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Abstract. Denoising diffusion probabilistic models (DDPMs) represent a recent advance in

generative modelling that has delivered state-of-the-art results across many domains of applic-

ations. Despite their success, a rigorous theoretical understanding of the error within DDPMs,

particularly the non-asymptotic bounds required for the comparison of their efficiency, remain

scarce. Making minimal assumptions on the initial data distribution, allowing for example

the manifold hypothesis, this paper presents explicit non-asymptotic bounds on the forward

diffusion error in total variation (TV), expressed as a function of the terminal time T .

We parametrise multi-modal data distributions in terms of the distance R to their furthest

modes and consider forward diffusions with additive and multiplicative noise. Our analysis

rigorously proves that, under mild assumptions, the canonical choice of the Ornstein-Uhlenbeck

(OU) process cannot be significantly improved in terms of reducing the terminal time T as a

function of R and error tolerance ε > 0. Motivated by data distributions arising in generative

modelling, we also establish a cut-off like phenomenon (as R → ∞) for the convergence to

its invariant measure in TV of an OU process, initialized at a multi-modal distribution with

maximal mode distance R.

1. Introduction

Denoising diffusion probabilistic models (DDPMs) represent a recent advancement in machine

learning that has delivered state-of-the-art results across various domains [24, 33–35]. These

models take data samples, corrupt them by adding noise and learn to reverse this procedure.

Executing this reverse process allows users to generate new samples from the distribution of the

data. For data distributions in Rd, the noising process is often selected to be a solution of a

stochastic differential equation (SDE) with its invariant measure as the target noise distribution.

Consequently, the convergence of the algorithms depends on the converge of the underlying

noising diffusion towards its invariant measure. Commonly used dynamics include Langevin

and, in particular, Ornstein-Uhlenbeck (OU) processes. A natural question is whether adopting

a different SDE, possibly with multiplicative noise, could significantly improve the convergence

rate. Analysis of this question is the central theme of this paper.

1.1. Sources of error in DDPMs. We briefly introduce DDPMs following [35] and discuss

sources of errors described in [5, 11, 12]. Let d ∈ N and T ∈ [0,∞). A DDPM is based on an

ergodic forward process Z = (Zt)t∈[0,T ] in Rd with an invariant distribution π. The process is

initialised at Z0 ∼ ρ0, where ρ0 denotes the data distribution, and follows the SDE dynamics

(1) dZt = b(Zt)dt+ σ(Zt)dBt, with Z0 ∼ ρ0,
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where B is a d-dimensional Brownian motion, b : Rd → Rd and σ : Rd → Rd×d. In practice, for

example, the law ρ0 could be a distribution of all images with certain content and the aim of

the DDPMs is to generate new images of the same type. The dimensionality of this problem is

typically high, with d being proportional to the number of pixels in the image.

With this setup, the time reversed process (ZT−t)t∈[0,T ] is again a diffusion. Let qt denote

the marginal density of the forward process Zt at time t ∈ [0, T ] and set a := σσ⊺, where σ⊺

denotes the transpose of the matrix σ. Then, the reverse process (
←−
Zt)t∈[0,T ], satisfying the SDE

(2) d
←−
Zt = −(b(

←−
Zt)−

1

2
∇a(
←−
Zt)−

1

2
a(
←−
Zt)∇ log qT−t(

←−
Zt))dt+ σ(

←−
Zt)dB

′
t,
←−
Z0 ∼ qT ,

has the same law as (ZT−t)t∈[0,T ]
d
= (
←−
Zt)t∈[0,T ] (as usual, ∇ denotes the gradient of a scalar

function and B′ is a d-dimensional standard Brownian motion, see [2, 9] for more details on

reversed diffusions). If one could sample
←−
Z0 ∼ qT , running the reverse diffusion

←−
Z to time T

would produce a sample from the data distribution ρ0. Initialising
←−
Z by sampling

←−
Z0 from

the invariant probability measure π of Z and running
←−
Z to time T leads to an approximate

simulation algorithm for the data distribution ρ0.

Denote by LDDPM(
←−
Z T ) the distribution of the output of the DDPM, initialised by

←−
Z 0 ∼ π,

with time parameter T ∈ [0,∞). The error of the DDPM, measured by the total variation

distance from the data distribution ρ0, consists of three different components [11, Thm 2]:

(3) ∥ρ0 − LDDPM(
←−
Z T )∥TV ≤ ∥Pρ0(ZT ∈ ·)− π∥TV + εdisc

√
T + εscore

√
T ,

where εdisc and εscore correspond to the discretisation and score matching errors, respectively,

while Pρ0 denotes the law of the process following the SDE in (1). We now briefly describe each

of these sources of error.

First, as we do not have access to the initial distribution of the reverse process (i.e. the

law Pρ0(ZT ∈ ·) of the forward process Z at time horizon T ), we initialize the reverse process

at the invariant measure π of the forward process (π is the standard Gaussian when Z is the

OU process). The error associated with the forward process decreases in the time parameter

T [5, Thm 1]. This decay is well-known to be exponential in T for the OU process and will

be such for any exponentially ergodic diffusion Z, satisfying SDE (1). However, while it is

clear from practical applications that T increases with ρ0 based on data sets of images of large

dimension, the dependence of T on the distant modes of the initial data distribution ρ0 are

theoretically not well understood.

Second, we do not have direct access to the coefficient log qT−t in SDE (2) as it depends on

the initial data distribution ρ0. This quantity is learnt by minimising the score in (very) deep

hierarchical models, leading to the score matching error εscore. Important for our results is the

fact that the total error in the score matching step in DDPMs increases with T : by (3) it is

bounded by the square root
√
T of the time horizon of the forward diffusion Z, multiplied by

εscore, see [12, Thm 1] for more details.

Third, since both the forward and reverse processes are in continuous-time and the simulation

requires discrete time steps, the discretisation error εdisc constitutes the final component of the

error term. Akin to the score matching error, the discretisation error increases with the number

of steps the algorithm takes, which in turn increases with the square root of the running time√
T of the forward and reverse SDEs [5, 11,12].

Inequality in (3) demonstrate that it is essential to select a forward process with fast conver-

gence towards the invariant measure, as choosing a smaller time parameter T can reduce both
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discretisation and score-matching errors. In practice, most commonly used forward diffusion in

DDPMs is the OU process X = (Xt)t∈[0,T ], i.e the solution of the SDE

(4) dXt = −µXt +
√
2dBt,

where the free drift parameter µ ∈ (0,∞) is typically set to be µ = 1. This choice of a forward

process is convenient for a number of reasons, including its exponential ergodicity with Gaussian

invariant measure πX of mean zero and covariance Id/µ and the analytical tractability of its

transition densities, making it a canonical choice in practical applications, see [5,34,35] and the

references therein.

The primary contribution of this paper is to prove rigorously that an ergodic diffusion follow-

ing SDE (1), when initialized with a multi-modal data distribution ρ0 commonly encountered

in practical applications [21,34], requires at least a time Tc ≈ logR to reach stationarity. Here,

R represents the distance to the furthest mode in the initial data distribution ρ0. This result

indicates that the convergence time of the Ornstein-Uhlenbeck process, which we prove exhibits

cut-off type behavior at Tc ≈ logR (as R→∞), cannot be substantially reduced by adopting a

different diffusion model following SDE (1), even if this model incorporates multiplicative noise.

This contrasts with diffusions used in Markov Chain Monte Carlo (MCMC) methods, where

it has been established that increasing the variance with multiplicative noise can significantly

enhance the convergence rate (see [7, 17, 22] and Appendix A below for a discussion of this

phenomenon in the context of tempered Langevin diffusions).

The remainder of the paper is organised as follows. Subsections 1.2, 1.3 and 1.4 describe our

assumption on the initial data distribution and discuss our results in the context of tempered

Langevin diffusions. A short YouTube presentation covering these topics is in [6]. Section 2

describes our general framework (beyond tempered Langevin diffusion) and states our main

results (Theorem 2.2 and Corollary 2.4), while Section 3 provides the proofs of all our results.

See [6] for the second YouTube presentation discussing our main general results, Theorem 2.2

and Corollary 2.4, as well as their proofs. Section 4 concludes the paper.

1.2. Data distribution, the OU process and cut-off. In this section we formalise the as-

sumptions on the initial data distribution ρ0 and state the result on the cut-off type phenomenon

in the convergence of the OU process as the furthest mode of ρ0 tends to infinity. Denote by

M1(Rd) the family of probability measures on Rd. For Q1, Q2 ∈ M1(Rd), the total variation

distance is given by ∥Q1 −Q2∥TV := supA∈B(Rd) |Q1(A)−Q2(A)|, where B(Rd) is the Borel σ-

algebra on Rd. Throughout we denote by |·| and ⟨·, ·⟩ the Euclidean norm and the standard scalar

product on Rd, respectively. For any x ∈ Rd and r ∈ [0,∞), let B(x, r) := {y ∈ Rd : |y−x| ≤ r}.
Let ε > 0 be a given error tolerance and consider multi-modal data distributions ρ0 in

M1,R,ε(Rd), appearing in practical applications [11, Sec. 1], parameterised by the distance R of

the furthest mode x0 of ρ0 from the origin.

Assumption (DATA) Let d ∈ N, 1 >> ε > 0 and R > 2. The probability measure ρ0 ∈M1(Rd)

is in M1,R,ε(Rd), if there exist mode x0 ∈ Rd \ {0} and small 0 < δ << 1 such that |x0| =
R(1 + δ), bρ := ρ0(B(x0, δR)) > 3ε and ρ0(Rd \B(0, R(1 + 2δ)) < ε/2.

Remark 1.1. In (DATA) we make no assumptions on the moments, existence of density of ρ0 or

the KL-divergence KL(ρ0||Gauss) < ∞, often assumed in the literature on DDPMs [5, 11, 12].

In particular, (DATA) allows for the manifold hypothesis, asserting that the data distribution is

supported on a submanifold of Rd of positive (possibly large) co-dimension [14,21].

https://youtu.be/hQvfpwI0UPk?si=A9L8YF9SsVAem0cE
https://youtu.be/xjzVPOEkl44?si=Y9D0aLjvWXmLaSJA
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Figure 1. A heat map of a two-dimensional multi-modal distribution ρ0. The

small (resp. large) circle has radius δR (resp. R(1 + 2δ)). The mode x0 of ρ0 is

the one furthest away from the origin with mass bρ typically orders of magnitude

greater than ε, i.e. bρ >> ε.

The literature has established that denoising diffusion models empirically outperform other

methods in sampling from multi-modal distributions [34]. Moreover, multi-modality has been

confirmed for many datasets used in practical applications [25]. This suggests the simple idea

to parameterise the problem in terms of the mode furthest from the origin of the initial data

distribution ρ0 in Assumption (DATA). To the best of our knowledge this parametrisation of the

problem is novel and, moreover, crucial for the development of the framework and the results

in the paper.

The following proposition establishes the cut-off type phenomenon for the convergence of the

OU process initialised at a multi-modal distribution inM1,R,ε(Rd) with large distance between

the modes. Its role is to motivate our main results in Theorem 2.2 and Corollary 2.4 for general

forward processes. The proof of Proposition 1.2, relying on explicit transition densities of the

OU process, is given in Section 3 below.

Proposition 1.2. Let a probability measure ρ0 ∈ M1(Rd) satisfy Assumption (DATA) and

assume that R ≥ max{ε1/2d1/4,
√

2 log(1/ε)}. Consider the OU process X following SDE (4)

with µ = 1, started at X0 ∼ ρ0, and denote by πX its Gaussian invariant measure. Then

∥Pρ0(XTb
∈ ·)− πX∥TV ≥ (bρ − ε)/2, where Tb := logR− log(max{

√
2 log(1/ε), 1}),

∥Pρ0(XTOU
∈ ·)− πX∥TV < ε, where TOU := logR+ log(1 + 2δ) + log(1/ε).

Remark 1.3. The mass bρ of the furthest mode x0 in (DATA) is typically orders of magnitude

greater than the error tolerance ε, making the lower bound (bρ − ε)/2 proportional to bρ.

We note that Assumption (DATA) includes initial distributions ρ0 ∈ M1,R,ε(Rd) with multiple

modes xi at distance |xi| ≈ R from the origin (with the corresponding mass contained in the

disc B(xi, δiR)) for i ∈ {1, . . . , k}. It follows from the proof that, in this case, the statement of

Proposition 1.2 holds with a larger constant bρ = ρ0(∪ki=1B(xi, δ)).

Fixing the values of δ, ε leads to a cut-off type phenomenon i.e., limR→∞
TOU
Tb

= 1. The

growth of the convergence time TOU in the distance to the furthest mode logR is also observed

in simulations.
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(a) OU initialized at an image of dimension

d = 32× 32 located at a distance R = 13 from

the origin.

(b) OU initialized at an image of dimension

d = 1200× 1200 located at a distance R = 255

from the origin.

Figure 2. The Kolmogorov-Smirnov (KS) test assesses whether the sample of

pixels at time t originates from the invariant measure πX of the OU process in (4).

Since, for µ = 1, πX is a standard d-dimensional Gaussian, we test whether the

coordinates of the marginal Xt at time t form a sample of d independent draws

from a one dimensional Gaussian law.

The simulations in Figures 2a and 2b demonstrate that the convergence time for the OU

process, when initialized at relevant data distributions for DDPMs, increases with the distance

to the furthest mode. This observation is consistent with the results presented in Proposition 1.2.

The results in [7,17,22] prove that unbounded multiplicative noise can significantly improve

the convergence rate of a diffusion processes to a given stationary measure. In particular, the

upper bounds in [22, Sec. 3.2], [17, Sec 5.2] and the lower bounds in [7, Sec. 3.1] on the rates

of convergence imply that, for a large family of invariant measures, tempered Langevin diffu-

sions with unbounded multiplicative noise converge to stationarity orders of magnitude faster

than their classical Langevin counterparts (see Appendix A below for more details). This fact,

observed empirically and used in applications of Markov Chain Monte Carlo, naturally raises

the question of whether replacing the Langevin dynamics (such as the OU process X) with a

tempered Langevin diffusion could shorten significantly the time horizon TOU in Proposition 1.2

above. While the OU process X converges to stationarity at an exponential rate, by Proposi-

tion 1.2 the time horizon TOU grows with the distance R of the furthest mode of the initial data

distribution ρ0, increasing both the discretisation and the score matching errors (see the error

bound in Equation (3) above). It is hence natural to investigate whether adopting tempered

Langevin dynamics with multiplicative noise could significantly decrease the time horizon when

the diameter of the initial distribution ρ0 is large.

1.3. Tempered Langevin diffusions and non-asymptotic lower bounds. The role of

the forward process is to transform the structured multi-modal data distribution ρ0 into a

“structureless” noise distribution π ∈ M1(Rd) from which we can sample. It is thus natural

to assume that the noise law π, which is the invariant measure of the forward process, has a

twice continuously differentiable density proportional to x 7→ exp(−hπ(x)), where the function

hπ : Rd → [0,∞) =: R+. A natural class of forward processes for such π are tempered Langevin

diffusions, which we now recall following [17]: for a temperature parameter ℓ ∈ [0,∞) let

(5) b(x) := −hπ(x)2ℓ−1(hπ(x)− 2ℓ)∇hπ(x) & σ(x) :=
√
2hπ(x)

ℓId, x ∈ Rd,
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where Id is the identity matrix on Rd. Assume that the process Y = (Yt)t∈R+ follows the SDE

(6) dYt = b(Yt)dt+ σ(Yt)dBt, where b and σ are given in (5)

and B is a standard d-dimensional Brownian motion. For ℓ = 0, Y is a classical Langevin

diffusion, with stationary measure π. For ℓ > 0, we assume that Y started at an arbitrary

distribution on Rd is positive recurrent and converges to its stationary measure π, see [17,

Sec. 5.2] and the literature therein for sufficient conditions ensuring this. Note that if π is

a centred Gaussian probability measure on Rd with covariance matrix Id, then a tempered

Langevin diffusion (with ℓ = 0) is the OU process X given in (4) with drift µ = 1.

In applications of DDPMs, it is key that samples from π can be obtained efficiently. We

thus assume in this section that π is spherically symmetric, i.e. hπ(x) = Hπ(|x|) for all x ∈ Rd

and some scalar C2 function Hπ : R+ → [0,∞). In this case, since the angular component is

uniform on the unit sphere in Rd, simulating samples from π reduces to simulating its radial

component on R+ with density proportional to r 7→ exp(−Hπ(r)). If, for example, the radial

density is log-concave (i.e. Hπ is convex), then exact simulation from the radial component has

bounded complexity, not dependent on Hπ [16]. This assumption simplifies the presentation

but is not necessary for our general framework and results in Section 2 below.

For a spherically symmetric π and µ ∈ (0,∞), a tempered Langevin diffusion Y following

SDE (6) is in (LGµ) if

(LGµ) Hπ(r)
2ℓ−1(Hπ(r)− 2ℓ)H ′

π(r) ≤ µr for all r ∈ R+.

Since the drift in (5) equals b(x) = −Hπ(|x|)2ℓ−1(Hπ(|x|)− 2ℓ)H ′
π(|x|)x/|x| for x ∈ R \ {0} and

b(0) = 0, if Y satisfies (LGµ) then the drift has at most linear growth |b(x)| ≤ µ|x|, x ∈ Rd. In

particular, assuming Hπ satisfies (LGµ) for r ∈ [0, 1] and Hπ(r) = arp for r ∈ [1,∞) with some

p ∈ (0, 2] and a ∈ (0,∞), condition (LGµ) holds if 0 ≤ ℓ ≤ 1/p− 1/2 and a ≤ (µ/p)1/(2ℓ+1) − ℓ.

Hence the OU process X in SDE (4) satisfies (LGµ) (with p = 2, a = µ/2 and ℓ = 0).

Linking our general Assumption (DATA) on the initial data distribution with the forward

process Y satisfying (LGµ) and placing them in the context of DDPMs requires additional

hypothesis. Fix µ ∈ (0,∞) and let Assumption (DATA) hold with R, ε, δ ∈ (0,∞) and assume

there exist 0 < β << 1 small, such that

(7) R ≥ (ε/µ)1/2d1/4 and Rβ ≥ 2
√
µ(1 + 2δ)/ε,

and r3 ∈ (1,∞) satisfying

(8) π(B3(r3)× Rd−3) > 1− ε/2 and 2r3 ≤ Rβ,

where B3(r3) is the closed ball in R3 with radius (r23 − 1)1/2 centered at the origin. We will

discuss in Subsection 1.4 below the breadth of applicability and the role of assumptions (7)-(8)

in Theorem 1.4. Our main result for tempered Langevin forward processes is as follows.

Theorem 1.4. Let the data distribution ρ0 ∈ M1,R,ε(Rd) satisfy Assumption (DATA) with

R ∈ (2,∞), d ≥ 3 and 0 < ε, δ << 1. Assume conditions in (7) and (8) hold with µ ∈ (0,∞)

and small 0 < β << 1. For every tempered Langevin diffusion Y defined via its spherically

symmetric invariant measure π through SDE (5)-(6) and satisfying (LGµ), it holds that

∥Pρ0(YTc ∈ ·)− π∥TV > (bρ − ε)/2, where Tc :=
1− β

µ
logR.
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The OU process X in (4) satisfies (LGµ) and

∥Pρ0(XTOU
∈ ·)− πX∥TV < ε, where TOU :=

1 + β

µ
logR.

1.4. Discussion of Theorem 1.4, its assumptions and generalisation. Theorem 1.4

shows that, for multi-modal initial distributions, replacing the OU process with a tempered

Langevin diffusion with multiplicative noise does not offer a significant improvement in terms of

shortening the time horizon in DDPMs. Moreover, Theorem 1.4 rigorously establishes that, for

a broad class of tempered Langevin forward processes, the time horizon necessary for DDPMs

to converge (see the general error bound in (3) above) increases logarithmically in the distance

R to the furthest mode of the data distribution.

Uniform ergodicity and numerical instability. The main result of the paper, given in Theorem 2.2

and Corollary 2.4 of Section 2 below, generalises Theorem 1.4 by rigorously proving that the

convergence horizon for a broad class of ergodic diffusions satisfying SDE (9) (without a priori

knowledge of the stationary measure π) is at least of size Tc given in Theorem 1.4 and thus

increases with the distance R of the farthest mode of ρ0 from the origin. Obtaining a bound on

the time horizon for DDPMs that is uniform in R would require a uniformly ergodic diffusion

Y with a superlinear drift in (9), in particular violating Assumption (LGµ) and its general

counterpart in Section 2 below. However, since efficient sampling of uniformly ergodic diffusions

with superlinear drifts is very difficult due to numerical instabilities caused by the drift (see

e.g. [29,30]), the growth of Tc as a function of R, given in Theorem 1.4, is likely an asymptotically

optimal lower bound (in R) achievable via ergodic diffusions and existing sampling techniques.

Thus our results naturally motivate the exploration of stochastic interpolants [1,15], potentially

offering a viable alternative in addressing this challenge.

Forgetting the initial distribution. The marginal Xt of the OU process X in (4) (with µ ∈ (0,∞))

at time t has the same law as exp(−µt)X0 + (1− exp(−2tµ))1/2N/µ1/2, where N is a standard

Gaussian random vector in Rd with zero mean and covariance Id, independent of X0 ∼ ρ0.

Thus, conditional on X0, Xt−X0 exp(−µt) quickly become a good approximation of the normal

distribution with zero mean and covariance Id/µ. However, if the support of the initial data

distribution ρ0 is large, i.e., ρ0 ∈ M1,R,ε(Rd) with R >> 1, it takes the marginal Xt, averaged

over ρ0, at least t = (logR)/µ to forget the initial distribution and resemble a standard normal

globally. To leverage this fact in applications, practitioners design algorithms to take tiny time

steps initially and larger time steps subsequently, see [10, Thm 2] and [12, Sec. 2.4.1] and the

references therein. Theorem 1.4 and its generalisation in Theorem 2.2 of Section 2 demonstrate

that an analogous phenomenon persists for all diffusions with drift that is not superlinear, as

the time required for forgetting the initial distribution cannot be significantly reduced.

Finally, we note that increasing the constant µ in Assumption (LGµ) would decrease the time

necessary to forget the initial data distribution. However, as is well know among practitioners,

this would not improve the performance of the corresponding DDPM. This is due to fact that

the increase in µ amounts to a deterministic time change of the forward process, which in turn

requires smaller time steps in the simulation stage of the DDPM. It is thus natural to restrict

the class of forward diffusions in Theorem 1.4 to (LGµ) for a fixed value of µ.

Assumptions (7) and (8) in Theorem 1.4. The first inequality in (7), R ≥ (ε/µ)1/2d1/4, stip-

ulates that the distance R to the furthest mode of the initial data distribution ρ0 grows with

dimension d and that the growth rate of the drift µ is not too small (for image data sets en-

countered in applications, R is typically proportional to d1/2, see Section 2.2 below for more
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details). The second inequality in (7), Rβ ≥ 2
√
µ(1 + 2δ)/ε, essentially requires that, for some

small β, the β-power of the distance to the furthest mode exceeds 1/ε, where ε is the error

tolerance. The assumption is natural, since ε is typically fixed and R grows polynomially in

dimension.

The first inequality π(B3(r3) × Rd−3) > 1 − ε/2 in (8) holds for any probability law π if r3

is sufficiently large. Thus the content of Assumption (8) lies in the restriction imposed by the

second inequality 2r3 ≤ Rβ. A natural question here is how r3 grows with dimension d for

relevant noise distributions π. Clearly, if π is a centered Gaussian probability measure on Rd,

the constant r3 does not depend on d. Another natural choice for π is given by the generalized

Laplace distributions on Rd, which can be represented as a fixed time marginal of a standard

d-dimensional Brownian motion subordinated by a Gamma subordinator [28]. In this case,

the projection of π onto the first three coordinates also does not depend on d, again making

the constant r3 depend only on the error tolerance ε > 0, uniformly across all dimensions.

For distributions π with tails asymptotic to x 7→ exp(−a|x|p + b log |x|), for p ∈ [1, 2), a > 0

and b ∈ [0,∞), as |x| → ∞, the growth of the quantile r3 depends on the values of the

parameters. The representation of marginal densities for spherically symmetric distributions in

Rd in [20, Eq. (1.4)] suggests that, for b ∈ ((d−3)/2,∞), r3 depends only on the error tolerance

ε > 0 and not on dimension. Moreover, when b = 0 and p ∈ (1, 2) the growth of r3 suggested by

the simulation in Appendix B appears to be logarithmic in d. In contrast, the distance to the

furthest mode R is typically proportional to d1/2, making condition (8) valid for a large classes

of invariant measures π discussed above.

How is Theorem 1.4 proved? The main result of the paper, Theorem 2.2 below, states lower

bounds for a general class of ergodic diffusions, which includes tempered Langevin processes,

and essentially implies Theorem 1.4. The main idea of the proof of Theorem 2.2 is inspired

by [23] and outlined in Section 2.1.1 below. The generalisation of Assumption (8) to ergodic

diffusions requires projections onto k-dimensional subspaces, where k is typically much smaller

than d but at least 3. It will become clear from the proof of Theorem 2.2 in Section 3 below,

that the reason why 3 dimensions suffice for tempered Langevin diffusions is due to the fact

that σ in (5) is a scalar function.

We note that the proof of Theorem 2.2 allows for the mass of multiple modes of ρ0 at the

maximal distance from the origin to be included in bρ, thus improving the lower bound of

Theorem 1.4 (see Remark 1.3 above for a formal description of this phenomenon).

2. A general framework for forward processes

In this section we consider solutions to a general elliptic SDE and state a generalisation to

Theorem 1.4 in this broader context. Let b : Rd → Rd and σ : Rd → Rd×d. Consider a unique

solution Y of the SDE

(9) dYt = b(Yt)dt+ σ(Yt)dBt,

where B is a d-dimensional Brownian motion and let Y admit an invariant measure π. The

following assumption on the drift and dispersion coefficients of Y plays a key role in our main

result (Theorem 2.2 below).

2.1. Main result. In this section we describe the class of diffusions that could be used as

forward processes in DDPMs, give our main theorem and discuss key ideas behind its proof.
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Assumption (ForProc) Let µ ∈ (0,∞), d ≥ 3 and ε > 0. Consider the diffusion Y satisfying

SDE (9). Assume drift b exhibits at most linear growth in each direction:

(10) |⟨b(x), u/|u|⟩| ≤ µ|⟨x, u/|u|⟩| for all x ∈ Rd and u ∈ Rd \ {0}.

For some k ∈ {3, . . . , d} and any y1 ∈ Rd with |y1| = 1, there exist orthonormal vectors

y1, . . . , yk ∈ Rd such that the orthogonal projection GY : Rd → Y, GY(x) :=
∑k

j=1 yk⟨yk, x⟩,
x ∈ Rd, onto the vector subspace Y spanned by {y1, . . . , yk} and the dispersion a = σσ⊺ satisfy

(11)

k∑
j=1

⟨ayj , yj⟩ ≥ 3⟨aĜY , ĜY⟩ on Rd, where ĜY := HYGY and HY := (1 + |GY |2)−1/2.

Let π be the invariant measure of Y and pick rk ∈ (1,∞) such that

(12) π({x ∈ Rd : |GY(x)|2 + 1 ≤ r2k}) > 1− ε/2.

Remark 2.1. Assumption (ForProc) is satisfied for a wide range of diffusion processes, including

the tempered Langevin diffusions from Section 1.3 above. The linear growth condition in (10)

clearly holds under (LGµ) for tempered Langevin diffusions with spherically symmetric invariant

measures. Tempered Langevin diffusions in SDE (6) also satisfy condition (11) with k = 3.

Indeed, for any diagonal dispersion matrix a = σσ⊺, (11) holds if for some k ∈ {3, . . . , d},

k min
j∈{1,...,d}

⟨a(x)ej , ej⟩ ≥ 3 max
j∈{1,...,d}

⟨a(x)ej , ej⟩ for all x ∈ Rd.

Since all the diagonal elements of a = σσ⊺ in SDE (6) are equal, this inequality holds with k = 3.

The factor 3 in (11) allows us to obtain a bound on the Laplacian of a Lyapunov function used in

the proof of Theorem 2.2. In the setting of general diffusions following SDE (9), concentration

of the projection of the stationary measure π onto k-dimensional subspaces is required (in the

tempered Langevin case, 3-dimensional subspace sufficed), necessitating the introduction of

the corresponding quantile in (12). In particular, all tempered Langevin diffusions studied in

Section 1.3, including the OU process following SDE (4), satisfy Assumption (ForProc).

We note that a diagonal dispersion matrix a(x) with all but one diagonal elements bounded in

x ∈ Rd, violates (11) (choose y1 to be the eigenvector corresponding to the unbounded diagonal

element). Thus condition (11) can be viewed as a requirement on the dispersion coefficient a to

be balanced across various directions, generalising the class of tempered Langevin diffusions of

Section 1.3 above (where the dispersion coefficients scales all directions equally at every point

of the state space Rd).

Assumption (ForProc) allows us to consider a wide range of ergodic elliptic diffusions

as potential forward processes in DDPMs (see e.g. [7, 17, 27] for numerous models satisfy-

ing (ForProc)).

Theorem 2.2. Let the data distribution ρ0 ∈M1,R,ε(Rd) and the diffusion Y following SDE (9)

satisfy (DATA) and (ForProc), respectively, for some 0 < ε, δ, β << 1 and R, rk, µ ∈ (0,∞)

with 2rk ≤ R. Then we have

∥Pρ0(YTc ∈ ·)− π∥TV > (bρ − ε)/2 >> ε, where Tc :=
1

µ
log

(
R

2rk

)
.

The OU process X in SDE (4) satisfies (ForProc) (with Gaussian stationary law πX with zero

mean and covariance Id/µ) and the following inequality holds:

∥Pρ0(XTOU
∈ ·)− πX∥TV < ε, where TOU :=

1

µ
max{log(2d1/4/ε1/2), log(2R(1 + 2δ)

√
µ/ε)}.
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Comparison between forward processes in the context of DDPMs requires non-asymptotic

bounds. Such non-asymptotic bounds on the convergence of Markov processes have been extens-

ively studied [3, 4, 19], particularly motivated by applications in MCMC. A common approach

for establishing such bounds is based on Poincaré inequalities [3, 4, 19]. However, this powerful

method often necessitates strong assumptions on both the initial condition ρ0 and the transition

kernel of the process. Such assumptions are typically not satisfied by the general diffusion pro-

cess satisfying (ForProc) and initial conditions distributions under the manifold hypothesis.

By focusing on lower rather than upper bounds, we obtain non-asymptotic bounds in The-

orem 2.2 under mild assumptions using ideas from [7,23]. Our results (see Lemma 3.1 below for

more details) on the convergence of Markov processes are independent of Assumptions (DATA)

and (ForProc) and can be applied in other settings. Given that upper bounds on the OU

process can be explicitly computed, this approach enables us to make a direct non-asymptotic

comparison, showing that the OU process is hard to beat in context of DDPMs.

Remark 2.3. Theorem 2.2 provides a lower bound on the convergence to stationarity for a

large family of ergodic diffusions using a novel approach. In Proposition 1.2, this lower bound

for the OU process is calculated using the explicit form of marginal densities. It is natural to

compare the lower bound in Theorem 2.2, applied directly to the OU process, with the one from

Proposition 1.2. According to Proposition 1.2, the OU process X with the parameter µ = 1 does

not converge before time Tb = logR− log(max{
√
2 log(1/ε), 1}). Since the OU process belongs

to the class of tempered Langevin diffusions, we can work with three-dimensional projections.

With direct calculation, we can bound the ε-quantile of the three-dimensional Gaussian by

r3 =
√

4 log(1/ε). Thus, Theorem 2.2 shows that the OU does not converge before time

Tc = logR − log(2
√

6 log(1/ε)). This demonstrates that the lower bound in Theorem 2.2

provides a good approximation. In particular, the bound is sharp in cases where R is large,

which is relevant for high dimensional initial distributions.

Note that the time TOU in Theorem 2.2 differs from time TOU in Proposition 1.2. This

difference is due to the fact that in Proposition 1.2 we have assumed R ≥ ε1/2d1/4, and in this

case, TOU from Theorem 2.2 reduces to the form presented in Proposition 1.2.

2.1.1. Discussion of the proof of Theorem 2.2. The proof of Theorem 2.2 rests on an idea

inspired by [23]. A necessary condition for the convergence of the process Y , initialized with a

multi-modal distribution ρ0, to its unimodal invariant measure π involves the transport of mass

from all modes of ρ0 towards the origin. Thus, comparing the mass that the invariant measure

π and the marginal distribution YT place around the origin should provides a good lower bound

on the total variation distance between them. The inspiration for this approach comes from [23],

where lower bounds on the convergence of certain hypoelliptic diffusions to their heavy-tailed

invariant measure was studied. In contrast to our situation, in [23] the transport of mass from

the “centre” of the space to the tails played a key role, with critical sets (yielding sharp lower

bounds) being complements of large compacts. In our setting an “inverse” of this idea is used

with critical sets being compact and centred around the origin as depicted in Figure 3.

An important aspect of the proof of Theorem 2.2 is that, due to the high dimensionality of

the problem, a direct comparison of the mass near the origin of the invariant measure π and

the marginal law of YT is no longer effective. This issue arises even if π is a standard Gaussian

distribution because the radius rd, satisfying π(B(0, rd)) > 1 − ε, grows as rd ≈
√
d yielding
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Figure 3. Marginals of an OU processX initialised at a distribution ρ0 depicted

by the heat map in the first panel. The heat maps in the second and third panel

depict the marginals X5 and X10. The yellow circle represents the boundary of

the disc B(0, 2) of radius 2, centred at the origin.

vanishingly small lower bounds on the total variation distance between π and the law of YT .
1

This is in contrast to the problem in [23], where the dimension of the physical model is fixed

and the focus is on the tails. In order to apply the “inverse” of the idea in [23], we work with

projections onto lower-dimensional linear subspaces, containing the furthest modes of ρ0 at dis-

tance R from the origin (under Assumption (ForProc), the vector y1 is chosen to point towards

the furthest mode of ρ0). If the initial data distribution ρ0 has several modes approximately at

distance R away from the origin (see Remark 1.3 above for a formal description), the proof of

Theorem 2.2 yields a greater lower bound with bρ equaling the total mass of appropriate discs

centered at all these modes (instead of taking y1, pointing to the furthest mode, consider an

orthonormal basis of the vector subspace generated by the modes at distance approximately R).

Finally we note that the projections on lower-dimensional subspaces are consistent with the

manifold hypothesis, which states that complex high-dimensional data is supported on lower-

dimensional submanifolds of the Euclidean space [14,21].

2.2. Application of Theorem 2.2. Linking the general assumptions (DATA) and (ForProc)

on the data distribution and the forward process, respectively, and placing them in the con-

text of stable diffusion algorithms, requires an additional assumption (DATA)↔(ForProc) be-

low. Its two main aims are as follows: first, it restricts the subset of initial data distributions

in (DATA), to the ones more accurately reflecting the distributions used in practical applications;

second, it reduces the class of ergodic diffusions in (ForProc) to the family of exponentially

ergodic processes with light-tailed invariant measures. As we will see, both of these features

of (DATA)↔(ForProc) are natural from the point of view of applications of DDPMs.

Assumption (DATA)↔(ForProc) Let (DATA) hold with some R, ε, δ ∈ (0,∞). Let (ForProc)

hold with the same ε and some µ ∈ (0,∞). Assume the following holds for 0 < β << 1 small.

(a) Distance R of the furthers mode of ρ0 grows with dimension: R ≥ (ε/µ)1/2d1/4. Moreover,

the radius of the mode and the error tolerance are small in comparison to the distance

to the mode Rβ ≥ 2
√
µ(1 + 2δ)/ε.

(b) For ε in Assumption (DATA), condition (12) holds with rk ∈ (1,∞) satisfying 2rk ≤ Rβ.

1Note that π(Rd \ B(0, rd)) equals the square root of the quantile of the χ2(d)-distribution with d degrees of

freedom. Quantiles of the χ2(d)-distribution are known to be proportional to d as d → ∞, see e.g. [26, p. 426].
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In application such as image processing, each color channel is encoded in a range, typically

[0, 255] for each channel. The largest distance between modes, which is proportional to R, is

given by the contrast between bright and dark images is typically proportional to d1/2, where

d represents the dimension. This fact has been used in [15] to validate the assumption that

initial data distribution admits a compact support. In this work we go further by quantifying

the diameter of the aforementioned support. Since the canonical choice for the drift parameter

in applications is µ = 1 [5,11,12], Assumption (DATA)↔(ForProc)(a) holds in this context.

Assumption (DATA)↔(ForProc)(b) is concerned with the lightness of tails of the invariant

measure π, of the forward process Y . In particular, it stipulates that the quantiles of the k-

dimensional projection of π increase more slowly than the polynomial Rβ of the distance to the

furthest mode. As noted in the previous paragraph, this quantity is often proportional to dβ/2.

As discussed in Section 1.4, condition (DATA)↔(ForProc)(b) is satisfied for a large family of

spherically symmetric distributions on Rd.

Corollary 2.4. Let the data distribution ρ0 ∈M1,R,ε(Rd) and the diffusion Y following SDE (9)

satisfy (DATA)↔(ForProc) with parameters R,µ ∈ (0,∞) and 0 < ε, δ, β << 1. Then we have

∥Pρ0(YTc ∈ ·)− π∥TV > (bρ − ε)/2 > ε, where Tc :=
1− β

µ
logR.

The OU process X in (4) satisfies Assumption (DATA)↔(ForProc) and

∥Pρ0(XTOU
∈ ·)− πX∥TV < ε, where TOU :=

1 + β

µ
logR.

3. Proofs

Consider a Markov process κ = (κt)t∈R+ taking values on Rd. Following the monograph [13,

Ch 1, Def (14.15)], let D(A) denote the set of measurable functions g : Rn → R with the

following property: there exists a measurable h : Rd → R, such that, for each x ∈ Rd, t→ h(κt)

is integrable Px-a.s. and the process

g(κ)− g(x)−
∫ ·

0
h(κs)ds is a Px-local martingale.

Then we write h = Ag and call (A,D(A)) the extended generator of the process κ. The first

step in the proof of Theorem 2.2 is the following lemma, which provides a lower bound on the

total variation distance between a marginal and an invariant measure of the general Markov

process κ.

Lemma 3.1. Let κ = (κt)t∈R+ be a Markov process with an extended generator A and an

invariant measure π. Assume that for H : Rd → (0, 1] in D(A) and a concave, increasing,

differentiable function ξ : (0,∞)→ (0,∞) we have AH ≤ ξ ◦H on Rd. Define

Ξ : {(u, v) ∈ [0,∞)× (0,∞] : u ≤ v} → [0,∞] by Ξ(u, v) :=

∫ v

u
ds/ξ(s).

For every u0 ∈ (0, 1] there exists a unique function γ(u0, ·) : [0,Ξ(u0,∞)) → [u0,∞) satisfying

Ξ(u0, γ(u0, y)) = y for all y ∈ [0,Ξ(u0,∞)). For any fixed y0 ∈ (0,Ξ(1,∞)), the function

γ(·, y0) : (0, 1] → [0,∞) is increasing. By defining γ(0, y0) := limu↓0 γ(u, y0) ∈ R+, we extend

the function γ(·, y0) to [0, 1]. There exists a unique increasing function ηy0 : [γ(0, y0), γ(1, y0))→
(0, 1] satisfying γ(ηy0(s), y0) = s for s ∈ [γ(0, y0), γ(1, y0)).
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Fix ρ0 ∈ M1(Rn). For every T ∈ (0,Ξ(1,∞)) and r ∈ [1,∞), satisfying γ(0, T ) ≤ 1/r <

γ(1, T ), define Cr,T := ηT (1/r). Then, the following inequality holds

(13) ∥Pρ0(κT ∈ ·)− π∥TV ≥ π({H ≥ 1/r})− ρ0(H ≥ Cr,T )−
∫
{H<Cr,T }

rγ(H(x), T )ρ0(dx).

Proof. The existence and uniqueness of the function γ(u0, ·), satisfying Ξ(u0, γ(u0, y)) = y

for all y ∈ [0,Ξ(u0,∞)), follows from the monotonicity of the function v 7→ Ξ(u0, v). Since

Ξ(u,∞) > Ξ(1,∞) for u ∈ (0, 1), for any y0 ∈ (0,Ξ(1,∞)) the function u 7→ γ(u, y0) is well

defined on the interval (0, 1]. Moreover, γ(·, y0) is increasing (since u 7→ Ξ(u, v) is decreasing

on (0, v] for every v ∈ (0,∞)), making its inverse ηy0 also increasing.

We now state the following fact, which is established below, and use it to prove inequality (13).

Claim. For each x ∈ Rd, the inequality Ex[H(κt)] ≤ γ(H(x), t) holds for all t ∈ (0,Ξ(H(x),∞)).

In order to prove the lemma using the claim, fix T ∈ (0,Ξ(1,∞)) and r ≥ 1 as in the

statement of the lemma. Since T ≤ Ξ(1,∞) ≤ Ξ(H(x),∞), the claim and Markov’s inequality

imply that for every x ∈ Rd we have

Px(H(κT ) ≥ 1/r) ≤ rEx[H(κT )] ≤ rγ(H(x), T ).

Recall that ηT denotes the inverse of the increasing function u 7→ γ(u, T ) and Cr,T = ηT (1/r).

Thus for x ∈ {H < Cr,T } we have rγ(H(x), T ) ≤ rγ(ηT (1/r), T ) ≤ 1, yielding

∥Pρ0(κT ∈ ·)− π∥TV ≥ π({H ≥ 1/r})− Pρ0(H(XT ) ≥ 1/r)

≥ π({H ≥ 1/r})− Eρ0 [1{H(κT ) ≥ 1/r}(1{H(κ0) ≥ Cr,T })

+ 1{H(κ0) < Cr,T })]

≥ π({H ≥ 1/r} − ρ0(H ≥ Cr,T )− rEρ0 [H(κT )1{H(κ0) < Cr,T })]

≥ π({H ≥ 1/r})− ρ0(H ≥ Cr,T )−
∫
{H<Cr,T }

rγ(H(x), T )ρ0(dx),

where the last inequality follows from the claim. It remains to establish the claim.

Proof of Claim. Pick x ∈ Rd and recall H ∈ D(A). Thus, by [13, Ch 1, Def (14.15)], there

exists an increasing sequence {Tn : n ∈ N} of stopping times, such that Tn ↑ ∞ as n → ∞
Px-a.s., and M (n) := H(κ·∧Tn) − H(x) −

∫ ·∧Tn

0 AH(κs)ds is a martingale under Px for all

n ∈ N. Since, for every m ∈ N, we have E |M (m)
t | < ∞ and H(κt∧Tm) is bounded, we have

Ex[|
∫ t∧Tm

0 AH(κs)ds|] <∞. Moreover, since AH ≤ ξ ◦H on Rd, for any t ∈ R+ and m ∈ N we

obtain

Ex[H(κt∧Tm)] = H(x) + Ex

[∫ t∧Tm

0
AH(κs)ds

]
≤ H(x) + Ex

[∫ t∧Tm

0
ξ ◦H(κs)ds

]
.

This inequality, Fatou’s lemma (applicable since H : Rd → (0, 1] is bounded from below) and

the monotone convergence theorem (applicable since ξ > 0) yield

Ex[H(κt)] = Ex[lim inf
m→∞

H(κt∧Tm)] ≤ lim inf
m→∞

Ex[H(κt∧Tm)]

≤ H(x) + lim inf
m→∞

Ex

[∫ t∧Tm

0
ξ ◦H(κs)ds

]
= H(x) + Ex

[∫ t

0
ξ ◦H(κs)ds

]
.

Since ξ : (0,∞)→ (0,∞) is concave, Tonelli’s theorem and Jensen’s inequality imply

Ex

[∫ t

0
ξ ◦H(κs)ds

]
=

∫ t

0
Ex [ξ ◦H(κs)] ds ≤

∫ t

0
ξ (Ex[H(κs)]) ds for all t ∈ R+.
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For t ∈ R+, let g(t) := Ex[H(κt)]. Then, we have g(0) = H(x) and

(14) g(t) ≤ g(0) +G(t) for all t ∈ R+, where G(t) :=

∫ t

0
ξ(g(s))ds.

Since ξ is increasing, by (14) we obtain

(15) G′(v) = ξ(g(v)) ≤ ξ(g(0) +G(v)) for all v ∈ R+.

Recall that the increasing function Ξ(H(x), ·) : [g(0),∞)→ [0,Ξ(g(0),∞)), given by the integral

Ξ(H(x), t) =
∫ t
g(0) ds/ξ(s), has a differentiable inverse γ(H(x), ·). Since G is increasing, the

change of variables z = G(v) in the following integral and the bound in (15) yield

Ξ(H(x), g(0) +G(t)) =

∫ g(0)+G(t)

g(0)

dz

ξ(z)
=

∫ G(t)

0

dz

ξ(g(0) + z)

=

∫ t

0

G′(v)

ξ(g(0) +G(v))
dv ≤ t = Ξ(H(x), γ(H(x), t)).

Hence, by (14), we get g(t) ≤ g(0) +G(t) ≤ γ(H(x), t) for all t ∈ [0,Ξ(H(x),∞)), proving the

claim. □

Let Y be the solution of the SDE in (9). By Itô’s formula applied to the process g(Y ),

the extended generator of the diffusion Y takes the following form for any twice continuously

differentiable g : Rd → R:

(16) Ag(x) = ⟨b(x),∇g(x)⟩+ 1

2
Tr(a(x)Hess(g)(x)) for all x ∈ Rd, where a = σσ⊺,

Hess(g) is a symmetric matrix in Rd×d consisting of the second order partial derivatives of g

and the trace operator Tr(·) returns the sum of the diagonal elements of a square matrix.

The next proposition controls the infinitesimal expected growth rate of the Itô process HY(Y )

for a forward diffusion Y satisfying Assumption (ForProc). This result concerns the infinites-

imal behaviour of Y only (i.e. does not depend on the initial law ρ0) and will play a key role

in the proof of Theorem 2.2 given below. Recall, by (ForProc), that for any y1 ∈ Rd with

|y1| = 1 there exists k ∈ N and orthonormal vectors y1, . . . , yk ∈ Rd, spanning the vector space

Y, such that the dispersion matrix a = σσ⊺ satisfies the inequality in (11). Recall also that

GY(x) =
∑k

j=1 yj⟨x, yj⟩ defined in (ForProc) denotes the orthogonal projection of Rd onto Y
and that the twice continuously differentiable function HY : Rd → (0, 1] in (11) is given by

the formula HY(x) :=
(
1 + |GY(x)|2

)−1/2
. In particular, we have |GY(x)|2 =

∑k
j=1⟨x, yj⟩2 and

|GY(x)|HY(x) ≤ 1 for all x ∈ Rd.

Proposition 3.2. Let a diffusion Y satisfy Assumption (ForProc) with some µ ∈ (0,∞).

Then the extended generator A of Y , given in (16) above, applied to the function HY satisfies

AHY ≤ µHY on Rd.

Proof. For all x ∈ Rd it holds that ∇HY(x) = −HY(x)
3GY(x). Moreover the Hessian of HY

takes the form Hess(HY)(x) = HY(x)
3(3HY(x)

2GY(x)GY(x)
⊺ −

∑k
j=1 yjy

⊺
j ), x ∈ Rd, where, for

any y ∈ Rd, the transposition y⊺ turns y into a row vector with the same entries. It follows that

Tr(a(x)Hess(HY)(x)) = HY(x)
3

3HY(x)
2⟨a(x)GY(x), GY(x)⟩ −

k∑
j=1

⟨a(x)yj , yj⟩

 ≤ 0

for all x ∈ Rd, since the dispersion matrix a = σσ⊺ satisfies (11) in Assumption (ForProc)

above. We conclude that Tr(aHess(HY)) ≤ 0 on Rd.
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By (10) in Assumption (ForProc), we have |⟨b(x), u⟩| ≤ µ|⟨x, u⟩| for all x, u ∈ Rd with

|u| = 1. Since y1, . . . , yk are orthonormal vectors, it follows that

⟨b(x),∇HY(x)⟩ = −HY(x)
3

〈
k∑

j=1

yj⟨yj , x⟩, b(x)

〉
= HY(x)

3
k∑

j=1

⟨yj , x⟩⟨−yj , b(x)⟩

≤ HY(x)
3

k∑
j=1

|⟨yj , x⟩| · |⟨−yj , b(x)⟩| ≤ HY(x)
3

k∑
j=1

|⟨yj , x⟩|µ|⟨−yj , x⟩|

= µHY(x)
3

k∑
j=1

|⟨yj , x⟩|2 = µHY(x)
3|GY(x)|2 ≤ µHY(x) for all x ∈ Rd.

This implies that the inequality AHY = ⟨b,∇HY⟩+Tr(aHess(GY)) ≤ µHY holds on Rd. □

Let Assumption (DATA) hold for some R, ε, δ ∈ (0,∞) and fix ρ0 ∈ M1,R,ε(Rd) with its

furthest mode x0 ∈ Rd \ {0}. Theorem 2.2 requires both (DATA) and Assumption (ForProc)

(with the same ε and some µ ∈ (0,∞)), applied with the principal direction in (11) given by

the furthest mode y1 := x0/|x0|. Recall that by (DATA) we have |x0| = R(1 + δ), implying

the inequality HY ≤ 1/R on B(x0, Rδ), where Y is the vector subspace in Rd, spanned by

the orthonormal vectors y1, . . . , yk in (ForProc), and the function HY , used in Proposition 3.2

above, is defined in (11). With all this in mind, we proceed with the proof of our main theorem.

Proof of Theorem 2.2. Lower bounds. For ε > 0 in (ForProc), let rk ∈ (1,∞) be such that

π({HY ≥ 1/rk}) > 1− ε/2, where HY was defined in (11). Denote by A the generator in (16)

of the forward diffusion Y . By Proposition 3.2 we have AHY ≤ ξ ◦HY on Rd for the function

ξ(r) := µr, r ∈ R+. The related function Ξ in Lemma 3.1 takes the form Ξ(u, v) = log(v/u)/µ

for 0 < u ≤ v < ∞, implying Ξ(1,∞) = ∞. Moreover, for any T ∈ [0,∞), we have γ(u, T ) =

exp(µT )u for u ∈ (0, 1] and γ(0, T ) = 0 < 1 ≤ γ(1, T ). Since 0 < 1/rk < 1 we conclude

Crk,T = ηT (1/rk) = exp(−µT )/rk. Thus by the inequality in (13) of Lemma 3.1, for every

T ∈ (0,∞) we get

∥Pρ0(YT ∈ ·)− π∥TV ≥ π(HY ≥1/rk)− ρ0(HY ≥ Crk,T )(17)

−
∫
{HY<Crk,T }

rkγ(HY(x), T )ρ0(dx).

By (DATA) we have ρ0(B(x0, Rδ)) = bρ with x0 ∈ Rd \ {0} satisfying |x0| = R(1 + δ). Fix

Tc = 1
µ log R

2rk
> 0 since rk < R/2 by assumption in Theorem 2.2. For any x ∈ B(x0, Rδ) we

have HY(x) ≤ (1 +R2)−1/2 ≤ R−1 < 2/R = Crk,Tc , implying

rkγ(HY(x), Tc) = rk exp(µTc)HY(x) ≤ 1/2 and B(x0, Rδ) ⊂ {HY < Crk,Tc}.

Since rkγ(HY(x), Tc) ≤ 1 for all x ∈ {HY ≤ Crk,Tc}, the following inequality holds:

(18)

∫
{HY<Crk,Tc}

rkγ(HY(x), Tc)ρ0(dx) ≤ ρ0({HY < Crk,Tc} \B(x0, Rδ)) + ρ0(B(x0, Rδ))/2.

The inequalities in (17) and (18) imply

∥Pρ0(YT ∈ ·)− π∥TV ≥ π(HY ≥ 1/rk)− ρ0(Rd \B(x0, Rδ))− ρ0(B(x0, Rδ))/2

≥ (1− ε/2)− (1− bρ)− bρ/2 = (bρ − ε)/2,

where the inequality π(HY ≥ 1/rrk) ≥ 1− ε/2 holds by the definition of rk in (ForProc). This

concludes the proof of the lower bound in Theorem 2.2.
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Upper bounds. For any two probability distributionsQ1, Q2 ∈M1(Rd) with respective Lebesgue

densities q1, q2, Pinsker’s inequality (see e.g. [36, Lemma 2.5(i)]) yields

∥Q1 −Q2∥TV ≤
√

KL(Q1||Q2)/2, where KL(Q1||Q2) :=

∫
Rd

q1(x) log(q1(x)/q2(x))dx

is the Kullback-Leibler (KL) divergence between Q1 and Q2. Pick µ1, µ2 ∈ Rd and positive

definite matrices Σ1,Σ2 ∈ Rd×d. For i ∈ {1, 2}, let Qi = N(µi,Σi) be the Gaussian law on Rd

with mean µi and covariance matrix Σi. Recall the explicit formula for the KL divergence (see

e.g. [31, Eq. (A.23)]):

(19) KL(Q1||Q2) =
1

2
(Tr(Σ−1

2 Σ1 − Id) + (µ1 − µ2)
⊺Σ−1

2 (µ1 − µ2) + log det(Σ2Σ
−1
1 )).

Recall that Assumptions (DATA) and (ForProc) hold with some R, ε, µ, δ ∈ (0,∞). Denote

BR := B(0, R(1 + 2δ)) and for any T ∈ (0,∞) set e(T ) := (1− exp(−2Tµ))/µ. By the triangle

inequality for the total variation norm and Pinsker’s bound, we obtain

∥Pρ0(XT ∈ ·)− π∥TV ≤ ∥ρ0(BR)Pρ0(XT ∈ ·|{X0 ∈ BR})

+ ρ0(Rd \BR)Pρ0(XT ∈ ·|{X0 ∈ Rd \BR})− π∥TV

≤ ρ0(BR)∥Pρ0(XT ∈ ·|{X0 ∈ BR})− π∥TV + ρ0(Rd \BR)

≤ ρ(BR)KL(Pρ0(XT ∈ ·|{X0 ∈ BR})||π)1/2/
√
2 + ρ(Rd \BR).(20)

Under Pρ0 , the OU processX is initialised atX0 ∼ ρ0 and solves SDE (4). Thus, givenX0, the

marginal XT follows XT |X0 ∼ N(X0/ exp(µT ), e(T )Id) and the invariant measure of X equals

πX = N(0, Id/µ). Understanding the KL divergence KL(Pρ0(XT ∈ ·|{X0 ∈ BR})||π) amounts

to conditioning on X0 = y ∈ BR and applying (19) to KL(N(y/ exp(µT ), e(T )Id)||N(0, Id/µ))

for any y ∈ BR. In particular, we have Σ1 = e(T )Id, µ1 = y exp(−2µT ), Σ2 = Id/µ and µ2 = 0,

implying

Tr(Σ−1
2 Σ1 − Id) = −d exp(−2µT ), (µ1 − µ2)

⊺Σ−1
2 (µ1 − µ2) = µ exp(−2µT )|y|2,

log det(Σ2Σ
−1
1 ) = −d log(1− exp(−2µT )).

Note that r + log(1− r) ≥ −r2 for all r ∈ (0, 1/2). Thus, for µT > log(2)/2, we have

(21) Tr(Σ−1
2 Σ1 − Id) + log det(Σ2Σ

−1
1 ) = −d

(
e−2µT + log(1− e−2µT )

)
< de−4µT .

By the formula in (19) and the inequality in (21) we obtain

KL(Pρ0(XT ∈ ·|{X0 ∈ BR})||π) =
∫
BR

KL(N(y/ exp(µT ), e(T )Id)||N(0, Id/µ))ρ0(dy)/ρ0(BR)

≤ µ

2
exp(−2µT )

∫
BR

|y|2ρ0(dy)/ρ0(BR) + d exp(−4µT )/2

≤ µ

2
exp(−2µT )R2(1 + 2δ)2 + d exp(−4µT )/2,(22)

where the last inequality holds since BR = B(0, R(1+2δ)) is the disc in Rd with radius R(1+2δ)

and centered at the origin. Choosing the time T in inequality (22) equal to

TOU :=
1

µ
max{log(2d1/4/ε1/2), log(2R(1 + 2δ)

√
µ/ε)}

yields KL(Pρ0(XTOU
∈ ·|{X0 ∈ BR})||π) ≤ ε2/2 (note that TOU > (log 2)/(2µ), implying that

the inequalities in (21) and (22) hold for TOU). Combining the bound on the KL divergence
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with (20) yields

∥Pρ0(XTOU
∈ ·)− π∥TV ≤ ρ0(BR)ε/2 + ρ0(Rd \BR) < ε,

where the last inequality follows, since ρ0(Rd \BR) < ε/2 holds by Assumption (DATA). □

Proof of Corollary 2.4. By Assumption (DATA)↔(ForProc), we have 2rk ≤ Rβ. Thus, we

obtain Tc = 1
µ log(R/(2rk)) ≥ (1 − β)/µ logR in the Corollary 2.4. Moreover, by Assump-

tion (DATA)↔(ForProc), we have 2
√
µ(1 + 2δ)/ε ≤ Rβ and R ≥ (ε/µ)1/2d1/4, which yields

1

µ
max{log(2d1/4/ε1/2), log(R2(1+2δ)

√
µ/ε)} = 1

µ
log(R2(1+2δ)

√
µ/ε) ≤ 1 + β

µ
logR. □

Proof of Proposition 1.2. The inequality ∥Pρ0(XTOU
∈ ·)− πX∥TV < ε follows from the second

inequality in Theorem 2.2 for µ = 1 with TOU = log(2R(1 + 2δ)/ε), since in Proposition 1.2 we

assume in addition R ≥ ε1/2d1/4.

The invariant measure πX of the OU process X in (4) with µ = 1 is the standard Gaussian

probability measure N(0, Id) on Rd. Recall from Assumption (DATA) that the location of the

furthest mode the initial data distribution ρ0 is denoted by x0 ∈ Rd \ {0}. Hence the push-

forward of πX under the orthogonal projection onto the line spanned by x0/|x0| is a standard

Gaussian law on R with mean zero and variance one. Fix c0 := max{
√

2 log(1/ε), 1} and note

that the bound for the tail of the standard Gaussian yields

(23) πX({⟨·, x0/|x0|⟩ ≥ c0}) ≤ exp(−c20/2)/(c0
√
2π) ≤ ε/2.

For T ∈ (0,∞) we have that XT
d
= X0 exp(−T ) + e(T )Z, where e(T ) = (1 − exp(−2T ))1/2

and Z ∼ N(0, Id) is independent of X0 ∼ ρ0. Recall that by Assumption (DATA) we have

ρ0(B(x0, Rδ)) = bρ and |x0| = R(1+δ). Setting Tb := log(R/c0), on the event {X0 ∈ B(x0, Rδ)},
we have ⟨X0 exp(−Tb), x0/|x0|⟩ ≥ exp(−Tb)R = c0 a.s., implying

Pρ0(⟨XTb
, x0/|x0|⟩ ≥ c0|{X0 ∈ B(x0, Rδ)}) ≥ P(⟨Z, x0/|x0|⟩ ≥ 0) = 1/2.

The first inequality in Proposition 1.2 follows from

Pρ0(⟨XTb
, x0/|x0|⟩ ≥ c0) ≥ bρPρ0(⟨XTb

, x0/|x0|⟩ ≥ c0|{X0 ∈ B(x0, Rδ)}) ≥ bρ/2,

the inequality in (23) and the bound

∥Pρ0(XTb
∈ ·)− πX∥TV ≥ Pρ0(⟨XTb

, x0/|x0|⟩ ≥ c0)− πX({⟨·, x0/|x0|⟩ ≥ c0}). □

Proof of Theorem 1.4. Theorem 1.4 follows from Corollary 2.4 if (DATA)↔(ForProc) is satis-

fied for tempered Langevin diffusions with a spherically symmetric stationary measure π (i.e.

the density of π is proportional to exp(−hπ), where hπ : Rd → [0,∞) is given by a scalar function

hπ(x) = Hπ(|x|)). Since (DATA) and conditions (7) and (8) are assumed in Theorem 1.4, As-

sumption (DATA)↔(ForProc) will be satisfied if we show that the tempered Langevin diffusion

Y , satisfying (LGµ), also satisfies (ForProc).

Recall that a tempered Langevin diffusion Y satisfying (LGµ) follows the SDE in (6) with

coefficients b and σ given in (5). Since b(x) = −Hπ(|x|)2ℓ−1(Hπ(|x|) − 2ℓ)H ′
π(|x|)x/|x|, the

inequlity in (LGµ) implies (10) in Assumption (ForProc). The dispersion coefficient a = σσ⊺

in (5) takes the form a(x) = σ(x)σ⊺(x) = 2hπ(x)
2ℓId for all x ∈ Rd. For any k-dimensional
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vector space Y in Rd, pick orthonormal basis y1, . . . , yk and assume k ≥ 3. Then we have

k∑
j=1

⟨a(x)yj , yj⟩ = k2hπ(x)
2ℓ ≥ 6hπ(x)

2ℓ|GY(x)|2/(1 + |GY(x)|2)

= 3⟨a(x)GY(x)/(1 + |GY(x)|2)1/2, GY(x)/(1 + |GY(x)|2)1/2⟩,

for all x ∈ Rd, where GY is the orthogonal projection mapping Rd onto Y, implying (11)

in (ForProc). □

4. Conclusion

This paper provides explicit non-asymptotic bounds on the convergence rates of diffusion

processes starting from multi-modal distributions, which are typical in Denoising Diffusion

Probabilistic Models (DDPMs) [25, 34]. We show that substituting the Ornstein-Uhlenbeck

(OU) process with a diffusion process that includes multiplicative noise does not significantly

improve the convergence rate. Additionally, our theorems reveal that increasing the distance of

the modes from the origin in the initial distribution ρ0 results in a cut-off type behavior in the

convergence of the OU process.

Our results establish rigorously that the convergence time of a DDPM grows as a logarithm

of the diameter of the support of the initial data distribution for a broad class of ergodic

forward diffusions. Since this growth is ubiquitous in this class, it naturally leads to considering

alternatives to forward diffusion processes discussed in this paper. Two such processes are

Schrödinger bridges and diffusions with superlinear coefficients. Schrödinger bridges relate two

arbitrary distributions in fixed time, thus eliminating the convergence error of the forward

process completely (see [1, 15] and the references therein for details of this approach). Certain

diffusions with superlinear coefficients are known to exhibit uniform ergodicity [18]. Given an

error tolerance for the convergence of the forward process, such diffusions would allow for a

fixed time horizon independent of the initial data distribution. Since diffusions with superlinear

coefficients are difficult to sample [29] in general, this naturally motivates the development of

new algorithms for sampling such diffusions with a given nice (e.g. spherically symmetric and

log-concave) invariant measure and arbitrary initial distribution.

In the future, we aim to extend the analysis to the convergence of both forward and reverse

diffusion used in DDPMs. Investigating non-asymptotic bounds on the convergence of denoising

diffusion algorithms and quantifying a “cut-off” phenomenon in the convergence of the algorithm

are important future research directions.

DDPMs have delivered revolutionary advancements across various domains [24,33–35]. How-

ever, while many different approaches exist, there is no clear consensus on the optimal method,

see e.g. [1,12,15] and the references therein, for discussions of various different choices for denois-

ing processes. A common method to evaluate these diverse approaches is through the analysis

of their convergence. This paper provides tools that facilitate such comparisons. Comparing

algorithms by studying their convergence properties has been one of the central themes in ap-

plied probability, with extensive literature examining for example various Markov Chain Monte

Carlo (MCMC) algorithms [3, 8, 32]. To the best of our knowledge, the results in this paper

provide a first step in this direction for DDPMs.

We conclude with a remark on our methods and assumptions. The primary role of Assump-

tion (DATA)↔(ForProc) is to contextualize the results within DDPMs, enabling comparisons
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between different choices of forward diffusion processes. However, to establish bounds on con-

vergence, we require only milder Assumptions (DATA) and (ForProc). Moreover, the proof

rests on Lemma 3.1 above, which is independent of Assumptions (DATA) and (ForProc). Our

approach may thus remain relevant in frameworks where these assumptions are not applicable.

Appendix A. Stability of tempered Langevin diffusions

In order to place the results of this paper in a broader context, this section briefly recalls

certain key facts concerning the stability of tempered Langevin diffusions with stretched expo-

nential target measures, considered in Section 1.3 above.

Let π be a probability measure on Rd with a twice continuously differentiable density. In

applications, such as MCMC, it is crucial to construct an ergodic Markov process with π as its

invariant measure. This is often achieved via a tempered Langevin diffusions, for which, as we

shall see, the convergence rate depends on the tail decay of π. Consider a measure π satisfying

(24) lim
r→∞

−rp log π(| · | ≥ r) ∈ (0,∞) for some p ∈ (0,∞).

Proposition A.1. Let Y follow SDE (6) with coefficients in (5), given by ℓ ∈ [0,∞) and an

invariant measure π, satisfying (24) with p ∈ (0,∞). Then the following statements hold.

(a) Case p ∈ (0, 1). For ℓ ∈ [0, 1/p − 1), the process Y is subexponentially ergodic: there

exist c−, c+ ∈ (0,∞), such that for y ∈ Rd there exist C−(y), C+(y) ∈ (0,∞) satisfying

C−(y) exp(−c−tp/(2−p−2ℓp)) ≤ ∥Py(Yt ∈ ·)− π∥TV ≤ C+(y) exp(−c+tp/(2−p−2ℓp)),

for all t ∈ [0,∞). For ℓ ∈ [1/p − 1, 1/p − 1/2], the process Y is exponentially ergodic:

there exists c ∈ (0,∞), such that for y ∈ Rd there exists C(y) ∈ (0,∞) satisfying

∥Py(Yt ∈ ·)− π∥TV ≤ C(y) exp(−ct) for all t ∈ (0,∞).

For ℓ ∈ (1/p − 1/2,∞), the process Y exhibits uniform ergodicity: there exist constant

c, C ∈ (0,∞) satisfying

∥Py(Yt ∈ ·)− π∥TV ≤ C exp(−ct) for all t ∈ [0,∞) and y ∈ Rd.

(b) Case p ∈ [1, 2]. The process Y is exponentially ergodic when ℓ ∈ [0, 1/p − 1/2] and

uniformly ergodic otherwise.

(c) Case p ∈ (2,∞). The process Y is uniformly ergodic for all ℓ ≥ 0.

The lower and upper bounds in Proposition A.1 follow from [7, Thm 3.6] and [17, Thm 5.5],

respectively. In particular, the lower bounds in [7, Thm 3.6] imply that the actual rate of decay

of ∥Py(Yt ∈ ·)− π∥TV in the stretched exponential case p ∈ (0, 1) depends on the temperature

parameter ℓ. Recall from the SDE in (5) and (6) that ℓ = 0 corresponds to the classical Langevin

diffusion, while ℓ > 0 yields a tempered Langevin diffusion with unbounded multiplicative noise.

Similar results hold for an invariant measure π with polynomial tails, corresponding to p = 0

in (24). However, the coefficients of a tempered Langevin diffusion with π that has polynomial

tails take the form, different from (5); see [22, Sec. 3.2] and [7, Sec. 3.1] for more details. As

our focus in the present paper is on invariant measures π with lighter tails, the details for the

polynomial case are omitted.

In this context, tempered Langevin diffusions offer an effective solution: for a given invariant

distribution π, using tempered Langevin diffusions with ℓ > 0 can by Proposition A.1 signific-

antly improve convergence over the classical Langevin counterpart with ℓ = 0. In particular,
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when 0 < p << 1, the convergence rate of exp(−ctp/(2−p)) with ℓ = 0 can be enhanced to expo-

nential convergence with the choice of ℓ = 1/p− 1 and uniform ergodicity with ℓ > 1/p− 1/2.

However, in practical application of ergodic diffusions, such as MCMC, choosing a large temper-

ature parameter ℓ has its limitations: for π, satisfying (24) with p ∈ (0, 2], choosing ℓ > 1/p−1/2
makes the drift of the tempered Langevin diffusion, given in (5), grow superlinearly making

sampling numerically unstable [29]. Thus enhancing the convergence of sampling algorithms

up to exponential rate using tempered Langevin diffusion with ℓ > 0 appears feasible. But

achieving uniform ergodicity seems to be out of reach with present sampling methodology.

In this work we explore a related question by comparing the convergence of diffusions with

(possibly) different invariant measures that are initialised at a given fixed high-dimensional and

multi-modal distribution. We study a broad class of diffusions that can be efficiently simulated.

In contrast to Proposition A.1, where introducing multiplicative noise accelerated the transport

of mass towards the tails, our main result Theorem 2.2 implies (among other things) that

multiplicative noise does not speed up the transport of mass from the distant modes of the data

distribution towards the origin. Therefore the canonical choice of the OU process is hard to

beat in the class of SDEs defined by (ForProc), which includes tempered Langevin processes.

Appendix B. Dependence of r3 on the tails of the noise measure π

Spherically symmetric distributions play a central role as invariant measures of tempered

Langevin diffusions in Section 1.3 above. In particular, we are interested in distributions with

densities proportional to x 7→ exp(−a|x|p), for some a ∈ (0,∞) and p ∈ (0, 2], which naturally

extend the class of Gaussian measures. The crucial quantity in the context of this paper is the

ε-quantile r3 > 1 of the three-dimensional projection, defined by

π(B3(r3)× Rd−3) ≥ 1− ε/2,

where B(r3) is the closed ball in R3 with radius (r23 − 1)1/2. Since the quantiles are in terms

of three-dimensional projections, we anticipate that r3 will exhibit only a very slow growth

as the dimension d increases. The values of quantiles for spherically symmetric distributions

on Rd have one-dimensional integral representations [20, Eq. (1.4)]). However, except in very

special cases such as Gaussian or generalized Laplace distributions on Rd, these expressions

are typically intractable analytically. Consequently, we resort to simulations to understand the

growth of the quantile r3 with dimension d. Indeed, the numerical experiments below strongly

suggest that the growth of r3 appears to be logarithmic in d for distributions with densities

proportional to x 7→ exp(−a|x|p).
In the following table, the ε-quantile r3 of the three-dimensional projection of a spherically

symmetric distribution with density proportional to the function x 7→ exp(−|x|p), with para-

meter p ∈ {1, 1.2, 1.4, 1.6, 1.8}, dimensions d ∈ {3, 30, 300, 3000} and ε = 0.1, is estimated using

3 · 105 independently simulated samples.

Values of r3 for ε = 0.1 d = 3 d = 30 d = 300 d = 3000

p = 1.8 2.2 2.4 2.8 3.1

p = 1.6 2.6 3.2 4.3 5.7

p = 1.4 3.1 4.6 7.5 12.2

p = 1.2 4.1 7.7 16.1 34.6

p = 1 6.3 15.9 48.7 153.2
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