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In what follows, by {gk}k∈Λ we denote a tuple of independent Gaussian random variables with
Egk = 0 and Eg2k = 1, k ∈ Λ, indexed by elements of some finite set Λ and by {εk}k∈Λ, a tuple of
independent Bernoulli variables (P{εk = 1} = P{εk = −1} = 1/2). If Λ = {1, 2, . . . , n}, then by Gn

we denote a random vector {gk}nk=1.

The paper considers lower bounds for the expectation of the supremum of random processes,
primarily, Gaussian ones. Such bounds have important applications outside probability theory, in
particular, in the theory of orthogonal series. In this regard, we cite an interesting result by Rider.

Theorem A [1]. Let Λ ⊂ Z be a set such that for some absolute constant c1 > 0 and any coefficients
{ak}k∈Λ one has the relation

E

(∥∥∥∥
∑
k∈Λ

εkake
ikx

∥∥∥∥
L∞

)
≥ c1

∑
k∈Λ

|ak|.

Then Λ is a Sidon set; i.e., ∥∥∥∥
∑
k∈Λ

ake
ikx

∥∥∥∥
L∞

≥ c2
∑
k∈Λ

|ak|, c2 > 0,

for any coefficients {ak}. (Here and below, c1, c2, . . . denote various absolute constants.)

For results related to Theorem A and pertaining to series in general jointly bounded orthonormal
systems, see [2] and [3].

The first sharp-in-order lower bounds for random processes associated with orthogonal series were
obtained by Salem and Zygmund in 1954.

Theorem B [4]. One has the estimate

E

(∥∥∥∥
N∑
k=1

εke
ikx

∥∥∥∥
L∞

)
≥ c3(N logN)1/2, c3 > 0, N = 1, 2, . . . .
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The paper [4] used the so-called second moment method based on the comparison of the L1- and
L2-norms of some random functions. This method applies to a wide class of independent random
variables (see, in particular, Theorem D below). Another lower bound method was developed for
Gaussian processes on the basis of the classical Slepian lemma (see, e.g., [5, p. 213]). The following
assertion is one of the most important results obtained by this method.

Theorem C (Sudakov [6]). Let

V = {vj}Nj=1 ⊂ R
n (1)

be a tuple of vectors such that for some a > 0 one has

‖vj − vj′‖�n2 ≥ a, 1 ≤ j, j′ ≤ N, j �= j′. (2)

Then

E

(
max

1≤j≤N
|〈Gn, vj〉|

)
≥ c3a(logN)1/2, (3)

where 〈 · , · 〉 is the inner product on the corresponding Euclidean space.

Using results of the type of Theorem C, Marcus and Pisier [7] established a criterion (a condition on
the sequence {ak} of coefficients) for the almost sure continuity of the sum of random series of the form∑

k∈Z
εkake

ikx or
∑
k∈Z

gkake
ikx.

For an arbitrary tuple (1) of vectors, an order-sharp estimate of the left-hand side of (3) was obtained
by Talagrand (see [8]). Just as the previous results in this direction, this estimate is stated in terms of
entropy characteristics of the set V . In a number of important cases, estimating the ε-entropy of the
set V is a very complicated problem, which prevents one from bringing the estimate “to a number.” This
is partly why this method has produced no results concerning estimates of the uniform norm of random
series in general orthonormal systems. The following result was obtained in [9], [10] (see also [11]) using
the second moment method and the central limit theorem for two-dimensional vectors with a sharp
estimate of the remainder term.

Theorem D. Let {ξk}nk=1 be a tuple of independent random variables with Eξk = 0, Eξ2k = 1, and
E|ξk| ≥ 1/M , 1 ≤ k ≤ n, let Φ = {ϕk}nk=1 be an orthonormal function system defined on a measure
space (X,μ), μ(X) = 1, and assume that

‖ϕk‖L2+δ(X,μ) ≤ M, 1 ≤ k ≤ n, where δ > 0.

Then for any coefficients {ak}nk=1 one has

E

(∥∥∥∥
n∑

k=1

ξkakϕk

∥∥∥∥
L∞(X)

)
≥ CM,δ

( n∑
k=1

a2k

)1/2(
1 + log

[(∑n
k=1 a

2
k)

2∑n
k=1 a

4
k

])1/2

.

In the case of independent Gaussian variables, there exists a lower bound that holds for any
orthonormal system.

Theorem 1. There exists an absolute constant c4 > 0 such that for each n = 1, 2, . . . and any
orthonormal system Φ = {ϕk}nk=1 ⊂ L2(X,μ), μ(X) = 1, one has the inequality

E

(
sup
x∈X

∣∣∣∣
n∑

k=1

gkϕk(x)

∣∣∣∣
)

≥ c4(n log n)1/2.

Proof. Let WΦ = {vx, x ∈ X} ⊂ Rn, where vx = {ϕk(x)}nk=1.

Lemma 1. For r = 0, 1, . . . , n, one has the following lower bound for the Kolmogorov width of the
set WΦ in the space �n2 :

dr(WΦ, �
n
2 ) ≥ (n− r)1/2.
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We omit the proof of the lemma, because it is completely similar to that of the classical lower bound
for the width dr(B

n
1 , �

n
2 ) (see, e.g., [12, p. 139]). Lemma 1 readily implies the following assertion.

Lemma 2. For any orthonormal system Φ = {ϕk}nk=1, n > 3, there exists a tuple of points (“points
of the width”) {x1, . . . , x[n/2]} ⊂ X such that

ρ�n2 (vxp , span{vxq , 1 ≤ q ≤ p− 1}) ≥
(
n

2

)1/2

, p = 2, . . . , [n/2],

where ρ�n2
(v, L) is the Euclidean distance from a point v ∈ R

n to a set L ⊂ R
n and span{vα} is the

linear span of the set {vα}.

To complete the proof of Theorem 1, let us consider the set of points {xq}[n/2]q=1 constructed in Lemma 2
and show that

E
(
max

q
|〈Gn, vxq 〉|

)
≥ c4(n log n)1/2. (4)

By construction, for q = 2, . . . , [n/2] we have

vxq = uq + zq, uq ⊥ Lq−1 ≡ span{vxν , 1 ≤ ν ≤ q − 1},

‖uq‖�n2 ≥
(
n

2

)1/2

, zq ∈ Lq−1.
(5)

Further, of course, one can obtain the desired statement with the help of Theorem C, but it is
much easier to use the fact that jointly Gaussian uncorrelated variables are independent. Therefore,
for q = 2, . . . , [n/2] and for any a > 0, the probability

α(q,A) ≡ P

{
max
1≤ν≤q

|〈Gn, vxν 〉| ≤ A
}

satisfies the relation

α(q,A) ≤ α(q − 1, A) · P{|〈Gn, uq〉| ≤ A}. (6)

If A = γ(n log n)1/2, where γ > 0 is a sufficiently small absolute constant, then from (6) and the lower
bound (5) for ‖uq‖�n2 we obtain

α([n/2]), A) ≤
(
1− 1

n1/3

)[n/2]−1

≤ c5 exp(−c6n
2/3).

The proof of Theorem 1 is complete.

Below is a proof of Theorem C based on the following classical Urysohn inequality, published in
Matematicheskii Sbornik exactly one hundred years ago.

Theorem E [13]. For any convex body K and the unit Euclidean ball B in R
n, one has the

inequality
(
VolK

VolB

)1/n

≤ w(K)

w(B)
,

where VolK and w(K) are the volume and the mean width, respectively, of the body K.

The relationship between the Urysohn inequality and estimates of the ε-entropy of sets in the space �n2
was established by Milman [14] (with the participation of A. Pajor, see [14]), but, to the best of the
author’s knowledge, this relationship has not been used to prove results like Theorem C. The approach
based on the Urysohn inequality has the advantage that it potentially allows one to avoid estimating
the ε-entropy and replace it with geometric characteristics of the set V in (1), which admit a simpler
estimate (see, e.g., Theorem 2 below).
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Thus, for a given set (1), let K be the convex hull of V ∪ −V . Since the random vector Gn/‖Gn‖�n2
is uniformly distributed on the sphere Sn−1, we can readily verify that

E

(
sup

1≤j≤N
|〈Gn, vj〉|

)
= γnw(K), (7)

where 0 < c6n
1/2 ≤ γn ≤ c7n

1/2.
First, consider the case in which the number of vectors in V is exponentially large compared with n;

i.e., logN = δ · n, δ ≥ δ0 > 0, where δ0 is an arbitrary fixed absolute constant. Following [14], we
apply the Urysohn inequality to the Minkowski sum of the bodies K and (a/2)B. By the conditions
of Theorem C, we have

Vol

(
K +

a

2
B

)
≥ N

(
a

2

)n

VolB;

therefore,

w

(
K +

a

2
B

)
≥ w(B)N1/n a

2
= N1/n · a.

However,

w

(
K +

a

2
B

)
= w(K) + w

(
a

2
B

)
= w(K) + a.

As a result, we obtain

w(K) ≥ (N1/n − 1)a = (elogN/n − 1)a ≥ Cδ0

logN

n
a ≥ C ′

δ0a. (8)

Now consider the general case of Theorem C, where we can always assume that n ≤ N . We need
a standard estimate (see, e.g., [15]) for the distribution of the length of the orthogonal projection of
a random vector on the sphere Sn−1 onto a given r-dimensional subspace: for some positive c8, c9,
and c10 and for r = 1, 2, . . . , n, one has

μn−1

{
z = {zν}nν=1 ∈ Sn−1 :

( r∑
ν=1

z2ν

)1/2

/∈
[
c8

√
r

n
, c9

√
r

n

]}
≤ 4 exp(−c10r). (9)

Set r = [c11 logN ], where the constant c11 is large enough that

4N3 exp(−c10r) < 1,

and fix a constant δ0 large enough that the condition logN ≤ δ0n implies the inequality r < n. In
what follows, we assume that logN < δ0n, because the assertion of Theorem C for the case in which
logN ≥ δ0n has been verified above.

Just as in the proof of the classical Johnson–Lindenstrauss lemma (which also relies on estimates
like (9)), consider the orthogonal projection πL of V onto a random r-dimensional subspace L ⊂ R

n

(uniformly distributed with respect to the Haar measure). The estimate (9) and the choice of r guarantee
that for a random subspace L and for each pair (j, j′), 1 ≤ j, j′ ≤ N , j �= j′, one has

‖πLvj − πLvj′‖�n2 ≥ ac8

√
r

n
. (10)

Moreover, the Haar measure of those subspaces for which (10) is violated for at least one pair (j, j′) does
not exceed N−1.

For a random subspace L, let wL(K) be the mean width of the body K along the directions in L.
Since logN ≥ r/c11, we can use the already established estimate (8) and conclude that, for a majority
(in the Haar measure) of r-dimensional subspaces L,

wL(K) ≥ c12a

(
r

n

)1/2

≥ c13a

√
logN

n
. (11)
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Integrating inequality (11) over all r-dimensional subspaces, we arrive at the assertion of Theorem C.
More precisely, we use the following equality, which holds for any continuous function f on the
sphere Sn−1: ˆ

Sn−1

f dμn−1 =

ˆ
On

ˆ
S(TL◦

r)
f dμr−1 dνH ,

where On is the group of orthogonal transformations of the space Rn with the Haar measure νH , T ∈ On,
L◦
r = {a1, a2, . . . , ar, 0, . . . , 0} ⊂ R

n, and S(TL◦
r) is the unit sphere in the subspace T (L◦

r).
The above proof of Theorem C permits a significant weakening of the entropy condition (2). In

particular, the following result was actually established above (for simplicity, we restrict ourselves to
the case in which N is much larger than n).

Theorem 2. Let logN ≥ δ0n > 0, and let the tuple (1) satisfy

N

3
Vol{Ba/2(0)} ≥

∑
(j,j′)
j �=j

Vol{Ba/2(vj) ∩Ba/2(vj′)}, (12)

where Ba(v) is the Euclidean ball of radius a centered at v. Then

E

(
max

1≤j≤N
|〈Gn, vj〉|

)
≥ cδ0a(logN)1/2.

Note that the right-hand side of (12) admits an effective estimate.
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