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Abstract

One develops a fast computational methodology for principal component analysis
on manifolds. Instead of estimating intrinsic principal components on an object space
with a Riemannian structure, one embeds the object space in a numerical space, and
the resulting chord distance is used. This method helps us analyzing high, theoreti-
cally even infinite dimensional data, from a new perspective. We define the extrinsic
principal sub-manifolds of a random object on a Hilbert manifold embedded in a
Hilbert space, and the sample counterparts. The resulting extrinsic principal com-
ponents are useful for dimension data reduction. For application, one retains a very
small number of such extrinsic principal components for a shape of contour data sam-
ple, extracted from imaging data.
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1 Introduction

Principal component analysis (PCA) is a classical tool in multivariate analysis, which

plays an important role in dimension reduction. Recalling the traditional principal com-

ponent analysis, which first proposed by Pearson (1901)[16], is a classical dimension re-

duction method for high dimensional data. PCA is widely used in multivariate analysis,

helping in searching important covariates, visualizing data and so on. In shape analysis,

mean shape and principal component help in extracting the characteristic of the shape

space. D. G. Kendall (1984)[11] ground breaking paper, first considered shapes of planar

configuration of k labeled points (landmarks, k-ads) as points on a shape space Σk
2 that

turns out to be homeomorphic to the complex projective plane CP k−2. Statisticians started

building methodology for Kendall shape, including Kent (1992)[13], Ziezold (1994)[20]

and so on. Huckemann and Ziezold (2006)[7] proposed a principal component analysis

for Riemannian manifolds based on geodesic distance on the intrinsic metric. That was

the beginning of intrinsic PCA on manifolds. Mardia et. al. (2022)[12] advanced research

on nested spheres PCA. For more reference on the subject of PCA on manifolds see [10]

[8] [9].

On the other hand, there are also discussion on extrinsic mean for shape analysis, or

in general, means on manifolds in Patrangenaru and Ellingson(2016)[15]. In particular,

Patrangenaru (1998)[14] introduced the term of Veronese-Whitney (VW) extrinsic mean

planar Kendall shape in terms of the VW embedding of CP k−2 into the space S(k− 1,C)

of selfadjoint (k−1)× (k−1) matrices introduced by Kent(1992)[13]. In depth results on

the asymptotic distribution of this VW mean shape and the resulting bootstrap distribution

are given in Bhattacharya and Patrangenaru (2005)[3], Bandulasiri et al. (2009)[2] and
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Amaral et al. (2010)[1]. Results were extended to infinite dimensional planar shapes of

contours in Ellingson et al (2013)[5], where a discussion on extrinsic mean of a random

object on a Hilbert manifold was first considered, and applied to mean Kendall shapes of

random contours; as an application, a comparison of the contour of ( the midsection of)

the Corpus Callosum (CC) of Albert Einstein with the VW mean CC of senior individuals

was given by Qiu et al (2014)[18].

In this paper we propose a method of PCA based on the chord distance on a manifold

embedded in an Eucidean space. This approach via the PCA in the ambient space where

the manifold is embedded has the advantage of being faster and conceptually more con-

sistent that the intrinsic PCA, since from the onset the extrinsic principal submanifolds are

going through the extrnsic mean, unlike the intrinsic approach that does not assure this

basic compatibility, as shown by Huckeman and Ziezold(2006)[7]. Our novel approach

consists in conducting PCA on the tangent space at the extrinsic mean of the embedded

manifold, a method that is a more efficient way than the intrinsic PCA one.

Section 2 will briefly remind the notion of dimensionality for object data on manifold.

In Section 3 we recall basic result on extrinsic means, including definition, uniqueness

and computation. Section 4 is dedicated to introducing extrinsic principal component

analysis, and provide some basic related results. In Section 5, we introduce the reader to

Kendall shapes of planar contours. A concrete example of a drastic dimension reduction

for Kendall shape of planar contour data extracted from camera images is given here as

well.
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2 Dimensions and manifolds

In data analysis, the first considerations are about the dimensionality of the data; es-

pecially when this dimension is high including in image analysis, bio-informatics or func-

tional data analysis. Basically data dimension is the local number of covariates fully

describing the data. Functional data is assumed to be infinitely dimensional, although it is

impossible to measure infinitely many covariates. When it comes to imaging data, widely

available to users, it is more difficult to define ”dimension”, as it depends on many factors,

including RGB and relative position of the observer facing the imaged scene. The issue of

image data dimensionality could be solved only by introducing various concepts of shape.

For example two planar rigid configurations of points have the same Kendall shape if they

differ by a direct similarity; two planar rigid configurations pictured from different remote

view points have the same affine shape; and, two planar rigid configurations pictured from

different arbitrary view points have the same projective shape. 3D Kendall shapes, 3D

affine shapes or 3D projective shapes are similarly defined. Different types of shapes of

k-ads (configurations of k labeled landmarks) can be represented on corresponding types

of shape spaces. Such object spaces of k-ads are orbifolds -quotients of manifolds by cer-

tain pseudo-group actions. Orbifolds are manifolds or, in general, stratified spaces having

a dimension, which is the dimension of the tangent space at a given regular point on the

space of orbits. For example the space of planar Kendall shapes of contours is a Hilbert

manifold - CP (H), the projective space of a complex Hilbert space. The dimension of

a manifold is the dimension, over the reals, of the linear space, modeling that manifold.

For example the dimension of the round unit sphere Sd = {x ∈ Rd+1, ∥x∥ = 1} is d, the

dimension of the planar Kendall shape space of k-ads is 2k − 4 and the dimension of the
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projective shape space of k-ads in 3D, is 3k − 15 (see Kendall(1984)[11]). In manifold

statistics, we always consider the distance between objects. Once that is known, we have

to define the notion of random object, or random element, according to Fréchet(1948)[6].

Definition 2.1. Assume (Ω,A,P) is a probability space and BM is the Borel σ-algebra

on the manifold M. A random object (r.o.) is a function X : Ω → M, s.t. ∀B ∈ BM,

X−1(B) ∈ A. The probability measure Q = PX associated with X is defined via Q(B) =

P(X−1(B)).

There are two main types of distances considered on a manifold M (see Patrangenaru

and Ellingson (2016)[15]). One is geodesic distance ρg associated with a Riemannian

structure g on M. The other is chord distance ρj associated with an embedding j : M →

RN . A statistical data analysis on a manifold is intrinsic, if the distance considered is a

geodesic distance, and, it is extrinsic, if the distance considered is a chord distance. We

can see the intrinsic metric, even in simple cases, such as that of a r.o. of a round sphere,

leads to iterative algorithms for computing the intrinsic sample mean, so the calculations

will be time consuming, cutting in the lifeline of the user. Most of the time, extrinsic

data analysis is faster, since the extrinsic mean is obtained immediately by projecting

the mean in the ambient space on the image of the embedded manifold j(M). Therefore,

whenever one has a choice, it is preferable to work with a chord distance (see Bhattacharya

et al(2012)[4]).

3 Extrinsic mean and extrinsic covariance matrix

In this section, we will introduce the notions of extrinsic mean and of extrinsic co-

variance matrix of a random object on a manifold, related notations and preliminaries. A
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general reference for this section is Patrangenaru and Ellingson(2016)[15]. We will also

show how to compute their sample estimates. To start with, we first focus on extrinsic

mean, before we move on to the extrinsic covariance.

Assume (M, ρ) is a complete metric space, with a manifold structure and Q = PX

is a probability measure on M associated with a random object X . A Fréchet mean is a

minimizer of the Fréchet function which is the expected square distance from a point to

the random object X

F (x) =

∫
ρ2(x, y)Q(dy). (1)

Consider j : M → RN is an embedding on M to RN , with the induced chord distance

ρj(x, y) = ||j(x)− j(y)||. Assume (M, ρj) is a complete metric space such that j(M) is

a close submanifold of RN . Then we have the following

Definition 3.1. Let Q be a probability measure on M with the chord distance ρj . The set

of minimizers of F in (1) is called the extrinsic mean set of Q. If the extrinsic mean set

has only one point, that point is called the extrinsic mean and it labeled µj,E(Q), or µE(Q)

or µj, or µE.

To understand the extrinsic mean, it is important to understand about the embedding j.

Definition 3.2. Assume ρ0 is the Euclidean distance in RN . A point x of RN such that

there is a unique point p in M for which ρ0(x, j(M)) = ρ0(x, j(p)) is called j-nonfocal.

A point which is not j-nonfocal is said to be j-focal.

For example, if j(x) = x is the inclusion map, than it is easy to see that the center

of the unit sphere SN = {x, ||x|| = 1} is the only focal point of j, since ρ0(O, j(SN)) =

ρ0(O, j(p)) ∀p ∈ SN , where O is the origin.

A probability measure Q on M induces a probability measure j(Q) on RN .
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Definition 3.3. A probability measure Q on M is said to be j-nonfocal if the mean µ of

j(Q) is a j-nonfocal point.

Let F c is the set of j-nonfocal points. A projection Pj : F c → j(M) is a function

y = Pj(x) such that for any x ∈ F c, y is the unique, with ρ0(x, j(M)) = ρ0(x, y).

Theorem 3.1. If µ is the mean of j(Q) in RN . Then (a) the extrinsic mean set is the set of

all points p ∈ M, with ρ0(µ, j(p)) = ρ0(µ, j(M)) and (b) If µj,E(Q) exists then µ exists

and is j-nonfocal and µj,E(Q) = j−1(Pj(µ)).

Theorem 3.2. The set of focal points of a submanifold M of RN that has no flat points

(points of zero curvature) with the induced Riemannian structure, is a closed subset of RN

of Lebesgue measure 0.

Definition 3.4. Consider an embedding j : M → RN . Assume (x1, ..., xn) is a sample

from a j-nonfocal probability measure Q on M, and the function p → 1
n

∑n
r=1 ∥j(p) −

j(xr)∥2 has a unique minimizer on M; this minimizer is the extrinsic sample mean.

From Theorem 3.1 the extrinsic sample mean is given by

xE := j−1
(
Pj(j(x))

)
(2)

Theorem 3.3. (Bhattacharya and Patrangenaru(2003)). Assume Q is a j-nonfocal prob-

ability measure on the manifold M and X = {X1, . . . , Xn} are i.i.d.r.o.’s from Q. (a) If

the sample mean j(X) is a j-nonfocal point, then the extrinsic sample mean is given by

j−1(Pj(j(X))). (b) XE is a consistent estimator of µj,E(Q).

To sum up, we defined the extrinsic mean above, and provide some theorem about the

existence of it. Also we have mentioned about the extrinsic sample mean, which both help
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us in computing the extrinsic (sample) covariance matrix. And now, we start on evaluating

the extrinsic covariance matrix.

Assume M is a m dimensional manifold and j : M → RN is an embedding on M

such that j(M) is closed in RN . Q is a j-nonfocal probability measure on M such that

j(Q) has finite moments of order two (or of sufficiently high order as needed). Assume

(X1, . . . , Xn) are i.i.d. M-valued random objects with common probability distribution

Q. Recall the extrinsic mean µE(Q) = µj,E(Q) of the measure Q on the manifold M

relative to the embedding j is the Fréchet associated with the restriction to j(M) of the

Euclidian distance in RN . Let µ and Σ be the mean and covariance matrix of j(Q) re-

spectively regarded as a probability measure on RN . Let F be the set of focal points of

j(M), and let Pj : F c → j(M) be the projection on j(M). Pj is differentiable at µ and

has the differentiability class of j(M) around any nonfocal point. In order to evaluate the

differential dµPj we consider a special orthonormal frame field that will ease the compu-

tations. Assume p → (f1(p), . . . , fm(p)) is a local frame field on an open subset of M

such that, for each p ∈ M , (dpj(f1(p)), . . . , dpj(fm(p))) are orthonormal vectors in RN .

A local frame field (e1(y), e2(y), . . . , eN(y)) defined on an open neighborhood U ⊆ RN

is adapted to the embedding j if it is an orthonormal frame field and

(er(j(p)) = dpj(fr(p)), r = 1, . . . ,m, ∀p ∈ j−1(U). (3)

Let e1, e2, . . . , eN be the canonical basis of RN and assume (e1(y), e2(y), . . . , eN(y))

is an adapted frame field around Pj(µ) = j(µE). Then dµPj(eb) ∈ TPj(µ)j(M) is a linear

combination of e1(Pj(µ)), e2(Pj(µ)), . . . , em(Pj(µ)):
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dµPj(eb) =
m∑
a=1

(dµPj(eb)) · ea (Pj(µ)) ea (Pj(µ)) ,∀b = 1, . . . , N. (4)

By the delta method, n
1
2 (Pj(j(X)) − Pj(µ)) converges weakly to a random vector V

having a NN(0,Σµ) distribution. Here j(X) = 1
n

∑n
i=1 j(Xi) and

Σµ =

[
m∑
a=1

dµPj(eb) · ea(Pj(µ))ea(Pj(µ))

]
b=1,...,N

Σ

[
m∑
a=1

dµPj(eb) · ea(Pj(µ))ea(Pj(µ))

]T

b=1,...,N

, (5)

where Σ is the covariance matrix of j(X1) w.r.t. the canonical basis e1, . . . , eN .

The asymptotic distribution NN(0,Σµ) is degenerate and can be regarded as a distri-

bution on TPj(µ)j(M), since the range of dµPj is a subspace of TPj(µ)j(M). Note that

dµPj(eb) · ea(Pj(µ)) = 0, for a = m+ 1, . . . , N.

We provide below a CLT, which applies to an arbitrary embedding, leading topivots

and are independent of the chart used.

The tangential component tan(v) of v ∈ RN w.r.t. the basis ea(Pj(µ)) ∈ TPj(µ)j(M), a =

1, . . . ,m is given by

tan(v) = (e1(Pj(µ))
Tv . . . em(Pj(µ))

Tv)T . (6)

Then the random vector (dµE
j)−1(n

1
2 (Pj(j(X))−Pj(µ))) has the following covariance
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matrix w.r.t. the basis f1(µE), · · · , fm(µE):

Σj,E = (ea(Pj(µ))
TΣµeb(Pj(µ)))1≤a,b≤m =[∑

dµPj(eb) · ea(Pj(µ))
]
a=1,...,m

Σ
[∑

dµPj(eb) · ea(Pj(µ))
]T
a=1,...,m

. (7)

Definition 3.5. The matrix Σj,E given by (7) is the extrinsic covariance matrix of the

j-nonfocal distribution Q ( of X1) w.r.t. the basis f1(µE), . . . , fm(µE).

When j is fixed in a specific context, the subscript j in Σj,E may be omitted .

REMARK 3.1. In order to find a consistent estimator of Σj,E , note that j(X) is a consis-

tent estimator of µ, dj(X)Pj converges in probability to dµPj , and ea(Pj(j(X))) converges

in probability to ea(Pj(µ)) and, further,

Sj,n = n−1
∑

(j(Xr)− j(X))(j(Xr)− j(X))T

is a consistent estimator of Σ. It follows that[
m∑
a=1

dj(X)Pj(eb) · ea(Pj(j(X)))ea(Pj(j(X)))

]
Sj,n[

m∑
a=1

dj(X)Pj(eb) · ea(Pj(j(X)))ea(Pj(j(X)))

]T

(8)

is a consistent estimator of Σµ, and tanPj(j(X))(v) is a consistent estimator of tan(v).

If we take the components of the bilinear form associated with the matrix (8) w.r.t.

e1(Pj(j(X))), e2(Pj(j(X))), ..., em(Pj(j(X))), we get a consistent estimator of Σj,E , called
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the the sample extrinsic covariance matrix , given by

Sj,E,n =

[[∑
dj(X)Pj(eb) · ea(Pj(j(X)))

]
a=1,...,m

]
· Sj,n[[∑

dj(X)Pj(eb) · ea(Pj(j(X)))
]
a=1,...,m

]T
(9)

4 Extrinsic principal components

Principal component analysis seeks a space of lower dimensionality, known as the

principal subspace such that the orthogonal projection of the data points onto the subspace

maximize the variance of the projected points. To achieve this goal, we are looking for the

eigenvectors of the covariance matrix as the principal components. There we select the

largest eigenvalues, since they contribute to most of the variability in the data. Similarly,

the extrinsic principal components a working in a similar way. But instead of using the

covariance matrix of the data set, we use the sample extrinsic covariance matrix.

Definition 4.1. The extrinsic principal components of the j-nonfocal r.o. X on M w.r.t.

the basis f1(µE), . . . , fm(µE) of the tangent space TµE
M are 1D submanifolds of M

going through the extrinsic mean that are obtained by taking the j-preimage of the inter-

section of the affine subspace generated by the eigenvectors vi, i = 1, . . . ,m of the matrix

Σj,E corresponding to the eigenvalues λi, i = 1, . . . ,m where λi are listed in their de-

scending order , and by the orthocomplement of the tangent space at the extrinsic mean to

M, withM. Here we assume the eigenvalues are simple.

REMARK 4.1. If the extrinsic covariance has an eigenvalue λ with multiplicity k >

1, we will define in a similar way the extrinsic principal subset of X corresponding to
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this eigenvalue as follows : We will take instead the affine subspace generated by the

eigenspace of λ and by the orthocomplement of the tangent space of µE .

We can consider the principal subspaces generated by the dµj images of the first k

eigenvectors of ΣE and by the orthocomplement as an affine subspace of RN . This sub-

space intersects j(M) along a subset which is locally sub-manifold whose j-preimage is

the principal sub-manifold of M including the first principal extrinc curves. We will give

some example with different types of data.

The extrinsic sample principal components associated with a random sample x1, . . . , xn

are defined by considering in the above definition. The probability measure Q being the

empirical Q̂n = 1
n

∑n
i=1 δxi

.

4.1 Simulated example : Spherical Data

The following example shows the extrinsic principal components of a set of spherical

data. In this example we will illustrate the extrinsic principal components in a graphical

way by a simple example. We pseudo-randomly generate 300 points on a two dimen-

sional unit sphere. To highlight the result easily, the generated data points are concentrated

mainly in one direction. In this case the projection Pj any point x ∈ R3 on the sphere S2,

is given by Pj(x) =
x

||x|| . Results are shown in figure 1 and table 1. The red great circle

in Figure 1 is the first sample extrinsic principal component and the green circle is the

second sample extrinsic principal component. The intercept of these two great circles is

the extrinsic sample mean. As we see, the data mainly distributed along the first principal

component. The first extrinsic principal component explains over 87% of the data in this

example. To look for the data projected onto the first principal component, we first project
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the data onto the tangent space of the extrinsic sample mean, TP ¯j(X)
j(M), as shown in

Figure 2. We project the data along the tangent space to the first principal component (the

vector in red color). And the re-projected back those data onto the sphere through the

origin. Result shows in Figure 3. The projected data (red points) stick on the first principal

components on the sphere (the yellow line) along the shortest distance.
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Figure 1: The two principal components in Example 3.1

Extrinsic sample mean 0.2153 0.8692 0.4461

Extrinsic sample covariance
0.0045 -0.0010
-0.0010 0.0305

f1(µE) -0.8692 0.3775 -0.3195
f2(µE) -0.4461 -0.3195 0.8360
1st eigenvalue 0.0305
1st p.c. under standard basis 0.4128 0.3336 -0.8475
2nd eigenvalue 0.0044
2nd p.c. under standard basis 0.8854 -0.3651 0.2876

Table 1: Statistics for example 3.1

5 Extrinsic Principal Components for Shapes of Planar

Contours

In this section we will focus on shape analysis of planar contours. We will introduce

the corresponding shape space and some statistics on this object space. We will also give
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Figure 2: Projected data on TP ¯j(X)
j(M) and The two principal component

Figure 3: The data projected on the first principal component
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an extrinsic principal component analysis concrete example. The general reference for this

section is Patrangenaru and Ellingson(2016)[15].

Kendall(1984) [11] showed that the space of direct similarity shapes of k planar land-

marks can be represented as the manifold CP k−2. More general, this is extended here to

direct similarity shapes of planar contours.

We focus on contours, boundaries of 2D topological disks in the plane. To keep the

data analysis stable, and to assign a unique labeling, we make the generic assumption that

across the population there is a unique anatomical or geometrical landmark starting point

p0 on such a contour of perimeter one, so that the label of any other point p on the contour

is the ”counterclockwise” travel time at constant speed from p0 to p. A regular contour

γ̃ is regarded as the range of a piecewise differentiable regular arclength parameterized

function γ : [0, L] → C, γ(0) = γ(L), that is one-to-one on [0, L). Two contours γ̃1, γ̃2

have the same direct similarity shape if there is a direct similarity S : C → C, such that

S(γ̃1) = γ̃2. Two regular contours γ̃1, γ̃2 have the same similarity shape if their centered

counterparts satisfy to γ̃2,0 = λγ̃1,0, for some λ ∈ C\0. Therefore Σreg
2 , set of all direct

similarity shapes of regular contours, is a dense and open subset of P (H), the projective

space corresponding to the Hilbert space H of all square integrable centered functions

from S1 to C. (see Ellingson et al (2013)[5]).

The space P (H) is a Hilbert manifold. We here introduce the Veronese-Whitney (VW)

embedding j : P (H) → LHS = H⊗H given by

j([γ]) =
1

∥γ∥2
γ ⊗ γ∗, [γ] ∈ P (H). (10)

The Veronese-Whitney mean ( VW mean) is the extrinsic mean for a random object X =
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[Γ] on P (H) with respect to the VW embedding. The VW extrinsic mean is [e1], where

e1 is the eigenvector corresponding to the largest eigenvalue of E( 1
∥Γ∥2Γ ⊗ Γ∗). The VW

extrinsic sample mean can be compute in a similar way.

PROPOSITION 5.1. Given any VW-nonfocal probability measure Q on P (H), then if

X1, . . . , Xn is a random sample from Γ, then the VW sample mean µ̂E,n is the projective

point of the eigenvector corresponding to the largest eigenvalue of 1
n

∑n
i=1

1
∥Xi∥2Xi ⊗X∗

i .

Once we have compute the extrinsic mean, the next step is the extrinsic covariance

matrix. The following result of Prentice (1984) [17] is also needed in the sequel.

PROPOSITION 5.2. (Prentice (1984) [17]) Assume [Xi], ∥Xi∥ = 1, i = 1, ..., n is a

random sample from a j-nonfocal, probability measure Q on RPN−1. Then the sample

(VW-)extrinsic covariance matrix Sj,E is given by

Sj,Eab = n−1(ηN − ηa)
−1(ηN − ηb)

−1
∑
i

(ma ·Xi)(mb ·Xi)(m ·Xi)
2, (11)

where ηa, a = 1, ..., N, are eigenvalues of K := n−1
∑n

i=1 XiX
t
i in increasing order and

ma, a = 1, ..., N, are corresponding linearly independent unit eigenvectors.

Here we give a proof of formula (11). Since the map j is equivariant, w.l.o.g. one

may assume that j(XE) = Pj(j(X)) is a diagonal matrix, XE = [mN ] = [eN ] and the

other unit eigenvectors of j(X) = D are ma = ea,∀a = 1, ..., N − 1. We evaluate

dDPj . Based on this description of T[x]RPN−1, one can select in TPj(D)j(RPN−1) the

orthonormal frame ea(Pj(D)) = d[eN ]j(ea). Note that S(N,R) has the orthobasis F b
a , b ≤

a where, for a < b, the matrix F b
a has all entries zero except for those in the positions

(a, b), (b, a) that are equal to 2−
1
2 ; also F a

a = j([ea]). A straightforward computation
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shows that if ηa, a = 1, ..., N, are the eigenvalues of D in their increasing order, then

dDPj(F
b
a) = 0,∀b ≤ a < N and dDPj(F

N
a ) = (ηN − ηa)

−1ea(Pj(D)); from this equation

it follows that, if j(X) is a diagonal matrix D then the entry Sj,Eab is given by

Sj,Eab = n−1(ηN − ηa)
−1(ηN − ηb)

−1
∑
i

Xa
i X

b
i (X

N
i )2. (12)

Taking j(X) to be a diagonal matrix and ma = ea formula (11) follows.

5.1 Data Driven Example

Here we illustrate an example for extrinsic principal component analysis for planar

contour. Consider the samples of contours of butterfly from Sharvit et al.(1998)[19]. Some

samples are shown in Figure 4. There are 16 contours, each have 500 sampling points.

Each sample contours is a 2 × 500 real matrix, each column represent a point of the

contour. We transfer the sample in to a 1 × 500 complex matrix, in result the whole

sample data will be a 16 × 500 complex matrix. We compute the extrinsic sample mean

by using Proposition 5.1. The result mean shape shows in Figure 5; it is smoother than

those original sample contours, due to the averaging process. This is always expected

when sharp features appear at various locations on individual observations. And then

we compute the extrinsic sample covariance matrix by using equation (11). By applying

eigenvalue decomposition on the extrinsic sample covariance matrix, we can extract now

the extrinsic principal components. Figure 6 shows the scree plot for the extrinsic PCA

associated with this data set. The first two sample extrinsic principal component explain

almost 90% of this data set.
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Figure 4: Contours of butterfly

Figure 5: The mean shape of butterffly contours.
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Figure 6: The scree plot for the butterfly data.
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[7] Stephan Huckemann and Herbert Ziezold. Principal component analysis for rieman-

nian manifolds, with an application to triangular shape spaces. Advances in Applied

Probability, 38(2):299–319, 2006.

[8] Sungkyu Jung, Ian L Dryden, and James Stephen Marron. Analysis of principal

nested spheres. Biometrika, 99(3):551–568, 2012.

[9] Sungkyu Jung, Mark Foskey, and JS Marron. Principal arc analysis on direct product

manifolds. 2011.

21



[10] Sungkyu Jung and J Stephen Marron. Pca consistency in high dimension, low sample

size context. 2009.

[11] David G Kendall. Shape manifolds, procrustean metrics, and complex projective

spaces. Bulletin of the London mathematical society, 16(2):81–121, 1984.

[12] Kanti V Mardia, Henrik Wiechers, Benjamin Eltzner, and Stephan F Huckemann.

Principal component analysis and clustering on manifolds. Journal of Multivariate

Analysis, 188:104862, 2022.

[13] Kantilal Varichand Mardia. The art of statistical science. a tribute to gs watson. 1992.

[14] Victor Patrangenaru. Asymptotic statistics on manifolds and their applications. In-

diana University, 1998.

[15] Victor Patrangenaru and Leif Ellingson. Nonparametric statistics on manifolds and

their applications to object data analysis. CRC Press, Taylor & Francis Group Boca

Raton, 2016.

[16] Karl Pearson. Liii. on lines and planes of closest fit to systems of points in space.

The London, Edinburgh, and Dublin philosophical magazine and journal of science,

2(11):559–572, 1901.

[17] Michael J Prentice. A distribution-free method of interval estimation for unsigned

directional data. Biometrika, 71(1):147–154, 1984.

[18] Mingfei Qiu, Vic Patrangenaru, and Leif Ellingson. How far is the corpus callosum

of an average individual from albert einstein’s. In Proceedings of COMPSTAT-2014,

22



The 21st International Conference on Computational Statistics, pages 403–410. Cite-

seer, 2014.
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