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The shallow-water equations are widely used to model interactions between horizontal shear7
flows and (rotating) gravity waves in thin planetary atmospheres. Their extension to allow for8
interactions with magnetic fields – the equations of shallow-water magnetohydrodynamics9
(SWMHD) – is often used to model waves and instabilities in thin stratified layers in stellar10
and planetary atmospheres, in the perfectly-conducting limit.11

Here we consider how magnetic diffusion should be added to the equations of SWMHD.12
This is crucial for an accurate balance between advection and diffusion in the induction13
equation, and hence for modelling instabilities and turbulence. For the straightforward14
choice of Laplacian diffusion, we explain how fundamental mathematical and physical15
inconsistencies arise in the equations of SWMHD, and show that unphysical dynamo action16
can result. We then derive a physically consistent magnetic diffusion term by performing17
an asymptotic analysis of the three-dimensional equations of MHD in the thin-layer limit,18
giving the resulting diffusion term explicitly in both planar and spherical coordinates. We19
show how this magnetic diffusion term, which allows for a horizontally varying diffusivity,20
is consistent with the standard shallow-water solenoidal constraint, and leads to negative21
semi-definite Ohmic dissipation. We also establish a basic type of anti-dynamo theorem.22
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1. Introduction24

The shallow-water equations arewidely used as an idealisedmodel of stratified fluid dynamics25
in a thin layer, as generically occurs in planetary atmospheres and oceans (e.g., Zeitlin26
2018). In their simplest incarnation with no bottom topography, the equations describe the27
motion of an inviscid fluid of constant density occupying 0 < z < h(x, t), beneath an28
overlying quiescent fluid of negligible density; here x is the horizontal position, and z is an29
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upwards vertical coordinate. When the fluid depth h(x, t) is much smaller than the horizontal30
lengthscale of the flow, the hydrostatic approximation can be made, and solutions exist with31
the horizontal flow u independent of z (e.g., Gill 1982). This leads to the coupled equations32

∂t u + u · ∇u = −g∇h + F, (1.1)33

∂t h + ∇ · (hu) = 0, (1.2)3435

where g is the acceleration due to gravity, and F is any z-independent forcing or dissipation.36
There is an obvious extension including background rotation, as in the equations originally37
derived by Laplace (1776). Although the shallow-water equations have direct applications to38
barotropic flow in the ocean, they are often used with a reduced gravity g′ to model upper39
oceanic flows above a deep quiescent layer of larger density, or as a quasi two-dimensional40
(x, t) idealisation of three-dimensional (x, z, t) baroclinic dynamics in a continuously41
stratified flow, perhaps using the idea of equivalent depth (e.g., Gill 1982; Zeitlin 2018).42

For numerical solutions of the shallow-water equations in a strongly nonlinear regime, a43
scale-selective dissipation term is usually included inF. An obvious choice is to setF = ν∇2u44
in (1.1), where ∇2 is the horizontal Laplacian operator. But this choice is undesirable: it45
does not lead to negative definite energy dissipation, and it violates angular momentum46
conservation (Gent 1993; Schär & Smith 1993; Shchepetkin & O’Brien 1996; Ochoa et al.47
2011). Two approaches have been used to generate alternative forms of the dissipation that are48
consistent with the fundamental physical principle that it be the divergence of a symmetric49
tensor (Batchelor 1967). In the first approach, Shchepetkin & O’Brien (1996) and Gilbert50
et al. (2014) set51

Fi =
1
h

∂

∂x j
(hσi j ), σi j = ν

(
∂ui
∂x j
+
∂u j

∂xi
− ςδi j

∂uk
∂xk

)
, (1.3)52

for some parameter ς, building on the study of Schär & Smith (1993) with ς = 1. The factors53
of h and the symmetric form of σi j ensure conservation of angular momentum, and Gilbert54
et al. (2014) proved negative semi-definite energy dissipation provided ς 6 1. However, this55
approach does not uniquely determine a value of ς. The second approach is to develop an56
asymptotic reduction of the full three-dimensional Navier–Stokes equations as ε → 0, where57
ε is the aspect ratio of the flow (Marche 2007). The leading-order momentum balance is58
then ∂2u/∂z2 = 0; however, applying zero tangential stress at the top and bottom of the fluid59
layer, the leading-order flow u is undetermined and independent of z, consistent with the60
standard shallow-water hypothesis. At the next order as ε → 0, the shallow-water equations61
(1.1)–(1.2) emerge with a viscous term involving horizontal derivatives of the leading-order62
flow u. Indeed, the viscous term that emerges is simply (1.3) with ς = −2.63

These modelling strategies can be extended to thin stratified layers with magnetic fields,64
as often occur in planetary and stellar atmospheres and interiors. Motivated by considerations65
of the solar tachocline, the equations of shallow-water magnetohydrodynamics (SWMHD)66
were introduced by Gilman (2000). For an inviscid and perfectly conducting fluid, he showed67
that the extension of the system (1.1)–(1.2) is68

∂t u + u · ∇u = b · ∇b − g∇h + F, (1.4)69

∂t b + u · ∇b = b · ∇u, (1.5)70

∂t h + ∇ · (hu) = 0, (1.6)7172

where b(x, t) is the horizontal magnetic field (measured in units of the Alfvén speed), which,73
like u(x, t), can be taken to be independent of z. Then integrating the three-dimensional74
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solenoidal condition across the fluid layer gives75

∇ · (hb) = 0, (1.7)76

upon assuming that the free surface is composed of magnetic field lines, and that there is no77
normal (i.e., vertical) field at the flat bottom.As shown byDellar (2002), equations (1.4)–(1.6)78
may be cast in a conservative form for the variables hu, hb, and h. In this form (see below),79
it is immediately clear that (1.7) is consistent with (1.5) and (1.6); that is, if ∇ · (hb) = 080
holds initially, then it will remain so. The equations of SWMHD have been used to model81
waves and instabilities in various geophysical and astrophysical settings (e.g., Schecter et al.82
2001; Gilman & Dikpati 2002; Zaqarashvili et al. 2008; Hunter 2015; Mak et al. 2016;83
Márquez Artavia et al. 2017), although, since none of these settings involve a free surface,84
either g in (1.4) should be interpreted as a reduced gravity g′ (Gilman 2000), or the layer85
depth should be interpreted as an equivalent depth, as in Mak et al. (2016).86

Just as the hydrodynamic shallow-water equations have been extended to include a87
diffusive term to account for viscosity, it is natural to ask how the equations of SWMHD88
can be extended to include a diffusive term to account for finite conductivity. Indeed, the89
means by which magnetic (Ohmic) diffusion is implemented is arguably more important90
than how viscous diffusion is implemented, because (1.4) could involve balances between91
any combination of advection, pressure gradients, the Lorentz force and possibly Coriolis92
terms, with viscous diffusion playing a minor role. However, the extended shallow-water93
induction equation would involve only advection and diffusion, and so the consequences of94
implementing either of these terms erroneously could be serious. In particular, one might be95
concerned how the form of a magnetic diffusion term influences dynamo action in SWMHD.96

To be precise, we introduce a dissipative term d(x, t) in (1.5), as97

∂t b + u · ∇b = b · ∇u + d (1.8)98

or, equivalently, as99

∂t (hb) = ∇ × (u × hb) + hd, (1.9)100

using (1.6). When d = 0, (1.9) is in the form given by Hunter (2015), and can be reduced101
to equation (18c) of Dellar (2002). When d , 0, it provides an immediate constraint on the102
form of d, since taking the divergence of (1.9) and using (1.7) gives103

∇ · (hd) = 0. (1.10)104

A second constraint can be derived by considering the domain-integrated energy equation105

dE
dt
=

∫
hu · F dS +

∫
hb · d dS, with E = 1

2 h
(
u2 + b2

)
+ 1

2gh2, (1.11)106

where dS is the two-dimensional area element, and we have taken the boundary energy107
fluxes to vanish, which is guaranteed for appropriate lateral boundary conditions, or for an108
unbounded flow with |u | → 0 and |b | → 0 as |x | → ∞. We require the Ohmic dissipation to109
be negative semi-definite, i.e.,110 ∫

hb · d dS 6 0. (1.12)111

As noted by Mak (2013), for the straightforward choice d = η∇2b one cannot prove that112
either (1.10) or (1.12) is satisfied. The former failure is particularly significant: setting113
d = η∇2b introduces a fundamental inconsistency in the SWMHD formulation, since the114
constraint (1.7) is not satisfied. This simple diffusion was used in the numerical simulations115
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of SWMHD by Lillo et al. (2005), whose results should be treated with caution: in particular,116
the SWMHD dynamo action they reported could be unphysical.117

What forms of d are consistent with (1.10) and (1.12)? Some first steps in this direction118
were taken by Mak (2013), who noted that d = ηh−1∇2(hb) satisfies (1.10), but also that119
(1.12) will not be satisfied, in general. One can do better by considering the form120

d = −
1
h
∇ ×

[
ηhp∇ × (hq b)

]
, (1.13)121

for some p and q, and where η may vary horizontally. By construction, this automatically122
satisfies (1.10). Then, again assuming that the lateral boundary fluxes vanish (e.g., by |b | → 0123
as |x | → ∞), the Ohmic dissipation124 ∫

hb · d dS = −
∫

ηhp (∇ × b) · (∇ × hq b) dS. (1.14)125

So (1.12) is certainly satisfied when q = 0. Just as in the case of the viscous diffusion ansatz126
(1.3), which satisfies the necessary physical constraints when ς 6 1, we now have a magnetic127
diffusion ansatz (1.13) that satisfies the necessary physical constraints when q = 0 with p128
arbitrary. If η has dimensions of L2 T−1 (i.e., it is a diffusivity), then we would need to take129
p = 1 on dimensional grounds, giving130

d = −
1
h
∇ ×

(
ηh∇ × b

)
. (1.15)131

So, starting from the ansatz (1.13), we have argued for a plausible form (1.15) for d. Our132
main aims here are to show that (1.15) can also be derived systematically by an asymptotic133
analysis of the three-dimensional induction equation, and to explore some implications of134
this form for the equations of SWMHD, particularly with dynamo action in mind.135

We start, in § 2, by returning to the straightforward choice d = η∇2b, and investigating136
the possibility of SWMHD dynamo action. This straightforward choice was adopted by Lillo137
et al. (2005), who considered the SWMHD evolution of forced helical turbulent flows. Here,138
in order to isolate and understand more clearly any dynamo action in the SWMHD system,139
we consider the simpler case of the shallow-water analogue of the CP flow of Galloway &140
Proctor (1992) — a flow that has received considerable attention in dynamo studies. Using141
numerical simulations, we show that SWMHD dynamo action is indeed possible for a range142
of η. Furthermore, we are able to make comparison with the corresponding MHD dynamo143
resulting from the Galloway & Proctor (1992) flow. Whether or not the SWMHD dynamo144
action is physically realistic is another matter. In § 3, we return to the full three-dimensional145
induction equation with a three-dimensional Laplacian diffusion, and perform an asymptotic146
analysis for a thin fluid layer with appropriate conditions on the magnetic field at the free147
surface and bottom. The ideas here are analogous to those used by Marche (2007) to derive a148
physically consistent viscous diffusion term for the hydrodynamic shallow-water equations.149
The outcome of our calculation is a set of equations for SWMHDwith an expression for d that150
is consistent with both the shallow-water solenoidal constraint (1.10) and the requirement151
of negative semi-definite Ohmic dissipation (1.12). In § 3.2, we set out some properties152
of the magnetic diffusion term in more detail, and establish a simple type of anti-dynamo153
theorem, thus confirming that the SWMHD dynamo action reported in § 2 is spurious, and154
arises solely owing to the choice d = η∇2b. In § 3.3, we revisit the Galloway & Proctor flow155
numerically, but now with the correct form of the magnetic diffusion; in stark contrast to the156
exponential growth of magnetic energy with d = η∇2b, the magnetic energy now decays157
exponentially. In § 4, we give detailed expressions for the components of the physically158
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consistent magnetic diffusion term in spherical geometry, given the importance of this for159
astrophysical applications. We conclude in § 5.160

2. Shallow-water ‘dynamo action’161

As discussed in the introduction, one might be tempted to include magnetic diffusion in the162
SWMHD induction equation simply through the addition of an η∇2b term, thus mimicking163
the diffusion term in the full induction equation. This is the form adopted byLillo et al. (2005),164
who considered, as a basic state flow, a highly time-dependent hydrodynamical shallow-water165
flow driven by a large-scale helical forcing. They then showed that the introduction of a weak166
seed field leads to the growth and subsequent saturation of magnetic energy. It is though167
hard to draw any detailed conclusions about this particular SWMHD dynamo, since the168
values of the key parameters, the fluid and magnetic Reynolds numbers, are not provided.169
In this section, therefore, we look in more detail at the evolution of the magnetic field170
under the assumption that the magnetic diffusion takes the form η∇2b. Incompressible,171
two-dimensional planar flows cannot support dynamo action (Zeldovich 1957). Thus, to172
exhibit dynamo action in the SWMHD equations requires flows with a possibly appreciable173
variation in height; attaining numerical stability is then not straightforward, but is more174
readily achieved for unsteady flows. To make contact with classical investigations of dynamo175
action in incompressible fluids, we shall therefore consider an unsteady, forced shallow-water176
flow related to a particular incompressible flow widely used in dynamo studies. In § 2.1 we177
describe briefly the kinematic dynamo properties resulting from solution of the full (three-178
dimensional) induction equation; in § 2.2 we describe the kinematic properties of what might179
be regarded as the analogous SWMHD dynamo.180

2.1. Classical dynamo action driven by a two-dimensional flow181

The kinematic dynamo problem — in which the flow is prescribed and the field evolves182
solely under the induction equation — is simplified by considering two-dimensional flows183
— i.e. flows that are invariant in one Cartesian direction. For such flows, as we shall see184
presently, it is possible to draw an analogywith shallow-water ‘dynamo action’. If the velocity185
is incompressible, it may be expressed as186

ũ = ∇̃ × (ψ ẑ) + w ẑ, (2.1)187

where ψ and w are functions of x, y and t. Here we use a tilde to denote three-dimensional188
vector fields; unless otherwise stated, unadorned quantities represent vector fields with189
components only in the (x, y)-plane, as in § 1. Likewise we have∇ = x̂∂x + ŷ∂y as the planar190

operator and ∇̃ = x̂∂x + ŷ∂y + ẑ∂z in three dimensions.191

A widely studied example of the form (2.1) is the unsteady flow introduced by Galloway192
& Proctor (1992), in their study of fast dynamo action, with193

ψ = w = A
(
cos (x + cos t) + sin

(
y + sin t

))
. (2.2)194

We note that the vorticity is parallel to the velocity: the flow is said to be Beltrami, or195
maximally helical. For incompressible flows, the induction equation, in dimensionless form,196
may be written as197

∂ b̃

∂t
+ ũ · ∇̃b̃ = b̃ · ∇̃ũ + η̂∇̃2 b̃, (2.3)198
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Figure 1: Contour plots on a plane z = const. of the long-term kinematic solutions for
(a) b̃ · ẑ and (b) j̃ · ẑ, for the flow (2.2), with A = 1.5, η̂−1 = 100 and wavenumber

k = 0.61. The colour scale of the filled contours is from black (positive, say) through grey
to white (negative). The calculation was performed with 256 Fourier modes in each

direction.

where η̂ is the (constant) dimensionless magnetic diffusivity, which is inversely proportional199
to the magnetic Reynolds number Rm. In the kinematic regime, for flows that are independent200
of z, the magnetic field may be expressed in the form201

b̃(x, y, z, t) = b̂(x, y, t) exp(ik z). (2.4)202

For a given wavenumber k, therefore, the problem involves only two spatial dimensions,203
x and y. The induction equation (2.3) is solved numerically as an initial value problem,204
using a pseudo-spectral spatial representation in conjunction with second-order exponential205
time differencing with Runge–Kutta time stepping (scheme ETD2RK from Cox &Matthews206
2002). After any initial transient, the magnetic field grows or decays, with an accompanying207
oscillation, with growth rate s. For the particular case of A = 1.5 and η̂−1 = 100, the mode208
of maximum growth rate has wavenumber k = 0.61 and dynamo growth rate s = 0.38.209

Contours of the z-components of the magnetic field and the electric current ( j̃ = ∇̃ × b̃) are210
shown in figure 1, highlighting their fine-scale structure.211

2.2. Shallow-water Galloway–Proctor dynamo212

For comparison, we now address the kinematic evolution of the magnetic field in a forced,213
dissipative shallow-water system. We solve, numerically, equation (1.4) with the addition of214
forcing and viscous terms to the right hand side but excluding the Lorentz force, equation (1.5)215
with the addition of a magnetic diffusion term to the right hand side, and equation (1.6). As216
discussed above, we are here exploring the implications of expressing the magnetic diffusion217
term as a Laplacian. For simplicity, we choose also to employ a two-dimensional Laplacian218
operator for the viscous diffusion; since our focus in this paper is on the evolution of the219
magnetic field, the particular choice of diffusion for the velocity is not a critical factor. We220
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thus consider the equations221

∂t u + u · ∇u = −g∇h + P + ν∇2u, (2.5)222

∂t b + u · ∇b = b · ∇u + η∇2b, (2.6)223

∂t h + ∇ · (hu) = 0, (2.7)224225

where P denotes the forcing term and ν and η denote the (constant) kinematic viscosity and226
magnetic diffusivity. In dimensionless form, on scaling velocities and horizontal lengths with227
representative values U and L, and fluid depth with the undisturbed depth H , these may be228
written as229

∂t u + u · ∇u = −F−2∇h + P + ν̂∇2u, (2.8)230

∂t b + u · ∇b = b · ∇u + η̂∇2b, (2.9)231

∂t h + ∇ · (hu) = 0, (2.10)232233

where F = U/
√
gH is the Froude number, ν̂ = ν/UL and η̂ = η/UL are scaled diffusivities234

(inversely proportional to the Reynolds number Re and magnetic Reynolds number Rm235
respectively), and P is now the dimensionless forcing.236

To draw an analogy with the dynamo described in § 2.1, we suppose that the system is237
forced by the horizontal projection of the body force that in an incompressible fluid would (at238
least for sufficiently small fluid Reynolds number) lead to the Galloway–Proctor flow (2.2).239

Since the flow is incompressible and maximally helical (thus with ũ · ∇̃ũ = 1
2 ∇̃ũ

2), it is240

driven by the forcing P̃ = (∂t − ν̂∇̃2) ũ (see, e.g., Cattaneo & Hughes 1996). Thus, for the241

shallow-water system, we adopt the forcing P = (Px, Py ) = (P̃x, P̃y ) using the horizontal242

components of P̃ given by243

P̃x = A
(
(− cos t sin(sin t) + ν̂ cos(sin t)) cos y − (cos t cos(sin t) + ν̂ sin(sin(t)) sin y

)
,

(2.11a)
244

P̃y = A((− sin t cos(cos t) + ν̂ sin(cos t) cos x + (sin t sin(cos t) + ν̂ cos(cos(t)) sin x).
(2.11b)

245

246

Starting from an initial condition of uniform depth h (≡ 1), zero velocity and zero magnetic247
field, equations (2.8) and (2.10) are first evolved in time, on a 2π×2π domain, until a stationary,248
purely hydrodynamic state is attained. As an illustrative example, we again consider the249
specific case of A = 1.5, for comparison with the Galloway–Proctor dynamo discussed in250
§ 2.1, and take F =

√
2/3, ν̂ = 0.1.We again employ a pseudo-spectral Fourier representation251

with ETD2RK time-stepping, nowwith 512 Fouriermodes in each direction. The flow evolves252
to a periodic state, with 〈h2〉1/2 = 1.19, 〈u2〉 = 2.09, 〈hu2〉 = 1.89, where angle brackets253
denote an average over x, y and t. Snapshots of the z-component of the vorticity and the254
height h in the hydrodynamic stationary state are shown in figure 2.255

To explore the kinematic evolution of the magnetic field, we introduce a seed magnetic256
field of zero mean into the hydrodynamic flow and solve equations (2.8)–(2.10). The long-257
time behaviour is characterised by exponential (and oscillatory) growth or decay. Figure 3258
shows the exponential growth of magnetic energy versus time for a range of values of η̂−1;259
note that the dependence of the growth rate on η̂ is non-monotonic. As a comparison with260
the Galloway–Proctor dynamo described in § 2.1, the dynamo growth rate (half the growth261
rate of the magnetic energy) for η̂−1 = 10 is given by s = 0.11, and for η̂−1 = 100, s = 0.022.262
Snapshots of the z-components of the electric current and the vorticity for the case of263
η̂−1 = 10 are shown in figure 4. As noted above, with Laplacian diffusion for the magnetic264
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Figure 2: Snapshots of contours of (a) the z-component of vorticity, and (b) the height h
in the stationary hydrodynamic state resulting from the forcing (2.11) with A = 1.5,

F =
√
2/3, ν̂ = 0.1. In (a), the filled contours range from −6.83 (black) to 3.38 (white); in

(b), they range from a minimum height of 0.073 (black) to a maximum height of 2.51
(white).
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Figure 3: Long-term kinematic evolution of 〈hb2〉 for the hydrodynamic flow resulting
from the forcing (2.11), with A = 1.5, F =

√
2/3, ν̂ = 0.1, and with Laplacian diffusion

for the magnetic field. The different curves are for (a) η̂−1 = 5, (b) η̂−1 = 10,
(c) η̂−1 = 20, (d) η̂−1 = 100.

field, the constraint ∇ · (hb) = 0 is not satisfied; thus, for the shallow-water dynamos shown265
in figure 3, ∇ · (hb) grows exponentially in time.266

Figure 3 is indeed reminiscent of a plot of dynamo action, showing the exponential267
amplification of a kinematic magnetic field. This shallow-water dynamo is, however, a very268
different beast to its classical counterpart, as can be seen by comparison of the induction269
equations (2.3) and (2.9). In (2.3), b̃ is solenoidal andmagnetic field growth depends crucially270
on the field being three-dimensional; if k = 0, then, by a Cartesian analogue of Cowling’s271
theorem forbidding dynamo-generated axisymmetric fields (Cowling 1933), the magnetic272
energy can only decay. By contrast, in (2.9), b = (bx, by ) is not solenoidal and has no273
z-dependence; the means of field amplification is clearly therefore very different in the two274

cases. Whereas the term ∇̃2 b̃ in (2.3) is always dissipative, there is no such guarantee for the275
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Figure 4: Snapshots of contours of the (exponentially growing) (a) z-component of
electric current, and (b) z-component of the vorticity, for the kinematic field evolution
driven by the stationary hydrodynamic flow resulting from the forcing (2.11) with

A = 1.5, F =
√
2/3, ν̂ = 0.1, η̂ = 0.1, and with Laplacian diffusion for the magnetic field.

In (a), the filled contours range symmetrically from black (negative) through grey to white
(positive); the numerical values are immaterial in a kinematic field evolution. In (b), they

range from −9.19 (black) to 3.58 (white).

corresponding term in (2.9). Can field growth thus be attributed exclusively to the form of276
the ‘dissipative’ term adopted in (2.9)? It is clearly important therefore to establish precisely277
what form this term should take, and then to understand its implications. This is our next278
aim.279

3. Asymptotic reduction of the three-dimensional induction equation280

In this section, we derive a physically consistent magnetic diffusion term for SWMHD, by281
performing an asymptotic analysis of the full three-dimensional diffusive induction equation282
as the aspect ratio ε → 0. Even though we need not consider the hydrodynamic aspects of the283
flow in detail, it is useful to sketch how the corresponding hydrodynamic analysis as ε → 0284
leads to a physically consistent viscous diffusion term in the shallow-water equations (Marche285
2007); also see the analysis of Levermore & Sammartino (2001) for a closely related system286
under the rigid-lid approximation. The hydrodynamic analysis has three key requirements,287
namely that (i) there is zero tangential stress at the free surface, (ii) there is zero tangential288
stress at the bottom, (iii) the Reynolds number Re (based on the horizontal lengthscale) is289
of order unity as ε → 0. Requirements (ii) and (iii) are generally inappropriate for oceanic290
flows, where there will be no slip at the bottom, and Re � 1. However, requirements (i) and291
(ii) are essential for the leading-order horizontal momentum balance ∂2u/∂z2 = 0 to have292
a non-trivial solution that is independent of z (required for a shallow-water like outcome),293
whilst requirement (iii) ensures that a viscous diffusion term appears at the next order (in the294
physically desirable form (1.3), with ς = −2), alongside the standard terms of the shallow-295
water momentum equation. Even though the analysis only formally holds for Re of order296
unity as ε → 0, this is really just a convenient way of generating a physically consistent297
diffusion term, and in practice one might still deploy it in numerical simulations at high Re.298

Here we adopt a similar philosophy for the problem of magnetic diffusion in SWMHD.299
We will thus need boundary conditions on the magnetic field that allow the leading-order300
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equations to have a non-trivial solution that is independent of z, and assume that the magnetic301
Reynolds number Rm is of order unity, even though we might eventually deploy the resulting302
magnetic diffusion term in numerical simulations at high Rm.303

3.1. Derivation of the magnetic diffusion term304

Without approximation, the induction equation for an incompressible flow, the diffusion term305
and solenoidal condition may be written as306

∂t b̃ + ũ · ∇̃b̃ − b̃ · ∇̃ũ = d̃, (3.1)307

d̃ = −∇̃ × (η∇̃ × b̃), (3.2)308

∇̃ · b̃ = 0, (3.3)309310

where, as in § 2, we use a tilde to denote three-dimensional vector fields and operators.311
We allow a spatially dependent magnetic diffusivity, but take this to be independent of the312
vertical coordinate, i.e. η = η(x, y). Equations (3.1)–(3.3) are to be solved in a plane layer313
of fluid, 0 6 z 6 h(x, y, t).314

The boundary conditions on b̃ at z = 0 and z = h(x, y, t) depend upon the assumed form315
of b̃ and the electric field Ẽ outside the fluid layer. We assume a perfectly conducting exterior316
with zeromagnetic field, in which case b̃ = 0 and Ẽ = 0 for both z < 0 and z > h(x, y, t). The317

boundary conditions then follow upon integrating ∇̃ · b̃ = 0 over a pillbox sitting along the318
boundary, and applying Faraday’s Law to a thin rectangular contour straddling the boundary.319
At z = 0, the result is standard: ẑ · b̃ and ẑ × Ẽ both vanish, where ẑ is a unit vector in the320
vertical. However, the calculation is more subtle at z = h(x, y, t), since the integrals must be321
performed in a frame moving with the interface. Denoting values in this moving frame with322
primes, and using square brackets to denote a change across the interface, we obtain323

[
ñ · b̃′

]
= 0,

[
ñ × Ẽ ′

]
= 0, (3.4)324

where ñ is any vector normal to the interface (e.g., Roberts 1967). From Ohm’s law, we can325

write Ẽ ′ = η∇̃ × b̃′− ũ′× b̃′, and since ũ′ · ñ = 0 (the frame moves with the interface), (3.4)326
implies327 [

ñ · b̃′
]
= 0, η ñ ×

[
∇̃ × b̃′

]
= (ñ · b̃′)

[
ũ′

]
. (3.5)328

But b̃′ = b̃ (it is frame independent), and, for a perfectly conducting exterior with zero329

magnetic field, (3.5) reduces to ñ · b̃ = 0 and η ñ ×
(
∇̃ × b̃

)
= 0 at the interface. These are330

just standard conditions of zero normal field and zero tangential current (the latter can also331
be demonstrated by integrating (3.1) across the interface and using the Reynolds transport332
theorem). When η , 0, we thus solve (3.1)–(3.3) subject to333

ẑ · b̃ = 0, ẑ × (∇̃ × b̃) = 0 on z = 0, (3.6)334

ñ · b̃ = 0, ñ × (∇̃ × b̃) = 0 on z = h(x, y, t). (3.7)335336

We now consider the shallow-water limit: after an appropriate rescaling based on a fluid337
depth scale H and horizontal length scale L with H/L = ε � 1, the fluid is confined in338
the layer with 0 6 z 6 h(x, y, t), where h is the original layer depth scaled by H . The339
three-dimensional flow ũ and magnetic field b̃ (both scaled by a representative speedU) and340

gradient operator ∇̃ take the form341

ũ = u + εw ẑ, b̃ = b + εc ẑ, ∇̃ = ∇ + ε−1 ẑ ∂z . (3.8)342
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Here, as before, u, b and ∇ are the horizontal components of the flow, field and gradient343
operator, whilst εw, εc and ε−1∂z are the vertical components. We take the (surface) normal344
vector field as345

ñ = −ε∇h + ẑ. (3.9)346

Note that u, b, w and c depend on all of (x, y, z, t) at the outset. When we expand in powers347
of ε, it will be the leading order horizontal terms u0 and b0 that are z-independent and which348
will constitute the fields governed by the SWMHD system.349

The three-dimensional induction equation (3.1) and solenoidal condition (3.3) become350 (
∂t + u · ∇ + w ∂z

)
b̃ =

(
b · ∇ + c ∂z

)
ũ + d̃, (3.10)351

∇ · b + ∂zc = 0, (3.11)352353

where, in (3.10), time has been scaled by the advective timescale L/U, and d̃ is the scaled354
version of the magnetic diffusion term (3.2). After first expanding the curl,355

∇̃ × b̃ = ε−1 ẑ × ∂z b + ∇ × b + ε∇c × ẑ, (3.12)356

this rescaled magnetic diffusion may be written as357

d̃ = ε−2η̂ ∂2z b − ε
−1 ẑ∇ · (η̂∂z b) − ∇ ×

(
η̂∇ × b

)
− η̂∂z∇c + ε ẑ∇ · (η̂∇c), (3.13)358

where the standard vector identity for the curl squared of a vector field has been used, and359
where η̂(x, y) = η/UL is the scaled magnetic diffusivity, as in (2.9). We turn now to the360
boundary conditions (3.6) and (3.7), which become361

c = 0, (3.14)362

−∂z b + ε
2∇c = 0, (3.15)363364

on z = 0 and365

c − b · ∇h = 0, (3.16)366

−∂z b − ε ẑ∇h · ∂z b + ε2∇c − ε2∇h × (∇ × b) + ε3 ẑ∇h · ∇c = 0, (3.17)367368

on z = h(x, y, t).369

All the above is exact, albeit rescaled. We now consider the shallow-water limit, i.e.,370
ε → 0. Although η̂ could, in principle, be chosen to depend upon ε as this limit is taken, the371
natural way for second-order horizontal derivatives in the diffusion term (3.13) to enter into372
a shallow-water like balance of (3.10) is with η̂ independent of ε. We thus consider the limit373
ε → 0, with η̂ of order unity (or equivalently Pm of order unity), and introduce expansions374
for all variables of the form375

b = b0 + ε
2b1 + · · · , u = u0 + ε

2u1 + · · · , h = h0 + ε2h1 + · · · . (3.18)376

As is standard in shallow-water systems, the hydrodynamic equations (which we do not give377
here) may be satisfied by taking378

∂zu0 = 0, (3.19)379

so that incompressibility implies380

w0 = −z∇ · u0, (3.20)381

having applied ũ · ẑ = 0 at z = 0. Then the kinematic condition at z = h implies382

∂t h0 + ∇ · (h0u0) = 0. (3.21)383
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Introducing expansions of the form (3.18) into the induction equation (3.10) with the full384
magnetic diffusion term (3.13), the leading-order horizontal terms yield 0 = η̂∂2z b0. Since385
∂z b0 = 0 at z = 0 by (3.15) and at z = h by (3.17), it follows that386

∂z b0 = 0 for all z. (3.22)387

That is, the leading-order horizontal field b0 = b0(x, y, t) is independent of z, as is the case388
for u0 from (3.19). Then, from (3.11), which implies ∂zc0 = −∇ · b0, and (3.14), which389
implies c0 = 0 on z = 0, we obtain390

c0 = −z∇ · b0. (3.23)391

Since (3.16) implies c0 = b0 · ∇h0 on z = h0, combining with (3.23) yields the appropriate392
divergence free condition for magnetic field,393

∇ · (h0b0) = 0. (3.24)394

At order ε0, the horizontal components of (3.10) and (3.13) yield395

(∂t + u0 · ∇) b0 = b0 · ∇u0 + η̂∂
2
z b1 − ∇ ×

(
η̂∇ × b0

)
− η̂∂z∇c0, (3.25)396

where we have also used (3.19). There are two distinct ways to proceed at this point. The first397
approach is to integrate (3.25) over the layer depth to obtain398

h0 (∂t + u0 · ∇) b0 = h0b0 · ∇u0 − h0∇ ×
(
η̂∇ × b0

)
+ η̂

[
∂z b1 − ∇c0

]h0

z=0
. (3.26)399

The terms in the square bracket can be evaluated using the O(ε2) terms of (3.15) and (3.17),400
which are401

∂z b1 = ∇c0 at z = 0, (3.27)402

∂z b1 = ∇c0 − ∇h0 × (∇ × b0) at z = h0. (3.28)403404

Substituting in (3.26) and combining terms gives405

(∂t + u0 · ∇) b0 = b0 · ∇u0 − h−10 ∇ × (η̂h0∇ × b0). (3.29)406

This is the key result and goal of this paper, namely the induction equation governing the407
leading order horizontal fields b0(x, y, t), u0(x, y, t) and h0(x, y, t) as ε → 0, with η̂ of order408
unity. Dropping the zero subscript and returning to unscaled variables, this provides the409
shallow-water form of the induction equation, namely410

∂t b + u · ∇b = b · ∇u + d, (3.30)411

with the physically consistent diffusion term412

d = −h−1∇ × (ηh∇ × b), (3.31)413

as in (1.15).414

The second approach to deriving (3.29) from (3.25) is to recognise that there is a hidden415
consistency requirement in the above analysis. This can be made explicit by noting that, with416
the exception of η∂2z b1, all terms of (3.25) have already been found to be independent of z.417

It follows that ∂2z b1 must also be independent of z, so that ∂z b1 is linear in z. Using (3.27)418
and (3.28) it follows that419

∂z b1 = ∇c0��z=0 (1 − z/h0) +
[
∇c0��z=h0

− ∇h0 × (∇ × b0)
]

(z/h0), (3.32)420

and so421

∂2z b1 = h−10
[
∇c0

]h0
z=0 − h−10 ∇h0 × (∇ × b0) = ∂z∇c0 − h−10 ∇h0 × (∇ × b0) , (3.33)422
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since c0 is also linear in z from (3.23). It is then easily checked that substituting (3.33) into423
(3.25) once more gives (3.29).424

Finally, we also need to verify that the vertical component of (3.10) is satisfied at leading425
order. Using again (3.13), this is, without approximation,426 (

∂t + u · ∇ + w∂z
)

c =
(
b · ∇ + c∂z

)
w − ε−2∇ · (η̂∂z b) + ∇ · (η̂∇c). (3.34)427

On substituting the expansions (3.18), the leading order, O
(
ε−2

)
, term is zero as b0 is428

independent of z. At the next order in ε, we find429 (
∂t + u0 · ∇ + w0∂z

)
c0 =

(
b0 · ∇ + c0∂z

)
w0 − ∇ · (η̂∂z b1) + ∇ · (η̂∇c0). (3.35)430

We will omit the details, but it can be checked that this equation is satisfied identically. This431
can be done by taking the divergence of (3.25), using (3.20) and (3.23), and noting that the432
combination ∂z b1 − ∇c0 is linear in z with (3.27) holding.433

3.2. Properties of the magnetic diffusion term434

Having established, from the thin layer approximation to the full three-dimensional system,435
that a physically consistent diffusion term is (3.31) for the shallow-water induction equation436
written in the form (3.30), we now check that evolving quantities such as the magnetic437
energy and magnetic flux have the properties we would expect. Since we have confirmed the438
magnetic diffusion in the form of (1.15), or (1.13) with p = 1, q = 0, the solenoidal condition439
∇ · (hb) = 0 is preserved in time, while for magnetic energy we have440

dEM

dt
≡

d
dt

∫
1
2 hb2 dS =

∫
hb · (∇u) · b dS −

∫
ηh(∇ × b)2 dS. (3.36)441

Here we adopt the boundary conditions that there is no normal component of u or b, and442
no tangential component of the current η∇ × b to any curve bounding the region containing443
fluid in the (x, y)-plane (exterior perfect conductor). So, in agreement with (1.14), the Ohmic444
dissipation term is negative semi-definite, as desired.445

The diffusion term may be expanded to see its structure; it is convenient to add a term446
that is zero (from (1.7)) and take η constant to write447

η−1d = ∇[h−1∇ · (hb)] − h−1∇ × (h∇ × b) (3.37)448

= ∇2b + ∇(b · h−1∇h) + (∇ × b) × h−1∇h, (3.38)449450

which, in components with b = bx x̂ + by ŷ, amounts to451

η−1dx = ∇
2bx + h−1(∂xh ∂x + ∂yh ∂y )bx + ∂x (h−1∂xh)bx + ∂x (h−1∂yh)by, (3.39)452

η−1dy = ∇
2by + h−1(∂xh ∂x + ∂yh ∂y )by + ∂y (h−1∂xh)bx + ∂y (h−1∂yh)by . (3.40)453454

We have the usual Laplacian terms plus coupling of the components through the height field.455

A more compact formulation is to use the divergence free condition (1.7) to introduce a456
flux function A for the magnetic field, defined by457

hb = ∇ × (Aẑ) = (∂y A,−∂x A, 0), (3.41)458

and having the physical meaning that the difference in A between two points in the plane459
is the amount of horizontal magnetic flux trapped under the surface z = h between those460
points, or more strictly vertical posts penetrating the thin layer of fluid at those points. The461
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flux function may then be taken (in an appropriate gauge) to satisfy the advection–diffusion462
equation463

∂t A + u · ∇A = −ηh ẑ · ∇ × [h−1∇ × (Aẑ)], (3.42)464

whose curl is (3.30) with (3.31). This may be written as465

∂t A + [u + ηh−1∇h] · ∇A = η∇2A, (3.43)466

showing that the effect of the shallow-water geometry is to modify the advection velocity u467
by a diffusion-dependent term. In the plane, the equation (3.42) for A is straightforwardly468

∂t A + u · ∇A = η(∇2A − h−1∂xh ∂x A − h−1∂yh ∂y A) (3.44)469

in Cartesian coordinates, or470

∂t A + u · ∇A = η(∇2A − h−1∂r h ∂r A − h−1r−2∂θh ∂θA) (3.45)471

in polar coordinates.472

From the structure of (3.43), it is clear that the maximum value of A in a domain cannot473
increase in time, nor the minimum value decrease. Thus the flux between any two points is474
bounded by the difference between the maximum and minimum of A at time t = 0. This475
precludes a growing magnetic eigenfunction in a steady flow u, or one taking a Floquet form476
for a time-periodic flow u. This straightforward anti-dynamo argument assumes suitable477
boundary conditions — for example, that A is constant and independent of time on any478
component of the boundary so that the normal magnetic field is zero there. A more formal479
anti-dynamo theorem, showing that A→ 0 and b → 0 in a suitable norm for general classes480
of flows, would be desirable and remains a topic for future study.481

3.3. Magnetic field evolution with the correct magnetic diffusion term482

Having shown in § 2.2 how it is possible to have kinematic exponential field growth under483
a flow driven by the forcing (2.11) with a Laplacian diffusion in the induction equation, it484
behoves us to consider the evolution of the magnetic field, under the same flow, but with485
the diffusion term (3.31). Figure 5 shows the long-term evolution of the magnetic energy,486
for the same values of η̂ as shown in figure 3. The numerical method and resolution are487
the same as employed in § 2.2. The contrast between figure 3 and figure 5 is marked. With488
Laplacian diffusion for the magnetic field, the magnetic energy is exponentially growing;489
by contrast, with the diffusion term (3.31), the magnetic energy decays exponentially. As490
might be expected, the decay rate increases monotonically with η̂. Snapshots of the long-491
term (decaying) forms of the flux function A and the z-component of the electric current are492
shown in figure 6.493

4. Spherical geometry494

Many astrophysical applications involve flow on a sphere, and so here we consider briefly the495
form of the equations and the magnetic diffusion term in this geometry. We take the flow and496
field to be defined on a unit sphere S given by r = 1 in spherical polar coordinates (r, θ, φ).497
The fluid occupies a thin layer bounded by r = 1 and r = 1 + εh(θ, φ, t) with ε � 1 as498
usual. The flow and field are given by u(θ, φ, t) and b(θ, φ, t), with the radial component and499
dependence on radius removed from consideration. We will derive the equations here using500
a general formulation, as we need to establish notation and appropriate spherical operators,501
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Figure 5: Long-term kinematic evolution of 〈hb2〉 for the hydrodynamic flow resulting
from the forcing (2.11), with A = 1.5, F =

√
2/3, ν̂ = 0.1, and with the diffusion

term (3.31) for the magnetic field. The different curves are, from bottom to top, for
η̂−1 = 5, 10, 15, 20.

Figure 6: Snapshots of contours of (a) the magnetic potential A, and (b) the z-component
of electric current, for the kinematic field evolution driven by the stationary hydrodynamic
flow resulting from the forcing (2.11) with A = 1.5, F =

√
2/3, ν̂ = 0.1, η̂ = 0.1, and with

diffusion for the magnetic field given by (3.31).

but the reader may wish instead to read the discussion in Gilman & Dikpati (2002), which502
gives the shallow-water MHD system in the form of (4.4–4.6) with (4.1), or (4.10–4.14).503

Here we first set up the equations for a flow and field on a general surface S embedded504
in ordinary three-dimensional space, following the approach of Il’in (1991); see this paper505
and Gilbert et al. (2014) for more detail. We let n be a unit vector field normal to the surface506
S, which is extended just off the surface in such a way that ∇× n = 0. In this section we will507

use ∇ as the usual operator in the full three-dimensional space rather than ∇̃ as earlier, and508
use n in preference to ñ. Given a scalar field χ and a vector field u defined on the surface S509
(in other words vectors u(θ, φ) that are everywhere tangent to S), we set510

curls χ = ∇ × ( χn) = −n × ∇χ, curlv u = n · ∇ × u = −∇ · (n × u), (4.1)511

and we also write grad χ and div u for the gradient of χ and the divergence of u taken within512
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the surface. Note that the layer thickness here is not being considered; the geometrical set513
up is on the purely two-dimensional surface S. With these two operators, the Laplacian is514
defined on scalar functions by515

∇2 χ = − curlv curls χ. (4.2)516

The key result of Il’in (1991) we use is that the projection, say π, of the u · ∇u term on517
the surface S is given by518

πu · ∇u = −u × n curlv u + grad 1
2u

2. (4.3)519

Within this framework, the equations for SWMHD on S take the form520

∂t u − u × n curlv u + b × n curlv b + grad 1
2 (u2 − b2) + g grad h = F, (4.4)521

∂t b − curls(n · u × b) − b div u + u div b = d, (4.5)522

∂t h + div(hu) = 0, div(hb) = 0, (4.6)523524

with the viscous diffusion term F and magnetic diffusion term d.525

In spherical geometry, with n = r̂ on the unit sphere and u = uθ θ̂ + uφφ̂, we have526

grad χ = ∂θ χ θ̂ + s−1∂φ χ φ̂, div u = s−1∂θ (suθ ) + s−1∂φuφ, (4.7)527

curls χ = s−1∂φ χ θ̂ − ∂θ χ φ̂, curlv u = s−1∂θ (suφ ) − s−1∂φuθ, (4.8)528

πu · ∇u = [(uθ∂θ + s−1uφ∂φ )uθ − s−1cuφuφ]θ̂ + [(uθ∂θ + s−1uφ∂φ )uφ + s−1cuθuφ]φ̂,
(4.9)

529

530

where we abbreviate s = sin θ, c = cos θ. We can use these expressions in (4.4–4.6) to write531
down the shallow-water equations as in Gilman &Dikpati (2002), or expand out all the terms532
to obtain533

∂tuθ + (uθ∂θ + s−1uφ∂φ )uθ − s−1cuφuφ − (bθ∂θ + s−1bφ∂φ )bθ + s−1cbφbφ + g∂θh = Fθ,
(4.10)

534

∂tuφ + (uθ∂θ + s−1uφ∂φ )uφ + s−1cuθuφ − (bθ∂θ + s−1bφ∂φ )bφ − s−1cbθbφ + s−1g∂φh = Fφ,
(4.11)

535

∂tbθ + (uθ∂θ + s−1uφ∂φ )bθ − (bθ∂θ + s−1bφ∂φ )uθ = dθ, (4.12)536

∂tbφ + (uθ∂θ + s−1uφ∂φ )bφ + s−1cuφbθ − (bθ∂θ + s−1bφ∂φ )uφ − s−1cbφuθ = dφ, (4.13)537

∂t h + s−1∂θ (shuθ ) + s−1∂φ (huφ ) = 0, s−1∂θ (shbθ ) + s−1∂φ (hbφ ) = 0. (4.14)538539

We now consider the magnetic diffusion term d; the viscous diffusion term F is set out540
in Gilbert et al. (2014). The appropriate generalisation of (3.31) is541

d = −h−1 curls(ηh curlv b). (4.15)542

After integration by parts, the magnetic energy equation, analogous to (3.36), is given by
543

dEM

dt
≡

d
dt

∫
1
2 hb2 dS544

=

∫ [
b · curls(hn · u × b) + 1

2 b
2 div(hu)

]
dS −

∫
ηh(curlv b)2 dS, (4.16)545

with the dissipative term correctly taking a negative semi-definite form.546
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For a vector potential defined on the surface by547

hb = curls A, (4.17)548

the corresponding A equation is549

∂t A + u · ∇A = −ηh curlv(h−1 curls A) = η[∇2A + h−1n · grad h × curls A] (4.18)550

using the scalar Laplacian defined in (4.2). This amounts to551

∂t A + uθ∂θA + s−1uφ∂φA = η[∇2A − h−1(∂θh ∂θA + s−2∂φh ∂φA)], (4.19)552

where the Laplacian on the sphere is as usual given by553

∇2 χ = ∂2θ χ + s−1∂θ χ + s−2∂2φ χ. (4.20)554

For the components of diffusion of the magnetic field in spherical geometry, taking η555
constant, we add a term that is zero to d in (4.15) to write556

η−1d = grad[h−1 div(hb)] − h−1 curls(h curlv b), (4.21)557

which amounts to558

η−1d =
{
∂θ[h−1s−1∂θ (shbθ ) + h−1s−1∂φ (hbφ )] − h−1s−1∂φ[hs−1∂θ (sbφ ) − hs−1∂φbθ]

}
θ̂559

+
{
s−1∂φ[h−1s−1∂θ (shbθ ) + h−1s−1∂φ (hbφ )] + h−1∂θ[hs−1∂θ (sbφ ) − hs−1∂φbθ]

}
φ̂,

(4.22)
560

561

and then expand this to obtain562

η−1dθ = ∇2bθ − 2s−2c∂φbφ − s−2bθ + h−1∂θh ∂θbθ + s−2h−1∂φh ∂φbθ563

+ ∂θ (h−1∂θh)bθ + s−1∂θ (h−1∂φh)bφ − 2s−2c(h−1∂φh)bφ, (4.23)564

η−1dφ = ∇2bφ + 2s−2c∂φbθ − s−2bφ + h−1∂θh ∂θbφ + s−2h−1∂φh ∂φbφ565

+ s−1∂φ (h−1∂θh)bθ + s−2∂φ (h−1∂φh)bφ + s−1c(h−1∂θh)bφ ; (4.24)566567

we observe numerous coupling terms between the magnetic and height fields.568

5. Conclusions569

The equations of SWMHD were introduced by Gilman (2000) as a simplified system for570
modelling thin stratified fluid layers permeated by a magnetic field. They were derived for an571
ideal system, namely for an invisicid and perfectly conducting fluid. However, extending the572
system to allow for the dissipative processes of viscous diffusion and magnetic diffusion is573
valuable for two reasons. First, these processes exist in nature, will modify flows, waves and574
instabilities at appropriate lengthscales, and so may need to be quantified. Second, numerical575
models will generally need to incorporate dissipation, even if simulating turbulence or576
complex flows at scales much larger than some nominal dissipative scale.577

The appropriate form to take for the magnetic diffusion term is not evident at the outset.578
Perhaps the most natural route is to place a term d = η∇2b in the SWMHD induction579
equation in line with the full three-dimensional MHD system, as adopted by Lillo et al.580
(2005). In § 2, we explored the consequences of this, and showed that kinematic dynamo581
action — exponential growth of magnetic energy — is possible in a two-dimensional planar582
flow inspired by the Galloway & Proctor (1992) dynamo. However, given that the only583
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processes present in the SWMHD induction equation are advection (or Lie-dragging) of584
the magnetic field and magnetic diffusion, ensuring that the diffusion term represents the585
correct physics is crucial. As discussed in the introduction, there are two physical constraints586
that must be respected: the SWMHD solenoidal condition ∇ · (hb) = 0 in (1.10), and a587
negative semi-definite Ohmic dissipation term in (1.12). Unfortunately, the straightforward588
choice of a magnetic diffusion term d = η∇2b violates (1.10), and generally does not respect589
(1.12) (Mak 2013). In this way, the choice d = η∇2b is both mathematically and physically590
inconsistent with the underlying system, and further analysis shows that the dynamo action of591
§ 2 is illusory. This diffusion term redistributes magnetic energy in a way that is unphysical;592
analogously, an incorrect form of the viscous diffusion term can likewise give spurious sinks593
and sources of angular momentum (Gilbert et al. 2014).594

One approach to introducing magnetic diffusion in SWMHD is then to take an operator595
that is required only to satisfy the constraints (1.10) and (1.12). There is a wide possible596
choice here; for example, a term of the form of (1.13) with any value of p but with q = 0597
satisfies these constraints. More satisfactory, though, is to derive systematically an operator598
with a particular choice of p from the underlying three-dimensional MHD system. In § 3, we599
showed how a physically consistent magnetic diffusion term can be obtained by an asymptotic600
reduction of the full three-dimensional induction equation, which results from integrating601
across the shallow fluid layer. The resulting SWMHD induction equation is602

∂t b + u · ∇b = b · ∇u − h−1∇ × (ηh∇ × b), (5.1)603

corresponding to the choice p = 1 and q = 0 in (1.13). As (5.1) is derived from the full three-604
dimensional equations, it should be consistent with other physics of SWMHD; it can also605
be used with a spatially varying magnetic diffusivity η(x, y). With this form of the diffusion606
operator we derived a simple type of anti-dynamo theorem in § 3.2, which confirms that the607
dynamo action found in § 2 (and in Lillo et al. 2005) is unphysical. Further confirmation is608
provided by the numerical results in § 3.3. In hindsight, this is perhaps not surprising: while609
all three components of magnetic field are present in SWMHD, the vertical field is passive610
and not coupled back into the induction equation. Although there can be plenty of stretching611
of the horizontal components of the magnetic field in the thin layer, the resulting folding612
leads to fields with cancelling orientations, and so no net growth of magnetic flux. Lacking613
are the vertical dependence of the field and vertical motions that could constructively fold614
field lines, for example through the stretch–fold–shear mechanism (e.g. Bayly & Childress615
1988).616

To conclude, we propose that the form (5.1) of the induction equation be used in617
future studies of SWMHD. Indeed, based on our analysis, (5.1), in its Cartesian form (3.39,618
3.40, 3.44), has already been adopted in the recent hot Jupiter simulations of Hindle et al.619
(2019, 2021). Since shallow-water systems are also used for global studies of MHD waves620
and instabilities in spherical geometry (e.g. Gilman & Dikpati 2002; Dikpati et al. 2003;621
Márquez Artavia et al. 2017), we have set out the appropriate form of the magnetic diffusion622
term in (4.19, 4.23, 4.24) for spherical polar coordinates.623
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