

Thus, Px(T
(r) < S(ℓ)) ≥ (Ψ(V (x))−Ψ(ℓ))/Ψ(r+ d) ≥ (Ψ(V (x))−Ψ(ℓ))/(CΨ(r)Ψ(d)) ≥ Cℓ/Ψ(r),

where Cℓ := (Ψ(ℓ+ 1)−Ψ(ℓ))/(CΨ(d)). The second inequality holds since Ψ is submultiplicative

(with a constant C > 0) and the third holds because Ψ is increasing (both properties are assumed

in the lemma). Noting Cℓ > 0 concludes the proof of the inequality in L(V ,φ,Ψ)(ii). □

Proof of Theorem 2.7. Supermartingale condition (a). Fix arbitrary x ∈ X and let ℓ0 ∈ (1,∞) be

such that the inequality in (7) holds. By assumption in Theorem 2.7(a), we have 1/V ∈ D(A).

Thus, by [8, Ch 1, Def (14.15)], there exists an increasing sequence {Tn : n ∈ N} of (Ft)-stopping

times, satisfying Tn ↑ ∞ as n → ∞ Px-a.s. and the localised process

1/V (X·∧Tn)− 1/V (x)−
∫ ·∧Tn

0
A(1/V )(Xs)ds is an (Ft)-martingale under Px for all n ∈ N.

By assumptions of the theorem, we have 0 < 1/V (x′) ≤ 1 for x′ ∈ X and 0 ≤ φ(u) ≤ φ(1)

for u ∈ (0, 1], implying Ex[1/V (Xt∧Tn)] < ∞ and Ex[
∫ t
0 φ(1/V (Xs))ds] < ∞ for all t ∈ R+,
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respectively. By the inequality in (7), there exists b ∈ R+, such that for every n ∈ N we have

Ex[1/V (Xt∧Tn)]− Ex

[∫ t∧Tn

0
φ(1/V (Xs))ds

]
= 1/V (x) + Ex

[∫ t∧Tn

0
(A(1/V )(Xs)− φ(1/V (Xs)))ds

]
≤ 1/V (x) + bEx

[∫ t∧Tn

0
1{V (Xs) ≤ ℓ0}ds

]
for all t ∈ R+.

This inequality, Fatou’s lemma and the monotone convergence theorem, yield

Ex[1/V (Xt)] = Ex[lim inf
n→∞

1/V (Xt∧Tn)] ≤ lim inf
n→∞

Ex[1/V (Xt∧Tn)]

≤ lim inf
n→∞

(
1/V (x) + Ex

[∫ t∧Tn

0
φ(1/V (Xs))ds

]
+ bEx

[∫ t∧Tn

0
1{V (Xs) ≤ ℓ0}ds

])
= 1/V (x) + Ex

[∫ t

0
φ(1/V (Xs))ds

]
+ bEx

[∫ t

0
1{V (Xs) ≤ ℓ0}ds

]
.

This proves the condition (i) in Assumption L(V ,φ,Ψ).

Exit probability condition (b). We employ analogous arguments to show that for some ℓ0, c ∈
(0,∞) and all r ∈ (ℓ0,∞), the process

Ψ ◦ V (X·∧T (r)) + c

∫ ·∧T (r)

0
1{V (Xu) ≤ ℓ0}du, is an (Ft)-submartingale under Px for all x ∈ X .

The condition in L(V ,φ,Ψ)(ii) then follows from the application of Lemma 2.8.

Fix arbitrary x ∈ X and let ℓ0 ∈ (1,∞) be such that the inequality (8) hold. Since Ψ◦V ∈ D(A)

(by assumption in Theorem 2.7(b)), as before there exists a localising sequence of (Ft)-stopping

times {Tn : n ∈ N}, such that (Mn
t )t∈R+ , where

Mn
t := Ψ ◦ V (Xt∧Tn)−Ψ ◦ V (x)−

∫ t∧Tn

0
A(Ψ ◦ V )(Xs)ds,

is an (Ft)-martingale under Px. Thus, for any r ∈ (ℓ0,∞), the stopped process (Mn
t∧T (r))t∈R+ is

also an (Ft)-martingale under Px (recall T (r) = inf{t ≥ 0 : V (Xt) > r}). Moreover, by assumption

in Theorem 2.7(b) there exists d ∈ [1,∞) such that V (Xt∧T (r))−V (Xt∧T (r)−) ≤ r+d for all t ∈ R+

and r ∈ (ℓ0,∞) Px-a.s. The fact that Ψ is increasing implies Ψ ◦ V (Xt∧Tn∧T (r)) ≤ Ψ(r + d) for all

t ∈ R+, r ∈ (ℓ0,∞) and n ∈ N Px-a.s. Since Ex[M
n
t∧T (r) ] = 0, by the inequality in (8), there exists

c ∈ R+, such that for every n ∈ N,

Ex[Ψ ◦ V (Xt∧Tn∧T (r))] = Ψ ◦ V (x) + Ex

[∫ t∧Tn∧T (r)

0
A(Ψ ◦ V )(Xs)ds

]

≥ Ψ ◦ V (x)− cEx

[∫ t∧Tn∧T (r)

0
1{V (Xs) ≤ ℓ0}ds

]
, t ∈ R+, r ∈ (ℓ0,∞).

The dominated convergence theorem (as n → ∞), applied to both sides of the inequality, yields

the submartingale condition, and by Lemma 2.8, Assumption L(V ,φ,Ψ)(ii). □

Proof of Lemma 2.10. Pick x ∈ X and recall H ∈ D(A). Thus, by [8, Ch 1, Def (14.15)], there

exists an increasing sequence {Tn : n ∈ N} of (Ft)-stopping times, such that Tn ↑ ∞ as n → ∞
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Px-a.s. and M (n) := H(X·∧Tn) − H(x) −
∫ ·∧Tn

0 AH(Xs)ds is an (Ft)-martingale under Px for all

n ∈ N. Set Sm := inf{t > 0 : H(Xt) ≥ m} ∧ Tm for all m ∈ N and note Sm ↑ ∞ as m → ∞
Px-a.s. Since M

(m)
t is integrable and, on the event {t < Sm}, H(Xt∧Sm) is bounded, we have

Ex[
∫ t∧Sm

0 AH(Xs)ds] < ∞. Moreover, since AH ≤ ξ ◦ H on X , for any t ∈ R+ and m ∈ N we

obtain

Ex[H(Xt∧Sm)] = H(x) + Ex

[∫ t∧Sm

0
AH(Xs)ds

]
≤ H(x) + Ex

[∫ t∧Sm

0
ξ ◦H(Xs)ds

]
This inequality, Fatou’s lemma and the monotone convergence theorem, yield

Ex[H(Xt)] = Ex[lim inf
m→∞

H(Xt∧Sm)] ≤ lim inf
m→∞

Ex[H(Xt∧Sm)]

≤ H(x) + lim inf
m→∞

Ex

[∫ t∧Sm

0
ξ ◦H(Xs)ds

]
= H(x) + Ex

[∫ t

0
ξ ◦H(Xs)ds

]
.

Since ξ : [1,∞) → [1,∞) is concave, Tonelli’s theorem and Jensen’s inequality imply

Ex

[∫ t

0
ξ ◦H(Xs)ds

]
=

∫ t

0
Ex [ξ ◦H(Xs)] ds ≤

∫ t

0
ξ (Ex[H(Xs)]) ds for all t ∈ R+.

Denote g(t) := Ex[H(Xt)] ≥ 1. Thus g(0) = H(x) and

(37) g(t) ≤ g(0) +

∫ t

0
ξ(g(s))ds for all t ∈ R+.

The increasing function Ξ : [1,∞) → R+, given by Ξ(t) :=
∫ t
1 ds/ξ(s), has a differentiable inverse

Ξ−1. Denote G(t) :=
∫ t
0 ξ(g(s))ds. By (37) we have G′(v) = ξ(g(v)) ≤ ξ(g(0)+G(v)) for all v ∈ R+,

since ξ is non-decreasing. This yields

Ξ(g(0) +G(t))− Ξ(g(0)) =

∫ g(0)+G(t)

g(0)

dz

ξ(z)
=

∫ G(t)

0

dz

ξ(g(0) + z)
=

∫ t

0

G′(v)

ξ(g(0) +G(v))
dv ≤ t.

Thus Ξ(g(0) +G(t)) ≤ Ξ(g(0)) + t and hence g(t) ≤ g(0) +G(t) ≤ Ξ−1(Ξ(g(0)) + t). □

6. Proofs of the examples in Section 3

This section is dedicated to proving the theorems presented in Section 3. All strong Markov

processes X considered in this section are ergodic with an invariant measure π and Feller continuous

(see [9, Sec. 5] for more details), and thus positive Harris recurrent by [25, Thm 1.1]. Moreover, all

the models in this section are irreducible, either because of uniform ellipticity and the irreducibility

of the driver (a Brownian motion or, more generally, a Lévy process) or by a direct argument in the

hypoelliptic case. Thus, for any Lyapunov function V for X, we will have Px(V (Xt) ≥ r0) > 0 for

all starting points x, times t > 0 and levels r0, thus satisfying the assumptions of Lemma A.1 below

and implying non-confinement. Verifying the L-drift condition L(V ,φ,Ψ) in our examples will thus

reduce to finding functions V, φ,Ψ, which satisfy the conditions (i) and (ii) in L(V ,φ,Ψ). Since

we are working with Feller processes, we will obtain these conditions by applying the generator to

the relevant functions, establishing the appropriate point-wise inequalities and using Theorem 2.7.
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6.1. Diffusions from Section 3.1. Since the SDE in (11) possesses a unique strong solution,

the process X is strong Markov. Feller continuity follows from [17, Thm 3.4.1]. By Itô’s formula

applied to g(X), the extended generator (see Section 2.4 above for definition) of the diffusion X

takes the following form for any twice continuously differentiable g ∈ C2(Rn):

(38) Ag(x) = ⟨b(x),∇g(x)⟩+ 1

2
Tr (Σ(x)Hess(g)(x)) , for all x ∈ Rn,

where Σ = σσ⊺ is the instantaneous covariance of X, ∇g is the gradient of g, Hess(g) is the Hessian

(i.e. the matrix of the second derivatives of g) and Tr(·) denotes the trace of a matrix in Rn×n.

6.1.1. Polynomial tails: proofs for Section 3.1.1. For any m ∈ R \ {0}, consider a function pm :

Rn → (0,∞) in C2(Rn), satisfying pm(x) ≤ 1 + |x|m for all x ∈ Rn and

(39) pm(x) = |x|m for all x ∈ Rn with |x| sufficiently large.

If m > 0, we assume in addition that pm : Rn → [1,∞) takes values in [1,∞) only. Recall

parameters α, β, γ ∈ (0,∞), ℓ ∈ [0, 2) and mc in Assumption Ap. The following (deterministic)

proposition allows us to construct the functions in L(V ,φ,Ψ).

Proposition 6.1. Under Assumption Ap, extended generator (38) of the diffusion X in (11)

satisfies the following asymptotic inequalities: if m ∈ (−∞,mc) \ {0} (resp. m ∈ (mc,∞)), then

Apm(x) ≤ C0|x|m+ℓ−2 (resp. Apm(x) ≥ C0|x|m+ℓ−2) for all x ∈ Rn with |x| sufficiently large and

C0 := max{−mβ(mc −m),−mβ(mc −m)/4} ∈ R \ {0} (resp. C0 := mβ(m−mc)/4 ∈ (0,∞)).

Proof. Since ∇pm(x) = m|x|m−2x and Hess(pm)(x) = m|x|m−2((m − 2)xx⊺/|x|2 + In) for all m ∈
R \ {0} and x ∈ Rn with sufficiently large |x| (In ∈ Rn×n is the identity matrix), the representation

of A in (38), the identity ⟨Σ(x)x/|x|, x/|x|⟩ = Tr
(
Σ(x)xx⊺/|x|2

)
for all points x ∈ Rn \ {0} and

Assumption Ap yield

Apm(x) = −mβ

2

(
2α− γ

β
− (m− 2) + o(1)

)
|x|m+ℓ−2 = −mβ

2
(mc −m+ o(1))|x|m+ℓ−2,(40)

for all x ∈ Rn with |x| sufficiently large. Recall mc > 0 by Assumption Ap. If m ∈ (−∞,mc) \ {0}
(resp. m ∈ (mc,∞)), then a constant C0 and the inequalities follow from representation (40). □

As with all of the results in this section, Theorem 3.2 is a direct consequence of the theory

developed in Section 2 applied to an appropriate class (in this case polynomial) of Lyapunov

functions. Its proof is straightforward, but somewhat tedious. It consist of verifying the assumptions

of Theorem 2.7 and translating them into lower bounds via Theorems 2.1 and 2.5(b).

Proof of Theorem 3.2. Pick ε ∈ (0,mc). Let Vε := pmc−ε be a C2(Rn) function in (39). By

Proposition 6.1, we have A(1/Vε)(x) = Apε−mc(x) ≤ C0|x|ε−mc+ℓ−2 for C0 > 0 and all x ∈ Rn

with large norm |x|. For r ∈ [1,∞), define φε(1/r) := C0r
(ε−mc+ℓ−2)/(mc−ε). Then A(1/Vε) ≤

φ(1/Vε) holds outside of a large ball centered at the origin, implying condition (7) in Theorem 2.7.

Moreover, since the function r 7→ 1/(rφε(1/r)) = r(2−ℓ)/(mc−ε)/C0 is increasing with infinite limit

as r → ∞, all assumptions in Theorem 2.7(a) concerning φε are satisfied. Define differentiable,

increasing and submultiplicative function Ψε(r) := r1+2ε/(mc−ε), r ∈ [1,∞), and note (by (39)) that

Ψε ◦Vε = pmc+ε. By Proposition 6.1, we have A(Ψε ◦Vε) ≥ 0 outside of a large ball centered at the
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origin, implying conditions in Theorem 2.7(b). Thus, by Theorem 2.7, L-drift condition L(V ,φ,Ψ)

holds with (V, φ,Ψ) := (Vε, φε,Ψε) for the diffusion X in SDE (11) and every ε ∈ (0,mc).

The function Lε,q in (3) (with q ∈ (0, 1)) satisfies Lε,q(r) = rφ(1/r)Ψ(2r/(1 − q))(log log r)ε ≤
r1+(ℓ−2+2ε)/(mc−ε)(log log r)ε/C1 for some constant C1 > 0 and all r ∈ [1,∞). Since V = Vε, by

Theorem 2.1, there exists c′π > 0 such that

π({|x| ≥ r}) = c′π/Lε,q(r
mc−ε) ≥ c′πC1/(r

ℓ−2+mc+ε(log log(rmc−ε))ε) ≥ cπ/r
ℓ−2+mc+2ε

for all r ∈ [1,∞) and a sufficiently small constant cπ > 0, implying part (a) of the theorem.

Theorem 2.5(b) provides a lower bound on the tail of the return time τD(δ). The inverse function

G1(t) (of the function proportional to r 7→ 1/(rφε(1/r)) = r(2−ℓ)/(mc−ε)/C0) is proportional to

t 7→ t(mc−ε)/(2−ℓ), implying in particular that there exist t0, C
′ > 0 such that Ψ(2G1(t)/(1− q)) ≤

C ′t(mc+ε)/(2−ℓ) for all t ∈ (t0,∞). Since ε ∈ (0,mc) can be chosen to be arbitrarily small, part (b)

follows. By Remark 2.6, following Theorem 2.5 above, the lower bound holds for all δ > 0 since

the diffusion X in SDE (11) has full support at every positive time. □

Proof of Theorem 3.1. Pick ε ∈ (0, (2 − ℓ)/3). Let Vε = pmc−ε (where pmc−ε is a C2(Rn) function

in (39)), Ψε(r) = r1+2ε/(mc−ε) and φε(1/r) = C0r
(ε−mc+ℓ−2)/(mc−ε), for r ∈ [1,∞) and some

constant C0 ∈ (0,∞). Recall, from the proof of Theorem 3.2, that the L-drift condition L(V ,φ,Ψ)

holds with (V, φ,Ψ) := (Vε, φε,Ψε).

Pick k ∈ [0, ℓ + (2α − γ)/β) and note k < 2 + (2α − γ)/β = mc. Consider the functions

h, f⋆, g : [1,∞) → [1,∞) given by h(r) = r, f⋆(r) = rk/(mc−ε) and g(r) = h(r)/f⋆(r) = r1−k/(mc−ε).

By Proposition 6.1, there exists C ′
h ∈ (1,∞) such that A(h ◦ Vε)(x) ≤ C ′

h for all x ∈ Rn. Thus,

Lemma 2.10 (with H = h ◦ Vε and ξ ≡ C ′
h) yields Ex[h ◦ Vε(Xt)] ≤ Ch(h ◦ Vε(x) + t) for all x ∈ Rn,

t ∈ R+ and some Ch ∈ (1,∞).

The function Lε,q in (3) (with q ∈ (0, 1)) satisfies Lε,q(r) = rφ(1/r)Ψ(2r/(1 − q))(log log r)ε ≤
r1+(ℓ−2+2ε)/(mc−ε)(log log r)ε/C ≤ r1+(ℓ−2+3ε)/(mc−ε)/C ′ for some constants C,C ′ > 0 and all r ∈
[1,∞). We define the function a : [1,∞) → R+ by

cε,qf⋆(g
−1(t))

Lε,q(g−1(t))
≥ c̃ε,qt

k/(mc−ε−k)

t(ℓ−2+mc+2ε)/(mc−ε−k)
= c̃ε,qt

−1−(ℓ−2+3ε)/(mc−k−ε)

= c̃ε,qt
−1+(2−ℓ)/(mc−k)−b(ε) =: a(t),

where b(ε) ↓ 0 as ε ↓ 0. Let A(t) := ta(t) = c̃ε,qt
(2−ℓ)/(mc−k)−b(ε) for t ∈ [1,∞). As (2−ℓ)/(mc−k) >

0, for all sufficiently small ε > 0, we have limt→∞A(t) = ∞.

Applying Theorem 2.2 with functions h, f⋆, g, a and A defined above yields: for every x ∈ Rn,

there exists a constant c ∈ (0,∞) such that

∥Px(Xt ∈ ·)− π(·)∥f⋆◦Vε ≥ a ◦A−1(2Ch(h ◦ Vε(x) + t)) ≥ c/tηε ,

where ηε := (mc − k)/((2 − ℓ) − b(ε)(mc − k)) − 1. Since b(ε) ↓ 0 as ε ↓ 0 and k < mc, we get

ηε ↓ αk = mc/(2 − ℓ) − 1 − k/(2 − ℓ) as ε ↓ 0 (recall the definition of αk in the statement of

Theorem 3.1). Moreover, since we have Vε(x) ≤ 1 + |x|mc−ε for all x ∈ Rn and f⋆(r) = rk/(mc−ε) is

concave on [0,∞), it follows that f⋆◦Vε(x) ≤ f⋆(1+|x|mc−ε) ≤ f⋆(1)+f⋆(|x|mc−ε) = 1+|x|k = fk(x)

for all x ∈ Rn. This implies ∥ · ∥f⋆◦Vε ≤ ∥ · ∥fk , which concludes the proof. □
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Having given full details of the proofs of Theorems 3.1 and 3.2, in the proofs of the remaining

results of Section 3, we will be less explicit in the applications of our theory.

In the last proof of this section, we will show that the assumptions on the upper bounds of the

model parameters, used in [9,12,36], are not sufficient for determining the rate of convergence. We

will prove that, under assumption on upper bounds from [12], one-dimensional Langevin diffusions

may achieve polynomial ergodicity of any order.

Proof of the inequalities in (14). Fix α ∈ (1,∞), pick arbitrary k ∈ (α,∞) and set b ∈ (0,∞)

such that α = kb/(1 + b) holds. Consider π satisfying π(x) = |x|−k((1 + b) + sin(k|x|)/|x|) for |x|
sufficiently large and note that lim sup|x|→∞ x(log π)′(x) = −kb/(1 + b) = −α.

For η ∈ (0, 1] define the Lyapunov function Vη : R → [1,∞) satisfying Vη(x) = |
∫ x
0 1/π(y)ηdy| for

all |x| sufficiently large. Choosing η ∈ (0, 1) implies the equalities AVη(x) = ((log π)′V ′
η +V ′′

η )(x) =

(1 − η)(log π)′(x)/π(x)η for all x outside of some compact set, where A is the generator of the

process in (13). Since there exist c, C ∈ (0,∞) such that c/|x|k ≤ π(x) ≤ C/|x|k for all x ∈ R
outside a compact set, there also exist constants c1, c2 ∈ (0,∞) satisfying Vη(x) ≥ c1x

1+ηk and

(log π)′(x)/π(x)η ≤ c2x
ηk−1 for all x with large |x|. Thus, AVη(x) ≤ c3Vη(x)

(ηk−1)/(ηk+1) for all

x ∈ R with |x| sufficiently large and some constant c3 ∈ (0,∞). By [9, Thms 3.2 and 3.4], for each

x ∈ R there exists C0 ∈ (0,∞) such that ∥Px(Xt ∈ ·)− π(·)∥TV ≤ C0t
−(ηk−1)/2 for all t ∈ [1,∞).

To obtain the matching lower bound, note that the inequality AV1 = ((log π)′V ′
1 + V ′′

1 ) ≤ C ′

holds on R for some constant C ′ ∈ (0,∞). Thus, Lemma 2.10 (with H = V1 and ξ ≡ C ′) yields

a constant C ′′ ∈ (1,∞), such that Ex[V1(Xt)] ≤ C ′′(V1(x) + t) for all x ∈ R and t ∈ R+. Since

π({V ≥ r}) ≥ cπr
(1−k)/(1+k) for some cπ > 0 and all large r ∈ [1,∞), by Lemma 5.1 with f ≡ 1,

for every x ∈ R there exist c, C ∈ (0,∞) such that

ct(1−k)/2 ≤ ∥Px(Xt ∈ ·)− π(·)∥TV ≤ Ct(1−ηk)/2 for all t ∈ [1,∞).

The proof of (14) is complete since η ∈ (0, 1) was chosen arbitrarily. □

Proof of the exponential ergodicity in (16). In [20, Example 2.5], the authors show that X is poly-

nomially ergodic of any order. Let V : R → [1,∞) satisfy V (x) =
∫ |x|
0 exp(cy+2 sin y)dy for x ∈ R

with large |x|. Since | sin y| ≤ 1 for y ∈ R, we have 0 < c
exp(4)V (x) ≤ x

|x|V
′(x) for all x ∈ R with |x|

sufficiently large. As V ′′(x) = x
|x|V

′(x)(c+ 2 cosx) for x in the complement of a compact, we have

AV (x) = −(c+ cosx)
x

|x|
V ′(x) +

1

2
V ′′(x) = − c

2

x

|x|
V ′(x) ≤ −c2V (x)/(2 exp(4)),

where A is the generator of the diffusion X in (15). Thus V (X) satisfies the drift condition in (10)

above with linear ϕ(r) = c2r/(2 exp(4)), yielding exponential ergodicity by [9, Thm 3.2]. □

6.1.2. Stretched exponential tails: proofs for Section 3.1.2. Recall from Assumption Ase parameters

p ∈ (0, 1), ℓ ∈ [0, 2p). For any u ∈ R\{0}, consider a function gu : Rn → (0,∞) in C2(Rn), satisfying

(41) gu(x) = exp(u|x|1−p) for all x ∈ Rn with |x| sufficiently large.

We may assume that gu is a function of |x| for all x ∈ Rn and, if u > 0, then gu ≥ 1 on Rn.

The following (deterministic) proposition allows us to construct the functions in L(V ,φ,Ψ).
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Proposition 6.2. Under Assumption Ase, the extended generator A in (38) of the diffusion X

in (11) satisfies the following.

(i) For some uc ∈ (0,∞) and all u ∈ (uc,∞), there exists a constant Cu ∈ (0,∞) such that

0 ≤ Agu ≤ Cugu/(log gu)
(2p−ℓ)/(1−p) outside of some compact set.

(ii) For the function p1, defined in (39) above, we obtain A(1/p1)(x) ≤ C2/p1(x)
2+p−ℓ for some

constant C2 ∈ (0,∞) and all x ∈ Rn with |x| large.

Proof. Denote g(|x|) = gu(x) for x ∈ Rn. Note that ∇gu(x) = g′(|x|)x and

Hess(gu)(x) = Hess(g(|x|)) = g′(|x|)|x|−1In + (g′′(|x|)/|x|2 − g′(|x|)/|x|3)xx⊺,

where In ∈ Rn×n is the identity matrix. By Assumption Ase, lim sup|x|→∞Tr(Σ(x))/|x|ℓ < ∞ and

there exist 0 < αU < αL and 0 < βL < βU such that

−αL ≤ ⟨b(x), x/|x|⟩/|x|ℓ−p ≤ −αU and βL ≤ ⟨Σ(x)x/|x|, x/|x|⟩/|x|ℓ ≤ βU

for all x outside of some compact set. By the formula for A in (38), we get

(42) (βLu(1− p)/2− αL + o(1))/|x|2p−ℓ ≤ Agu(x)

u(1− p)gu(x)
≤ (βUu(1− p)/2− αU + o(1))/|x|2p−ℓ,

as |x| → ∞. Thus, for u ∈ (2αL/(βL(1 − p)),∞) we have A(gu)(x) ≥ 0 for all x with |x| large.
Since |x| = (u−1 log gu(x))

1/(1−p) for x ∈ Rn with large |x|, there exists a constant Cu > 0, such

that the upper bound on Agu in (i) holds.

For x ∈ Rn outside of a compact set, p1(x) = |x|, ∇(1/p1)(x) = −x/|x|3 and Hess(1/p1)(x) =

−(−3xx⊺/|x|2 + In)/|x|3. Thus the representation of A in (38) and the Assumption Ase imply

A(1/p1)(x) ≤ (αL + o(1))/p1(x)
2+p−ℓ,

for all x ∈ Rn with sufficiently large |x|. This concludes the proof of (ii). □

Proof of Theorem 3.7. Let V := p1 be a C2(Rn) Lyapunov function in (39). By Proposition 6.2(ii)

we have A(1/V )(x) ≤ C/V (x)2+p−ℓ = φ(1/V (x)) for some constant C ∈ (0,∞) and all x ∈ Rn

outside of some compact set, where the function φ : (0, 1] → R is given by φ(1/r) := C/r2+p−ℓ.

Moreover, by Proposition 6.2(i), there exists uc ∈ (0,∞), such that for all u ∈ (uc,∞) the func-

tion Ψu(r) = exp(ur1−p) satisfies A(Ψu ◦ V )(x) = Agu ≥ 0 for all x ∈ Rn with |x| large (gu is

defined in (41)). The functions (V, φ,Ψu) (with any u > uc) defined above, satisfy the L-drift

condition L(V ,φ,Ψ) by Theorem 2.7. For any u0 ∈ (2u,∞), Theorem 2.1 yields

(43) π({V ≥ r}) ≥ c exp(−u0r
1−p) for some constant c ∈ (0,∞) and all r ∈ [1,∞),

implying Theorem 3.7(a) (polynomial and logarithmic terms in (4) of Theorem 2.1 are negligible,

compared to the stretched exponential decay of 1/Ψ, implying inequality (43)). Moreover, an ap-

plication of Theorem 2.5(b) yields the lower bound on the tail of the return time in Theorem 3.7(b).

Pick u ∈ (u0,∞) (for u0 in (43)) and define h(r) := exp(ur1−p). By the inequality in (43)

we have π({h ◦ V ≥ r}) ≥ c/ru0/u for some c ∈ (0, 1) and all r ∈ [1,∞). Since h ◦ V = gu

outside of a compact set, by Proposition 6.2(i) there exists a constant C ′
h ∈ (0,∞), such that
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A(h ◦ V ) ≤ C ′
hh ◦ V/(log h ◦ V )(2p−ℓ)/(1−p) outside of a compact set. Lemma 2.10 (with H = h ◦ V ,

ξ(r) = C ′
hr/(log r)

(2p−ℓ)/(1−p) and hence Ξ(u) =
∫ u
1 ds/ξ(s) = (C ′−1

h log u)(1+p−ℓ)/(1−p)) implies

Ex[h ◦ V (Xt)] ≤ Ξ−1(Ξ(h ◦ V (x)) + t) ≤ exp(Ch(h ◦ V (x) + t)(1−p)/(1+p−ℓ)) =: v(x, t)

for all x ∈ Rn, t ∈ R+ and some Ch ∈ (1,∞). Thus, by Corollary 2.3, applied with a(r) = c/ru0/u

and v(x, t), we obtain the claimed lower bound in part (c) of Theorem 3.7. □

6.1.3. Exponential tails: proofs for Section 3.1.3.

Proposition 6.3. Under Assumption Ae, the extended generator A in (38) of the diffusion X

in (11) satisfies the following.

(i) For some uc ∈ (0,∞) and all u ∈ (uc,∞), there exists a constant Cu ∈ (0,∞) such that

0 ≤ A exp(u|x|) ≤ Cu exp(u|x|) outside of some compact set.

(ii) For the function p1, defined in (39) above, we obtain A(1/p1)(x) ≤ C ′/p1(x)
2 for some constant

C ′ ∈ (0,∞) and all x ∈ Rn with |x| large.

Proof. For any u ∈ (0,∞) it holds that ∇ exp(u|x|) = u exp(u|x|)x/|x| and Hess(exp(u|x|)) =

u exp(u|x|)(In/|x| + (u/|x|2 + 1/|x|3)xx⊺). By Assumption Ae, lim sup|x|→∞Tr(Σ(x)) < ∞ and

there exist 0 < αU < αL and 0 < βL < βU such that

−αL ≤ ⟨b(x), x/|x|⟩ ≤ −αU and βL ≤ ⟨Σ(x)x/|x|, x/|x|⟩/ ≤ βU

for all x outside of some compact set. By the formula for A in (38), we get

(βLu/2− αL + o(1)) ≤ A exp(u|x|)
u exp(u|x|)

≤ (βUu/2− αU + o(1)) as |x| → ∞.

Thus, for u ∈ (2αL/βL,∞) we have A(exp(u|x|)) ≥ 0 for all x with |x| large, implying (i).

For all x ∈ Rn with sufficiently large |x|, we have p1(x) = |x|, ∇(1/p1)(x) = −|x|−3x and

Hess(1/p1)(x) = −|x|−3(−3xx⊺/|x|2 + In). Thus,

A(1/p1)(x) = (αL + o(1))/p1(x)
2 as |x| → ∞. □

Proof of Theorem 3.10. Let V = p1, where p1 is a C
2(Rn) function in (39). Then, by Proposition 6.3

we have A(1/V )(x) = A(1/p1)(x) ≤ φ(1/p1(x)), for all x ∈ Rn outside of some compact set

centered at the origin, where φ(1/r) = C/r2 for all r ∈ [1,∞) and some constant C ∈ (α,∞).

Moreover, by Proposition 6.3, there exists uc ∈ (0,∞) such that for any u0 ∈ (uc,∞) the function

Ψ(r) := exp(u0r) satisfies A(Ψ◦p1) = A exp(u0|x|) ≥ 0 for all x ∈ Rn outside of some compact set.

Thus, by Theorem 2.7, the conditions of L(V ,φ,Ψ) are satisfied with the aforementioned functions

(V, φ,Ψ). By Theorem 2.1 we obtain a lower bound on the tail of the invariant measure, implying

Theorem 3.10(a). Moreover, an application of Theorem 2.5(b) yields the lower bound on the tail

of the return time in Theorem 3.10(b).

The function Lε,q in (3) (with q, ε ∈ (0, 1)) satisfies Lε,q(r) = rφ(1/r)Ψ(2r/(1− q))(log log r)ε ≤
exp(2u0r/(1− q))/C1 for some constant C1 > 0 and all r ∈ [1,∞). Pick u ∈ (2u0/(1− q),∞) and

denote h(r) := exp(ur1−p). Define the function a : [1,∞) → R+ by a(r) := c′ε,qc/r
2u0/(1−q)/u ≤

cε,q/Lε,q(h
−1(r)). Since h ◦ V = exp(u|x|) outside of a compact set, by Proposition 6.2(i) there
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exists a constant C ′
h ∈ (0,∞), such that A(h◦V ) ≤ C ′

hh◦V outside of a compact set. Lemma 2.10

(with H = h ◦ V , ξ(r) = C ′
hr and hence Ξ(u) =

∫ u
1 ds/ξ(s) = (C ′−1

h log u)) implies

Ex[h ◦ V (Xt)] ≤ Ξ−1(Ξ(h ◦ V (x)) + t) ≤ exp(Ch(h ◦ V (x) + t)) =: v(x, t)

for all x ∈ Rn, t ∈ R+ and some Ch ∈ (1,∞). Thus, by Corollary 2.3, applied with a and v(x, t),

we obtain the claimed lower bound in part (c) of Theorem 3.10. □

6.2. Lévy-driven SDE: proofs for Section 3.2. Let X be the solution of SDE (18) with a

bounded Lipschitz dispersion coefficient σ, driven by a pure-jump Lévy process L with Lévy measure

ν. By Itô’s formula [29, Thm II.36] applied to g(X), where g ∈ C1(R) and
∫
R\(−1,1) |g(y)|ν(dy) < ∞,

the extended generator (see Section 2.4 above for definition) of the process X takes the form

(44) Ag(x) = −µxg′(x) +

∫
R
(g(x+ σ(x)y)− g(x)− g′(x)σ(x)y1{y ∈ [−1, 1]})ν(dy), x ∈ R.

For any m ∈ [1,∞), consider a non-decreasing function gm : R → [1,∞) in C2(R) satisfying

(45) gm ≡ 1 on (−∞, 1] & gm(x) = (log x)m for all x ∈ R+ sufficiently large.

Note that, in particular, the derivatives g′, g′′ are globally bounded.

Proposition 6.4. Under Assumption AL, extended generator (44) of the process X in (18) satisfies

the following inequalities.

(a) For any m ∈ [1,mc) there exists a constant C1 ∈ (0,∞) such that

Agm(x) ≤ C1 for all x ∈ R.

(b) There exist constants C2, b, ℓ0 ∈ (0,∞), such that the following holds

A(1/g1)(x) ≤ C2/g1(x)
2 + b1{g1(x) ≤ ℓ0} for all x ∈ R.

Proof. For any g ∈ C2(R) and C ′
1 := supx∈R σ(x)2

∫
[−1,1] y

2ν(dy) ∈ [0,∞), Lagrange’s theorem

yields

(46)

∫
[−1,1]

(g(x+ σ(x)y)− g(x)− g′(x)σ(x)y)ν(dy) ≤ C ′
1 sup
u∈[x−σ(x),x+σ(x)]

|g′′(u)| for all x ∈ R.

Part (a). Let m ∈ [1,mc). For all large x ∈ R+ we have g′m(x) = m(log x)m−1/x, implying

g′m(x+ u) ≤ g′m(1 + u) for all u > 0. Thus, by Tonelli’s theorem, for all large x ∈ R+ we have∫
[1,∞)

(gm(x+ σ(x)y)− gm(x))ν(dy) =

∫
[1,∞)

ν(dy)

∫ σ(x)y

0
g′m(x+ u)du

=

∫ ∞

0
ν([max{1, u/σ(x)},∞))g′m(x+ u)du

≤
∫ ∞

0
ν([max{1, u/ sup

y∈R
σ(y)},∞))g′m(1 + u)du < ∞,(47)

where the final inequality holds by Assumption AL since m < mc and σ is bounded on R.
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Since gm is non-decreasing and supu∈R |g′′m(u)| < ∞ (by definition (45)), inequalities (46) and (47)

imply there exists x0 ∈ (0,∞), such that, for all x ∈ [x0,∞), the representation of A in (44) yields

Agm(x) ≤ −µm(log x)m−1 + C ′
1 sup
u∈R

|g′′m(u)|+
∫
[1,∞)

(gm(x+ σ(x)y)− gm(x))ν(dy)(48)

≤ C ′
1 sup
u∈R

|g′′m(u)|+
∫ ∞

0
ν([max{1, u/ sup

y∈R
σ(y)},∞))g′m(1 + u)du < ∞.

Let x ∈ (−∞, x0). Then
∫
[1,∞) gm(x+σ(x)y)ν(dy) ≤

∫
[1,∞) gm(x0+supu∈R σ(u)y)ν(dy) < ∞ since

gm is non-decreasing and integrable with respect to ν by Assumption AL. Hence the inequality

in (46) and the global boundedness of g′′m imply

Agm(x) ≤ C ′
1 sup
u∈R

|g′′m(u)|+
∫
[1,∞)

gm(x0 + sup
y∈R

σ(y)u)ν(du) < ∞ for all x ∈ (−∞, x0).

Part (b). By definition of g1 in (45), there exists large x0 ∈ R+, such that∫
[− x

2σ(x)
,−1]

((1/g1)(x+ σ(x)y)− (1/g1)(x))ν(dy) =

∫
[− x

2σ(x)
,−1]

log x− log(x+ σ(x)y)

log(x+ σ(x)y) log x
ν(dy)

≤ ν((−∞,−1]) log 2/(log(x/2) log(x))

≤ ν((−∞,−1]) log 4/g1(x)
2 for all x ≥ x0.(49)

By enlarging x0 if necessary, we may assume −x(1/g1)
′(x) = 1/g1(x)

2 and g′′1(x) ≤ 1/g1(x)
2 for all

x ≥ x0. By (49), the bound on small jumps in (46) and the representation of A in (44), we get

A(1/g1)(x) ≤ C ′
1 sup
u∈[x−σ(x),x+σ(x)]

|(1/g1)′′(u)| − µx(1/g1)
′(x) +

∫
(−∞,−1]

g1(x)− g1(x+ σ(x)y)

g1(x)g1(x+ σ(x)y)
ν(dy)

≤ C ′
2/g1(x)

2 + ν((−∞,− x

2σ(x)
)) +

∫
[− x

2σ(x)
,−1]

((1/g1)(x+ σ(x)y)− (1/g1)(x))ν(dy)

≤ C2/g1(x)
2 for all x ≥ x0 and some constants C ′

2, C2 ∈ (0,∞).

Jumps in [1,∞) can be disregarded since 1/g1 is non-increasing and the third inequality follows

from Assumption AL on the negative tail of ν, bound (49) and the fact that σ is bounded.

By (45), 1/g1 is non-increasing, x(1/g1)
′(x) is bounded from below for x ∈ R and 1/g1 ≤ 1.

Thus, since µ ∈ (0,∞), by (46) we have

A(1/g1)(x) ≤ C ′
1 sup
u∈R

(1/g1)
′′(u)− inf

u∈R
µu(1/g1)

′(u) + ν((−∞,−1]) =: b < ∞ for all x ∈ R,

implying part (b) of the proposition with ℓ0 := g1(x0). □

In this section we will work with the Lyapunov function V := g1. Recall the definitions S(ℓ) =

inf{t ≥ 0 : V (Xt) < ℓ} and T (r) = inf{t ≥ 0 : V (Xt) > r}, for r, ℓ ∈ (1,∞).

Proposition 6.5. Let Assumption AL hold. For some ℓ0 ∈ (1,∞) and each ℓ ∈ (ℓ0,∞) there exists

Cℓ ∈ (0,∞) such that

Px(T
(r) < S(ℓ)) ≥ Cℓ/r

mc for all r ∈ (ℓ+ 1,∞) and x ∈ {ℓ+ 1 ≤ V < r}.
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The proof of this proposition is based on a simple idea, which we first explain informally. The

process X satisfies SDE (18),

(50) Xt = x−µ

∫ t

0
Xsds+

∫ t

0
σ(Xs−)dL

(−)
s +

∫ t

0
σ(Xs−)dL

(M)
s +

∫ t

0
σ(Xs−)dL

(+)
s , for all t ∈ R+,

where the driving pure-jump Lévy process L = L(−) + L(M) + L(+) is decomposed into a sum

of independent pure-jump Lévy processes L
(−)
t , L

(M)
t and L

(+)
t with Lévy measures ν(−)(·) =

ν(· ∩ (−∞,−1]), ν(M)(·) = ν(· ∩ (−1, 1)) and ν(+)(·) = ν(· ∩ [1,∞)), respectively. For any t ∈ R+,

the process X has no negative jumps in (−∞,−1] on the event

(51) At := {L(−)
t = 0} ∩

{
sup
0≤s≤t

∣∣∣∣∫ s

0
σ(Xu−)dL

(M)
u

∣∣∣∣ ≤ 1/8

}
.

On At, it is thus necessary for X, started at x ∈ {V ≥ ℓ + 1}, to accumulate sufficient negative

drift in order to return to {V ≤ ℓ} before time t. Since the drift of the process X is bounded on

{ℓ ≤ V ≤ ℓ+ 1}, we will prove Px({S(ℓ) ≤ t} ∩At) = 0 for all sufficiently small t > 0, implying

{T (r) < S(ℓ)} ⊃ {T (r) < S(ℓ)} ∩At ⊃ {T (r) < t} ∩At ⊃
{
σ− sup

0≤s≤t
(Ls − Ls−) ≥ V −1(r)

}
∩At

Px-a.s., where σ− := infu∈R σ(u) > 0. Evaluating the probability of the smallest event in the last

display will complete the proof.

Proof of Proposition 6.5. Recall that X follows (50) and V = g1, where g1 is a C2(R) function

in (45). Choose ℓ0 ∈ (1,∞) such that V −1(y) = exp(y) for all y ∈ [ℓ0,∞). Note that for all

ℓ, r ∈ [ℓ0,∞), we have S(ℓ) = inf{t > 0 : Xt < exp(ℓ)} and T (r) = inf{t > 0 : Xt > exp(r)}. By

possibly increasing ℓ0, we may (and do) assume that ν(exp(ℓ0)/σ−,∞) < 2µ exp(ℓ0) holds.

Fix ℓ ≥ ℓ0 and define the upcrossing and downcrossing times of the interval [exp(ℓ+1), exp(ℓ+2)]

as follows: θ1 := 0 and for k ∈ N,

θk := inf{t > θk : Xt < exp(ℓ+ 1)} and θk+1 := {t > θk : Xt > exp(ℓ+ 2)}.

Thus we have 0 = θ1 ≤ θ1 ≤ · · · ≤ θk ≤ θk ≤ θk+1 ≤ . . . . The equality θk = θk may occur if the

process X jumps downwards over the entire interval [exp(ℓ+ 1), exp(ℓ+ 2)].

Claim 1. For all x ∈ {V ≥ ℓ+ 1} and t ∈ (0, 1/(2µ exp(ℓ+ 2))) we have Px({S(ℓ) ≤ t} ∩At) = 0.

Proof of Claim 1. Pick x ∈ {V ≥ ℓ + 1}. Since {θk ≤ S(ℓ) < θk} = ∅ for all k ∈ N, the following

holds

(52) {S(ℓ) ≤ t} ∩At = ∪∞
k=1{θk ≤ S(ℓ) ≤ t ∧ θk+1} ∩At Px-a.s.

It is thus sufficient to show that Px({θk ≤ S(ℓ) ≤ t ∧ θk+1} ∩ At) = 0 for every k ∈ N. By (51),

on At, the negative jumps of X can only come from the Lévy process L(M). The modulus of the

negative jumps of
∫ ·
0 σ(Xs−)dL

(M)
s on the event At is by definition (51) bounded above by 1/4,

implying Xθk
≥ exp(ℓ + 1) − 1/4. Clearly, for u ∈ [θk, θk+1), we have Xu ≤ exp(ℓ + 2). Hence,

by (50), on the event At we obtain

inf
θk≤s≤t∧θk+1

Xs = Xθk
+ inf

s∈[θk,t∧θk+1]

{
−µ

∫ s

θk

Xudu+

∫ s

θk

σ(Xu−)dL
(M)
u +

∫ s

θk

σ(Xu−)dL
(+)
u

}
≥ exp(ℓ+ 1)− 1/4− µ exp(ℓ+ 2)t− 1/4 > exp(ℓ+ 1)− 1 > exp(ℓ),
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where the second inequality follows from t < 1/(2µ exp(ℓ + 2)). Hence, on the event At, the

process X cannot go below exp(ℓ) during the time interval [θk, t ∧ θk+1] for any k ∈ N, implying

Px({θk ≤ S(ℓ) ≤ t ∧ θk+1} ∩At) = 0 for all k ∈ N. By (52), the claim follows.

To conclude the proof of the proposition, pick r ∈ (ℓ + 1,∞) and x ∈ {ℓ + 1 ≤ V < r}. Note

that by Claim 1 above we have {S(ℓ) > T (r)} ⊃ {S(ℓ) > t} ∩ {T (r) < t} ∩ At = {T (r) < t} ∩ At

Px-a.s. for any t ∈ (0, 1/(2µ exp(ℓ+ 2))). Since the positive jumps of L greater than one can only

come from L(+) in (50), we have

{T (r) < t} ∩At ⊃
{

sup
0≤s≤t

(Ls − Ls−) ≥
V −1(r)

σ−

}
∩At =

{
σ− sup

0≤s≤t
(L(+)

s − L
(+)
s− ) ≥ V −1(r)

}
∩At

(recall V −1(r) = exp(r) > exp(ℓ0) > 1). For some t, c ∈ (0,∞), Claim 2 below yields

Px(T
(r) < S(ℓ)) ≥ Px({T (r) < t} ∩At) ≥ Px

(
{ sup
0≤s≤t

(L(+)
s − L

(+)
s− ) ≥ exp(r)/σ−} ∩At

)
≥ c (1− exp(−tν(exp(r)/σ−,∞))) > cν(exp(r)/σ−,∞)t/2,

where the constant c ∈ (0,∞) is such that the third inequality holds uniformly in r ∈ (ℓ + 1,∞)

and x ∈ {V ≥ ℓ+ 1}. Recall

tν(exp(r)/σ−,∞)) < tν(exp(ℓ0)/σ−,∞)) < ν(exp(ℓ0)/σ−,∞))/(2µ exp(ℓ0 + 2)) < 1

for the last inequality. Proposition 6.5 now follows from the lower bound in Assumption AL.

Claim 2. There exists c ∈ (0,∞) such that

Px({ sup
0≤s≤t

(L(+)
s − L

(+)
s− ) ≥ exp(r)/σ−} ∩At) > c(1− exp(−tν(exp(r)/σ−,∞)))

for all x ∈ {V ≥ ℓ+ 1}, r ∈ (ℓ+ 1,∞) and all sufficiently small t ∈ (0,∞).

Proof of Claim 2. The processes L(−) and L(+) are independent with Px(L
(−)
t = 0) = e−tν((−∞,−1])

and Px(sup0≤s≤t(L
(+)
s − L

(+)
s− ) ≥ exp(r)/σ−) = 1 − exp(−tν(exp(r)/σ−,∞)) for all t ∈ R+. For

any t > 0, let Bt be σ-algebra generated by (L
(+)
s , L

(−)
s )s∈[0,t]. We have to show that there exists a

constant c̃ ∈ (0,∞) such that Px(sup0≤s≤t

∣∣∣∫ s
0 σ(Xu−)dL

(M)
u

∣∣∣ ≤ 1/8
∣∣Bt) > c̃, for all small t ∈ (0,∞)

and x ∈ {V ≥ ℓ + 1}. By Markov’s inequality, it is sufficient to identify a constant C ∈ (0,∞),

such that Ex[sup0≤s≤t |
∫ s
0 σ(Xu−)dL

(M)
u |2

∣∣Bt] ≤ Ct holds for all t ∈ (0,∞) and x ∈ {V ≥ ℓ+ 1}.
For any y ∈ R, let the process (Y y

t )t∈R+ be the unique strong solution [29, Thm V.6] of the SDE

(53) Y y
t = y − µ

∫ t

0
Y y
s ds+

∫ t

0
σ(Y y

s−)dL
(M)
s , for all t ∈ R+.

For any pair of deterministic sequences S = (sk)k∈N and J = (jk)k∈N, such that 0 < sk ↑ ∞ and

jk ∈ R \ {0}, define the process Z recursively as follows:

ZS,V
s := Y x

s 1{s ∈ [0, s1)}+
∑
k∈N

1{s ∈ [sk, sk+1)}Y
ZS,V
sk

+jk
s−sk

.

Note that the conditional law (
∫ s
0 σ(Xu−)dL

(M)
u )s∈[0,t], given the σ-algebra Bt, equals the law

of (
∫ s
0 σ(ZS,V

u− )dL
(M)
u )s∈[0,t] for the sequences S and V equal to the jump times and sizes of the

components of the Lévy process (L
(+)
s , L

(−)
s )s∈[0,t]. This is because the Lévy-driven SDE in (53)

has a unique strong solution. Since σ is bounded, [29, Thm V.66] yields a constant C ∈ (0,∞) such
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that for all x ∈ R and any pair of deterministic sequences S and J satisfying the above conditions,

we have E[sup0≤s≤t |
∫ s
0 σ(ZS,V

u− )dL
(M)
u |2] ≤ Ct for all t ∈ R+. This implies that

Ex

[
sup
0≤s≤t

∣∣∣∣∫ s

0
σ(Xu−)dL

(M)
u

∣∣∣∣2 ∣∣∣Bt

]
≤ Ct for all t ∈ R+ and x ∈ R,

which concludes the proof of Claim 2. □

Remark 6.6. Under Assumption AL, the process Ψ ◦ V (X) = (logX)mc is not a submartingale as

its marginals are not integrable. As discussed in Remark 2.9 above, this makes a submartingale

argument, similar to the one in the proof of Lemma 2.8, to deduce a lower bound on the probability

Px(T
(r) < S(ℓ)) infeasible. A slight perturbation (logX)mc−ε (for a small ε > 0) makes the process

integrable under Assumption AL. However, Ψ(r) = rmc−ε cannot be used because the process

(logX)mc−ε is a supermartingale for all small ε > 0 by (47)–(48) in the proof of Proposition 6.4(a).

Proof of Theorem 3.12. The process X is a Feller process by [19, Thm 1.1], since we can represent it

as a solution of the SDE dXt = x+
∫ t
0 σ̃(Xs−)dL̃s for the Lévy process L̃t = (t, Lt) and a covariance

matrix σ̃(x) = (−µx, σ(x))⊺ (note that the condition on the Lévy measure of [19, Thm 1.1] holds

since σ is bounded).

The irreducibility of X follows from the structure of the SDE in (18) since the Lévy driver L has

unbounded positive jumps, the function σ is uniformly bounded from below and the drift pushes

X linearly towards the origin. Indeed, for any starting point of X, with positive probability a large

positive jump of L takes X beyond any given finite interval I the process X needs to spend time

in. By the strong Markov property, at this jump time we consider an event (such as At in (51)

above, which has positive probability for every t ∈ (0,∞)) without future large negative or positive

jumps of L and with a bounded martingale part of L. On such an event, the drift of the process X

will take it down to the interval I and, once inside I, will make X stay there for a positive amount

of time (recall that X is right-continuous so the martingale part can be controlled). As the details

of this argument are tedious and uninformative, they are omitted for brevity. We conclude (via an

argument analogous to that in [12, Sec. 3.1]) that X is Harris recurrent and ergodic by [9, Thm 3.2]

with a Lyapunov function g2 defined in (45) above.

Recall that we are working with the Lyapunov function V = g1, where g1 is a C2(R) func-

tion in (45). By Proposition 6.4(b), there exists a constant C2 ∈ (0,∞) such that the function

φ(1/r) := C2/r
2, r ∈ [1,∞), satisfies the assumptions of Theorem 2.7(a), which in turn implies

condition L(V ,φ,Ψ)(i). Moreover, by Proposition 6.5 the function Ψ(r) := rmc , r ∈ [1,∞), satis-

fies condition L(V ,φ,Ψ)(ii). Note that under L(V ,φ,Ψ) the function Lε,q in (3) (with arbitrary

q, ε ∈ (0, 1)) is bounded above by

Lε,q(r) = rφ(1/r)Ψ(2r/(1− q))(log log r)ε ≤ C1r
mc−1(log log r)ε for all r ∈ [1,∞)

and some constant C1 ∈ (0,∞). By Theorem 2.1, for any ε > 0, we obtain the lower bound

π({V ≥ r}) ≥ cε,q/r
mc−1+ε, and hence π([r,∞)) ≥ c′ε,q/(log r)

mc−1+ε, for all r ∈ [1,∞) and some

constants cε,q, c
′
ε,q ∈ (0, 1), implying part (a) of the theorem. Moreover, applying Theorem 2.5(b)

yields part (b) of the theorem.

Pick ε ∈ (0, 1/2) and consider the function h(r) := rmc−ε. Proposition 6.4(a) implies the inequal-

ity A(h◦V ) ≤ C ′
h on R for some C ′

h ∈ (1,∞), and Lemma 2.10 (with H = h◦V and ξ ≡ C ′
h) yields a
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constant Ch ∈ (1,∞) such that Ex[h◦V (Xt)] ≤ Ch(h(V (x))+t) holds for all x ∈ R and t ∈ R+. Thus

we may apply Corollary 2.3 with functions h and a(r) := Car
(1−mc−ε)/(mc−ε) ≤ cε,q/Lε,q(h

−1(r)),

r ∈ [1,∞), and some Ca ∈ (0, 1). For each x ∈ R we obtain a constant cTV ∈ (0,∞), such that the

lower bound ∥Px(Xt ∈ ·)− π(·)∥TV ≥ cTVt
(1−mc−ε)/(1−2ε) holds for all t ∈ [1,∞). □

6.3. Stochastic damping Hamiltonian system: proofs for Section 3.3. Let X = (Z, Y ) be

the hypoelliptic diffusion satisfying the stochastic damping Hamiltonian system in (19). Recall that

by Assumption AH we have infz∈R U(z) =: −b > −∞ and constants σ, c ∈ (0,∞) in (19) satisfy

ac/σ2 > 1/2. Following [39], for ε ∈ (0, 1) and k ∈ (0,∞), define a twice differentiable function

(54) gk,ε(z, y) := (y2/2 + U(z) + c(1− ε)(zy + cz2/2) + b+ 1)k ≥ 1 for all (z, y) ∈ R2.

By Itô’s formula applied to g(Z, Y ), the extended generator (see Section 2.4 above for definition)

of the Hamiltonian system (Z, Y ) takes the following form:

Ag(z, y) =
1

2
σ2∂2

yg(z, y) + y∂zg(z, y)− (cy + U ′(z))∂yg(z, y) for any g ∈ C2(R2).(55)

We now apply the generator A to the function gk,ε.

Proposition 6.7. Under Assumption AH, extended generator A of the Hamiltonian system in (19)

satisfies the following: if ε ∈ (0, 1/2) and k := 1/2+ac(1−2ε)/σ2, the constant C := kεac/2 > 0 sat-

isfies Agk,ε(z, y) ≤ −C(gk,ε(z, y))
(k−1)/k for all (z, y) outside of some large compact set. Moreover,

Agk,ε ≤ C ′ on R2 for some positive constant C ′ > 0.

Proof. Fix ε ∈ (0, 1/2). Applying the generator A in (55) to the function g1,ε defined in (54) yields

Ag1,ε(z, y) = σ2/2− εcy2 − (1− ε)cU ′(z)z.

Since Agk,ε = kgk−1,εAg1,ε + (σ2/2)k(k − 1)gk−2,ε(∂yg1,ε)
2 and gk−1,ε = g1,εgk−2,ε we obtain

Agk,ε(z, y) = kgk−1,ε(z, y)
(
Ag1,ε(z, y) + σ2(k − 1)(∂yg1,ε(x, y))

2/(2g1,ε(z, y))
)

≤ kgk−1,ε(z, y)(σ
2/2− εcy2 − c(1− ε)U ′(z)z + σ2(k − 1))

= kgk−1,ε(z, y)((k − 1/2)σ2 − εcy2 − c(1− ε)U ′(z)z)

≤ −kεacgk−1,ε(z, y)/2, as z2 + y2 → ∞,(56)

where the first inequality follows since

(∂yg1,ε(z, y))
2

2g1,ε(z, y)
≤ (y + c(1− ε)z)2/((y + c(1− ε)z)2 + c2(1− ε)εz2 + 1) ≤ 1 for all (z, y) ∈ R2.

The inequality in (56) follows from the fact that, for z2 + y2 sufficiently large, the following holds:

either |z| is large and hence by Assumption AH, c(1 − ε)U ′(z)z ≥ ac(1 − 3/2ε) or |z| is small and

|y| is large and then εcy2 ≥ (k − 1/2)σ2 + zU ′(z) + kεac, since zU ′(z) is bounded for z ∈ R by

Assumption AH. Moreover, since Agk,ε is continuous, it is also globally bounded from above. □

Recall that the solution X of (19) is a strong Markov process, all the skeletons are irreducible

with respect to the Lebesgue measure and compact sets are petite [39, Lem. 1.1, Prop. 1.2].
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Proof of Theorem 3.15. By Assumption AH, we have 1 < 1/2 + ac/σ2. Thus, we may choose

ε ∈ (0, 1/2) such that k := 1/2 + ac(1 − 2ε)/σ2 > 1. Let V := gk,ε be the function given in (54).

By Proposition 6.7 there exist positive constants C, b > 0, such that the following inequality

AV ≤ −ϕ ◦ V + b1D holds for a sufficiently large compact (hence petite) set D and an increasing

function ϕ(r) := Cr(k−1)/k. Then, by [9, Thm 3.4], the assumptions of [9, Thm 3.2] (i.e. the drift

condition in (10)) are satisfied with (V, ϕ,D, b).

Recall that for any η ∈ [0, 1), we have (r1/η)
η(r2/(1 − η))1−η ≤ r1 + r2 for all r1, r2 ∈ [1,∞),

where for η = 0 we take (1/η)η = 1. Note that gη(k−1),ε = (ϕ◦V )η. Thus, by [9, Thm 3.2], for every

η ∈ [0, 1) and x ∈ R2, there exists Cη ∈ (0,∞) such that ∥Px(Xt ∈ ·)−π(·)∥gη(k−1),ε
≤ Cη/t

(k−1)(1−η)

holds for all t ∈ [1,∞). Moreover, by the definition of gk,ε in (54), it holds that

(ϕ ◦ V )η(z, y) = gη(k−1),ε(z, y) ≥ (1 + c2(1− ε)εz2/2)η(k−1)(57)

≥ C̃(1 + |z|2(k−1)η) = f2(k−1)η(x)

for some C̃ ∈ (0, 1) and all x = (z, y) ∈ R2, where fm(z, y) = 1+ |z|m was defined in Theorem 3.15

for any m ∈ [0, 2(k − 1)). Hence the upper bound follows.

As in (57), we have H(z, y) := CH(1 + c2(1 − ε)εz2/2)k ≤ CHgk,ε(z, y) for all (z, y) ∈ R2. The

constant CH ∈ (1,∞) is chosen so that Gm := H/fm ≥ 1 on R2 for any m ∈ [0, 2(k − 1)). By

Proposition 6.7 we have Agk,ε(z, y) ≤ C ′ on R2 for some C ′ ∈ (0,∞). By Lemma 2.10 there exists

C ′′ ∈ (0,∞), such that Ex[H(Xt)] ≤ Ex[CHgk,ε(Xt)] ≤ C ′′(gk,ε(x)+t) =: v(x, t) holds for all x ∈ R2

and t ∈ [1,∞). By [39], X = (Z, Y ) admits an invariant measure π with density proportional to

(z, y) 7→ exp(−2c/σ2(y2/2 +U(z))). Moreover, by Assumption AH, we have U(z) ≤ a(1 + ε) log |z|
for all z ∈ R outside of some compact set. Thus,

∫
R π(z,dy) ≥ c′|z|−2ca(1+ε)/σ2

for some constant

c′ ∈ (0, 1) and all |z| sufficiently large. We have lim inf |z|→∞Gm(z, y)/|z|2k−m > 0 since Gm =

H/fm. Thus, for all large r ∈ R+, there exists cπ > 0 such that (recall 2−2k = 1−2ac(1−2ε)/σ2)∫
{Gm≥r}

fm(z, y)π(dz,dy) ≥
∫
{|z|≥r1/(2k−m)}

c′|z|m−2ca(1+ε)/σ2
dz ≥ cπr

(m+2−2k−6caε/σ2)/(2k−m).

Applying Lemma 5.1 with functions fm, H, Gm, v and a(r) := cπr
(m+2−2k−6caε/σ2)/(2k−m), for

every x ∈ R2 yields a positive constant cm satisfying

∥Px(Xt ∈ ·)− π(·)∥fm ≥ cmt(m+2−2k−6caε/σ2)/(2(1−3caε/σ2)) for all t ∈ [1,∞).

Since ε > 0 is arbitrary, the theorem follows. □

7. Conclusion

This paper develops a general theory for establishing lower bounds in f -variation for Markov

processes in continuous time. The applications discussed in Section 3 demonstrate the wide ap-

plicability of our results. Nevertheless, many questions remain open. We now discuss briefly some

interesting possible further directions of research.

Lower bounds for the convergence in Wasserstein metrics. Lyapunov drift conditions have

also been developed for establishing upper bounds on the rates of convergence in Wasserstein

distance. Applications include convergence of solutions of certain stochastic delay differential equa-

tions on infinite-dimensional state spaces [14]. Subgeometric upper bounds in this context have also
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received attention [7]. It is feasible that our L-drift conditions, suitably adapted to this setting,

could yield lower bounds on the return times to sets bounded in an appropriate metric. Due to the

lack of local compactness in such state spaces, the notion of petite sets from [26] has been replaced

by a weaker notion of metric-dependent small sets, suitable for applications in infinite-dimensional

settings. A natural interesting question is whether our lower bounds on modulated moments, de-

rived via suitably adapted L-drift conditions, could be used to characterise the decay of the tail

of the invariant measure and the rate of convergence in the Wasserstein distance. Put differently,

can the lower bound Lyapunov drift conditions, developed in this paper for locally compact state

spaces, be adapted to the infinite-dimensional setting?

Ergodic averages. The quantification of the asymptotic behavior of an ergodic average 1
t

∫ t
0 Xsds,

as t → ∞, of a Markov process X represents a fundamental problem in probability and beyond.

Results on the asymptotic behaviour of ergodic averages, such as the central limit theorem, as

well as moderate and large deviations, are commonly derived using Lyapunov drift conditions and

associated upper bounds on the modulated moments [9, 10]. For example, the growth rate of

the speed function in moderate deviations of additive functionals of Markov processes is bounded

above by the tails of the modulated moments [9, Thm 3.3]. In Theorem 2.5 of the present paper

we establish asymptotically matching lower bounds on the modulated moments for a wide range

of models (Section 3 above). It is thus reasonable to expect that our lower bounds have a role to

play in establishing the optimal growth rate of the speed function in moderate deviations.

Discrete-time Markov chains. To the best of our knowledge, there are no general results for

establishing lower bounds on the rates of convergence to the invariant measure for discrete-time

Markov chains in uncountable state spaces. It is natural to expect that the results presented

in this paper can be readily adapted to establish convergence in the discrete-time setting. The

assumption L(V ,φ,Ψ) includes a supermartingale condition, exit probability, ergodicity, positive

Harris recurrence and non-confinement, all of which have natural counterparts in discrete time.

Moreover, since all the tools used in our proofs in Section 5 are also available in discrete time (note

that the results of Section 4 hold for discrete-time chains already, if viewed as piecewise constant

continuous-time Markov chains), the conclusions of our main results (Theorems 2.1, 2.2 and 2.5)

are expected to hold in this setting.

Application to Markov chain Monte Carlo. Markov chain Monte Carlo (MCMC) algorithms

represent a major area of application for ergodic Markov processes [11, 26]. In particular, upper

bounds on the convergence rates of MCMC algorithms are often obtained using Lyapunov drift

conditions. Knowing whether a convergence rate of one algorithm is better than that of another

can however not be deduced from the corresponding pair of Lyapunov functions used to obtain the

two upper bounds on the rates. Our results on lower bounds for the convergence rate open the

door for such comparisons of MCMC algorithms.

Appendix A. Non-confinement of irreducible Feller continuous processes

A strong Markov process X = (Xt)t∈R+ on a locally compact metric state space X is Feller

continuous if the function x 7→ Ex[f(Xt)] is continuous for all t ∈ (0,∞) and continuous bounded

functions f : X → R+.
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Lemma A.1. Let V : X → [1,∞) be continuous and such that {V ≤ r0} is compact for all r0 ∈
(1,∞). Assume that the process X is Feller continuous and that for every r0 ∈ (1,∞) there exists

k0 ∈ (0,∞) such that Px(V (Xk0) > r0) > 0 for all x ∈ X . Then, we have Px(lim supt→∞ V (Xt) =

∞) = 1.

In all our examples the processes will be Feller continuous and irreducible with respect to the

d-dimensional Lebesgue measure, making the conditions of Lemma A.1 easy to check.

Proof of Lemma A.1. Pick an arbitrary r0 ∈ (1,∞). We will show that Px(lim supt→∞ V (Xt) ≤
r0) = 0 holds for every x ∈ X . Pick x ∈ X and estimate

Px(lim sup
t→∞

V (Xt) ≤ r0) ≤ Px(lim sup
n→∞

V (Xnk0) ≤ r0) = Px(∪∞
j=1 ∩∞

n=j {V (Xk0n) ≤ r0})

≤ lim
j→∞

Px(∩∞
n=j{V (Xk0n) ≤ r0})(58)

where we have used the continuity from below property of the measure Px. Since Px′(V (Xk0) >

r0) > 0 for every x′ ∈ X , the set {V ≤ r0} is compact, and the process X is Feller continuous it

follow that infx′∈{V≤r0} Px′(V (Xk0) > r0) =: ε > 0. Thus, by recurrent application Markov property

at times nk0 for j1, j2 ∈ N satisfying j2 > j2, we have Px(∩j2
n=j1

{V (Xnk0) ≤ r0}) ≤ (1 − ε)j2−j1 .

The continuity from above of the measure Px, implies that for any j ∈ N

Px(∩∞
k=j{V (Xkm) ≤ n0}) = lim

j′→∞
Px(∩j′

k=j{V (Xkm) ≤ n0}) ≤ lim
j′→∞

(1− ε)j
′−j = 0.

Combining the inequality in the above display with (58) concludes the proof. □
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