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Abstract. Motivated by a financial valuation problem on an asset-pricing model with dependent trade
duration and returns, in this paper we study coupled fully non-local equations, where a linear non-local

operator jointly acts on the time and space variables. We prove existence and uniqueness of the solution.
Existence is established by providing a stochastic representation based on anomalous processes constructed

as a time change via the undershooting of an independent subordinator. This leads to general non-stepped

processes with intervals of constancy representing a sticky or trapping effect (i.e., constant price in financial
applications). Our theory allows these intervals to be dependent on the immediately subsequent jump.

A maximum principle is then proved and used to derive uniqueness. Based on these general results, we

consider a particular case: a non-local analog of the Black and Scholes equation, addressing the problem of
determining the seasoned price of a derivative security.
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1. Introduction

A popular paradigm connecting fluid-dynamics and financial economics is the observation that financial-
asset-price moves resemble those of the particles in a fluid. This observation has been key to the discipline of
financial mathematics since its infancy over a century ago ([8]), and has been instrumental to the introduc-
tion of the geometric Brownian motion first [56], and of more general continuous or discontinuous Markov
processes later ([26; 43; 20]). In terms of valuation of derivative securities, already with the emergence of
the martingale pricing theory ([37; 25]) the central role of backward Kolmogorov terminal value problems
was clear. Stochastic solutions of these problems precisely determine option values after the contract’s in-
ception. Such solutions can be written as conditional expectations corresponding to some Markov generator
characterizing the underlying dynamics.

A distinct line of research, focused on market statistical analyses rather than valuation, instead considered
tick-by-tick continuous time random walks (CTRWs) and the corresponding fluid-dynamic limits in order to
gain insight on economic measures such as the return distributions, see e.g. [60; 59; 45] and recently [64].
Such limits typically produce stable-like processes (and thus discontinuous continuous-time trajectories) and
variations thereof. A particularly consequential aspect of CTRWs modelling of financial markets prices is
that it paved the way for the introduction of non-local operators in both space and time as determining the
governing equations of their scaling limits. As it turns out, the presence of a fractional derivative in the time
variable is of particular importance, which is reflected in a stochastic time change in the stochastic solution
of the equation associated with the Markov generator in the space variable. The process thus obtained is
non-Markovian and exhibits periods of constant prices, whose duration is independent of the price moves.
However, Markovianity can be often recovered by augmenting the state space with the time variable keeping
count of the time elapsed since the particle last move (the “sojourn time” or “age”), which is one of the
possible definitions of semi-Markovianity, and the one which is most relevant here. In general, being able to
establish some form of higher-dimensional Markovianity is especially useful in the mathematical modeling of
random phenomena; concretely, in a financial valuation context, it can be interpreted as the possibility to
establish the theoretical fair value of a contract based only on a finite set of market-observable data.

Two recent papers have tried to bring together some of these aspects. In [61] the authors chose a semi-
Markov multiplicative CTRW model based on a sequence of independent and identically distributed log-
normal random variables and an independent renewal counting process. The limit process turns out to be
semi-Markov with continuous trajectories. Although the governing equation of the limit process is studied, the
independence between the spatial lognormal innovations and the renewal process, implies that the magnitude
of the price moves remain independent from the trade duration, that is, the sojourn time of the price process.
A similar, but more general, model with independence is presented in [39], generalizing the earlier suggestion
[44] and [21]. Crucially, in such work a time-changed model with dependence between temporal and spatial
variables is also introduced. The authors use spectral methods to derive the option price for such models,
and comment on a weak form of semi-Markov property (Markov embedding) of the process as a whole, but
do not study the corresponding governing Black and Scholes type equation.
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Beside the purely theoretical interest, this paper essentially finds motivation as it unifies the contribution
of [61] and [39], by answering the problem of pricing for, and determining the seasoned value of, an intraday
call option written on an asset with dependent duration and returns as in [39], using the techniques inspired
from the semi-Markov analysis of the limiting process in [61].

As epitomized by the mentioned applications in financial mathematics, the interplay between time-changed
Markov processes (ofter arising as scaling limit of CTRWs) and non-local operators is a very active area in
probability theory that gained considerable popularity in the last decades. This is certainly connected
to its applicability in several contexts, even beyond financial mathematics, especially: Hamiltonian chaos
[67; 68; 69], Hamiltonian systems describing cellular flows [34; 35], trapping models [2; 58], anomalous heat
conduction [28; 52] neuronal modeling [4], and many others, see e.g. [10; 11; 29; 30; 31; 33; 47; 48; 49], and
references therein for several possible applications and modeling aspects of the theory.

The foundation of such theory lies in the connection between Markov processes and the parabolic Kol-
mogorov equations that are related to their semigroups. More specifically, Markov processes with jumps are
generated by linear operators that are non-local. Bochner subordination is a crucial tool in this context.
Given some Markov process and a subordinator, i.e., a non-decreasing Lévy process, the bedrock of the
classic subordination theory is a result due to Phillips, see [63, Theorem 13.6] and [62]), which completely
characterizes the generator of the time-changed (subordinate) process in terms of that of the generator of
the original Markov process and the Lévy triplet of the subordination: if G generates the semigroup of
the Markov processes M then the subordinate semigroup is generated by −ϕ(−G), where ϕ is the Laplace
exponent of the subordinator involved.

When non-local time operators appear in Kolmogorov’s evolution equations, the interplay with random
processes is more subtle, and as it appears, not yet fully understood. Recent results inspired by time-change
techniques suggest the following picture. Consider a Markov process M(t) generated by G, an independent
subordinator S with Laplace exponent ϕ, define L(t) = inf {s ≥ 0 : S(s) > t} the first exit time of S from a
level t, and choose an initial condition u. Then the x, t conditional expectation q(x, t) of u(M(L(t)) satisfies,
in a suitable sense, the following non-local equation

(ϕ(∂t)−G) q(x, t) = ν̄(t)q(x, 0), q(x, 0) = u(x), u(x) ∈ Dom(G), (1.1)

where the non-local operator ϕ(∂t) can be defined in different ways, a typical one being as in [22]

ϕ(∂t)q(x, t) :− b∂tq(x, t) + ∂t

∫ t

0

q(x, s) ν̄(t− s) ds (1.2)

where ν̄(t) :− a + ν(t,+∞) and b ≥ 0 and ν(·) are, respectively, the drift and the Lévy measure of the
process S, associated with ϕ. Several other representations of ϕ(∂t) can be given, see, e.g., [19; 38; 41; 42].
Hence, the time-change with independent inverse subordinators has been understood and, also, regularity of
the involved probabilities is quite clear (see [5]). It turns out, however, that more general families of time
changes can be considered and associated with non-local operators. For example one can assume that (M,S)
is a Markov additive process (see [58]), or that S is an independent self-similar Markov process [51], and even
different ones (see, for example [9; 38; 54]).

In this paper, we consider coupled fully non-local operators. More precisely, given a Bernstein function ϕ,
we consider the equation

ϕ (∂t −G) q(x, t) = ν̄(t)q(x, 0), q(x, 0) = u(x), u(x) ∈ Dom(G); (1.3)

we provide a rigorous definition for the operator ϕ(∂t − G) appearing on the left-hand side and then we
study the well-posedness of the problem. The expressions fully non-local or fully fractional are often used
for non-local (or just fractional) equations in both time and space variables, but usually with uncoupled
operators, acting separately on time and space variables. It turns out that the stochastic solution q(x, t) for
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(1.3) is given by the x, t conditional expectation of u (M (S (L(t)−))) i.e., the process governed by (1.3) is
the time-change of the Markov process M , generated by G, by means of the process H(t) = S (L(t)−), a.k.a.
the undershooting of the subordinator (see [13, chapter 1.4]). It turns out that this process M (S (L(t)−))
has also a kind of (weak) semi-Markov property, i.e., it can be embedded in a higher dimensional Markov
process.

From the purely analytical point of view, equations like (1.3) have been considered in some specific cases,
for instance when ϕ(λ) = λα, G = ∆ (see [7; 32]). In contrast we develop our theory in a quite general
context, more general than what is required to deal with time-changed Markov processes via semigroup
theory. In order to pursue our motivating financial problem, we need to include the following equation within
our theory (

∂t −
x2

2
∂2
x

)α

q(x, t) =
t−α

Γ(1− α)
u(x), u(x) = (x−K)+. (1.4)

Such equation is the call-option valuation formula, under zero-interest rates (an innocuous simplifying as-
sumption when observing intraday prices, which is reflected in the absence of a forcing term in (1.4)), of
an underlying whose logarithm under a pricing measure is described by the process M(S(L(t)−)). Upon
time-reversal, (1.4) looks like a particular case of (1.3), but it really is not, because the final condition, i.e.
the pay-off of a European call option, is not in the domain of the operator G = 1

2x
2∂2

x. For this reason, we
approach the problem of well-posedness using uniqueness classes for PDEs and semigroup actions on it. The
theory of Markov (and Feller) semigroups of operators and Markov processes is a particular case of this more
general theory.

The process with dependent returns and trade duration considered in [39] can be now inserted in our
abstract theory, at least when M is a Brownian motion, and for some parameters of the (stable) subordinator.
For financial applications, the valuation equation (1.4) is a first step, ideally to be extended in further work to
one corresponding to more realistic models, entailing distributionally-asymmetric Feller processes for returns,
as well as undershooting processes of subordinators other than the stable one (e.g. with finite moments).

Structure of the article and summary of the results. Following is a summary of the main results and
topics that are dealt with in each section.

• In Section 2 we introduce basic notions on uniqueness classes, semigroup actions and Bernstein
functions. All that will be relevant in the subsequent sections;

• In Section 3 we define the coupled non-local operator ϕ(∂t −G), we study its domain and regularity
properties. Moreover, we provide a notion for the solution of the related Cauchy problem.

• In Section 4 we review the theory of time change according to subordinators and their inverses,
introduce the time-changed Feller process related to the Cauchy problem of Section 3, and establish
the Markov-additivity of the pair process-subordinator;

• In Section 5 the first main Theorem 5.2, is presented and proved. This states that the conditional
expectation of the process defined in Section 4 is the stochastic solution, in the sense of Definition 3.6,
of the Cauchy problem, subject to a further local uniform boundary condition. To prove the theorem,
firstly we focus on regularity properties for the conditional expectation, described in Subsection 5.1.
Furthermore, in Subsection 5.2 we give the details of the proof.

• In Section 6 we move to the applications in finance of the theory discussed in the previous sections.
We define a process for pricing an intraday call option written on an asset with dependent duration
and returns, whose log-price follows a time-changed Feller process as the one of Section 4. This
leads to the second main result, Theorem 6.10, which is the applied counterpart of Theorem 5.2. A
second result, proved separately is necessary because the call option initial (terminal) datum does
not satisfy the regularity required in Theorem 5.2. The proof of this theorem is split into several
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auxiliary results, firstly proving regularity of the solution, then establishing existence, uniqueness
and, finally, the renewal equation in separate subsections.

• In the appendices some auxiliary results are proved.

2. Preliminaries

We let E be a locally compact separable Hausdorff space and we set E = B(E), the Borel σ-algebra on
E. We equip any interval [0, T ] ⊆ R+

0 =: [0,+∞) and the half-axis R+
0 with the Borel σ-algebra. We also

denote R+ := (0,+∞). With an abuse of language, we say that a function f : E → R belongs to E if it
is Borel-measurable, so that E will denote the linear space of Borel-measurable real valued functions on E.
Furthermore, we denote by C(E) the space of continuous functions f : E → R and by Cb(E) the space of
bounded continuous functions f : E → R. The space Cb(E) is a Banach space once it is equipped with the
uniform norm

∥f∥C(E) := sup
x∈E

|f(x)|.

Furthermore, we denote by C0(E) the space of continuous functions f : E → R vanishing at infinity, i.e. such
that for all ε > 0 there exists a compact K ⊂ E such that

sup
x ̸∈K

|f(x)| < ε,

which is still a Banach space when equipped with the uniform norm.

2.1. Uniqueness classes and semigroup actions. Consider a linear operator G : C ⊆ E → E , where C is
a suitable subspace of E . For such an operator, we consider the following differential equation{

∂tq(t, x) = Gq(t, x), t > 0, x ∈ E,

q(0, x) = u(x), x ∈ E,
(2.1)

where u ∈ E is suitable initial data. To introduce a notion of solution, we take inspiration from the theory of
ordinary differential equations (see [24, Chapter 2]).

Definition 2.1. We say that a function q : [0, T ] × E → R is a local Carathéodory solution of (2.1) if and
only if

(i) q ∈ B([0, T ]× E), q(·, x) ∈ C[0, T ] for any x ∈ E and q(t, ·) ∈ C for any t ∈ (0, T ];
(ii) q(0, x) = u(x) for any x ∈ E;
(iii) Gq(·, x) ∈ L1(0, T ) for any x ∈ E;
(iv) For any x ∈ E and t ≥ 0

q(t, x) = u(x) +

∫ t

0

Gq(s, x)ds. (2.2)

We say that q : R+
0 ×E → R is a global Carathéodory solution of (2.1) if its restriction to [0, T ] is a local

Carathéodory solution for any T > 0.

Remark 2.2. This definition is related to the so-called mild solution of an abstract Cauchy problem (see [1,
Definition 3.1.1]). For instance, suppose that G is a closed linear operator on C ⊂ C0 (E). Assume that q is a
global Carathéodory solution of (2.1) such that Gq(t, ·) ∈ C0(E) and t ∈ [0, T ] 7→ ∥Gq(t, ·)∥C0(E) ∈ R belongs

to L1[0, T ] for all T > 0. Notice also that, by definition of Carathéodory solution, q(t, ·) ∈ C. Hence, with an
abuse of notation, we can set q(t) = q(t, ·) so that q : R+

0 → C0(E). Then, in particular, by [1, Proposition
1.1.7], we have ∫ t

0

Gq(s)ds = G

∫ t

0

q(s)ds.
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If also u ∈ C0(E), we can rewrite (2.2) in terms of Bochner integrals as

q(t) = u+G

∫ t

0

q(s)ds,

i.e., q is a mild solution of the abstract Cauchy problem in C0(E)∂tq(t) = Gq(t), t > 0,

q(0) = u.

Now we want to consider some classes of functions C0 ⊆ E and Csol ⊆ B(R+
0 ×E) that will play the following

role: C0 will be the set of initial data so that the problem (2.1) admits a unique solution belonging the class
Csol. Let us formalize this (see, for instance, [50, page 204] in the case of the heat equation).

Definition 2.3. We say that the couple (C0, Csol), where C0 ⊆ E and Csol ⊆ B(R+
0 ×E) is a uniqueness class

for G if and only if

(i) For any q ∈ Csol and any t > 0 it holds q(t, ·) ∈ C0 ∩C;
(ii) For any u ∈ C0 there exists a unique global Carathéodory solution q ∈ Csol to (2.1).

Let us give some examples.

Example 2.4. Consider E = R, C = C2(R) and G = ∂2
x. If we set C0 = C0(R) and

Csol = {q ∈ C(R+
0 ×R) ∩ C1(R+ ×R) : q(t, ·) ∈ C2

0 (R), ∀t > 0, and q(0, ·) ∈ C0(R)},
then (C0, Csol) is a uniqueness class for G, as it is well-known that the heat equation{

∂tq(t, x) = ∂2
xq(t, x), t > 0, x ∈ R,

q(0, x) = u(x), x ∈ R,
(2.3)

admits a unique solution in C2
0 (R) if u ∈ C0(R). It is important to notice that such a solution is not unique

among all the measurable functions on R, as we could find other unbounded solutions of the same equation,
that are usually called non-physical solutions (see [18, Theorem 2.3.1]).

Example 2.5. Again, consider E = R, C = C2(R) and G = ∂2
x. Now set

C0 = {u ∈ C(R) : ∃c1, c2 > 0, ∃γ ∈ [0, 2), |u(x)| ≤ c1e
c2|x|γ , ∀x ∈ R}

and

Csol = {q ∈ C(R+
0 ×R) ∩ C1(R+ ×R) : q(t, ·) ∈ C2(R), ∀t > 0,

and ∀T > 0,∃c1, c2 > 0,∃γ ∈ [0, 2), |q(t, x)| ≤ c1e
c2|x|γ ,

∀x ∈ R, ∀t ∈ [0, T ]}.

Then (C0, Csol) is a uniqueness class for G as (2.3) admits a unique solution q ∈ Csol whenever u ∈ C0 (see
[18, Theorem 3.6.1]). Let us stress that we could also consider G as the generator of the Brownian motion.
In such a case, however, since C0 ̸⊂ C0(R), the usual theory of Feller semigroups (see [55, Definition III.6.5])
does not apply.

Example 2.6. Now let E = [a, b] ⊂ R for some a < b. As before, set G = ∂2
x with C = C2(a, b). Set

C0 = {u ∈ C[a, b] : u(a) = u(b) = 0}
Csol = {q ∈ C(R+

0 ×[a, b]) ∩ C2(R+ ×(a, b)) : q(t, a) = q(t, b) = 0, ∀t > 0}.
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Then (C0, Csol) is a uniqueness class for G. Indeed, in such a case, q ∈ Csol is a solution of (2.1) if and only
if it solves 

∂tq(t, x) = ∂2
xq(t, x), t > 0, x ∈ (a, b)

q(0, x) = u(x) x ∈ [a, b]

q(t, a) = q(t, b) = 0 t > 0,

that is a Dirichlet-Cauchy problem and then admits a unique solution.

Example 2.7. Let now (Pt)t≥0 be a Feller semigroup on C0(E) with generator (G,Dom(G)). Then we can

set C0 = C0(E) and Csol = C(R+
0 ;C0 (E)). By standard Feller semigroups theory (see [1, Chapter 3]), we

know that (C0, Csol) is a uniqueness class for G. This implies that the abstract setting we are considering can
be applied in general to Feller semigroups and their generators. We can also consider strong solutions in this
framework by setting C0 = Dom(G) and Csol = C1

(
R+

0 ; Dom(G)
)
.

Definition 2.8. For a linear operator G : C ⊆ E → E and a uniqueness class (C0, Csol) for G, we define the
family of linear operators (Pt)t≥0 acting on C0 as follows:

(i) P0 = I, where I is the identity on C0;
(ii) For any t > 0, f ∈ C0 and x ∈ E, Ptu(x) = q(t, x), where q is the unique Carathéodory solution of

(2.1) in Csol.

We call the family (Pt)t≥0 the semigroup action induced by G on (C0, Csol).

As the name suggests, (Pt)t≥0 is indeed an action of the additive semigroup (R+
0 ,+) on the linear space

C0. Indeed, fix any u ∈ C0 and t, s > 0 and consider q(t, ·) = Ptu. Now let q̄(s, ·) = Psq(t, ·) and observe that
q̄ is the unique function in Csol such that for any s ≥ 0 and any x ∈ E

q̄(s, x) = q(t, x) +

∫ s

0

Gq̄(τ, x)dτ. (2.4)

However, by definition,

q(t+ s, x) = u(x) +

∫ t+s

0

Gq(τ, x)dτ

= q(t, x) +

∫ t+s

t

Gq(τ, x)dτ = q(t, x) +

∫ s

0

Gq(t+ τ, x)dτ,

that is to say that the function q(t+ ·, ·) ∈ Csol satisfies (2.4) and then

Pt+su(x) = q(t+ s, x) = q̄(s, x) = Psq(t, x) = PsPtu(x)

for any s > 0 and any x ∈ E. We use the name semigroup action in place of semigroup to avoid any possible
confusion with Feller semigroups on Banach spaces, that are a particular case in this theory.

2.2. Bernstein functions. We here recall some basic definitions and properties concerning Bernstein func-
tions that will be used throughout the paper. We mainly refer to [63] where proofs of the theorems stated
below can be found.

Definition 2.9. A function ϕ : R+ → R+
0 is said to be a Bernstein function if, ϕ(λ) ≥ 0, ϕ ∈ C∞(R+) and

for any n ∈ N
(−1)n−1ϕ(n)(λ) ≥ 0 ∀λ ∈ R+ .

We denote by B the convex cone of Bernstein functions.

Any function ϕ ∈ B admits a special representation.
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Theorem 2.10. For any ϕ ∈ B there exists a unique triplet (aϕ, bϕ, νϕ), where aϕ, bϕ ∈ R+ and νϕ is a
Borel measure on (0,+∞) with the property∫

(0,∞)

(1 ∧ t) νϕ(dt) < ∞, (2.5)

such that

ϕ(λ) = aϕ + bϕλ+

∫
(0,∞)

(1− e−λt)νϕ(dt). (2.6)

Vice versa, any triplet (aϕ, bϕ, νϕ) with aϕ, bϕ > 0 and νΦ a Borel measure on (0,+∞) satisfying (2.5) defines
a Bernstein function ϕ by means of (2.6).

Definition 2.11. The triplet (aϕ, bϕ, νϕ) is called the Lévy triplet of ϕ and, in particular, νϕ is called the
Lévy measure of ϕ. We denote by B0 the subset of B composed of Bernstein functions with triplet (0, 0, νϕ)
and such that νϕ(0,∞) = ∞.

Any Bernstein function defines the law of a subordinator in a unique way. Namely, for any ϕ ∈ B
there exists a (canonical) probability space and a (possibly killed) subordinator σ := {σ(t), t ≥ 0}, i.e. an
increasing Lévy process, such that

E[e−λσ(t)] = e−tϕ(λ), ∀t ≥ 0, ∀λ ≥ 0,

where E is the expected value on the aforementioned probability space. Vice versa, if σ is a subordinator on
a suitable probability space, then the function

ϕ(λ) = − log(E[e−λσ(1)])

belongs to B. For further details we refer to [63, Chapter 5], [12, Chapter III] and [13]. For the ease of the
reader, for any 0 ≤ t1 < t2 < ∞ and any Borel-measurable f : R+ → R, we shall denote∫ t2

t1

f(s)νϕ(ds) :=

∫
(t1,t2]

f(s)νϕ(ds) and

∫ ∞

t1

f(s)νϕ(ds) :=

∫
(t1,∞)

f(s)νϕ(ds).

In the next sections we shall use the following notation

νϕ(t) := νϕ(t,∞), Iϕ(t) :=
∫ t

0

νϕ(s)ds, Jϕ(t) :=

∫ t

0

sνϕ(ds).

A simple integration by parts argument leads to the relation

Jϕ(t) = tνϕ(t)− Iϕ(t). (2.7)

A Bernstein function ϕ ∈ B is said to be special if the function

ϕ⋆(λ) =
λ

ϕ(λ)

still belongs to B. We call SB0 the set SB0 := SB∩B0, where SB is the set of special Bernstein functions.

3. The non-local operator

We here define the coupled non-local operator that will be used in the next sections.
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Definition 3.1. Consider a linear operator G : C ⊆ E → E, a uniqueness class (C0, Csol) for G and its induced
semigroup action (Pt)t≥0 on C0. Let ϕ ∈ B0 and f ∈ B(R+

0 ×E) such that, for any t ≥ 0, f(t, ·) ∈ C0. For
t > 0 and x ∈ E we define

−ϕ (∂t −G) f(t, x) =

∫ +∞

0

(Psf(t− s, x)1[0,t](s)− f(t, x))νϕ(ds),

where, for any t < 0, we set f(t, x) ≡ 0, provided the integral is well-defined.

Now we would like to find some conditions on f so that −ϕ (∂t −G) f(t, x) is well-defined at least for some
(t, x) ∈ R+

0 ×E. This is true as a consequence of the following theorem.

Theorem 3.2. Let G : C ⊆ E → E be a linear operator, (C0, Csol) be a uniqueness class for G and (Pt)t≥0

be the semigroup action induced by G on C0. Let also ϕ ∈ B0. Consider a function f ∈ B(R+
0 ×E) such that

f(t, ·) ∈ C0. Fix (t, x) ∈ R+
0 ×E and assume further that:

(i) It holds ∫ t

0

|Psf(t− s, x)− Psf(t, x)|νϕ(ds) < ∞;

(ii) It holds ∫ t

0

|Psf(t, x)− f(t, x)|νϕ(ds) < ∞.

Then −ϕ(∂t −G)f(t, x) is well-defined.

Proof. It is sufficient to split the integral defining −ϕ(∂t −G)f(t, x) as follows:

−ϕ(∂t −G)f(t, x) =

∫ t

0

(Psf(t− s, x)− Psf(t, x))νϕ(ds)

+

∫ t

0

(Psf(t, x)− f(t, x))νϕ(ds)− νϕ(t)f(t, x),

where the two integrals are absolutely convergent by (i) and (ii). □

In the following, we shall make explicit use of the Laplace transform. The following theorem provides
sufficient conditions to guarantee that −ϕ(∂t − G)f(·, x) is Laplace transformable for fixed x ∈ E. The
proof of this theorem is an immediate consequence of the existence conditions for Laplace transforms (see [1,
Section 1.4]).

Theorem 3.3. Let G : C ⊆ E → E be a linear operator, (C0, Csol) be a uniqueness class for G and (Pt)t≥0

be the semigroup action induced by G on C0. Let also ϕ ∈ B0. Consider a function f ∈ B(R+
0 ×E) such that

f(t, ·) ∈ C0. Fix x ∈ E and suppose that the assumptions of Theorem 3.2 hold on (t, x) for a.a. t ∈ R+
0 .

Assume further that

(i) There exists λ0 > 0 such that for all λ > λ0∫ ∞

0

e−λt

∫ t

0

|Psf(t− s, x)− Psf(t, x)| νϕ(ds) dt < ∞;

(ii) There exists λ1 > 0 such that for all λ > λ1∫ ∞

0

e−λt

∫ t

0

|Psf(t, x)− f(t, x)| νϕ(ds) dt < ∞;
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(iii) There exists λ2 > 0 such that for all λ > λ2∫ ∞

0

e−λtνϕ(t)|f(t, x)| dt < ∞.

Then, setting λ⋆ := max{λ0, λ1, λ2}, for all λ > λ⋆ it holds∫ ∞

0

e−λt|(−ϕ(∂t −G)f(t, x))|dt < ∞ (3.1)

and ∫ ∞

0

e−λt(−ϕ(∂t −G)f(t, x))dt =

∫ ∞

0

∫ ∞

0

e−λt(Psf(t− s, x)1[0,t](s)− f(t, x))dt νϕ(ds). (3.2)

The assumptions of both Theorems 3.2 and 3.3 are quite general and must be verified separately depending
on the properties of the operator G and the semigroup action (Pt)t≥0.

Furthermore, if we equip the state space E with a measure µE , then we could ask for some sufficient
conditions on f so that −ϕ(∂t −G)f(t, x) is well-defined for a.a. t ≥ 0 and µE-a.a. x ∈ E. This can be done
by developing, for instance, a L1

loc-theory. Since, however, in our cases of interest it will be not necessary, we
do not report these details.

On the other hand, we shall make use of a maximum principle, that holds under some additional assump-
tions on the semigroup action (Pt)t≥0. We recall here some specific properties.

Definition 3.4. We say that the semigroup action (Pt)t≥0 is positivity preserving if for all f ∈ C0 with
f(x) ≥ 0 for all x ∈ E it holds Ptf(x) ≥ 0 for all x ∈ E and t ≥ 0.

We say that the semigroup action (Pt)t≥0 is sub-Markov if there exists a one-parameter semigroup of
operators (P b

t )t≥0 acting on Cb(E) and coinciding with (Pt)t≥0 on C0 ∩Cb(E) such that P b
t 1 ≤ 1.

Throughout the paper we shall omit the superscript b on the additional semigroup (P b
t )t≥0. With these

definitions, we are ready to prove the following Positive Maximum Principle (PMP).

Proposition 3.5. Assume that the semigroup action (Pt)t≥0 is positivity preserving and sub-Markov.

(i) Assume there exists (t⋆, x⋆) ∈ R+ ×E such that f(t⋆, x⋆) ≥ f(t, x) for all (t, x) ∈ (0, t⋆] × E and
f(t⋆, x⋆) > f(0, x), for all x ∈ E and −ϕ(∂t −G)f(t⋆, x⋆) is well-defined. Then

−ϕ(∂t −G)f(t⋆, x⋆) + νϕ(t⋆)f(0, x⋆) < 0.

(ii) Assume there exists (t⋆, x⋆) ∈ R+ ×E such that f(t⋆, x⋆) ≤ f(t, x) for all (t, x) ∈ (0, t⋆] × E,
f(t⋆, x⋆) < f(0, x) for all x ∈ E and −ϕ(∂t −G)f(t⋆, x⋆) is well-defined. Then

−ϕ(∂t −G)f(t⋆, x⋆) + νϕ(t⋆)f(0, x⋆) > 0.

Proof. We just prove (i), since the proof of (ii) is analogous. For t ∈ [0, t⋆] and x ∈ E define f(t, x) =
f(t⋆, x⋆) − f(t, x) ≥ 0. Since Pt is positivity preserving, we have Psf(t⋆ − s, x) ≥ 0 for all s ∈ [0, t⋆] and
x ∈ E, that in turn implies Psf(t⋆ − s, x) ≤ (Psf(t⋆, x⋆))(x) for all s ∈ [0, t⋆] and x ∈ E. Furthermore, since
Ps is sub-Markov and linear, we have

Psf(t⋆ − s, x) ≤ f(t⋆, x⋆), ∀s ∈ [0, t⋆] ∀x ∈ E.

Hence, it is sufficient to observe that

−ϕ(∂t −G)f(t⋆, x⋆) + νΦ(t⋆)f(0, x⋆)

=

∫ t⋆

0

(Psf(t⋆ − s, x⋆)− f(t⋆, x⋆))νϕ(ds)
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+ νϕ(t⋆)(f(0, x⋆)− f(t⋆, x⋆)) < 0.

□

In the next section, we shall focus on the following equation:{
ϕ(∂t −G)q(t, x) = νϕ(t)q(0, x) t > 0, x ∈ E

q(0, x) = u(x) x ∈ E,
(3.3)

where u is suitable initial data. Let us give the definition of solution.

Definition 3.6. We say that q : R+
0 ×E → R is a solution of (3.3) if q is continuous, ϕ(∂t − G)q(t, x) is

well-defined for all (t, x) ∈ R+ ×E and the equality in (3.3) hold.

We remark that operators in the form of ϕ (∂t −G) have already been considered in the literature. In
[32] the authors considered the equation (∂t −∆)

α
q = qp, α ∈ (0, 1), p > 0, for x ∈ Rd, t ∈ (0, T ), and

studied the existence and behaviour of blow-up. In [7] the authors considered the equation (∂t −∆)
α
q = 0,

α ∈ (0, 1), in connection with the obstacle problem for the fractional Laplacian. Furthermore, in [17] the
authors considered coupled operators of this kind: ϕ (∂t −G), under suitable assumptions, and they provided
Hölder estimates for integro-differential equations involving those operators.

In this paper, we are interested in proving the existence and uniqueness of the solutions to (3.3) and
relating them to some appropriate non-Markov processes. We shall consider two specific cases of interest:

• In the first case, we shall assume that G is the generator of a Feller semigroup on C0(E). In such a
case (3.3) is shown to be the governing equation of a large family of time-changed Feller processes.

• In the second case, we shall focus on a sub-diffusive Black-Scholes equation in the context of a
sub-diffusive market. Notice that, in such a situation, we could consider G to be the generator of
a geometric Brownian motion, however the initial (or final) data we consider does not belong to
C0(R+). For such a reason, a deep investigation of the uniqueness classes related to the problem is
needed. Even in this case, however, the solution can be related to a suitably time-changed geometric
Brownian motion.

In both cases, the existence of the solution can be proved using a stochastic representation, namely a suitable
time-change of a Markov process generated by G. This idea will be described in the next section.

4. The undershooting of a subordinator and related time-changed processes

Fix a filtered probability space (Ω,F∞, {Ft}t≥0,P). Throughout the paper, we will denote filtrations with
a calligraphic letter without subscript, as, for instance, F := {F t}t≥0. Let S = {S(t), t ≥ 0} be a real-valued,
strictly increasing càdlàg process with independent and stationary increments. In particular, we have that
S0 = {S0(t), t ≥ 0} defined as S0(t) = S(t)− S(0) is a subordinator. We define the first-passage processes

L(t) := inf{u ≥ 0 : S(u) > t}
L0(t) := inf{u ≥ 0 : S0(u) > t},

where for all t ≥ 0 it holds L(t) = L0(t− S(0)). Since S is assumed to be strictly increasing, L is continuous
and increasing. Denote by D(R+

0 ) the space of real-valued càdlàg functions and for any f ∈ D(R+
0 ) and t > 0

let f(t−) = limδ↑0 f(t+ δ), while we set f(0−) := f(0). We define

H(t) := S0(L(t)−) H0(t) := S0(L0(t)−). (4.1)

In particular, H0 is called the undershooting of the subordinator S0, see [13, Section 1.4]. Concerning H, we
have, for all t ≥ 0

H(t) = S(L(t)−)− S(0) = H0(t− S(0)).
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Throughout the paper, we assume that E[e−λS0(t)] = e−tϕ(λ), where ϕ ∈ B0. The potential measure of the
subordinator S0 is defined as

Uϕ(t) = E[L0(t)].

It is well-known (see [63, Theorem 10.3 and Equation (10.9)]) that if ϕ ∈ SB0 then there exists a non-

increasing function uϕ : R+ → R+ (called the potential density) such that
∫ 1

0
uϕ(t)dt < ∞ and

Uϕ(dt) = uϕ(t)dt.

Since uϕ is non-increasing and non-negative, Uϕ is concave. We recall (see [63, Theorem 10.9]) that (uϕ, ν̄ϕ)
constitute a Sonine pair, meaning that ∫ t

0

uϕ(τ)ν̄ϕ(t− τ)dτ = 1.

Such a condition, called Sonine condition, has been first introduced in [65]. In general, for all Borel sets
A ⊆ [0, t] (see [13, Lemma 1.10]),

P(H0(t) ∈ A) =

∫
A

νϕ(t− y)Uϕ(dy).

Furthermore, if ϕ ∈ SB0, it holds

P(H0(t) ∈ A) =

∫
A

νϕ(t− y)uϕ(y) dy. (4.2)

Since it is a suitable time translation of the undershooting H0 of S0, we refer to H as the undershooting of
S. Since it is the composition of the càglàd function S0(·−) with the continuous function L(·), it is true that
also H is càglàd. Now, we want to use H as a time-change. The fact that it is not right-continuous implies
that this is not a time-change in the usual sense, e.g. [53, Definition V.1.2]. However, a suitable theory of
left-continuous time-changes has been developed in the context of subordinators and their inverses (see [46]).

To define our time-changed process, let M = {M(t), t ≥ 0} be a Feller process independent of S. We
define Mϕ(t) = M(S0(t)) and τ(t) = t + S(0) for all t ≥ 0. Since (M, τ) is a Feller process, by Phillips’
Theorem (see [57, Theorem 32.1]) we know that (Mϕ, S), that is obtained by subordination via S0, is still
a Feller process with respect to its natural filtration. In the following, it will be useful to consider the
canonical construction of (M,S), as in [53, Chapter III.1], with the only exception that we are using the
most general form of the Kolmogorov extension theorem, as in [66, Theorem 2.4.3], so that we do not
need E to be a Polish space. We recall here the canonical construction. We have Ω = D(R+

0 ;E × R),
i.e., the space of càdlàg functions with values in E × R, and we set for any ω ∈ Ω, denoting ω(t) =
(ω1(t), ω2(t)) ∈ E × R for t ≥ 0, (M(t)(ω), S(t)(ω)) = ω(t). For t ≥ 0, we let F0

t = σ((M(s), S(s)), s ≤ t)

and F0
∞ = σ

(⋃
t≥0 F0

t

)
. Then, for any (x, v) ∈ E × R, we construct, by using Kolmogorov extension

theorem, the unique probability measure P(x,v) on (Ω,F0
∞) such that (M,S) admits the desired transition

probability function and P(x,v)(M(0) = x, S(0) = v) = 1. Once this is done, we consider the completion
F∞ and F t, for t ≥ 0, of F0

∞ and F0
t , for t ≥ 0, with respect to the measure P(x,v) and we use as (family

of) filtered probability spaces (Ω,F∞, {F t}t≥0,P
(x,v)). In such a case, (M,S) is called a canonical Feller

process. Now denote G0
t = σ((Mϕ(s), S(s)), s ≤ t), G0

∞ := σ
(⋃

t≥0 G
0
t

)
and with Gt and G∞ their completion

with respect to P(x,v). Since the composition is a measurable operator (see [14]), we know that G∞ ⊂ F∞.
Furthermore, by Phillip’s theorem, (Mϕ, S) is a Feller process with respect to the filtration G := {Gt}t≥0.
Before proceeding, let us recall the following definition, as in [23, Definition 1.4].
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Definition 4.1. Consider a probability space (Ω,F∞,P) and a filtration F := {Ft}t≥0 on it. An E × Rm-
valued stochastic process (X,Y ) is said to be Markov additive with respect to F if it is F-Markov and for all
A ∈ E, B ∈ B(Rm) and 0 ≤ s ≤ t

Ps,t1A×B(x, y) = Ps,t1A×(B−y)(x, 0),

where B − y = {z ∈ Rm : z + y ∈ B} and Ps,t is the two-parameters transition semigroup of (X,Y ). Notice
that the latter is equivalent to

P((X(t), Y (t)− Y (s)) ∈ A×B | X(s), Y (s))

= P((X(t), Y (t)− Y (s)) ∈ A×B | X(s)).
(4.3)

We can prove the following result.

Lemma 4.2. The process (Mϕ, S) is Markov additive with respect to its augmented natural filtration G.

Proof. We already know that (Mϕ, S) is a Feller process with respect to G, hence we just need to show (4.3).
Let s < t, A ∈ E and B ∈ B(R), let Mϕ(t) play the role of X(t) and S(t) play the role of Y (t) and observe
that, setting ∆S = S(t)− S(s),

P(x,v)
(
(Mϕ(t),∆S) ∈ A×B | Mϕ(s), S(s)

)
=E(x,v)

[
E(x,v)

[
1A
(
Mϕ(t)

)
1B (∆S) | Mϕ(s), S(s),∆S

]
| Mϕ(s), S(s)

]
=E(x,v)

[
1B (∆S)E(x,v)

[
1A
(
Mϕ(t)

)
| Mϕ(s), S(s),∆S

]
| Mϕ(s), S(s)

]
Now recall that Mϕ(t) = M(S(t)− v) = M(∆S + S(s)− v) and Mϕ(s) = M(S(s)− v), where S(s) < S(t).
Now consider three Borel sets B1 ∈ E , B2, B3 ⊂ R and the event

B⋆ = {Mϕ(s) ∈ B1} ∩ {S(s) ∈ B2} ∩ {∆S ∈ B3} ∈ σ(Mϕ(s), S(s),∆S).

It holds

E(x,v)[1B⋆1A(M
ϕ(t))]

= E(x,v)[1B1
(Mϕ(s))1B2

(S(s))1B3
(∆S)1A(M(∆S + S(s)− v))]

= E(x,v)
[
1B3

(∆S)E(x,v)
[
1B1

(Mϕ(s))1B2
(S(s))1A(M(∆S + S(s)− v)) | ∆S

]]
.

Once we notice that {M(t), t ≥ 0} and S(s) are independent of ∆S, if we set

F1(y) = E
(x,v)

[
1B1

(Mϕ(s))1B2
(S(s))1A(M(y + S(s)− v))

]
,

it holds
E(x,v)[1B⋆1A(M

ϕ(t))] = E(x,v) [1B3
(∆S)F1(∆S)] .

However, we can also write

F1(y) = E
(x,v)

[
1B1(M

ϕ(s))1B2(S(s))E
(x,v)

[
1A(M(y + S(s)− v)) | Mϕ(s), S(s)

]]
. (4.4)

Let us focus on the inner conditional expectation. Consider again two sets B4 ∈ E and B5 ∈ E and the event

B⋆⋆ = {Mϕ(s) ∈ B4} ∩ {S(s) ∈ B5}.
Then

E(x,v) [1B⋆⋆
1A(M(y + S(s)− v)] = E(x,v)

[
1B4

(Mϕ(s))1B5
(S(s))1A(M(y + S(s)− v)

]
= E(x,v)

[
1B5(S(s))E

(x,v)
[
1B4(M

ϕ(s))1A(M(y + S(s)− v) | S(s)
]]

.
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Since M and S are independent, if we set, for z ≥ v,

F2(z) = E
(x,v) [1B4

(M(z − v))1A(M(y + z − v)] ,

it holds

E(x,v) [1B⋆⋆
1A(M(y + S(s)− v)] = E(x,v) [1B5

(S(s))F2(S(s))] .

However, since {M(z − v) ∈ B4} ∈ σ(M(z − v)), we have

F2(z) = E
(x,v)

[
1B4

(M(z − v))E(x,v) [1A(M(y + z − v) | M(z − v)]
]

= E(x,v)
[
1B4

(M(z − v))E(M(z−v),v) [1A(M(y))]
]
.

Hence

E(x,v) [1B⋆⋆
1A(M(y + S(s)− v)]

= E(x,v)
[
1B5

(S(s))1B4
(Mϕ(s))E(Mϕ(s),v) [1A(M(y))]

]
= E(x,v)

[
1B⋆⋆

E(Mϕ(s),v) [1A(M(y))]
]
.

Since the events of the form B⋆⋆ constitute a π-system generating σ(Mϕ(s), S(s)), this shows that

E(x,v)
[
1A(M(y + S(s)− v)) | Mϕ(s), S(s)

]
= E(Mϕ(s),v) [1A(M(y))] .

Define

F3(x, y) = E
(x,v) [1A(M(y))]

so that going back to (4.4) we get

F1(y) = E
(x,v)

[
1B1(M

ϕ(s))1B2(S(s))F3(M
ϕ(s),∆S)

]
and then

E(x,v)[1B⋆1A(M
ϕ(t))] = E(x,v)

[
1B⋆F3(M

ϕ(s),∆S)
]
,

i.e., since the events of the form B⋆ constitute a π-system generating σ(Mϕ(s), S(s),∆S),

E(x,v)[1A(M
ϕ(t)) | Mϕ(s), S(s),∆S] = F3(M

ϕ(s),∆S).

Since ∆S is independent of both Mϕ(s) and S(s), we get (see Lemma A.1)

P(x,v)((Mϕ(t),∆S) ∈ A×B | Mϕ(s), S(s)) = E(x,v)
[
1B(∆S)F3(M

ϕ(s),∆S) | Mϕ(s)
]
. (4.5)

Use now (4.5) to see that

P(x,v)((Mϕ(t),∆S) ∈ A×B | Mϕ(s))

= E(x,v)
[
1B(∆S)1A(M

ϕ(t)) | Mϕ(s)
]

= E(x,v)
[
E(x,v)

[
1B(∆S)1A(M

ϕ(t)) | Mϕ(s), S(s)
]
| Mϕ(s)

]
= E(x,v)

[
P(x,v)((Mϕ(t),∆S) ∈ A×B | Mϕ(s), S(s)) | Mϕ(s)

]
= E(x,v)

[
E(x,v)

[
1B(∆S)F3(M

ϕ(s),∆S) | Mϕ(s)
]
| Mϕ(s)

]
= E(x,v)

[
1B(∆S)F3(M

ϕ(s),∆S) | Mϕ(s)
]

= P(x,v)((Mϕ(t),∆S) ∈ A×B | Mϕ(s), S(s)). □
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Now we can define the process X = {X(t), t ≥ 0} where X(t) = Mϕ(L(t)−) that is, if we remember
that H(t) = S0 (L(t)−), we have that X(t) = M(H(t)). Notice, in particular, that X is a càglàd process.

We can highlight quite a special case. Indeed, if E = Rd and M is a jump-diffusion (as in [46]), then
also Mϕ is a jump-diffusion by [57, Theorem 32.1]. Hence, by combining Lemma 4.2 and [46, Theorem
4.1], we know that the process {(X(t), γ(t)), t ≥ 0} is a time-homogeneous simple Markov process, where
γ(t) = max{t−S(0)−H(t), 0}. The process γ is usually referred to as the age process, while its right-limits,
under v = 0, coincide with the sojourn time of X in the current position, i.e., the r.v. JX(t) := t−(0∨sup{s ≤
t : X(s) ̸= X(t)}), whenever M (and thus Mϕ) does not admit holding points (i.e., points on which M is
stuck for an exponentially distributed random time). Such processes are related, as observed in [46], on the
one hand, to the limits of continuous time random walks and, on the other hand, to the theory of semi-Markov
processes (see [36]). It is, however, worth noticing that the fact that the semi-Markov property holds for X

has not been shown even for E = Rd, but the simple Markov property of (X, γ) is already enough to provide
interesting stochastic models. We conjecture that the process X is actually semi-Markov even in the general
case in which E is a locally compact separable Hausdorff space: this problem is deferred to future research.

5. A coupled fully non-local equation for time-changed Feller processes

In this section, we want to determine the governing evolution equation of the process X(t) under the
condition S(0) = 0, relating it with (3.3). To do this, we shall consider the case in which G is a generator of
a Feller semigroup. Let us now dive into the details.

Let M be defined as in the previous section and consider its Feller semigroup {Pt}t≥0 on C0(E). Denote

by G its generator, with domain Dom(G). As in Example 2.7, (C0(E), C(R+
0 ;C0(E))) is a uniqueness class

for G. To get uniqueness for our non-local equation (3.3), the condition q(t, ·) ∈ C0(E) will not be sufficient:
we need this to hold locally uniformly in time.

Definition 5.1. Let u : R+
0 ×E → R and T > 0. We say that

lim
x→∞

u(t, x) = 0 uniformly with respect to t ∈ [0, T ]

if for all ε > 0 there exists a compact set K ⊂ E such that

sup
x̸∈K

|u(t, x)| < ε, ∀t ∈ [0, T ].

We say that
lim
x→∞

u(t, x) = 0 locally uniformly with respect to t ≥ 0

if the same property holds uniformly with respect to t ∈ [0, T ] for all T > 0.

Theorem 5.2. Let ϕ ∈ SB0 such that
∥∥log(·)uϕ(·)

∥∥
L1[0,1]

< ∞ and M be a E-valued Feller process with

semigroup {Pt}t≥0 and generator (G,Dom(G)). Let also S be a real-valued, strictly increasing càdlàg pro-
cess with independent and stationary increments. Assume further that S is independent of M and that the

subordinator S0(t) = S(t) − S(0) is such that ϕ(λ) = logE(x,0)[e−λS0(1)]. Let H be the undershooting of
S and X(t) = M(H(t)). Finally, suppose that S0(t) admits a density gS0(·; t) under P(x,0). Then, for all
u ∈ Dom(G), the function

q(t, x) = E(x,0)[u(X(t))]

is the unique solution of
ϕ(∂t −G)q(t, x) = νϕ(t)q(0, x), t > 0, x ∈ E,

q(0, x) = u(x), x ∈ E

limx→∞ q(t, x) = 0 locally uniformly with respect to t ≥ 0,

(5.1)
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i.e., it is the unique function q : R+
0 ×E 7→ R that satisfies Definition 3.6 and the limit condition limx→+∞ q(t, x) =

0 locally uniformly with respect to t ≥ 0.

Remark 5.3. Notice that if E ⊂ Rd is a bounded open set with a suitably regular boundary, f ∈ C0(E) if
and only if f ∈ C(E) with f(x) = 0 on ∂E. Furthermore,

lim
x→∞

q(t, x) = 0 locally uniformly with respect to t ≥ 0

if and only if q ∈ C(R+
0 ×E) with q(t, x) = 0 for all x ∈ ∂E. In particular (5.1) becomes

ϕ(∂t −G)q(t, x) = νϕ(t)q(0, x), t > 0, x ∈ E,

q(0, x) = u(x), x ∈ E,

q(t, x) = 0 x ∈ ∂E,

(5.2)

i.e., it is a non-local Cauchy-Dirichlet problem. From a purely analytical point of view and in the special case
ϕ(λ) = λα and G = ∆ these problems have been studied in [7] in connection with the obstacle problem for the
fractional Laplacian and in [32] with a non-linear term. Also in [17], equations of these forms are considered
and Hölder estimates are provided.

In order to prove Theorem 5.2, we need some preliminary regularity estimates on the function q to verify
the hypotheses of Theorems 3.2 and 3.3.

5.1. Regularity of q. First of all, in order to guarantee that we can apply Theorems 3.2 and 3.3 to the
function q, we show that it satisfies the assumptions of both theorems. This requires some smoothness
properties. We start by proving that, for fixed x ∈ E, q(·, x) is absolutely continuous.

Proposition 5.4. Under the hypotheses of Theorem 5.2, for all x ∈ E the function q(·, x) belongs to AC(R+
0 )

with a.e. derivative ∂tq(·, x) satisfying, for almost all t ∈ [0, T ],

|∂tq(t, x)| ≤ C(∥Gu∥C(E) + ∥u∥C(E))u
ϕ(t) (5.3)

for a suitable constant C > 0 (which is independent on x ∈ E). Remember that uϕ(t) denotes the potential
density.

Proof. Consider the Feller semigroup (P̃t)t≥0 acting on any function w ∈ C0(E × R) as

P̃tw(x, s) = E
(x,0)[w(M(t), t+ s)].

Let Ã be the generator of (P̃t)t≥0. By Phillips theorem (see [63, Theorem 12.6]), we obtain that the generator

of (Mϕ, S) (which is obtained by subordinating P̃ by means of the subordinator S0) is given, on functions

w ∈ Dom(Ã), by

Ãϕw =

∫ ∞

0

(P̃sw − w)νϕ(ds);

The reader should keep in mind that the integral in the above equation is in the sense of Bochner. Now let
u ∈ Dom(G) and consider, for any N ∈ N, a cut-off function of [−N,N ], i.e. ηN ∈ C∞

c (R) such that ηN (t) = 1
for t ∈ [−N,N ], ηN (t) = 0 for t ∈ [−N − 1, N +1] and ηN (t) ∈ [0, 1] for all t ∈ R. Without loss of generality,
we can assume that

∥∥ d
dtηN

∥∥
L∞(R) ≤ Cη, where Cη is independent of N . We define uN (x, t) = u(x)ηN (t). Let

us show that uN ∈ Dom(Ã). Indeed,

lim
h→0

P̃huN (x, t)− uN (x, t)

h
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= lim
h→0

E(x,0)[u(M(h)) | M(0) = x]ηN (t+ h)− u(x)ηN (t)

h

= lim
h→0

E(x,0)[u(M(h)) | M(0) = x]− u(x)

h
ηN (t+ h) + u(x) lim

h→0

ηN (t+ h)− ηN (t)

h

= Gu(x)ηN (t) + u(x)
d

dt
ηN (t).

Since the pointwise generator coincides with the classical one (see [15, Theorem 1.33]), then this proves that

uN ∈ Dom(Ã) and

ÃuN (x, t) = Gu(x)ηN (t) + u(x)
d

dt
ηN (t) ∀x ∈ E, ∀t ∈ R . (5.4)

By Phillips theorem, we know that uN ∈ Dom(Ãϕ) and in particular

ÃϕuN =

∫ ∞

0

(P̃suN − uN )νϕ(ds)

=

∫ 1

0

∫ s

0

P̃τ ÃuNdτ νϕ(ds) +

∫ ∞

1

(P̃suN − uN )νϕ(ds).

By Bochner theorem, see [1, Theorem 1.1.4], we have∥∥∥ÃϕuN

∥∥∥
C(E×R)

≤
∫ 1

0

∫ s

0

∥∥∥P̃τ ÃuN

∥∥∥
C(E×R)

dτ νϕ(ds)

+

∫ ∞

1

∥∥∥P̃suN − uN

∥∥∥
C(E×R)

νϕ(ds)

≤
∥∥∥ÃuN

∥∥∥
C(E×R)

Jϕ(1) + 2 ∥uN∥C(E×R) νϕ(1),

where Jϕ(1) =
∫ 1

0
sνϕ(ds). Using (5.4) and recalling that ∥ηN∥L∞(R) = 1, we have∥∥∥ÃϕuN

∥∥∥
C(E×R)

≤ (∥Gu∥C(E) + ∥u∥C(E) Cη)Jϕ(1) + 2 ∥u∥C(E) νϕ(1)

≤ C(∥Gu∥C(E) + ∥u∥C(E)),

for some suitable constant C that is independent of N . Now let

qN (t, x, s) = E(x,s)[uN (X(t), S(L(t)−))] = E(x,s)[uN (Mϕ(L(t)−), S(L(t)−))], (5.5)

observe that L(t) is a stopping time with respect to the natural filtration of (Mϕ(·−), S(·−)) and use Dynkin’s
formula [15, Equation (1.55)] to write

qN (t, x, s) = uN (x, s) + E(x,s)

[∫ L(t)

0

ÃϕuN (MΦ(τ), S(τ))dτ

]
,

where we also used the fact that S is stochastically continuous. Now fix T > 0 and consider t ∈
[
0, 3

2T
]
. We

extend qN (t, x, s) to t ∈
[
−T

2 , 0
]
by setting qN (t, x, s) = uN (x, s). Let h ∈ R with 0 < |h| < T

2 and define for

any φ :
[
−T

2 ,
3
2T
]
→ R the quantity

Dhφ(t) :=
φ(t+ h)− φ(t)

h
.



18

We argue first for h > 0. Observe that, by (5.5), for almost all t ∈ [0, T ].∣∣DhqN (t, x, 0)
∣∣ ≤ h−1E(x,0)

[∫ L(t+h)

L(t)

|ÃϕuN (Mϕ(τ), S(τ))|dτ

]
≤
∥∥∥ÃϕuN

∥∥∥
C(E×R)

h−1E(x,0)[L(t+ h)− L(t)]

≤ C(∥Gu∥C(E) + ∥u∥C(E))h
−1(Uϕ(t+ h)− Uϕ(t))

≤ C(∥Gu∥C(E) + ∥u∥C(E))u
ϕ(t).

If h < 0 instead, let us distinguish among two cases. If |h| ≤ t
2 then we have∣∣DhqN (t, x, 0)

∣∣ ≤ C(∥Gu∥C(E) + ∥u∥C(E))
Uϕ(t)− Uϕ(t+ h)

|h|
≤ C(∥Gu∥C(E) + ∥u∥C(E))u

Φ

(
t

2

)
.

If, instead, |h| ∈
[
t
2 , t
)
, then∣∣DhqN (t, x, 0)

∣∣ ≤ C(∥Gu∥C(E) + ∥u∥C(E))
Uϕ(t)− Uϕ(t+ h)

|h|
≤ 2C(∥Gu∥C(E) + ∥u∥C(E))

Uϕ (t)

t
.

Finally, if |h| > t, we get∣∣DhqN (t, x, 0)
∣∣ ≤ C(∥Gu∥C(E) + ∥u∥C(E))

Uϕ(t)

|h|
≤ C(∥Gu∥C(E) + ∥u∥C(E))

Uϕ (t)

t
.

Hence, we have in general (for any h ∈ R)∣∣DhqN (t, x, 0)
∣∣ ≤ C(∥Gu∥C(E) + ∥u∥C(E))

(
uϕ(t) + uϕ

(
t

2

)
+

Uϕ(t)

t

)
.

Now, since u ∈ C0(E) and ∥ηN∥L∞(R) = 1, we can use the dominated convergence theorem to take the limit

as N → ∞ and get ∣∣Dhq(t, x)
∣∣ ≤ C(∥Gu∥C(E) + ∥u∥C(E))

(
uϕ(t) + uϕ

(
t

2

)
+

Uϕ(t)

t

)
. (5.6)

We now use a suitable modification of [27, Theorem 5.8.3] in the case of L1 functions. For completeness
we give here all the details of the proof. Consider any sequence hn → 0, fix x ∈ E and set, for simplicity,
gn(t) = Dhnq(t, x) for t ∈ [0, T ]. Before proceeding, notice that for any T > 0 it holds∫ T

0

Uϕ(t)

t
dt =

∫ T

0

∫ t

0

uϕ(s)

t
ds dt =

∫ T

0

∫ T

s

uϕ(s)

t
dt ds = log(T )Uϕ(T )−

∫ T

0

log(s)uϕ(s) ds < ∞,

where the last inequality follows by assumption. Set then gϕ(t) = uϕ(t) + uϕ
(
t
2

)
+ Uϕ(t)

t and notice that

gϕ ∈ L1
loc(R

+
0 ) and gn(t) ≤ C(∥Gu∥C(E) + ∥u∥C(E))g

ϕ(t) for all t ≥ 0. We have then

∥gn∥L1[0,T ] ≤ C(∥Gu∥C(E) + ∥u∥C(E))
∥∥gϕ∥∥

L1[0,T ]
, ∀n ∈ N .

Furthermore, since gϕ ∈ L1[0, T ], we know that for any ε > 0 there exists δ > 0 such that for all measurable
A ⊂ [0, T ] such that |A| < δ it holds∫

A

gn(t)dt ≤ C(∥Gu∥C(E) + ∥u∥C(E))

∫
A

gϕ(t) dt < ε, ∀n ∈ N,
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that implies that the sequence {gn}n∈N is uniformly integrable in [0, T ]. Hence, by Dunford-Pettis theorem
[16, Theorem 4.30] we know that there exists a function q ∈ L1(0, T ) such that gn ↾ g. Next, let φ ∈ C∞

c (0, T )
and observe that ∫ T

0

Dhq(t, x)φ(t)dt =

∫ 3
2T

0

Dhq(t, x)φ(t)dt = −
∫ 3

2T

0

q(t, x)D−hφ(t)dt

and, in particular, ∫ T

0

gn(t)φ(t)dt = −
∫ 3

2T

0

q(t, x)D−hnφ(t)dt.

Taking the limit as n → +∞ we have∫ T

0

g(t)φ(t)dt = −
∫ 3

2T

0

q(t, x)φ′(t)dt = −
∫ T

0

q(t, x)φ′(t)dt.

It follows that q(·, x) ∈ W 1,1[0, T ], where W 1,1[0, T ] is the usual Sobolev space, with weak derivative
∂tq(t, x) = g(t). In particular, we recall that any function W 1,1[0, T ] admits an absolutely continuous version.
Since q(·, x) is continuous, then it is absolutely continuous with a.e. derivative ∂tq(·, x). Finally, notice that
for h > 0 we actually have ∣∣Dhq(t, x)

∣∣ ≤ C(∥Gu∥C(E) + ∥u∥C(E))u
ϕ(t)

and taking the limit as h → 0+ we get the statement. □

Thanks to the previous result, now we can prove that q satisfies Items (i) of Theorem 3.2 and (i) of
Theorem 3.3.

Corollary 5.5. Under the assumptions of Theorem 5.2 we have that for all (t, x) ∈ R+
0 ×E,∫ t

0

∥Psq(t− s, ·)− Psq(t, ·)∥C(E) νϕ(ds) ≤ C(∥Gu∥C(E) + ∥u∥C(E))

and ∫ ∞

0

e−λt

∫ t

0

∥Psq(t− s, ·)− Psq(t, ·)∥C(E) νϕ(ds) dt ≤
C(∥Gu∥C(E) + ∥u∥C(E))

λ

for all x ∈ E and λ > 0.

Proof. Let us fix x ∈ E and observe that by (5.3) we have

|q(t− s, x)− q(t, x)| ≤
∫ s

0

|∂tq(t− τ, x)| dτ

≤C(∥Gu∥C(E) + ∥u∥C(E))

∫ s

0

uϕ(t− τ)dτ. (5.7)

Since Ps is non-expansive, positive preserving and sub-Markov we have for all x ∈ E

|Psq(t− s, x)− Psq(t, x)| ≤ Ps |q(t− s, ·)− q(t, ·)| (x)

≤ C(∥Gu∥C(E) + ∥u∥C(E))

∫ s

0

uϕ(t− τ)dτ
(5.8)

hence, taking the supremum, then integrating and using Fubini,∫ t

0

∥Psq(t− s, ·)− Psq(t, ·)∥C(E) νϕ(ds)
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≤ C(∥Gu∥C(E) + ∥u∥C(E))

∫ t

0

∫ s

0

uϕ(t− τ) dτ νϕ(ds)

= C(∥Gu∥C(E) + ∥u∥C(E))

∫ t

0

uϕ(t− τ)

∫ t

τ

νϕ(ds) dτ

≤ C(∥Gu∥C(E) + ∥u∥C(E))

∫ t

0

uϕ(t− τ)νϕ(τ) dτ

= C(∥Gu∥C(E) + ∥u∥C(E)),

where the first equality is due to the fact that (τ, s) ∈ [0, s] × [0, t] is equivalent to (τ, s) ∈ [0, t] × [τ, t].
Furthermore, we have∫ +∞

0

e−λt

∫ t

0

∥Psq(t− s, ·)− Psq(t, ·)∥C(E) νϕ(ds) dt ≤
C(∥Gu∥C(E) + ∥u∥C(E))

λ

for all λ > 0.
□

Next, we show that q(t, ·) belongs to Dom(G) and we control its uniform norm.

Proposition 5.6. Under the hypotheses of Theorem 5.2, for all t ≥ 0 the function q(t, ·) belongs to Dom(G)
and

∥Gq(t, ·)∥C(E) ≤ ∥Gu∥C(E) . (5.9)

Furthermore limx→∞ q(t, x) = 0 locally uniformly with respect to t ≥ 0.

Proof. Observe that, since H(t) defined in equation (4.1) is independent of M , we have

q(t, x) = E(x,0)[u(X(t))] =E(x,0)[E(x,0)[u(X(t)) | H(t)]] = E(x,0)[PH(t)u(x)]

=

∫ t

0

Pτu(x)ν̄ϕ(t− τ)uϕ(τ)dτ, (5.10)

where we used the fact that H(t) admits density ν̄ϕ(t− τ)uϕ(τ) for τ ∈ (0, t), see [13, Lemma 1.10]. Let us
stress that ∫ t

0

∥Pτu∥C(E) ν̄ϕ(t− τ)uϕ(τ)dτ ≤ ∥u∥C(E) ,

hence, a simple application of the dominated convergence theorem shows that q(t, ·) ∈ C(E). Next, we prove
that

lim
x→∞

q(t, x) = 0 locally uniformly with respect to t ≥ 0, (5.11)

which in turn implies that q(t, ·) ∈ C0(E). To do this, fix T > 0 and observe that Ptu ∈ C0(E) for all t ≥ 0
and (Pt)t≥0 is strongly continuous. Let us extend the semigroup by setting Pt = I for all t ≤ 0, in such a way
that (Pt)t∈R is still a strongly continuous family of operators such that Ptu ∈ C0(E) for all t ∈ R. Fix ε > 0.
For all t ∈ [0, T ] let K(t) be a compact set such that supx̸∈K(t) |Ptu(x)| < ε

2 . Since Pt+hu uniformly converges

towards Ptu as h → 0, we know that there exists δ(t) > 0 such that for any s ∈ (t− δ(t), t+ δ(t)) =: I(t) it
holds supx ̸∈K(t) |Psu(x)− Ptu(x)| < ε

2 . As a consequence, in particular, supx̸∈K(t) |Psu(x)| < ε. Now notice

that
⋃

t∈[0,T ] I(t) ⊃ [0, T ], where the latter is a compact subset of R, thus {I(t)}t∈[0,T ] is an open covering of

[0, T ]. Hence, we can extract a finite number of such open sets I(t1), . . . , I(tN ) such that [0, T ] ⊂
⋃N

i=1 I(ti).
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Let K =
⋃N

i=1 K(ti), which is a compact set since it is a finite union of compact sets. Let s ∈ [0, T ]. Then
there exists i = 1, . . . , N such that s ∈ I(ti) and then

sup
x ̸∈K

|Psu(x)| ≤ sup
x ̸∈K(ti)

|Psu(x)| < ε.

We have shown that, for all s ∈ [0, T ],
sup
x ̸∈K

|Psu(x)| < ε.

Hence, by (5.20) we get

sup
x ̸∈K

|q(t, x)| ≤
∫ t

0

νϕ(t− s)uϕ(s) sup
x ̸∈K

|Psu(x)| ds < ε

∫ t

0

νϕ(t− s)uϕ(s) ds = ε.

Since ε > 0 and T > 0 are arbitrary, we proved that limx→∞ q(t, x) = 0 locally uniformly with respect to
t ≥ 0. Now we need to prove that q(t, ·) ∈ Dom(G) and that (5.9) holds. Define

Gs =
Ps − I

s
, s > 0,

where I is the identity operator on C0(E). Setting Q : R+
0 → C0(E) as Q(t) = q(t, ·) for t ∈ R+

0 , we have

Q(t) =

∫ t

0

Pτuν̄ϕ(t− τ)uϕ(τ)dτ.

Thus,

GsQ(t) = Gs

∫ t

0

Pτu ν̄ϕ(t− τ)uϕ(τ)dτ =

∫ t

0

GsPτu ν̄ϕ(t− τ)uϕ(τ)dτ

=

∫ t

0

PτGsu ν̄ϕ(t− τ)uϕ(τ)dτ, (5.12)

where we used [1, Proposition 1.1.6] and the fact that Gs and Pτ commute on Dom(G). Now, since u ∈
Dom(G), we have (see definition 2.8)

Gsu =
1

s

∫ s

0

PwGudw

and in particular ∥Gsu∥C(E) ≤ ∥Gu∥C(E). Furthermore, since Pτ is contractive, we have∥∥PτGsu ν̄ϕ(t− τ)uϕ(τ)
∥∥
C(E)

≤ ν̄ϕ(t− τ)uϕ(τ) ∥Gu∥C(E) ,

where the right-hand side is integrable in [0, t] and independent of s. Hence, taking the limit as s → 0 in
(5.12), using the dominated convergence theorem for Bochner integrals [1, Theorem 1.1.8] and the fact that
Pτ is continuous, we get

lim
s→0

GsQ(t) =

∫ t

0

PτGu ν̄ϕ(t− τ)uϕ(τ)dτ,

i.e. q(t, ·) ∈ Dom(G) for all t ≥ 0 and

Gq(t, ·) =
∫ t

0

PτGu(·) ν̄ϕ(t− τ)uϕ(τ)dτ.

Finally, again by Bochner theorem, the contractivity of Pτ and the fact that (ν̄ϕ, u
ϕ) is a Sonine pair, we

have
∥Gq(t, ·)∥C(E) ≤ ∥Gu∥C(E) .

□
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Since q(t, ·) ∈ Dom(G), one has Gq(t, ·) ∈ C0 (E). Hence, we get the following corollary, which guarantees
that Items (ii) of Theorem 3.2 and (ii) of Theorem 3.3 hold.

Corollary 5.7. Under the assumptions of Theorem 5.2 we have, for all (t, x) ∈ R+ ×E∫ t

0

∥Psq(t, ·)− q(t, ·)∥C(E) νϕ(ds) ≤ ∥Gu∥C(E) Jϕ(t)

where Jϕ(t) =
∫ t

0
sνϕ(ds) and, for all λ > 0 and x ∈ E,∫ +∞

0

e−λt

∫ t

0

∥Psq(t, ·)− q(t, ·)∥C(E) νϕ(ds) dt < ∞.

Proof. Since q(t, ·) ∈ Dom(G) ⊂ C0(E), we have

Psq(t, x)− q(t, x) =

∫ s

0

GPτq(t, x) dτ =

∫ s

0

PτGq(t, x) dτ.

Taking the absolute value, using again the fact that Pτ is non-expansive, positivity preserving and sub-
Markov,

|Psq(t, x) − q(t, x)| ≤
∫ s

0

|PτGq(t, x)| dτ ≤
∫ s

0

Pτ |Gq(t, x)| dτ ≤ ∥Gq(t, ·)∥C(E) s ≤ ∥Gu∥C(E) s. (5.13)

Hence, taking the supremum and then integrating,∫ t

0

∥Psq(t, ·)− q(t, ·)∥C(E) νϕ(ds) ≤ ∥Gu∥C(E) Jϕ(t)

and it follows by (2.7), that
∫ +∞
0

e−λtJϕ(t) dt < ∞ for all λ > 0. □

Next, we need to show that Item (iii) of Theorem 3.3 holds. Next proposition follows once we observe
that |q(t, x)| ≤ ∥u∥C(E) for all t ≥ 0 and x ∈ E.

Proposition 5.8. Under the hypotheses of Theorem 5.2 the following inequality holds, for all λ > 0 and
x ∈ E ∫ +∞

0

e−λtνϕ(t)q(t, x)dt ≤
ϕ(λ)

λ
∥u∥C(E) .

5.2. Proof of Theorem 5.2.

Proof. First, notice that, by the discussion in Subsection 5.1, we know that we are under the hypotheses of
Theorems 3.2 and 3.3. Hence, observe that by Theorem 3.2, ϕ(∂t − G)q(t, x) is well-defined for all x ∈ E
and t > 0. Furthermore, by Theorem 3.3, we know that for all x ∈ E the function ϕ(∂t −G)q(·, x) is Laplace
transformable for any λ > 0. Consider that q(0, x) = u(x) by definition. Next, observe that, for λ > 0∫ ∞

0

e−λtνϕ(t)q(0, x)dt =
ϕ(λ)

λ
q(0, x).

We want to prove that for all x ∈ E∫ ∞

0

e−λtϕ(∂t −G)q(t, x)dt =
ϕ(λ)

λ
q(0, x).

For this, first observe that by Theorem 3.3 we have∫ ∞

0

e−λtϕ(∂t −G)q(t, x)dt = −
∫ ∞

0

∫ ∞

0

e−λt(Psq(t− s, x)1[0,t](s)− q(t, x))dt νϕ(ds).
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Set Q as in the proof of Proposition 5.6. Then we have∫ ∞

0

e−λtPsQ(t− s)1[0,t](s)dt = Ps

∫ ∞

0

e−λtQ(t− s)1[s,+∞)(t)dt

= Ps

∫ ∞

s

e−λtQ(t− s)dt

= e−λsPs

∫ ∞

0

e−λtQ(t)dt := e−λsPsQ̃(λ),

where the first equality is due to the fact that Ps does not depend on t and that s ∈ [0, t] is equivalent to
t ∈ [s,∞) and where all the integrals are Bochner integrals on C0(E). Hence, in particular, the equality
holds for all x ∈ E and then we get∫ ∞

0

e−λtPsq(t− s, x)1[0,t](s)dt = e−λsPsq̃(λ, x),

where q̃(λ, x) =
∫∞
0

e−λtq(t, x)dt. This implies∫ ∞

0

e−λtϕ(∂t −G)q(t, x)dt = −
∫ ∞

0

(
e−λsPsq̃(λ, x)− q̃(λ, x)

)
νϕ(ds). (5.14)

Now we need to evaluate q̃(λ, x). First, we use Fubini’s theorem to write

q̃(λ, x) = E(x,0)

[∫ +∞

0

e−λtu(X(t)) dt

]
.

Then, we recall that S performs at most countably many jumps that are a.s. dense in [0,+∞) and it
increases continuously on a set with Lebesgue measure zero (see [57, Chapter 4, Section 21]) and also that
H(t) = S(y−) for any t ∈ (S(y−), S(y)], so that

q̃(λ, x) = E(x,0)

∑
y≥0

∫ S(y)

S(y−)

e−λtu(M(S(y−)))dt


= E(x,0)

∑
y≥0

e−λS(y−) − e−λS(y)

λ
u(M(S(y−)))


=

1

λ
E(x,0)

∑
y≥0

e−λS(y−)(1− e−λ(S(y)−S(y−)))u(M(S(y−)))


Now observe that all the previous argument can be applied to u±(x) = max{0,±u(x)}, so that

1

λ
E(x,0)

∑
y≥0

e−λS(y−)(1− e−λ(S(y)−S(y−)))u±(M(S(y−)))


=

∫ +∞

0

e−λtEx[u±(X(t))]dt < ∞. (5.15)

Consider the Cb(R+
0 )-valued stochastic processes: Z± := {Z±(y), y ≥ 0} defined, for all y, z ≥ 0, as

Z±(y)(z) = u±(M(S(y−)))e−λS(y−)(1− e−λz).
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Notice that Z± is left-continuous, i.e. for all y > 0 and yn ↑ y it holds

∥Z±(yn)− Z±(y)∥C(E)

≤ |u±(M(S(y−)))e−λS(y−) − u±(M(S(yn−)))e−λS(yn−)| → 0

as n → ∞, hence it is a predictable process Furthermore, observe that p = {p(y), y ≥ 0} with p(y) =
S(y)− S(y−) is a Poisson point process of intensity νϕ. Hence, by the compensation formula (see [12, Page
7]), we get

1

λ
E(x,0)

∑
y≥0

e−λS(y−)(1− e−λ(S(y)−S(y−)))u±(M(S(y−)))


=

1

λ
E(x,0)

[∫ +∞

0

(∫ +∞

0

(1− e−λw)νϕ(dw)

)
u±(M(S(y−)))e−λS(y−)dy

]
=

ϕ(λ)

λ
E(x,0)

[∫ +∞

0

u±(M(S(y−)))e−λS(y−)dy

]
=

ϕ(λ)

λ

∫ +∞

0

E(x,0)
[
u±(M(S(y−)))e−λS(y−)

]
dy

=
ϕ(λ)

λ

∫ +∞

0

E(x,0)
[
u±(M(S(y)))e−λS(y)

]
dy,

where in the last equality we used the fact that S is stochastically continuous and independent of M . Since
the left-hand side of the previous equality is finite, so it is the right-hand side. Hence, subtracting term to
term and recalling that u(x) = u+(x)− u−(x), we get

q̃(λ, x) =
1

λ
E(x,0)

∑
y≥0

e−λS(y−)(1− e−λ(S(y)−S(y−)))u(M(S(y−)))


=

ϕ(λ)

λ

∫ +∞

0

E(x,0)
[
u(M(S(y)))e−λS(y)

]
dy

=
ϕ(λ)

λ

∫ +∞

0

∫ +∞

0

e−λτ E(x,0) [u(M(τ))] gS(τ ; y)dτ dy,

where gS(τ ; y)dτ is the law of S(y) under P(x,0) and we used the independence of M and S. Substituting
this equality into (5.14) we get∫ ∞

0

e−λtϕ(∂t −G)q(t, x)dt

= −ϕ(λ)

λ

∫ ∞

0

[
e−λsPs

(∫ +∞

0

∫ +∞

0

e−λτ E(·,0) [u(M(τ))] gS(τ ; y)dτ dy

)
(x)

−
∫ +∞

0

∫ +∞

0

e−λτ E(x,0) [u(M(τ))] gS(τ ; y)dτ dy

]
νϕ(ds).

Now observe that ∫ +∞

0

∫ +∞

0

e−λτ
∥∥∥E(·,0)[u(M(τ))]

∥∥∥
C(E)

gS(τ ; y)dτ dy
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≤ ∥u∥C(E)

∫ +∞

0

∫ +∞

0

e−λτgS(τ ; y)dτ dy

= ∥u∥C(E)

∫ +∞

0

e−yϕ(λ)dy =
∥u∥C(E)

ϕ(λ)
< ∞,

hence, by [1, Proposition 1.1.6] and recalling that Bochner integrability in C0(E) implies Lebesgue integra-
bility for fixed x ∈ E, we have∫ ∞

0

e−λtϕ(∂t −G)q(t, x)dt

= −ϕ(λ)

λ

∫ ∞

0

∫ +∞

0

∫ +∞

0

(
e−λ(s+τ)PsE

(·,0) [u(M(τ))] (x)

− e−λτ E(x,0) [u(M(τ))]
)
gS(τ ; y)dτ dyνϕ(ds). (5.16)

Next, we want to use Fubini theorem. To do this, we first observe that E(·,0)[u(M(τ))] ∈ Dom(G). Fur-

thermore, the semigroup {P̃s}s≥0 where P̃s = e−λsPs admits G − λI as generator, with domain Dom(G).
Hence,∫ ∞

0

∫ +∞

0

∫ +∞

0

∣∣∣e−λ(s+τ)PsE
(·,0) [u(M(τ))] (x)− e−λτ E(x,0) [u(M(τ))]

∣∣∣ gS(τ ; y)dτ dyνϕ(ds)
=

∫ ∞

0

∫ +∞

0

∫ +∞

0

e−λτ

∣∣∣∣∫ s

0

P̃w(G− λI)E(·,0) [u(M(τ))] (x)dw

∣∣∣∣ gS(τ ; y)dτ dyνϕ(ds)
≤
∫ ∞

0

∫ +∞

0

∫ +∞

0

∫ s

0

e−λτ
∣∣∣P̃w(G− λI)E(·,0) [u(M(τ))] (x)

∣∣∣ dw gS(τ ; y)dτ dy νϕ(ds)

≤
∫ ∞

0

∫ +∞

0

∫ +∞

0

∫ s

0

e−λτ
∥∥∥P̃w(G− λI)E(·,0) [u(M(τ))]

∥∥∥
C(E)

dw gS(τ ; y)dτ dy νϕ(ds)

≤
∫ ∞

0

∫ +∞

0

∫ +∞

0

e−λτ
∥∥∥(G− λI)E(·,0) [u(M(τ))]

∥∥∥
C(E)

(∫ s

0

e−λwdw

)
gS(τ ; y)dτ dy νϕ(ds)

≤
∥Gu∥C(E) + λ ∥u∥C(E)

λ

∫ +∞

0

∫ +∞

0

∫ +∞

0

e−λτ (1− e−λs)gS(τ ; y)dτ dy νϕ(ds)

=
∥Gu∥C(E) + λ ∥u∥C(E)

λ
< ∞.

Hence, by Fubini theorem, changing the order of the integrals in (5.16), we have∫ ∞

0

e−λtϕ(∂t −G)q(t, x)dt

= −ϕ(λ)

λ

∫ ∞

0

∫ +∞

0

(
e−λ(s+τ)PsE

(·,0) [u(M(τ))] (x)

− e−λτ E(x,0) [u(M(τ))]
)(∫ +∞

0

gS(τ ; y)dy

)
dτνϕ(ds)

= −ϕ(λ)

λ

∫ ∞

0

∫ +∞

0

(
e−λ(s+τ)PsE

(·,0) [u(M(τ))] (x)

− e−λτ E(x,0) [u(M(τ))]
)
uϕ(τ) dτνϕ(ds),
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where we used the relation uϕ(τ) =
∫ +∞
0

gS(τ ; y)dy. Again, since E(·,0)[u(M(τ))] ∈ Dom(G), we can write∫ ∞

0

e−λtϕ(∂t −G)q(t, x)dt

= −ϕ(λ)

λ

∫ ∞

0

∫ +∞

0

∫ s

0

e−λ(τ+w)(G− λ)Pw E
(·,0) [u(M(τ))] (x)uϕ(τ)dw dτνϕ(ds).

Next, we use again Fubini theorem and we get, by observing that s > w,∫ ∞

0

e−λtϕ(∂t −G)q(t, x)dt

= −ϕ(λ)

λ

∫ ∞

0

∫ +∞

0

∫ ∞

w

e−λ(τ+w)(G− λ)Pw E
(·,0) [u(M(τ))] (x)uϕ(τ)νϕ(ds) dw dτ

= −ϕ(λ)

λ

∫ ∞

0

∫ +∞

0

e−λ(τ+w)(G− λ)Pw E
(·,0) [u(M(τ))] (x)uϕ(τ)νϕ(w) dw dτ

= −ϕ(λ)

λ

∫ ∞

0

∫ +∞

0

e−λ(τ+w)(G− λ)Pw+τu(x)u
ϕ(τ)νϕ(w) dw dτ. (5.17)

Now we set w + τ = v in the inner integral so that (5.17) gives us (again, remember that τ ∈ [0, v])∫ ∞

0

e−λtϕ(∂t −G)q(t, x)dt

= −ϕ(λ)

λ

∫ ∞

0

∫ +∞

τ

e−λv(G− λ)Pvu(x)u
ϕ(τ)νϕ(v − τ) dv dτ

= −ϕ(λ)

λ

∫ ∞

0

e−λv(G− λ)Pvu(x)

(∫ v

0

uϕ(τ)νϕ(v − τ) dτ

)
dv

= −ϕ(λ)

λ

∫ ∞

0

e−λv(G− λ)Pvu(x)dv

=
ϕ(λ)

λ

∫ ∞

0

e−λvPv(λ−G)u(x)dv

=
ϕ(λ)

λ
u(x), (5.18)

where we used the fact that uϕ and νϕ constitute a Sonine pair, Pv and G commute on Dom(G) and∫ ∞

0

e−λvPvdv = (λI −G)−1.

Taking the inverse Laplace transform we get that, for all x ∈ E, there exists Ix ⊂ R+, with Lebesgue measure
zero, such that for t ̸∈ Ix it holds

ϕ(∂t −G)q(t, x) = νϕ(t)u(x).

Now we need to show that Ix = ∅ for all x ∈ E. To this purpose, first denote by R = {S(t), t ≥ 0} the
topological closure of the range of S. Since H can only jump when t ∈ R and it is isolated on the left,

P(x,0)(H(t) ̸= H(t+)) ≤ P(x,0)(t ∈ R) = 0 (5.19)

by [13, Proposition 1.9], since ϕ ∈ SB0. Once this has been established, notice that one can rewrite, given
that H and M are independent,
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q(t, x) = E(x,0)[u(M(H(t))] = E(x,0)
[
E(x,0) [u(M(H(t)) | H(t)]

]
= E(x,0)

[
PH(t)u(x)

]
=

∫ t

0

Psu(x)νϕ(t− s)uϕ(s) ds.

Notice, however, that for any two fixed x0, x ∈ E it holds

q(t, x) =

∫ t

0

Psu(x)νϕ(t− s)uϕ(s) ds = E(x0,0)
[
PH(t)u(x)

]
. (5.20)

Fix t ∈ R+
0 and let tn → t. Then it holds

∥q(tn, ·)− q(t, ·)∥C(E) ≤ E
(x0,0)

[∥∥PH(tn)u− PH(t)u
∥∥
C(E)

]
.

Notice that limn→∞
∥∥PH(tn)u− PH(t)u

∥∥
C(E)

= 0 almost surely by (5.19) and the strong continuity of (Pt)t≥0.

Furthermore,
∥∥PH(tn)u− PH(t)u

∥∥
C(E)

≤ 2 ∥u∥C(E). Hence, by the dominated convergence theorem,

lim
n→∞

∥q(tn, ·)− q(t, ·)∥C(E) = 0. (5.21)

In particular, this shows that q is continuous in both variables. Next, fix t ∈ R+ and consider a sequence
tn ↓ t. Then we have for all x ∈ E

|ϕ(∂t −G)q(tn, x)− ϕ(∂t −G)q(t, x)|

≤
∫ t

0

|Psq(t− s, x)− q(t, x)− Psq(tn − s, x)) + q(tn, x)|νϕ(ds)

+

∫ tn

t

|Psq(tn − s, x)− q(tn, x)|νϕ(ds)

+ |q(t, x)|(νϕ(t)− νϕ(tn)) + |q(t, x)− q(tn, x)|νϕ(tn).

Taking the supremum over x ∈ E, this leads to

∥ϕ(∂t −G)q(tn, ·)− ϕ(∂t −G)q(t, ·)∥C(E)

≤
∫ t

0

∥Psq(t− s, ·)− q(t, ·)− Psq(tn − s, ·)) + q(tn, ·)∥C(E) νϕ(ds)

+

∫ tn

t

∥Psq(tn − s, ·)− q(tn, ·)∥C(E) νϕ(ds)

+ ∥q(t, ·)∥C(E) (νϕ(t)− νϕ(tn)) + ∥q(t, ·)− q(tn, ·)∥C(E) νϕ(tn)

:= In + Jn + ∥q(t, ·)∥C(E) (νϕ(t)− νϕ(tn)) + ∥q(t, ·)− q(tn, ·)∥C(E) νϕ(tn).

Concerning In, first notice that

∥Psq(t− s, ·)− q(t, ·)− Psq(tn − s, ·)) + q(tn, ·)∥C(E)

≤ ∥Ps(q(t− s, ·)− q(tn − s, ·))∥C(E) + ∥q(t, ·)− q(tn, ·)∥C(E)

≤ ∥q(t− s, ·)− q(tn − s, ·)∥C(E) + ∥q(t, ·)− q(tn, ·)∥C(E) ,

since Ps is non-expansive. Hence, taking the limit as n → ∞ and using (5.21) we have

lim
n→∞

∥Psq(t− s, ·)− q(t, ·)− Psq(tn − s, ·)) + q(tn, ·)∥C(E) = 0.
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Furthermore,

∥Psq(t− s, ·)− q(t, ·)− Psq(tn − s, ·) + q(tn, ·)∥C(E)

≤ ∥Psq(t− s, ·)− Psq(t, ·)∥C(E) + ∥Psq(t, ·)− q(t, ·)∥C(E)

+ ∥Psq(tn − s, ·)− Psq(tn, ·)∥C(E) + ∥Psq(tn, ·)− q(tn, ·)∥C(E)

≤ 2C
(
∥Gu∥C(E) + ∥u∥C(E)

)∫ s

0

uϕ(t− τ)dτ + 2 ∥Gu∥C(E) s,

where we used (5.8), (5.13) and the fact that uϕ(tn − τ) ≤ uϕ(t − τ) since uϕ is non-increasing. The right-
hand side of the previous inequality is integrable against νϕ(ds), hence we can use the dominated convergence
theorem to achieve

lim
n→∞

In = 0.

Concerning Jn instead, we have

∥Psq(tn − s, ·)− q(tn, ·)∥C(E)

≤ ∥Psq(tn − s, ·)− Psq(tn, ·)∥C(E) + ∥Psq(tn, ·)− q(tn, ·)∥C(E)

≤ C
(
∥Gu∥C(E) + ∥u∥C(E)

)∫ s

0

uϕ(tn − τ)dτ + ∥Gu∥C(E) s,

where we used again (5.8) and (5.13). Hence

Jn ≤ C
(
∥Gu∥C(E) + ∥u∥C(E)

)∫ tn

t

∫ s

0

uϕ(tn − τ)dτνϕ(ds) + ∥Gu∥C(E)

∫ tn

t

sνϕ(ds)

= C
(
∥Gu∥C(E) + ∥u∥C(E)

)
J1
n + ∥Gu∥C(E) (Jϕ(tn)− Jϕ(t)).

By (2.7), it turns out that Jϕ is right-continuous. Furthermore

J1
n =

∫ tn

t

∫ t

0

uϕ(tn − τ)dτνϕ(ds) +

∫ tn

t

∫ s

t

uϕ(tn − τ)dτνϕ(ds)

= (νϕ(t)− νϕ(tn)) (U
ϕ(tn)− Uϕ(tn − t))

+

∫ tn

t

uϕ(tn − τ)(νϕ(τ)− νϕ(tn)) dτ

= (νϕ(t)− νϕ(tn)) (U
ϕ(tn)− Uϕ(tn − t))

+

∫ tn

t

uϕ(tn − τ)νϕ(τ) dτ − νϕ(tn)U
ϕ(tn − t)

≤ (νϕ(t)− νϕ(tn)) (U
ϕ(tn)− Uϕ(tn − t))

+ νϕ(t)U
ϕ(tn − t)− νϕ(tn)U

ϕ(tn − t)

= (νϕ(t)− νϕ(tn))U
ϕ(tn),

hence, since νϕ is also right-continuous, limn→∞ J1
n = 0, thus limn→∞ Jn = 0. This proves that

lim
n→∞

∥ϕ(∂t −G)q(tn, ·)− ϕ(∂t −G)q(t, ·)∥C(E) = 0. (5.22)

Now fix x ∈ E and assume, by contradiction, that Ix ̸= ∅. Let t ∈ Ix and consider any interval of the form
[t, t+ δ] for some δ > 0. Let Iδx = Ix ∩ [t, t+ δ] and observe that |Iδx| = 0, hence |[t, t+ δ] \ Iδx| = δ = |[t, t+ δ]|.
Since the Lebesgue measure has full topological support (i.e., any non-empty open set has positive measure),
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then [t, t+ δ] \ Iδx is dense in [t, t+ δ] and there exists a sequence tn ↓ t such that tn ̸∈ Ix for all n ∈ N. For
such a sequence

ϕ(∂t −G)q(tn, x) = νϕ(tn)q(tn, x).

However, taking the limit as n → ∞, using (5.21), (5.22) and the fact that νϕ is right-continuous, we get

ϕ(∂t −G)q(t, x) = νϕ(t)q(t, x),

that is absurd since t ∈ Ix. Hence Ix = ∅ and, since x ∈ E is arbitrary, this shows that

ϕ(∂t −G)q(t, x) = νϕ(t)q(t, x), ∀(t, x) ∈ R+ ×E. (5.23)

Combining the latter with the fact that lim
x→∞

q(t, x) = 0 locally uniformly with respect to t ≥ 0 as shown in

Proposition 5.6, we finally have that q is solution of (5.1).
It remains to show that this is the unique solution. Indeed, let q1 be another solution of (5.1). Then w = q−

q1 solves (5.1) with u ≡ 0. Now let T > 0 and assume, by contradiction, that ε = sup(t,x)∈[0,T ]×E |w(t, x)| > 0.
Let K ⊂ E be such that

sup
x ̸∈K

|w(t, x)| < ε, ∀t ∈ [0, T ].

Then, since w is continuous,

ε = max
(t,x)∈[0,T ]×K

|w(t, x)|.

Let (t⋆, x⋆) ∈ [0, T ] × K be such that |w(t⋆, x⋆)| = ε. If w(t⋆, x⋆) = ε, then w(t⋆, x⋆) ≥ w(t, x) for all
(t, x) ∈ (0, t⋆]× E and w(t⋆, x⋆) = ε > 0 = w(0, x) for all x ∈ E. Hence, by Proposition 3.5 we have

0 = −ϕ(∂t −G)w(t⋆, x⋆) < 0,

which is a contradiction. The same holds if w(t⋆, x⋆) = −ε. Hence w ≡ 0 and this ends the proof. □

5.3. Another uniqueness criterion. Before moving to option pricing, we give a further result concerning
the uniqueness of the solution to our non-local problem.

Proposition 5.9. Let q : R+
0 ×E → R be a function such that q(t, ·) ∈ Dom(G) for all t ≥ 0 and t ∈ R+

0 7→
q(t, ·) ∈ C0(E) is measurable. Assume further that there exists λ⋆ > 0 such that:

• The function

q̃(λ, x) =

∫ ∞

0

e−λtq(t, x)dt

is well-defined for all x ∈ E and λ > λ⋆

• It holds

∥q̃∥C(E) ≤
∫ ∞

0

e−λ⋆t ∥q(t, ·)∥C(E) dt < ∞.

• For all x ∈ E there exists Ix ⊂ R+
0 such that |Ix| = 0 and ϕ(∂t − G)q(t, x) is well-defined for all

t ∈ R+
0 \Ix.

• For all x ∈ E and λ > λ⋆ it holds∫ ∞

0

e−λtϕ(∂t −G)q(t, x)dt = −
∫ ∞

0

∫ ∞

0

e−λt(Psq(t− s, x)1(0,t](s)− q(t, x))dt νϕ(ds) (5.24)

• For all x ∈ E and t ∈ R+
0 \Ix it holds

ϕ(∂t −G)q(t, x) = νϕ(t)q(0, x), for almost all t > 0. (5.25)
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Then, for almost all t ∈ R+
0 it holds∥∥∥q(t, ·)− E(·,0)[q(0, X(t))]

∥∥∥
C(E)

= 0.

Proof. Since q(0, ·) ∈ Dom(G), arguing as in the proof of Theorem 5.2, we know that the function q⋆(t, x) =

E(x,0)[q(0, X(t))] satisfies all the assumptions in the statement. As a consequence, also the function q − q⋆
satisfies all the assumptions in the statement. Hence, without loss of generality, we can assume that q(0, ·) ≡ 0.
Integrating (5.25) against e−λt for λ > λ⋆ and using (5.24) we get∫ ∞

0

∫ ∞

0

e−λt(Psq(t− s, x⋆)1(0,t](s)− q(t, x))dt νϕ(ds) = 0. (5.26)

Next, notice that∫ ∞

0

e−λtPsq(t− s, x)1(0,t](s)dt = e−λs

∫ ∞

0

Ps

(
e−λ(t−s)q(t− s, ·)1(0,t](s)

)
(x)dt. (5.27)

Now observe that∫ ∞

0

∥∥∥e−λ(t−s)q(t− s, ·)1(0,t](s)
∥∥∥
C(E)

dt =

∫ ∞

0

∥∥∥e−λ(t−s)q(t− s, ·)1R+
0
(t− s)

∥∥∥
C(E)

dt

=

∫ ∞

−s

∥∥∥e−λτq(τ, ·)1R+
0
(τ)
∥∥∥
C(E)

dτ

=

∫ ∞

0

e−λτ ∥q(τ, ·)∥C(E) dτ < ∞.

(5.28)

Observing that, for fixed s > 0, also t ∈ R+
0 7→ e−λ(t−s)q(t− s, ·)1(0,t](s) ∈ C0(E) is measurable, we know by

(5.28) and Bochner’s theorem (see [1, Theorem 1.1.4]) that the latter is Bochner-integrable and then, by [1,
Proposition 1.1.6] and (5.27), we have∫ ∞

0

e−λtPsq(t− s, x)1(0,t](s)dt

= e−λsPs

(∫ ∞

0

e−λ(t−s)q(t− s, ·)1(0,t](s)(x)dt
)

= e−λsPsq̃(x) (5.29)

and then (5.26) becomes ∫ ∞

0

(
e−λsPsq̃(x)− q̃(x)

)
νϕ(ds) = 0. (5.30)

Now let P̃s = e−λsPs and notice that this is still a Feller semigroup with generator G − λI, where I is the
identity operator. In particular, by [1, Proposition 1.1.7], q̃ ∈ Dom(G) ⊂ Dom(G − λI). In particular, this
implies that

e−λsPsq̃(x)− q̃(x) =

∫ s

0

P̃τ (G− λI)q̃(x) dτ.

Taking the norm we get ∥∥e−λsPsq̃ − q̃
∥∥
C(E)

≤
∫ s

0

∥∥∥P̃τ (G− λI)q̃
∥∥∥
C(E)

dτ

≤
∥(G− λI)q̃∥C(E)

λ
(1− e−λs).
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Integrating the right-hand side against νϕ(ds) we get∫ ∞

0

∥∥e−λsPsq̃ − q̃
∥∥
C(E)

νϕ(ds) ≤
∥(G− λI)q̃∥C(E)

λ
ϕ(λ).

Thus, we can rewrite (5.30) in terms of Bochner integrals as∫ ∞

0

(
e−λsPsq̃ − q̃

)
νϕ(ds) = 0. (5.31)

Now consider the Feller semigroup (Pϕ
s )s≥0 acting on f ∈ C0(E) as

P̃ϕ
s f =

∫ +∞

0

P̃τfgS(τ ; s) dτ

and denote by (−ϕ(−(G− λI)),Dom(ϕ(−(G− λI)))) its generator. By Phillips formula (see [63, Theorem
12.6]) we know that Dom(G− λI) ⊂ Dom(ϕ(−(G− λI))) and on f ∈ Dom(G− λI) it holds

−ϕ(−(G− λI))f = −
∫ ∞

0

(
e−λ⋆sPsf − f

)
νϕ(ds).

Since q̃ ∈ Dom(G− λI), we get by (5.31)

−ϕ(−(G− λI))q̃ = 0. (5.32)

Finally, notice that for all f ∈ Dom(G− λI) it holds∥∥∥P̃ϕ
s f
∥∥∥
C(E)

≤
∫ +∞

0

∥∥∥P̃τf
∥∥∥
C(E)

gS(τ ; s) dτ ≤ e−sϕ(λ) ∥f∥C(E) ,

where ϕ(λ) > 0. Hence, by the Hille-Yosida Theorem (see [1, Theorems 3.3.2 and 3.3.4]) we know that 0
belongs to the resolvent set of −ϕ(λI − G) and thus the operator is invertible. As a consequence, (5.32)
implies

q̃(λ, ·) ≡ 0.

By injectivity of the Laplace transform (see [1, Theorem 1.7.3]), this ends the proof. □

Remark 5.10. Notice that the function q in Proposition 5.9 is not a solution of (3.3) in the sense of
Definition 3.6. Indeed, on the one hand we are not requiring that q is a continuous function of (t, x), on

the other hand q solves (3.3) not for all (t, x) ∈ R+
0 ×E but only on a subset Ẽ ⊂ R+

0 ×E such that for all

x ∈ E the set Ĩx = {t ∈ R+
0 : (t, x) ̸∈ Ẽ} satisfies |Ĩx| = 0. With an abuse of notation, we could refer to

such a function q as an almost-everywhere (a.e.) solution of (3.3). From this point of view, Proposition 5.9
tells us that the solution provided in Theorem 5.2 is also the unique a.e. solution satisfying some additional
conditions on the Laplace transform. Finally, notice that we are not requiring that limx→∞ q(t, x) = 0 locally
uniformly with respect to t ≥ 0.

6. Option pricing with the undershooting of the α-stable subordinator

In this section we deal with the model with dependent returns and trade durations (DRD) introduced in
[39]. In [39, Theorem 6.2], an option pricing formula is obtained for such a model using Fourier methods.
Here, we shall instead use the results of the previous sections, in particular Theorem 5.2, to derive a suitable
final problem for a non-local pseudo-differential equation, in the same spirit as for the local Black and Scholes
differential equation.
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6.1. The price process. To describe the price process underlying our option-pricing method, we shall make
use of the time-changed processes introduced in Section 4. Let B be a 1-dimensional Brownian motion and
consider the process M(t) = eB(t). Consider S as in Section 4 and assume (B,S) is a canonical Feller process,
on the canonical filtered probability space (Ω,F∞, {F t}t≥0,P

(x,v)). By Lemma 4.2 we know that (Bϕ, S)
is a Markov additive Feller process with respect to its augmented natural filtration G := {Gt}t≥0. Now let
Xe(t) = Bϕ(L(t)−) = B(H(t)) and consider the age process

γ(t) := t− S(0)−H(t). (6.1)

Then, (Xe, γ) is a càglàd process. Furthermore, notice that by Phillip’s theorem, since C∞
c (R) is contained

in the domain of the generator of (B,S), we know that C∞
c (R) is a subset of the domain of the generator

of (Bϕ, S). Hence, we can use the Courrége-Waldenfels theorem (see [15, Theorem 2.21]) to establish the
jump-diffusion form of the generator of (Bϕ, S). Thus, we have the following result.

Theorem 6.1. For t ≥ 0 set Ht = GL(t)−. Then the process (Xe, γ) is a time-homogeneous Markov process
with respect to the filtration H := {Ht}t≥0.

Proof. The proof is exactly the same of the ones of [46, Theorems 3.2 and 4.1], with the only exception that
since (Bϕ, S) is not a canonical Feller process in our setting, one has to modify the translation operator
accordingly. Precisely, in our case we just need to set θtω(s) = (ω1(s), ω2(s+ t)) for all t, s ≥ 0. Indeed, for
s, t ≥ 0 and ω ∈ Ω

(Bϕ(θtω, s), S(θtω, s)) = ((B(θtω), S(θtω, s)), S(θtω, s))

= (ω1(ω2(t+ s)), ω2(t+ s)) = (Bϕ(ω, t+ s), S(ω, t+ s)).

□

Now we set

X(t) = eXe(t) = M(H(t)) = Mϕ(L(t)−). (6.2)

(X, γ) is still a time-homogeneous Markov process with respect to H. Now define N 0
t = σ((Xe(s), γ(s)), s ≤ t)

and N t its completion with respect to P(x,v). N := {N 0
t}t≥0 is the natural filtration of (X, γ), as the latter is

related to (Xe, γ) by means of a homeomorphism. Furthermore, since (X, γ) is H-Markov, then N t ⊆ Ht for
all t ≥ 0 and both (Xe, γ) and (X, γ) are N -Markov and time-homogeneous. Since we are going to work with
càglàd processes, let us introduce now, for any T > 0, the space D−[0, T ] of càglàd functions f : [0, T ] → R
and Λ−[0, T ] its subspace of non-decreasing and non-negative functions. As usual in this context, we need
to introduce a new (family of) probability measures under which the process X is actually a N -martingale.
From now on, whenever it is not ambiguous, we shall denote by X

∣∣
[0,T ]

,Xe

∣∣
[0,T ]

,γ
∣∣
[0,T ]

and N
∣∣
[0,T ]

the

restriction of the considered quantities on the interval [0, T ]. We need the following lemma.

Lemma 6.2. For any m ∈ R and x, v ∈ R, the process

Zm(t) := emXe(t)−m2H(t)
2

is a N -martingale under P(x,v).

Proof. Zm is N -adapted by definition. To show that Zm(t) ∈ L1(Ω;P(x,v)) for all t ≥ 0, just notice that

E(x,v)[Zm(t)] = E(x,v)
[
E(x,v) [E(mB)(H(t)) | H(t)]

]
,

where

E(mB)(τ) = emB(τ)−m2τ
2
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is the Doleans-Dade exponential of mB. Since B and H are independent, we have

E(x,v) [E(mB)(H(t)) | H(t)] = F1(H(t)),

where

F1(τ) := E
(x,v) [E(mB)(τ)] = E(x,0) [E(mB)(τ)] = ex.

Hence

E(x,v)[Zm(t)] = ex
∫ t−v

0

νΦ(t− v − s)uΦ(s) ds = ex < ∞.

To show the martingale property, fix 0 ≤ s ≤ t and consider two Borel sets A1, A2 ⊂ D−[0, s]. Consider the
event

A⋆ := {Xe

∣∣
[0,s]

∈ A1} ∩ {γ
∣∣
[0,s]

∈ A2}.
Since B and H are independent and γ(t) = t− v −H(t) for all t ≥ 0, it holds

E(x,v)[Zm(t)1A⋆
] = E(x,v)[1A2

(γ)F2(H
∣∣
[0,t]

)], (6.3)

where, for all g ∈ Λ−[0, t], we set

F2(g) = E
(x,v)

[
1A1

(B(g(·))
∣∣
[0,s]

) E(mB)(g(t))
]

and ,

and we notice that

F2(H
∣∣
[0,t]

) = E(x,v)[Zm(t)1A1(Xe) | H(τ), τ ≥ 0].

Notice in particular that E(mB) is the Doleans-Dade exponential of mB. Since A1 ⊂ D−[0, s], the event
{B(g(·))

∣∣
[0,s]

∈ A1} belongs to σ(B(w), w ≤ g(s)). Furthermore, once we recall that E(mB) is a martingale

and g(s) ≤ g(t), we have

F2(g) = E
(x,v) [1A1

(B(g(·))) E(mB)(g(s))] =: F̃ (g
∣∣
[0,s]

).

However, we have that, still by independence between B and H

F̃2(H
∣∣
[0,s]

) = E(x,v)[Zm(s)1A1
(Xe) | H(τ), τ ≥ 0].

Substituting it back into (6.3), we get

E(x,v)[Zm(t)1A⋆ ] = E
(x,v)[1A2(γ)F̃2(H

∣∣
[0,s]

)] = E(x,v)[Zm(s)1A⋆ ]. (6.4)

Since the events of the form A⋆ constitute a π-system generating N s, this ends the proof. □

From now on we set m = −1/2 and we write Z := Z− 1
2 . Therefore we have

Z(t) = e−
Xe(t)

2 −H(t)
8

For any T > 0 define the probability measure

N T ∋ A 7→ P̃
(x,v)
T (A) = e

x
2 E(x,v) [Z(T )1A] ,

i.e., in terms of the Radon-Nykodim derivative:

dP̃
(x,v)
T

dP(x,v)
∣∣
NT

= Z(T ).

Since Z(T ) is an N -martingale, we have that P̃
(x,v)
t = P̃

(x,v)
T

∣∣∣
N t

for all T ≥ 0 and t ∈ [0, T ]. This guarantees

that we can use the Kolmogorov extension theorem to construct a probability measure P̃(x,v) on (Ω,N∞),
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where N∞ := σ
(⋃

t≥0 N t

)
such that P̃(x,v)

∣∣∣
N t

= P̃
(x,v)
t for all t ≥ 0. The method of construction of such

a measure is classical and we refer to [40, Page 192]. Furthermore, notice that since the Radon-Nykodim

derivative is strictly positive, the measure P̃(x,v) is equivalent to P(x,v) when restricted on N t for any t ≥ 0.
Now let us show that X defined in (6.2) is an N -martingale under such a measure.

Proposition 6.3. For any (x, v) ∈ R2, the process X is an N -martingale under P̃(x,v).

Proof. By definition X is N -adapted. Now we show that for all t ∈ [0, T ] it is true that X(t) ∈ L1(Ω; P̃(x,v)).
To do this, first notice that

Ẽ
(x,v)

[X(t)] = e
x
2 E(x,v)

[
eXe(t)−Xe(T )

2 −H(T )
8

]
= E(x,v)

[
E(x,v)

[
e

x
2+Xe(t)−Xe(T )

2 −H(T )
8 | H(t), H(T )

]]
.

Since H(t) ≤ H(T ) are independent of the Brownian motion B, if we set, for s1 ≤ s2,

F1(s1, s2) = E
(x,v)

[
eB(s1)−B(s2)

2 + x
2−

s2
8

]
we get

Ẽ
(x,v)

[X(t)] = E(x,v) [F1(H(t), H(T ))] .

However, by Girsanov’s theorem (see [40, Theorem 5.1]), we know that {B(s) + s
2 , s ∈ [0, s2]} is a Brownian

motion under the measure

A ∈ Fs2 7→ E(x,v)
[
1Ae

−B(s2)
2 + x

2−
s2
8

]
,

hence in particular eB(s) = eB(s)+ s
2−

s
2 is the Doleans-Dade exponential of B(s) + s

2 and thus a martingale
under the same measure. As a consequence, we have that

F1(s1, s2) = E
(x,v)

[
eB(s1)−B(s2)

2 + x
2−

s2
8

]
= ex

and then

Ẽ
(x,v)

[X(t)] = E(x,v) [F1(H(t), H(T ))] = ex < ∞.

Now we need to prove the martingale property. To do this, fix s and t such that 0 ≤ s ≤ t and let
A1, A2 ∈ D−[0, s] be Borel sets. Define the event

A⋆ := {Xe

∣∣
[0,s]

∈ A1} ∩ {γ
∣∣
[0,s]

∈ A2}.

Then we have, for any T > t,

Ẽ
(x,v)

[X(t)1A⋆
] = E(x,v)

[
1A1

(Xe

∣∣
[0,s]

)1A2
(γ
∣∣
[0,s]

)e
x
2+Xe(t)−Xe(T )

2 −H(T )
8

]
= E(x,v)

[
1A2

(γ
∣∣
[0,s]

)F2(H
∣∣
[0,T ]

)
]
, (6.5)

where for any g ∈ Λ−[0, T ] we set

F2(g) := E
(x,v)

[
1A1

(B(g(·))
∣∣
[0,s]

)e
x
2+B(g(t))−B(g(T ))

2 − g(T )
8

]
and we notice that

F2(H
∣∣
[0,T ]

) = E(x,v)
[
1A1(Xe

∣∣
[0,s]

)e
x
2+Xe(t)−Xe(T )

2 −H(T )
8 | H

∣∣
[0,T ]

]
.
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Since A1 ⊂ D−[0, s], the event {B(g(·))
∣∣
[0,s]

∈ A1} belongs to σ(B(w), w ≤ g(s)). Therefore we use again

Girsanov’s theorem and use the martingale property of Brownian (conditionally on the independent H|[0,T ])
to get now

F2(g) = E
(x,v)

[
1A1(B(g(·))

∣∣
[0,s]

)e
x
2+B(g(s))−B(g(T ))

2 − g(T )
8

]
.

In particular, we have that

F2(H
∣∣
[0,T ]

) = E(x,v)
[
1A1(Xe

∣∣
[0,s]

)e
x
2+Xe(s)−Xe(T )

2 −H(T )
8 | H

∣∣
[0,T ]

]
.

When we replace the latter equality back into (6.5), we obtain

Ẽ
(x,v)

[X(t)1A⋆ ] = E
(x,v)

[
1A1(Xe

∣∣
[0,s]

)1A2(γ
∣∣
[0,s]

)e
x
2+Xe(t)−Xe(T )

2 −H(T )
8

]
= E(x,v)

[
1A1

(Xe

∣∣
[0,s]

)1A2(γ
∣∣
[0,s]

)e
x
2+Xe(s)−Xe(T )

2 −H(T )
8

]
= Ẽ

(x,v)
[X(s)1A⋆

] . (6.6)

Given that events of the form of A⋆ are a π-system generating N s, this completes the proof. □

We need, however, to guarantee that the change of measure does not affect the Markov property and the
time-homogeneity of the process (X, γ). As for the Markov property, this is considered in the following result,
while the preservation of the time-homogeneity will be proved later.

Proposition 6.4. The process (X, γ) is N -Markov under P̃(x,v).

Proof. Consider any function f ∈ L∞(R2) and let 0 ≤ s ≤ t. We have, for any T > t,

Ẽ(x,v) [f(X(t), γ(t)) | N s] =
E(x,v)

[
f(X(t), γ(t))e−

Xe(T )
2 −H(T )

8 | N s

]
E(x,v)

[
e−

Xe(T )
2 −H(T )

8 | N s

]
=
E(x,v)

[
f(X(t), γ(t))e−

log(X(T ))
2 −T−v−γ(T )

8 | N s

]
E(x,v)

[
e−

log(X(T ))
2 −T−v−γ(T )

8 | N s

]
=
E(x,v)

[
f(X(t), γ(t))e−

log(X(T ))
2 −T−v−γ(T )

8 | X(s), γ(s)
]

E(x,v)
[
e−

log(X(T ))
2 −T−v−γ(T )

8 | X(s), γ(s)
]

= Ẽ(x,v) [f(X(t), γ(t)) | X(s), γ(s)] ,

where we used the fact that H(T ) = T − v − γ(T ) and Xe(T ) = log(X(T )) under E(x,v) and the N -Markov
property of (X, γ) with respect to P(x,v). □

Before proving that (X, γ) is also time-homogeneous, we need to investigate another property. Indeed,
notice that both X and γ depend on B and S and in particular X(0) and γ(0) are constrained by the values
(x, v). Observe that under P(x,v), one has that if σ(0) = v and thus L(t) is defined for t ≥ v, as well as
γ(t). In practice, under P(x,v), v ≤ 0, the position of process (X, γ) = (X(w), γ(w)), w ≥ 0, at time t,
conditionally to X(s), γ(s), does note see the choice of x and v. Hence, as a first step, we need to show that,

under Ẽ
(x,v)

, the distribution of (X(t), γ(t)) given (X(s), γ(s)) is independent of the choice of (B(0), S(0)),
given that S(0) ≤ s at least. This is done in the next proposition, in which we also prove that the process

(X, γ) is time-homogeneous with respect to the measure P̃(x,v).
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Proposition 6.5. Let 0 ≤ s ≤ t. Then, for all x, x′ ∈ R and v, v′ ≤ s it holds

Ẽ
(x,v)

[f(X(t), γ(t)) | X(s), γ(s)] = Ẽ
(x′,v′)

[f(X(t), γ(t)) | X(s), γ(s)] . (6.7)

In particular, one can define, for 0 ≤ s ≤ t, the transition semigroup Q̃s,t of (X, γ) under P̃(x,v) acting on

bounded measurable functions f : R+ ×R+
0 → R in such a way that

Q̃s,tf(X(s), γ(s)) = Ẽ
(x,v)

[f(X(t), γ(t)) | X(s), γ(s)] , (6.8)

for any x ∈ R and v ≤ s. Furthermore, Q̃s,t only depends on t− s and then (X, γ) is time-homogeneous.

Proof. Let (Qt)t≥0 be the transition semigroup under P(x,v) of the time-homogeneous process (X, γ), i.e. for

all bounded measurable functions f : R+ ×R+
0 → R and for all t ≥ 0, Qtf : R+ ×R+

0 → R is the bounded
measurable function such that for any s ≥ 0, x ∈ R+ and v ∈ [0, s]

Qtf(X(s), γ(s)) = E(x,v)[f(X(t+ s), γ(t+ s)) | X(s), γ(s)]. (6.9)

The independence on (x, v) is justified by observing that the transition semigroup of (Xe, γ) is already
independent of (x, v) by [46, Theorems 3.2 and 4.1].

Notice that (6.9) holds whenever f : R+ ×R+
0 → R is a measurable function such that

E(x,v) [|f(X(t), γ(t))|] < ∞

for all t ≥ 0 and x, v ∈ R. Now fix 0 ≤ s ≤ t, x, x′ ∈ R+ and v, v′ ≤ s. Then, as a consequence of Proposition
6.4, for any T > t, we have

Ẽ
(x,v)

[f(X(t), γ(t)) | X(s), γ(s)] =
E(x,v)

[
f(X(t), γ(t))e−

log(X(T ))
2 −T−v−γ(T )

8 | X(s), γ(s)
]

E(x,v)
[
e−

log(X(T ))
2 −T−v−γ(T )

8 | X(s), γ(s)
] . (6.10)

To deal with the numerator note that, by Lemma 6.2, we can use the martingale property to get, for any y,
w and T > t, that for the Markov semigroup Qt, t ≥ 0, it is true that

QT−tf(y, w) = f(y, w). (6.11)

Hence, for the numerator in (6.10), we have

E(x,v)
[
f(X(t), γ(t))e−

log(X(T ))
2 −T−v−γ(T )

8 | X(s), γ(s)
]
= E(x,v) [f(X(t), γ(t))QT−tg(X(t), γ(t)) | X(s), γ(s)] ,

(6.12)

where

g(y, w) = e−
log(y)

2 −T−S(0)−w
8 .

Next, let

h(y, w) = f(y, w)QT−tg(y, w).

Given that f is bounded, we can write

E(x,v) [|h(X(t), γ(t))|] ≤

(
sup

(y,w)∈R+ ×R+
0

|f(y, w)|

)
E(x,v) [g(X(T ), γ(T ))]

= ex

(
sup

(y,w)∈R+ ×R+
0

|f(y, w)|

)
< ∞.
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Hence (6.12) can be rewritten as

E(x,v)
[
f(X(t), γ(t))e−

log(X(T ))
2 −T−v−γ(T )

8 | X(s), γ(s)
]
= Qt−sh(X(s), γ(s)). (6.13)

For the denominator of (6.10), we have

E(x,v)
[
e−

log(X(T ))
2 −T−v−γ(T )

8 | X(s), γ(s)
]
= QT−sg(X(s), γ(s)).

Hence, (6.10) can be rewritten as

Ẽ
(x,v)

[f(X(t), γ(t)) | X(s), γ(s)] =
Qt−sh(X(s), γ(s))

QT−sg(X(s), γ(s))
. (6.14)

The right-hand side is independent of the choice of (x, v), therefore we get (6.7). Now, let us select T = t+1,
so that h(y, w) = f(y, w)Q1g(t, w), and let us set

Q̃s,tf(y, w) =
Qt−s (f(·, ·)Q1g(·, ·)) (y, w)

Qt−s+1g(y, w)
.

Then we see that Q̃s,t only depends on t− s and (6.8) holds by virtue of (6.14). □

With the previous proposition in mind, we can directly define Q̃t−s := Q̃s,t. Finally, we show the equivalent
of the Cameron-Martin formula in this context.

Proposition 6.6 (Cameron-Martin formula). For any (x, v) ∈ R2 and any T > 0, the distribution of(
Xe +

H
2 , γ

) ∣∣
[0,T ]

under P̃(x,v) coincides with the one of (Xe, γ)
∣∣
[0,T ]

under P(x,v). As a consequence, the

distribution of (X, γ) under P̃(x,v) coincides with the one of
(
Xe−

H
2 , γ

)
under P(x,v).

Proof. Fix T > 0 and consider a bounded and measurable function f : D−[0, T ] × Λ−[0, T ] → R. Then we
have

Ẽ
(x,v)

[
f

((
Xe +

H

2

) ∣∣∣∣
[0,T ]

, γ
∣∣
[0,T ]

)]
(6.15)

= E(x,v)

[
f

((
Xe +

H

2

) ∣∣∣∣
[0,T ]

, γ
∣∣
[0,T ]

)
e−

Xe(T )
2 −H(T )

8

]
= E(x,v)

[
F (H

∣∣
[0,T ]

)
]
, (6.16)

where we set, for any g ∈ Λ−[0, T ],

γ̃(g)(t) := t− v − g(t) and F (g) = E(x,v)

[
f

((
B(g(·)) + g(·)

2

) ∣∣∣∣
[0,T ]

, γ̃(g)
∣∣
[0,T ]

)
e−

B(g(T ))
2 − g(T )

8

]
and we notice that

F (H
∣∣
[0,T ]

) = E(x,v)

[
f

((
Xe +

H

2

) ∣∣∣∣
[0,T ]

, γ
∣∣
[0,T ]

)
e−

Xe(T )
2 −H(T )

8 | H
∣∣
[0,T ]

]
.

By Girsanov theorem, however, we know that under the measure

A ∈ Fg(T ) 7→ E(x,v)
[
1Ae

−B(g(T ))
2 − g(T )

8

]
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the process t ∈ [0, g(T )] 7→ B(t) + t
2 is a Brownian motion. Hence, the distribution of

(
B(g(·)) + g(·)

2

) ∣∣∣
[0,T ]

under the aforementioned measure coincides with the distribution of B(g(·))
∣∣
[0,T ]

under P(x,v) and then

F (g) = E(x,v)
[
f(B(g(·))

∣∣
[0,T ]

, γ̃(g)
∣∣
[0,T ]

)
]
.

In particular, we notice that, by independence of B and H,

F (H
∣∣
[0,T ]

) = E(x,v)
[
f(Xe

∣∣
[0,T ]

, γ
∣∣
[0,T ]

) | H
∣∣
[0,T ]

]
.

Substituting this into (6.16) we have

Ẽ
(x,v)

[
f

((
Xe +

H

2

) ∣∣∣∣
[0,T ]

, γ
∣∣
[0,T ]

)]
= E(x,v)

[
f(Xe

∣∣
[0,T ]

, γ
∣∣
[0,T ]

)
]
. (6.17)

Since f is arbitrary, we have the equality in distribution.
Next, notice that with the same argument as in Proposition 6.4, one can prove that

(
Xe +

H
2 , γ

)
is a

N -Markov process under P̃(x,v). Recalling also that (Xe, γ) is N -Markov with respect to the measure E(x,v),

we have that since the distribution of
(
Xe +

H
2 , γ

) ∣∣
[0,T ]

under P̃(x,v) and (Xe, γ)
∣∣
[0,T ]

under P(x,v) coincide

for all T > 0, then the distribution of the whole trajectories must coincide. Finally, the distribution of

(X, γ) under P̃(x,v) coincides with the one of
(
Xe−

H
2 , γ

)
under P(x,v) since both of them are expressed as

deterministic functions of
(
Xe +

H
2 , γ

)
and (Xe, γ). □

6.2. The coupled non-local Black-Scholes equation. We can now introduce the option price process.
Fix a maturity T > 0 and a strike price K > 0. We want to focus on the case of a call option, hence we
define the option price process by

X (t) := Ẽ
(x,v)

[(X(T )−K)+ | N t] , t ∈ [0, T ]

where (x)+ = max(x, 0). By Proposition 6.4, X(t) is given by

X (t) = Ẽ
(x,v)

[(X (T )−K)+ | X(t), γ(t)] = Q̃T−tu(X(t), γ(t)),

where
u(y, w) = (y −K)+.

Hence, let us set

q⋆(t, y, w) := Q̃T−tu(y, w).

For a call option with maturity T > 0, strike price K > 0, when the interest rate is 0, the classical Black and
Scholes equation is

∂tqBS(T − t, x) = −1

2
x2∂2

xqBS(T − t, x), t ∈ [0, T ), x ∈ R+, (6.18)

under the (final) condition qBS(T − t, x) |t=T= (x−K)+. In practice, denoting

q(t, x) = q⋆(T − t, x, 0) = Q̃tu(x, 0) (6.19)

and, for w > 0,

q(t, x, w) = q⋆(T − t, x, w) = Q̃tu(x,w), (6.20)

in this section we show that the function (6.19) is the solution of a Black-and-Scholes type (non-local) equation
containing the coupled operator introduced in Section 3; moreover, we provide a renewal-type equation that
gives the price (for any w > 0) in (6.20). However, we do this only in the special case ϕ(λ) = λα for α > 1

2 .
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Let us begin with some preliminary considerations. Denote the density of the undershooting H0 by

gH0
(s; t) =

sα−1(t− s)−α1(0,t)(s)

Γ(α)Γ(1− α)
. (6.21)

Now we recall that, since when v = 0 it must hold Xe(0) = B(0),

q(t, x) = Ẽ
(log(x),0)

[(X(t)−K)+] .

By the time-changed Cameron-Martin formula given in Proposition 6.6, recalling that, under v = 0, H and
H0 coincide, we do have

q(t, x) = E(log(x),0)
[
(X(t)e−

H(t)
2 −K)+

]
=

∫ +∞

0

qBS(s, x)gH(s; t)ds, (6.22)

where

qBS(s, x) = E
(log(x),0)

[(
B(s)e−

s
2 −K

)
+

]
= xΦ

(
2 log(x)− 2 log(K) + s

2
√
s

)
−KΦ

(
2 log(x)− 2 log(K)− s

2
√
s

)
and

Φ(z) :=
1√
2π

∫ z

−∞
e−

x2

2 dx.

The function qBS is the solution of the classical Black and Scholes equation (6.18) with respect to the variable
s = T − t, i.e., the quantity qBS(s, x), for fixed (s, x), represents the price, at time zero, of a plain-vanilla call
option with maturity s > 0 and the corresponding function satisfies the Black and Scholes equation with the
operator 2−1x2∂2

x (with positive sign). The positive sign in front of the space operator is due to the fact that
we are taking the derivative with respect to variable s > 0 that, in this context, is the maturity. Precisely,
let, for any β ≥ 0

C0(β) := {u ∈ C(R+) : ∃C > 0, |u(x)| ≤ Ceβ| log(x)|}
and define

C0 =
⋃
β≥0

C0(β).

Furthermore, we say that a function f ∈ Csol if and only if

(i) f ∈ C(R+
0 ×R+) ∩ C1(R+ ×R+)

(ii) f(t, ·) ∈ C2(R+) for all t > 0
(iii) For all T > 0 there exist βT , CT > 0 such that |f(t, x)| ≤ CT e

βT | log(x)| for all t ∈ [0, T ] and x ∈ R+.

For u ∈ C0(β), we define the quantity

[u]β := sup
x∈R+

|u(x)|e−β| log(x)|.

Finally, let us introduce C0, loc(R+
0 ) as the set of functions f ∈ C(R+

0 ×R+) such that for all T > 0 there

exist βT , CT > 0 with the property that |f(t, x)| ≤ CT e
βT | log(x)| for all t ∈ [0, T ] and x ∈ R+. Notice that

Csol ⊂ C0, loc(R+
0 ).

Before proceeding to introduce the Black-Scholes equation, let us give a simple lemma, which will be useful
in the following.
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Lemma 6.7. It holds

E(x,v)[eλ1|B(t)|+λ2B(t)] = e(λ1+λ2)x+
(λ1+λ2)2

2 tΦ

(
− (λ1 + λ2)t+ x√

t

)
+ e−(λ1−λ2)x+

(λ1−λ2)2

2 tΦ

(
− (λ1 − λ2)t− x√

t

)
The proof of such a lemma is given in Appendix B. Now we can introduce the operator G := x2

2 ∂2
x and

provide some well-known properties of such an operator.

Lemma 6.8. For all f ∈ C0 there exists a unique classical solution uf ∈ Csol of{
∂tu(t, x) = Gu(t, x), t > 0, x ∈ R+

u(0, x) = f(x), x > 0,
(6.23)

i.e., (C0, Csol) is a uniqueness class for G. If we denote by (Pt)t≥0 the associated semigroup action, then the
following properties hold true.

(1) For all f ∈ C0 we have that

Ptf(x) =

∫ +∞

0

f(y)pGBM(t, y;x)dy (6.24)

where GBM stands for geometric Brownian motion and

pGBM(t, y;x) := x
1
2 e−

t
8
p(t, log(y)− log(x))

y
3
2

and p(t, w) =
1√
2πt

e−
w2

2t . (6.25)

As a consequence, the semigroup (Pt)t≥0 is Markovian and positivity preserving.
(2) Let β ≥ 0 and assume f ∈ C0(β). Then ∂xPtf ∈ C0(β + 1) and

[∂xPtf(x)]β+1 ≤ 4[f ]β exp

(
β
t

2
+

β2t2

2

)
.

(3) For all f ∈ C0 ∩C such that ∂xf ∈ C0 and Gf ∈ C0 it holds

PtGf = GPtf.

(4) Fix β1, β2 ∈ R and let fβ1,β2
(x) = eβ1| log(x)|+β2 log(x). Then

Ptfβ1,β2(x) = e(β1+β2) log(x)+
(β1+β2)(β1+β2−1)

2 tΦ

(
−
(
β1 + β2 −

1

2

)√
t− log(x)√

t

)
+ e−(β1−β2) log(x)+

(β1−β2)(β1−β2+1)
2 tΦ

(
−
(
β1 − β2 +

1

2

)√
t+

log(x)√
t

)
.

(5) If f ∈ C0(β), then Ptf ∈ C0(β) with

[Ptf ]β ≤ 2[f ]βe
β(β+1)

2 t.

We give, for completeness, the proof of the previous lemma in Appendix C.
Concerning the function qBS, we recall the following properties, that can be verified by direct evaluation.

Lemma 6.9. For all t, x > 0 it holds

∂xqBS(t, x) = Φ

(
2 log(x/K) + t

2
√
t

)
, (6.26)
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∂2
xqBS(t, x) =

√
K

2πtx3
exp

(
−4 log2 (x/K) + t2

8t

)
, (6.27)

∂tqBS(t, x) = GqBS(t, x) =

√
Kx

8πt
exp

(
−4 log2 (x/K) + t2

8t

)
. (6.28)

In particular,

|qBS(t, x)| ≤ e| log(x)| (6.29)

|∂xqBS(t, x)| ≤ 1, (6.30)

|∂tqBS(t, x)| = |GqBS(t, x)| ≤
√

Kx

8πt
. (6.31)

Furthermore, for all a > 0 and x ≥ a we have

∣∣∂2
xqBS(t, x)

∣∣ ≤√ K

8πa3t
. (6.32)

In particular qBS is the unique solution of
∂tqBS(t, x) = GqBS(t, x), t > 0, x ∈ R+

qBS(0, x) = (x−K)+, x > 0,

qBS ∈ C0,loc(R+
0 ).

(6.33)

The remainder of this section is devoted to the proof of the following theorem, i.e., the main result of this
part. Notice that we focus on the case Φ(λ) = λα with α > 1

2 . While it will be clear that some arguments
apply to a generic Φ, most of the proof relies on the specific form of Φ, in particular on the self-similarity of
H0 under this choice. Furthermore, as it will be clear in the following, the condition α > 1

2 is dictated by
regularity issues.

Theorem 6.10. Let ϕ(λ) = λα for α ∈
(
1
2 , 1
)
. Let also, for any h ∈ R, A ∈ B(R) and w ≥ 0

K̃(A, h) =

∫ +∞

0

1A(s)p(s, h)
αs−α−1

Γ(1− α)
ds K(dτ, dh) = K̃(dτ, h)dh (6.34)

and

Kw(A) =


K(A ∩ (R×[w,+∞)))

K(R×[w,+∞))
w > 0

δ(0,0)(A) w = 0.

Then

q⋆(t, x, 0) = q(T − t, x)

and, for w > 0 and any v < t− w,

q⋆(t, x, w) =
(
xe−

t−v−w
2 −K

)
+
Kw(x;Rd ×[w + T − t,∞))

+

∫
R×[w,w+T−t)

q(T − t+ w − τ, log(x) + y + t− w + τ − v)Kw(dτ, dy), (6.35)
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where q is the unique solution of 
(∂t −G)αq(t, x) = t−α

Γ(1−α)q(0, x)

q(0, x) = (x−K)+

q ∈ C0,loc(R+
0 ).

(6.36)

This will be proved using several preliminary results:

(1) First we study the regularity of the function q in (6.22);
(2) next, we prove that q is solution of (6.36);
(3) we then prove that the solution to (6.36) is unique for initial data in a suitable class (to which

(x−K)+ belongs);
(4) finally, we prove Theorem 6.10.

Remark 6.11. Notice that (6.35) is a formula that determines the value of q⋆ uniquely for positive sojourn
time. Indeed, the only quantity that is involved is the function q which is related to the value of q⋆ on renewal
states, i.e. for zero sojourn time, which is the unique solution with at most power growth at 0 and ∞ of the
fully nonlocal Black-Scholes equation (6.36). This is also underlined by the fact that (6.35) can be rewritten
as

q⋆(t, x, w) =
(
xe−

t−v−w
2 −K

)
+
Kw(x;Rd ×[w + T − t,∞))

+

∫
R×[w,w+T−t)

q⋆(t− w + τ, log(x) + y + t− w + τ − v, 0)Kw(dτ, dy), (6.37)

that only involves the function q⋆(t, x, 0), which is given by the solution of (6.36).We remark that (x−K)+
appears as an initial condition in (6.36) but, given that the fair price of our call option at time t > 0 is
q⋆(t, x, w), then

(x−K)+ = q(0, x) = q⋆(T, x, 0) (6.38)

and thus (x−K)+ is the usual final condition for q⋆(·, ·, 0). It follows that, according to our model, the fair
price at time t > 0 of a(n) (intraday) plain vanilla call option (with zero interest rate, strike price K and
maturity T > t) can be determined by solving the initial value problem (6.36) then changing the variable
t⇝ T − t and finally using (6.37).

6.2.1. Regularity of q. In this section, we provide some regularity results on the function q that will be needed
to apply Theorems 3.2 and 3.3. Before proceeding, let us recall that for any f ∈ L∞(R), by (6.21), it holds

E(x,0)[f(H(t))] =

∫ t

0

f(y)
(t− y)−αyα−1

Γ(1− α)Γ(α)
dy =

∫ 1

0

f(ts)
(1− s)−αsα−1

Γ(1− α)Γ(α)
ds = E(x,0)[f(tH(1))], (6.39)

i.e., H(t)
d
= tH(1). We shall use this self-similarity property throughout the proof.

Now, we prove that for all x > 0 the function q(·, x) belongs to AC(R+
0 ) and we provide a suitable upper

bound on its a.e. derivative.

Proposition 6.12. Under the hypotheses of Theorem 6.10, for all x > 0 the function q(·, x) ∈ AC(R+
0 ) and

its a.e. derivative ∂tq(·, x) satisfies, for a.a. t ≥ 0,

|∂tq(t, x)| ≤
Γ
(
α+ 1

2

)
πΓ(α)

√
Kx

t
. (6.40)
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Proof. For any t > 0, let h ∈
(
− t

2 , 1
)
and consider Dhq(t, x) = q(t+h,x)−q(t,x)

h . Then we have, by (6.39),

|Dhq(t, x)| ≤
∫ 1

0

∣∣∣∣qBS(ts+ hs, x)− qBS(ts, x)

hs

∣∣∣∣ sα(1− s)−α

Γ(α)Γ(1− α)
ds.

By Lagrange theorem, we know that there exists ξ ∈ [min{ts, ts+ hs},max{ts, ts+ hs}] such that∣∣∣∣qBS(ts+ hs, x)− qBS(ts, x)

hs

∣∣∣∣ = |∂tqBS(x, ξ)| ≤

√
Kx

8πξ
≤
√

Kx

4πts
,

where we also used (6.31). Hence

|Dhq(t, x)| ≤
√

Kx

4πt

∫ 1

0

sα−
1
2 (1− s)−α

Γ(α)Γ(1− α)
ds =

Γ
(
α+ 1

2

)
πΓ(α)

√
Kx

t
.

The right-hand side is independent of h and belongs to L1(0, T ) for all T > 0, thus we can argue as in
Proposition 5.4 and get the result. □

As claimed, the previous proposition implies that q satisfies Item (i) of both Theorems 3.2 and 3.3. We
show this in the next result.

Corollary 6.13. Under the assumptions of Theorem 6.10 we have that for all t, x > 0∫ t

0

|Psq(t− s, x)− Psq(t, x)|
αs−α−1

Γ(1− α)
ds < ∞

and, for all λ > 3
8 and x > 0,∫ ∞

0

∫ t

0

e−λt|Psq(t− s, x)− Psq(t, x)|
αs−α−1

Γ(1− α)
ds dt < ∞.

Proof. Fix x > 0, and note that for 0 < s < t,

|q(t− s, x)− q(t, x)| ≤
∫ s

0

|∂tq(t− τ, x)| dτ

≤
Γ
(
α+ 1

2

)
πΓ(α)

√
Kx

∫ s

0

(t− τ)−1/2dτ =
Γ
(
α+ 1

2

)
s

πΓ(α)

√
Kx

t− s
. (6.41)

This proves that |q(t− s, ·)− q(t, ·)| ∈ C0(1/2). We get, by also employing Items (1) and (5) of Lemma 6.8,∫ t

0

|Psq(t− s, x)− Psq(t, x)|
αs−α−1

Γ(1− α)
ds

≤
∫ t

0

Ps|q(t− s, ·)− q(t, ·)|(x) αs
−α−1

Γ(1− α)
ds

≤
2αΓ

(
α+ 1

2

)√
K

πΓ(α)Γ(1− α)
e

1
2 | log(x)|+

3
8 t

∫ t

0

s−α(t− s)−
1
2 ds

=
2αΓ

(
α+ 1

2

)√
K

Γ(α)Γ
(
3
2 − α

)√
π
t
1
2−αe

1
2 | log(x)|+

3
8 t,

where we also used [3, Lemma 1.11]. Furthermore, for any λ > 3
8 it holds∫ ∞

0

∫ t

0

e−λt|Psq(t− s, x)− Psq(t, x)|
αs−α−1

Γ(1− α)
ds dt
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≤
2αΓ

(
α+ 1

2

)√
K

Γ(α)Γ
(
3
2 − α

)√
π
t
1
2−αe

1
2 | log(x)|

∫ ∞

0

t
1
2−αe−(λ−

3
8 )t dt

=
2αΓ

(
α+ 1

2

)√
K

Γ(α)
√
π

t
1
2−αe

1
2 | log(x)|

(
λ− 3

8

)α− 3
2

.

□

Now we discuss the regularity of q in x. This is done by means of the following proposition.

Proposition 6.14. Under the assumptions of Theorem 6.10, the following equalities hold for all t, x > 0:

∂xq(t, x) =
1

Γ(α)Γ(1− α)

∫ 1

0

∂xqBS(τt, x) τ
α−1(1− τ)−αdτ, (6.42)

∂2
xq(t, x) =

1

Γ(α)Γ(1− α)

∫ 1

0

∂2
xqBS(τt, x) τ

α−1(1− τ)−αdτ, (6.43)

Gq(t, x) =
1

Γ(α)Γ(1− α)

∫ 1

0

GqBS(τt, x) τ
α−1(1− τ)−αdτ. (6.44)

Furthermore q(t, ·) ∈ C0(1), ∂xq(t, ·) ∈ C0(0) and Gq(t, ·) ∈ C0(1/2) for all t > 0, where

|q(t, x)| ≤ e| log(x)| (6.45)

|∂xq(t, x)| ≤ 1 (6.46)

|Gq(t, x)| ≤
√

Kx

2t

Γ
(
α− 1

2

)
2πΓ(α)

. (6.47)

In particular, q ∈ C0,loc(R+
0 ).

Proof. By (6.22) and (6.29) we already know that q ∈ C0(1) with [q]1 ≤ 1. Moreover, by (6.30), we know that
we can apply the dominated convergence theorem to take the derivative inside the integral sign in (6.22) and
then using (6.39), getting (6.42). Furthermore, (6.30) also implies that ∂xq(t, ·) ∈ C0(0) with [∂xq(t, ·)]0 ≤ 1.

To argue with the second derivative, fix a > 0 and notice that for all x ≥ a it holds, by (6.32),∫ 1

0

∣∣∂2
xqBS(ts, x)

∣∣ sα−1(1− s)−α

Γ(1− α)Γ(α)
ds ≤

√
K

8πa3t

∫ 1

0

sα−
3
2 (1− s)−α

Γ(1− α)Γ(α)
ds

=
1

2π

√
K

2a3t

Γ
(
α− 1

2

)
Γ(α)

< ∞,

since α > 1
2 . Hence, by dominated convergence, we get (6.43) and finally, multiplying both sides of (6.43) by

x2

2 , we also get (6.44). Finally, notice that (6.44) and (6.31) imply that Gq(t, ·) ∈ C0(1/2) for all t > 0 and
in particular

|Gq(t, x)| ≤
√

Kx

8πt

∫ 1

0

sα−
3
2 (1− s)−α

Γ(1− α)Γ(α)
ds =

√
Kx

2t

Γ
(
α− 1

2

)
2πΓ(α)

.

□

Remark 6.15. Notice that Proposition 6.12, Corollary 6.13, (6.42), (6.45) and (6.46) hold for any α ∈ (0, 1).
The condition α > 1/2 comes into play only for (6.43), (6.44) and (6.47). However, it is worth highlighting
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that, using a finer estimate in place of (6.32), it is possible to prove that (6.43) and (6.44) still hold for all
t, x > 0 with x ̸= K if α ≤ 1/2. However, notice that, for h ∈ [0, 1], by Lagrange’s theorem,

∂xqBS(ts,K + h)− ∂xqBS(ts,K)

h
= ∂2

xqBS(ts, ξ)

=

√
K

2πtsξ3
exp

(
−4 log2(ξ/K) + t2s2

8ts

)

≥

√
K

2πts(K + 1)3
exp

(
−
4 log2

(
1 + h

K

)
+ t2s2

8ts

)
where ξ ∈ [K,K + h]. Hence, by (6.42), we have

∂xq(t,K + h)− ∂xq(t,K)

h

=

∫ 1

0

∂xqBS(ts,K + h)− ∂xqBS(ts,K)

h

sα−1(1− s)−α

Γ(α)Γ(1− α)
ds

≥
√
K√

2πt(K + 1)3

∫ 1

0

exp

(
−
4 log2

(
1 + h

K

)
+ t2s2

8ts

)
sα−

3
2 (1− s)−α

Γ(α)Γ(1− α)
ds.

Taking the limit as h → 0+ we have, as a consequence of the monotone convergence theorem,

lim
h→0+

∂xq(t,K + h)− ∂xq(t,K)

h

≥
√
K

Γ(α)Γ(1− α)
√
2πt(K + 1)3

∫ 1

0

exp

(
− ts

8

)
sα−

3
2 (1− s)−α ds = ∞,

if α ≤ 1
2 . Hence, in such a case, q(t, ·) cannot admit a second order derivative in x = K. Suppose that

we have already shown that q is solution of (6.36), then this lack of parabolic smoothing is also common in
time-nonlocal equations, see for instance [6, Proposition 3.3].

Now we prove that q satisfies Item (ii) of both Theorems 3.2 and 3.3.

Proposition 6.16. Under the assumptions of Theorem 6.10 it holds, for all t, x > 0,∫ t

0

|Psq(t, x)− q(t, x)| να(ds) < ∞,

and, for all x > 0 and λ > 3
8 , ∫ ∞

0

∫ t

0

e−λt|Psq(t, x)− q(t, x)| να(ds) dt < ∞

where να(ds) is the Lévy measure corresponding to ϕ(λ) = λα, α ∈ (1/2, 1), i.e.,

να(ds) = αs−α−1/Γ(1− α)ds. (6.48)

Proof. By Proposition 6.14 we know that q(t, ·) ∈ C0 hence we can write

Psq(t, x)− q(t, x) =

∫ s

0

GPτq(t, x)dτ.
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Recalling that, still by Proposition 6.14, ∂xq(t, ·), Gq(t, ·) ∈ C0, by Item (3) of Lemma 6.8 we have

Psq(t, x)− q(t, x) =

∫ s

0

PτGq(t, x)dτ. (6.49)

In particular, Gq(t, ·) ∈ C0(1/2) and, by (6.47)

[Gq(t, ·)]1/2 ≤
√

K

2t

Γ
(
α− 1

2

)
2πΓ(α)

.

Hence, by Item (5) of Lemma 6.8 we get that PτGq(t, ·) ∈ C0(1/2) with

[PτGq(t, ·)]1/2 ≤
√

2K

t
e

3
8 τ

Γ
(
α− 1

2

)
2πΓ(α)

.

Using this into (6.49) we have

|Psq(t, x)− q(t, x)|≤
∫ s

0

|PτGvq(t, x)| dτ ≤
√

2K

t
e

1
2 | log(x)|

Γ
(
α− 1

2

)
2πΓ(α)

∫ s

0

e
3
8 τ dτ

≤
√

2K

t
e

1
2 | log(x)|

Γ
(
α− 1

2

)
2πΓ(α)

e
3
8 ss.

Integrating the latter against νϕ, we have∫ t

0

|Psq(t, x)− q(t, x)| αs−α−1

Γ(1− α)
ds ≤

√
2K

t
e

1
2 | log(x)|

Γ
(
α− 1

2

)
2πΓ(α)

∫ t

0

e
3
8 s

αs−α

Γ(1− α)
ds

≤ e
1
2 | log(x)|

αΓ
(
α− 1

2

)√
2K

2πΓ(α)Γ(2− α)
e

3
8 tt

1
2−α.

Finally, integrating the latter against e−λt for λ > 3
8 we get∫ ∞

0

∫ t

0

e−λt |Psq(t, x)− q(t, x)| αs−α−1

Γ(1− α)
ds dt

≤ e
1
2 | log(x)|

αΓ
(
α− 1

2

)√
2K

2πΓ(α)Γ(2− α)

∫ ∞

0

e−(λ−
3
8 )tt

1
2−α dt

= e
1
2 | log(x)|

αΓ
(
α− 1

2

)√
2K

2πΓ(α)Γ(2− α)

(
λ− 3

8

)α− 3
2

Γ

(
3

2
− α

)
.

□

The last thing we need to check is Item (iii) of Theorem 3.3.

Proposition 6.17. Under the assumptions of Theorem 6.10 for all x, λ > 0 it holds∫ ∞

0

e−λtνα(t)|q(t, x)| dt < ∞,

where ν̄α(t) is the tail of (6.48).

Proof. Since νϕ(t) =
t−α

Γ(1−α) , we just use the inequality (6.45) to get∫ ∞

0

e−λt t−α

Γ(1− α)
|q(t, x)| dt ≤ e| log(x)|

Γ(1− α)

∫ ∞

0

t−αe−λtdt =
e| log(x)|

λ1−α
.

□
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6.2.2. Existence of the solution. We are now ready to prove a first bit of Theorem 6.10, which is summarized
in the next proposition.

Proposition 6.18. Under the assumptions of Theorem 6.10, q is a solution of (6.36).

Proof. In view of the results in Subsection 6.2.1, we know by Theorem 3.2 that (∂t − G)αq(t, x) is well-
defined for all x, t > 0. Moreover, for any x > 0 we know by Theorem 3.3 that (∂t − G)αq(·, x) admits
Laplace transform for any λ > 3

8 . We divide the proof into two parts. First we check that for all x > 0 and

λ > 3
8 we have ∫ ∞

0

e−λt(∂t −G)αq(t, x)dt = λα−1(x−K)+, (6.50)

which is the first equation in (6.36) after taking the Laplace transform in the t variable on both sides. Then
we use this to prove that

(∂t −G)αq(t, x) =
t−α

Γ(1− α)
q(0, x). (6.51)

We begin with (6.50). Consider x > 0, λ > 3
8 and denote

q̃(λ, x) =

∫ ∞

0

e−λtq(t, x) dt.

Let us first evaluate an alternative formula for q̃. Set uK(x) = (x−K)+ and notice that, by (6.22), we get

q̃(λ, x) =
1

Γ(α)Γ(1− α)

∫ ∞

0

e−λt

∫ t

0

sα−1(t− s)−αqBS(s, x) ds dt

=
λα−1

Γ(α)

∫ +∞

0

e−λssα−1qBS(s, x) ds

=
λα−1

Γ(α)

∫ +∞

0

e−λssα−1PsuK(x) ds, (6.52)

where, in the first step, we used the convolution Theorem for Laplace transform (e.g., [1, Proposition 1.6.4])
and then we applied Tonelli’s theorem since qBS is non-negative. As a consequence of (3.2), we have that∫ ∞

0

e−λt (∂t −G)
α
q(x, t) dt

= −
∫ ∞

0

∫ ∞

0

e−λt(Psq(t− s, x)1(0,t](s)− q(t, x)) dt να(ds)

= −
∫ ∞

0

(∫ ∞

s

∫ ∞

0

e−λtq(t− s, y)pGBM(s, y;x) dy dt− q̃(λ, x)

)
να(ds)

= −
∫ ∞

0

(
e−λs

∫ ∞

0

q̃(λ, y)pGBM(s, y;x) dy − q̃(λ, x)

)
να(ds)

= −
∫ ∞

0

(
e−λsPs(q̃(λ, ·))(x)− q̃(λ, x)

)
να(ds),

where in the third equality we used again Tonelli’s theorem to exchange the order of the integrals (since q
and pGBM are non-negative) after having made explicit the action of the operator Ps in the second step. Now
we can replace q̃ in the previous identity by making use of (6.52). To do this, we first observe that

Ps (q̃(λ, ·)) (x) =
λα−1

Γ(α)

∫ +∞

0

∫ +∞

0

e−λττα−1PτuK(y)pGBM(s, y;x)dτ dy
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=
λα−1

Γ(α)

∫ +∞

0

e−λττα−1Ps+τuK(x) dτ (6.53)

and then we have∫ ∞

0

e−λt (∂t −G)
α
q(x, t) dt

= − αλα−1

Γ(α)Γ(1− α)

∫ ∞

0

∫ +∞

0

τα−1s−α−1
(
e−λ(s+τ)Ps+τuK(x) − e−λτPτuK(x)

)
dτ ds

= − αλα−1

Γ(α)Γ(1− α)

∫ ∞

0

∫ +∞

0

τα−1s−α−1e−λτPτ

(
e−λsqBS(s, x) − uK(x)

)
dτ ds, (6.54)

where we used the fact that Pτ is a semigroup action and the explicit form of να(·) given in (6.48). However,
if we observe that

e−λsqBS(s, x) − uK(x) =

∫ s

0

∂we
−λwqBS(w, x) dw∫ s

0

e−λw (∂wqBS(w, x)− λqBS(w, x)) dw

=

∫ s

0

e−λw (G− λ) qBS(w, x) dw (6.55)

and we explicitly write the integral in Pτ , we get∫ ∞

0

e−λt (∂t −G)
α
q(x, t) dt

= − αλα−1

Γ(α)Γ(1− α)

∫ ∞

0

∫ +∞

0

∫ +∞

0

∫ s

0

τα−1s−α−1e−λ(τ+w) (G− λ) qBS(w, y) pGBM(τ, y;x) dw dy dτ ds.

(6.56)

We want to use Fubini’s theorem to change the order of the integrals. To do this, we notice that (6.28)
implies GqBS ≥ 0 and then∫ +∞

0

∫ +∞

0

∫ +∞

0

∫ s

0

τα−1s−α−1e−λ(τ+w) |(G− λ)qBS(w, y)| pGBM(τ, y;x) dw dy dτ ds

≤
∫ +∞

0

∫ +∞

0

∫ s

0

∫ +∞

0

τα−1s−α−1e−λ(τ+w)(G+ λ)qBS(w, y)pGBM(τ, y;x) dy dw dτ ds (6.57)

=

∫ +∞

0

∫ +∞

0

∫ s

0

τα−1s−α−1e−λ(τ+w)Pτ (G+ λ)qBS(w, x) dw dτ ds (6.58)

Since qBS(t, ·) ∈ C0, ∂xqBS ∈ C0 and GqBS ∈ C0, we can exchange the operator (G+ λ) with Pτ , getting∫ +∞

0

∫ +∞

0

∫ +∞

0

∫ s

0

τα−1s−α−1e−λ(τ+w) |(G− λ)qBS(w, y)| pGBM(τ, y;x) dw dy dτ ds

≤
∫ +∞

0

∫ +∞

0

∫ s

0

τα−1s−α−1e−λ(τ+w)(G+ λ)PτqBS(w, x) dw dτ ds (6.59)

=

∫ +∞

0

∫ +∞

0

∫ s

0

τα−1s−α−1e−λ(τ+w)(G+ λ)qBS(τ + w, x) dw dτ ds, (6.60)
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where we also used the fact that PτqBS(w, x) = PτPwuK(x) = Pτ+wuK(x) = qBS(w + τ, x). By (6.28) we
have

GqBS(τ + w, x) ≤

√
Kx

8π(τ + w)
exp

(
−
log2

(
x
K

)
2(τ + w)

)
. (6.61)

Consider the function r ∈ R+ 7→
√
r exp

(
−r

log2( x
K )

2

)
∈ R. It is possible to check that such a function has

a maximum at r⋆ = log−2
(

x
K

)
and then

√
r exp

(
−r

log2
(

x
K

)
2

)
≤ 1√

e

∣∣∣log−1
( x

K

)∣∣∣ .
Plugging the latter into (6.61), adding λqBS(τ + w, x) and also using (6.29) we get

(G+ λ)qBS(τ + w, x) ≤
√

Kx

8πe

∣∣∣log−1
( x

K

)∣∣∣+ λe| log(x)|.

Plugging this inequality into (6.60) we obtain∫ +∞

0

∫ +∞

0

∫ +∞

0

∫ s

0

τα−1s−α−1e−λ(τ+w) |(G− λ)qBS(w, y)| pGBM(τ, y;x) dw dy dτ ds

≤ 1

λ

(√
Kx

8πe

∣∣∣log−1
( x

K

)∣∣∣+ λe| log(x)|

)∫ +∞

0

∫ +∞

0

τα−1(1− e−λs)s−α−1e−λτ dτ ds

=
1

λ

(√
Kx

8πe

∣∣∣log−1
( x

K

)∣∣∣+ λe| log(x)|

)(∫ +∞

0

τα−1e−λτ dτ

)(∫ +∞

0

s−α−1(1− e−λs) ds

)

=
1

λ

(√
Kx

8πe

∣∣∣log−1
( x

K

)∣∣∣+ λe| log(x)|

)
Γ(α)Γ(1− α)

α
< ∞

where, in the last step, we used the integral representation of the Gamma function that∫ +∞

0

s−α−1(1− e−λs) ds =
Γ(1− α)

α
λα.

We can now safely use Fubini’s theorem in (6.56), obtaining∫ ∞

0

e−λt (∂t −G)
α
q(x, t) dt

= − αλα−1

Γ(α)Γ(1− α)

∫ ∞

0

∫ +∞

0

∫ +∞

0

∫ +∞

w

τα−1s−α−1e−λ(τ+w) (G− λ) qBS(w, y) pGBM(τ, y;x) ds dy dτ dw

= − λα−1

Γ(α)Γ(1− α)

∫ ∞

0

∫ +∞

0

τα−1w−αe−λ(τ+w)Pτ (G− λ) qBS(w, x) dτ dw

= − λα−1

Γ(α)Γ(1− α)

∫ ∞

0

∫ +∞

0

τα−1w−αe−λ(τ+w) (G− λ) qBS(τ + w, x) dτ dw

= − λα−1

Γ(α)Γ(1− α)

∫ ∞

0

∫ +∞

w

(z − w)α−1w−α (G− λ) e−λzqBS(z, x) dz dw

= − λα−1

Γ(α)Γ(1− α)

∫ ∞

0

(G− λ) e−λzqBS(z, x)

(∫ z

0

(z − w)α−1w−α dw

)
dz
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= −λα−1

∫ ∞

0

(G− λ) e−λzqBS(z, x)dz, (6.62)

where in the third equality we used that PτqBS(w, y) = PτPwuK(x) = Pτ+wuK(x) = qBS(τ + w, x), in the
fourth equality we used the change of variables τ = z−w, in the fifth equality we used again Fubini’s theorem
and in the last equality we used the integral representation of the Beta function. Now notice that (6.29),
(6.30) and (6.31) guarantee that we can take the Laplace transform in the variable t on both sides of the first
equation of (6.33), leading to

λ

∫ +∞

0

e−λzqBS(z, x)dz − uK(x) =

∫ +∞

0

e−λzGqBS(z, x)dz.

This equality can be rearranged to obtain∫ +∞

0

(λ−G)e−λzqBS(z, x)dz = uK(x)

which, replaced into (6.62) gives (6.50).
By injectivity of the Laplace transform, we know that for all x > 0 there exists a measurable set Ix ⊂ R+

such that |Ix| = 0 and for all t ∈ R+ \Ix one has

(∂t −G)αq(t, x) =
t−α

Γ(1− α)
q(0, x).

We want to prove that Ix = ∅ for all x > 0. To do this, we first show that q is continuous. Indeed, let
t, x > 0 and consider a sequence (tn, xn) → (t, x). By (6.22) and (6.39) we have

q(tn, xn) =

∫ 1

0

qBS(tns, xn)
(1− s)−αsα−1

Γ(1− α)Γ(α)
ds.

Since xn → x, there exist 0 < a < b such that xn ∈ [a, b] for all n ∈ N and then |qBS(tns, xn)| ≤
emax{| log(a)|,| log(b)|}. Hence, we can use the dominated convergence theorem to get

lim
n→+∞

q(tn, xn) =

∫ 1

0

qBS(ts, x)
(1− s)−αsα−1

Γ(1− α)Γ(α)
ds = q(t, x).

Now we prove that for fixed x > 0 the function (∂t − G)αq(·, x) is right-continuous. Indeed, let tn ↓ t for
some t > 0 and observe that

|(∂t −G)αq(tn, x)− (∂t −G)αq(t, x)|

≤ α

Γ(1− α)

∫ t

0

|Psq(t− s, x)− q(t, x)− Psq(tn − s, x) + q(tn, x)|s−1−αds

+
α

Γ(1− α)

∫ tn

t

|Psq(tn − s, x)− q(tn, x)|s−1−αds

+
t−α − t−α

n

Γ(1− α)
|q(t, x)|+ |q(t, x)− q(tn, x)|

t−α
n

Γ(1− α)

:=
α

Γ(1− α)

(
In(x) + Jn(x) +

t−α − t−α
n

α
|q(t, x)|+ |q(t, x)− q(tn, x)|

t−α
n

α

)
.

Let us first consider In(x). We have

|Psq(t− s, x)− q(t, x)− Psq(tn − s, x) + q(tn, x)|
≤ |Psq(t− s, x)− Psq(tn − s, x)|+ |q(t, x)− q(tn, x)|
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≤ Ps|q(tn − s, ·)− q(t− s, ·)|(x) + |q(t, x)− q(tn, x)|

Arguing as in the proof of Corollary 6.13, we have that |q(t−s, ·)−q(tn−s, ·)| ∈ C0(1/2) with tn−s− (tn− t)

[|q(t− s, ·)− q(tn − s, ·)|]1/2 ≤
Γ
(
α+ 1

2

)
(tn − t)

πΓ(α)

√
K

t− s
.

Hence, by Item (5) of Lemma 6.8 we have

Ps|q(tn − s, ·)− q(t− s, ·)|(x) ≤ 2
Γ
(
α+ 1

2

)
(tn − t)

πΓ(α)

√
K

t− s
e

3
8 s+

| log(x)|
2 .

Combining this inequality with the fact that q is continuous, for fixed s ∈ [0, t), we find

lim
n→∞

|Psq(t− s, x)− q(t, x)− Psq(tn − s, x) + q(tn, x)| = 0.

Hence, it is sufficient to show that we can use the dominated convergence theorem to take the limit inside
the integral sign in In(x). To do this, observe that

|Psq(t− s, x)− q(t, x)− Psq(tn − s, x) + q(tn, x)|
≤ |Psq(t− s, x)− Psq(t, x)|+ |Psq(t, x)− q(t, x)|

+ |Psq(tn − s, x)− Psq(tn, x)|+ |Psq(tn, x)− q(tn, x)|
≤ Ps|q(t− s, ·)− q(t, ·)|(x) + |Psq(t, x)− q(t, x)|

+ Ps|q(tn − s, ·)− q(tn, ·)|(x) + |Psq(tn, x)− q(tn, x)|.

(6.63)

Again recall that |q(t− s, ·)− q(t, ·)| ∈ C0(1/2) with

[|q(t− s, ·)− q(t, ·)|]1/2 ≤
Γ
(
α+ 1

2

)
s

πΓ(α)

√
K

t− s
,

hence, by Item (5) of Lemma 6.8,

Ps|q(t− s, ·)− q(t, ·)|(x) ≤
2Γ
(
α+ 1

2

)
s

πΓ(α)

√
K

t− s
e

3
8 t+

| log(x)|
2

≤
2Γ
(
α+ 1

2

)
s

πΓ(α)

√
K

t− s
e

3
8 t1+

| log(x)|
2 (6.64)

Ps|q(tn − s, ·)− q(tn, ·)|(x) ≤
2Γ
(
α+ 1

2

)
s

πΓ(α)

√
K

tn − s
e

3
8 tn+

| log(x)|
2

≤
2Γ
(
α+ 1

2

)
s

πΓ(α)

√
K

t− s
e

3
8 t1+

| log(x)|
2 . (6.65)

Furthermore, notice that

Psq(t, x)− q(t, x) =

∫ s

0

GPτq(t, x) dτ =

∫ s

0

PτGq(t, x) dτ

where we used Item (3) of Lemma 6.8 since q(t, ·), ∂xq(t, ·) and Gq(t, ·) belong to C0. In particular, recall
that, by (6.47), that Gq(t, ·) ∈ C0(1/2) and

[Gq(t, ·)] 1
2
≤
√

K

2t

Γ
(
α− 1

2

)
2πΓ(α)

.
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Hence, by Item (5) of Lemma 6.8 we get, since τ ≤ s ≤ t

|PτGq(t, x)| ≤ 2

√
K

2t

Γ
(
α− 1

2

)
2πΓ(α)

e
3
8 τ+

| log(x)|
2

≤ 2

√
K

2t

Γ
(
α− 1

2

)
2πΓ(α)

e
3
8 t1+

| log(x)|
2

and then

|Psq(t, x)− q(t, x)| ≤ 2

√
K

2t

Γ
(
α− 1

2

)
2πΓ(α)

e
3
8 t1+

| log(x)|
2 s (6.66)

Analogously,

|Psq(tn, x)− q(tn, x)| ≤ 2

√
K

2t

Γ
(
α− 1

2

)
2πΓ(α)

e
3
8 t1+

| log(x)|
2 s. (6.67)

Combining (6.64), (6.65), (6.66) and (6.67) with (6.63) we have

|Psq(t− s, x)− q(t, x)− Psq(tn − s, x) + q(tn, x)|

≤
4Γ
(
α+ 1

2

)
s

πΓ(α)

√
K

t− s
e

3
8 t1+

| log(x)|
2 + 4

√
K

2t

Γ
(
α− 1

2

)
2πΓ(α)

e
3
8 t1+

| log(x)|
2 s.

Integrating the latter against s−1−α we get∫ t

0

|Psq(t− s, x)− q(t, x)− Psq(tn − s, x) + q(tn, x)|s−1−α ds

≤
4Γ
(
α+ 1

2

)
πΓ(α)

√
Ke

3
8 t1+

| log(x)|
2

∫ t

0

(t− s)−
1
2 s−α ds

+ 4

√
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e
3
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| log(x)|
2

∫ t

0

s−α ds

=
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(
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)
Γ(1− α)

Γ(α)Γ
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1
2−α

where we also used [3, Lemma 1.11]. Hence, we can use the dominated convergence theorem to guarantee
that

lim
n→∞

In(x) = 0.

Next, we move to Jn(x). We have, arguing as before and recalling that this time s ∈ [tn, t],

|Psq(tn − s, x)− q(tn, x)| ≤ |Psq(tn − s, x)− Psq(tn, x)|+ |Psq(tn, x)− q(tn, x)|
≤ Ps|q(tn − s, ·)− q(tn, ·)|+ |Psq(tn, x)− q(tn, x)|

≤
2Γ
(
α+ 1

2

)
s

πΓ(α)

√
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e

3
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| log(x)|
2 + 2

√
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2πΓ(α)

e
3
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Hence,

Jn(x)
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≤
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πΓ(α)

√
Ke

3
8 t1+

| log(x)|
2

∫ tn

t

(tn − s)−
1
2 s−α ds+ 2

√
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s−αds
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α+ 1

2
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√
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3
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| log(x)|
2
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0
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=
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3
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| log(x)|
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tn

0
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1
2 (1− z)−α dz + 2

√
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2π(1− α)Γ(α)

e
3
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| log(x)|
2 (t1−α

n − t1−α).

Hence, taking the limit as n → ∞, we get

lim
n→∞

Jn(x) = 0.

Combined with the fact that also the remaining terms converge to 0 as n → ∞, this finally shows that

lim
n→∞

(∂t −G)αq(tn, x) = (∂t −G)αq(t, x).

Now we prove that Ix = ∅ for all x > 0. Indeed, fix x > 0 and assume that Ix ̸= ∅. Let t ∈ Ix and consider
an interval of the form [t, t+δ] for some δ > 0. Since |Ix∩ [t, t+δ]| = 0, we know that there exists a sequence
tn ↓ t such that tn ̸∈ Ix for all n ∈ N. For such a sequence, we know that

(∂t −G)αq(tn, x) =
t−α
n

Γ(1− α)
q(0, x).

Taking the limit as n → ∞ we get

(∂t −G)αq(t, x) =
t−α

Γ(1− α)
q(0, x)

that is absurd. Hence Ix = ∅ and thus we get that

(∂t −G)αq(t, x) =
t−α

Γ(1− α)
q(0, x), ∀t, x > 0. (6.68)

Finally, we notice that q ∈ C0,loc(R+
0 ) by Proposition 6.14. □

Remark 6.19. Actually, the first equality in (6.36) guarantees that (∂t−G)αq is continuous in both variables.

6.2.3. Uniqueness of the solution. In order to prove that (6.36) has a unique solution, we need to consider
an auxiliary problem. For β ≥ 0 consider the function fβ(x) = eβ| log(x)| and, by Item (4) of Lemma 6.8,

uβ(t, x) = Ptfβ(x) = eβ log(x)+
β(β−1)

2 tΦ

(
−
(
β − 1

2

)√
t− log(x)√

t

)
+ e−β log(x)+

β(β+1)
2 tΦ

(
−
(
β +

1

2

)√
t+

log(x)√
t

)
.

Let us give some preliminary estimates on uβ , that can be verified by direct evaluation.

Lemma 6.20. For all β ≥ 0 and t, x > 0 we have:

∂xuβ(t, x) = βe
β(β−1)

2 t+(β−1) log(x)Φ

(
−
(
β − 1

2

)√
t− log(x)√

t

)
− βe

β(β+1)
2 t−(β+1) log(x)Φ

(
−
(
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2

)√
t+

log(x)√
t

)
(6.69)

∂2
xuβ(t, x) = β(β − 1)e

β(β−1)
2 t+(β−2) log(x)Φ

(
−
(
β − 1

2

)√
t− log(x)√

t

)
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+ β(β + 1)e
β(β+1)

2 t−(β+2) log(x)Φ
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)√
t+

log(x)√
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)
−
√

2β2

πt
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3
2 log(x)− log2(x)

2t (6.70)

∂tuβ(t, x) = Guβ(t, x) =
β(β − 1)

2
e

β(β−1)
2 t+β log(x)Φ

(
−
(
β − 1

2
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t− log(x)√
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+

β(β + 1)

2
e

β(β+1)
2 t−β log(x)Φ
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log(x)√
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)
− β√
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log(x)
2 − log2(x)

2t . (6.71)

In particular,

|uβ(t, x)| ≤ 2e
β(β+1)

2 t+β| log(x)| (6.72)

|∂xuβ(t, x)| ≤ 2βe
β(β+1)

2 t+(β+1)| log(x)| (6.73)

|∂2
xuβ(t, x)| ≤ 2β(β + 1)e

β(β+1)
2 t+(β+2)| log(x)| +

β
√
2√

πt
e

3
2 | log(x)| (6.74)

|∂tuβ(t, x)| = |Guβ(t, x)| ≤ β(β + 1)e
β(β+1)

2 t+β| log(x)| +
β√
2πt

e
| log(x)|

2 . (6.75)

Now consider the function

qβ(t, x) =

∫ t

0

uβ(s, x)gH(s; t) ds =

∫ t

0

uβ(s, x)
sα−1(t− s)−α

Γ(α)Γ(1− α)
ds =

∫ 1

0

uβ(st, x)
sα−1(1− s)−α

Γ(α)Γ(1− α)
ds. (6.76)

Similarly to what we did for q, we need to prove some regularity results for qβ . We start with the following
proposition, concerning the regularity in the t variable.

Proposition 6.21. Let Φ(λ) = λα for some α ∈ (0, 1) and β ≥ 0. Then for all x > 0 the function qβ(·, x)
belongs to AC(R+

0 ) and its a.e. derivative ∂tqβ(·, x) satisfies

|∂tqβ(t, x)| ≤ αβ(β + 1)e
β(β+1)

2 (t+1)+β| log(x)| +
2βΓ
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e
| log(x)|

2 . (6.77)

In particular, for all t, x > 0

α

Γ(1− α)

∫ t

0

|Psqβ(t− s, x)− Psqβ(t, x)|s−1−α ds < ∞

and for all x > 0 and λ > max
{
β(β + 1), 3

4

}
α

Γ(1− α)

∫ +∞

0

∫ t

0

e−λt|Psqβ(t− s, x)− Psqβ(t, x)|s−1−α ds dt < ∞. (6.78)

Proof. Arguing as in Proposition 6.12, let t > 0 and h ∈
(
− t

2 , 1
)
. We have∣∣∣∣qβ(t+ h, x)− qβ(t, x)

h

∣∣∣∣ ≤ ∫ 1

0

∣∣∣∣uβ(st+ sh, x)− uβ(st, x)

sh

∣∣∣∣ sα(1− s)−α

Γ(α)Γ(1− α)
ds. (6.79)
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By Lagrange’s theorem we know that there exists ξ ∈ [min{ts, ts + hs},max{ts, ts + hs}] ⊆
[
ts
2 , (t+ 1)s

]
such that ∣∣∣∣uβ(st+ sh, x)− uβ(st, x)
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where we used (6.75). Using this bound into (6.79) we get∣∣∣∣qβ(t+ h, x)− qβ(t, x)
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)
π
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e
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Arguing as in Proposition 5.4, this implies that qβ(·, x) belongs to AC(R+
0 ) and that its a.e. derivative

∂tqβ(t, x) satisfies (6.77).
Next, observe that

|qβ(t− s, x)− qβ(t, x)| ≤
∫ s

0

|∂tq(t− τ, x)| dτ
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)
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Setting β̃ = max
{

1
2 , β
}
, we have that |qβ(t− s, ·)− qβ(t, ·)| ∈ C0(β̃) with

[qβ(t− s, ·)− qβ(t, ·)]β̃ ≤ αβ(β + 1)e
β(β+1)
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2sβΓ

(
1
2 + α

)
π
√
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and then, by Item (5) of Lemma 6.8

Ps|qβ(t− s, ·)− qβ(t, ·)|

≤
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eβ̃| log(x)|. (6.80)

Thus we have

α

Γ(1− α)

∫ t

0

|Psqβ(t− s, x)− Psqβ(t, x)|s−1−α ds

≤

(
2α2β(β + 1)
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√
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eβ̃| log(x)|

that also implies (6.78) with λ > β̃(β̃ + 1). □
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Next, we need to study the regularity of qβ in the x variable. Let us first focus on the first derivative.

Proposition 6.22. For all t, x > 0, we have

∂xqβ(t, x) =
1

Γ(α)Γ(1− α)

∫ 1

0

∂xuβ(tτ, x)τ
α−1(1− τ)−αdτ. (6.81)

Furthermore, qβ ∈ C0(β) and ∂xqβ ∈ C0(β + 1), with

[qβ(t, ·)]β ≤ 2e
β(β+1)

2 t (6.82)

[∂xqβ(t, ·)]β ≤ 2βe
β(β+1)

2 t. (6.83)

Proof. The identity (6.81) follows by (6.76) by a simple application of the dominated convergence theorem,
which is justified by (6.73). Furthermore, (6.72) and (6.73) imply respectively (6.82) and (6.83). □

For the second derivative, we need a further assumption.

Proposition 6.23. Let α ∈
(
1
2 , 1
)
and β ≥ 0. Then, for all t, x > 0, we have

∂2
xqβ(t, x) =
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Γ(α)Γ(1− α)

∫ 1

0

∂2
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Gqβ(t, x) =
1

Γ(α)Γ(1− α)

∫ 1

0

Guβ(tτ, x)τ
α−1(1− τ)−αdτ. (6.85)

Moreover, Gqβ ∈ C0(β̃) with β̃ = max
{
β, 1

2

}
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π
√
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. (6.86)

As a consequence, for all t, x > 0,

α

Γ(1− α)

∫ t

0

|Psq(t, x)− q(t, x)|s−1−α ds < ∞,

and for all x > 0 and λ > β̃(β̃ + 1),
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Γ(1− α)
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0

∫ t

0

e−λt|Psq(t, x)− q(t, x)|s−1−α ds dt < ∞. (6.87)

Proof. Fix x, t > 0 and let 0 < a < x < b. For y ∈ [a, b] and τ ∈ [0, 1], by (6.74), we have

|∂2
xuβ(tτ, y)| ≤ 2β(β + 1)e

β(β+1)
2 t+(β+2)M +

β
√
2√

πtτ
e

3M
2 ,

where M = max{| log(a)|, | log(b)|}. Notice that the right-hand side is integrable against gH(τ, 1). Indeed,∫ 1

0

(
2β(β + 1)e

β(β+1)
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π
√
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e
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Hence, an application of the dominated convergence theorem to (6.81) leads to (6.84). Furthermore, multi-

plying both sides of (6.84) by x2

2 we get (6.85) and (6.86) follows by (6.85) and (6.75).
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Now observe that by Proposition 6.23 we know that qβ(t, ·), ∂xqβ(t, ·) ∈ C0, while we also proved that
Gqβ(t, ·) ∈ C0. Hence we can write

Psqβ(t, x)− qβ(t, x) =

∫ s

0

GPτqβ(t, x) dτ =

∫ s

0

PτGqβ(t, x) dτ.

Furthermore, by (6.86) and Item (5) of Lemma 6.8 we get for τ ∈ [0, s] ⊆ [0, t]

Pτ |Gqβ(t, ·)| ≤
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Thus, we have

|Psqβ(t, x)− q(t, x)|

≤

(
β(β + 1)eβ̃(β̃+1)t +

βΓ
(
α− 1

2

)
Γ(1− α)

π
√
2t

e
β̃(β̃+1)

2 t

)
seβ̃| log(x)|. (6.89)

and then

α

Γ(1− α)
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|Psqβ(t, x)− q(t, x)|s−1−α ds

≤ α
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Eventually, the latter inequality implies (6.87) for λ > β̃(β̃ + 1). □

Now we check that qβ satisfies Item (iii) of Theorem 3.3.

Proposition 6.24. Let α ∈ (0, 1) and β ≥ 0. Then, for all λ > β(β+1)
2 and x > 0 we have

1

Γ(1− α)

∫ ∞

0

t−αe−λt|qβ(t, x)| dt < ∞.

Proof. By (6.82) we have

1

Γ(1− α)

∫ ∞
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t−αe−λt|qβ(t, x)| dt ≤
2eβ| log(x)|
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= 2eβ| log(x)|
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2
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.

□

We can now prove that qβ is a solution of a special fully nonlocal equation.

Proposition 6.25. Let α ∈
(
1
2 , 1
)
and β ≥ 0. Then qβ is a solution of{

(∂t −G)αqβ(t, x) =
t−α

Γ(1−α)qβ(0, x) t, x > 0

qβ(0, x) = eβ| log(x)| x > 0.
(6.90)
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Proof. First notice that qβ(0, x) = uβ(0, x) = eβ| log(x)|. By Propositions 6.21, 6.23 and 6.24 we know that
(∂t −G)αqβ(t, x) is well-defined for all t, x > 0 and for fixed x > 0 the function (∂t −G)αqβ(·, x) is Laplace
transformable for λ > β̃(β̃ + 1), where β̃ = max

{
β, 1

2

}
. Now we show that∫ ∞

0

e−λt(∂t −G)αqβ(t, x) dt = λα−1eβ| log(x)| (6.91)

for λ > 1
16

(
1
4 + β̃(β̃ + 1)

)
. This is done exactly as in Proposition 6.18, the only difference being the bound

we prove to use Fubini’s theorem in (6.56). Precisely, recall that fβ(x) = eβ| log(x)| and set

u(t, x) = e−
log2(x)

2t fβ̃(x)

and notice that, by (6.72) and (6.75)
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= I1 + I2. (6.92)

Concerning I1, we have, by Item (5) of Lemma 6.8

I1 ≤ 2(β(β + 1) + 2λ)
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For I2, we first need to evaluate Pτu(w, x). We have

Pτu(w, x) =
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2w +β̃| log(y)|− τ
8−

(log(y)−log(x))2

2τ

√
x

y32πτ
dy

=
√
xe−

τ
8−

log2(x)
2τ

∫ +∞

0

e−
log2(y)

2w − log2(y)
2τ +

log(y) log(x)
τ +β̃| log(y)| 1√

y32πτ
dy.

Now let z = log(y) to achieve
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Define

H(τ, w) =
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so that
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τ
e−

τ
8−

log2(x)
2τ e

1
2 (β̃−

log(x)
τ + 1

2 )
2
H(τ,w)Φ

(
−
(
β̃ − log(x)

τ
+

1

2

)√
t

)
=

√
xH(τ, w)

τ
e−

τ
8−

log2(x)
2(τ+w)

+A1H(τ,w)+(β̃− 1
2 )

w
τ+w log(x)Φ

(
−A2

√
t
)

+

√
xH(τ, w)

τ
e−

τ
8−

log2(x)
2(τ+w)

+B1H(τ,w)−(β̃+ 1
2 )

w
τ+w log(x)Φ

(
−B2

√
t
)
,

where

A1 =
β̃2

2
+

1

8
− β̃

2
A2 = β̃ +

log(x)

τ
− 1

2

B1 =
β̃2

2
+

1

8
+

β̃

2
B2 = β − log(x)

τ
+

1

2
and we used Lemma 6.7. Furthermore, we have

β√
2πw

Pτu(w, x) = β

√
x

2π(τ + w)
e−

τ
8−

log2(x)
2(τ+w)

+A1H(τ,w)+(β̃− 1
2 )

w
τ+w log(x)Φ

(
−A2

√
t
)

+ 2β

√
x

2π(τ + w)
e−

τ
8−

log2(x)
2(τ+w)

+B1H(τ,w)−(β̃+ 1
2 )

w
τ+w log(x)Φ

(
−B2

√
t
)

≤ β√
2π(τ + w)

e−
τ
8−

log2(x)
2(τ+w)

+B1H(τ,w)+(β̃+1)| log(x)|,

where we used B1 > A1 and w
τ+w ≤ 1. Now recall that the function r ∈ R+ 7→

√
re−

log2(x)
2r ∈ R+ admits as

maximum point r⋆ = log−2(x), so that

β√
2πw

Pτu(w, x) ≤
β√
2πe

| log−1(x)|e−
τ
8+B1H(τ,w)+(β̃+1)| log(x)|.

Next, we observe that 2H(τ, w) is the harmonic mean of τ and w, hence, we can use the fact that the harmonic
mean is smaller than or equal to the arithmetic mean to write

H(τ, w) ≤ τ + w

4
and thus we get

β√
2πw

Pτu(w, x) ≤
β√
2πe

| log−1(x)|e
B1
4 (τ+w)+(β̃+1)| log(x)|.
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Now we can go back to I2 to get

I2 ≤ β√
2πe

| log−1(x)|e(β̃+1)| log(x)|
∫ +∞

0

∫ +∞

0

∫ s

0

τα−1s−α−1e−(λ−
B1
4 )(τ+w) dw dτ ds

=
β(

λ− B1

4

)√
2πe

| log−1(x)|e(β̃+1)| log(x)|
(∫ +∞

0

s−α−1
(
1− e−(λ−

B1
4 )s
)
ds

)
×
(∫ +∞

0

τα−1e−(λ−
B1
4 )τ dτ

)
=

βΓ(1− α)Γ(α)(
λ− B1

4

)√
2πe

| log−1(x)|e(β̃+1)| log(x)|.

Once we have (6.91), we know that for all x > 0 there exists Ix ⊂ R+ such that |Ix| = 0 and for all t ∈ R+ \Ix
we have

(∂t −G)αqβ(t, x) =
t−α

Γ(1− α)
qβ(0, x). (6.94)

Analogously to what we did in Proposition 6.18, we need to prove that Ix = ∅. First, notice that a simple
application of the dominated convergence theorem to (6.76), justified by (6.72), shows that qβ is continuous.
Furthermore, arguing exactly as in Proposition 6.18, by means of the estimates (6.80) and (6.89), one can
show that if tn ↓ t, then (∂t −G)αqβ(tn, x) → (∂t −G)αqβ(t, x). This shows, with the same argument as in
Proposition 6.18, that Ix = ∅ for all x > 0 and then qβ is solution of (6.90). □

Now we want to use the auxiliary function qβ to show that (6.36) has a unique solution. To do this, we
need also the following lower bound.

Proposition 6.26. Let α ∈ (0, 1) and β ≥ 0. Then there exists a non-increasing function Cβ : R+ → R with
Cβ(t) > 0 for all t > 0 and such that

qβ(t, x) ≥ Cβ(t)e
β| log(x)|.

Proof. First of all, let us observe that if x ≥ 1 then log(x) ≥ 0 and we have

uβ(t, x) ≥ eβ log(x)+
β(β+1)

2 tΦ

(
−
(
β +

1

2

)√
t

)
≥ eβ log(x)+

β(β−1)
2 tΦ

(
−
(
β − 1

2

)√
t

)
.

If instead x ∈ (0, 1], then log(x) ≤ 0 and

uβ(t, x) ≥ e−β log(x)+
β(β−1)

2 tΦ

(
−
(
β − 1

2

)√
t

)
.

Hence, in general, we have

uβ(t, x) ≥ eβ| log(x)|+
β(β−1)

2 tΦ

(
−
(
β − 1

2

)√
t

)
.

Next, by (6.76), we get

qβ(t, x) ≥ eβ| log(x)|
∫ 1

0

e
β(β−1)

2 tsΦ

(
−
(
β − 1

2

)√
ts

)
sα−1(1− s)−α

Γ(α)Γ(1− α)

≥


eβ| log(x)|+ β(β−1)

2
t

2 β ≤ 1
2

eβ| log(x)|+
β(β−1)

2 tΦ
(
−
(
β − 1

2

)√
t
)

β ∈
(
1
2 , 1
]

eβ| log(x)|Φ
(
−
(
β − 1

2

)√
t
)

β > 1,
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that ends the proof. □

Now we shall show that the solutions of the fully nonlocal Black-Scholes equation belonging to C0,loc(R+
0 )

are unique.

Proposition 6.27. Let α ∈
(
1
2 , 1
)
and f ∈ C0. Then, the equation

(∂t −G)αqf (t, x) =
t−α

Γ(1−α)qf (0, x) t, x > 0

qf (0, x) = f(x) x > 0

qf ∈ C0,loc(R+
0 )

(6.95)

at most has one solution.

Proof. Since the equation is linear, it is sufficient to verify that if f ≡ 0 then the solution qf ≡ 0. Fix T > 0

and recall that since qf ∈ C0,loc(R+
0 ) then

|qf (t, x)| ≤ CT e
βT | log(x)|.

For simplicity, set CT = C and βT := β0. Now, for any A ≥ 1 and β > β0, consider the function

wβ(t, x;A) :=
C

Cβ(T )
e(β0−β)| log(A)|qβ(t, x).

Notice that wβ(0, x;A) > 0 = qf (0, x) for all x > 0. Next, by Proposition 6.26 we have that, for t ∈ (0, T ],

wβ(t, x;A) ≥ Cβ(t)

Cβ(T )
Ce(β0−β)| log(A)|+β| log(x)| ≥ Ce(β0−β)| log(A)|+β| log(x)|.

If x ̸∈
[
A−1, A

]
then | log(x)| ≥ | log(A)| and we have

wβ(t, x;A) ≥ Ceβ0| log(A)| ≥ |qf (t, x)|.

This shows that for all x ̸∈
[
A−1, A

]
and t ∈ [0, T ]

wβ(t, x;A) + qf (t, x) ≤ 0 ≤ wβ(t, x;A)− qf (t, x). (6.96)

We want to show that this inequality holds for all x > 0. To do this, assume by contradiction that there
exists a point (t⋆, x⋆) ∈ [0, T ]× R+ such that

wβ(t⋆, x⋆;A)− qβ(t⋆, x⋆) < 0.

It must hold x⋆ ∈ [A−1, A]. Furthermore, since all the involved functions are continuous, we can assume
without loss of generality that

wβ(t⋆, x⋆;A)− qf (t⋆, x⋆) = min
(t,x)∈[0,T ]×[A−1,A]

(wβ(t, x;A)− qf (t, x)).

First of all, notice that for all x ∈ R+

wβ(t⋆, x⋆;A)− qf (t⋆, x⋆) < 0 < wβ(0, x;A)− qf (0, x).

Moreover, using (6.96) for x ̸∈ [A−1, A] and the definition of (t⋆, x⋆), if x ∈ [A−1, A], we get

wβ(t⋆, x⋆;A)− qf (t⋆, x⋆) ≤ wβ(t, x;A)− qf (t, x)

for all t ∈ [0, T ] and x > 0. By Proposition 3.5 we must have

−(∂t −G)α(wβ(·, ·;A)− qf (·, ·))(x⋆, t⋆) +
t−α
⋆

Γ(1− α)
wβ(0, x⋆;A) > 0.
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However, by Proposition 6.25 we know that, up to a multiplicative constant, wβ(·, ·;A) solves (6.90), while
qf solves (6.95), hence

−(∂t −G)α(wβ(·, ·;A)− qf (·, ·))(x⋆, t⋆) +
t−α
⋆

Γ(1− α)
wβ(0, x⋆;A) = 0,

which is a contradiction. Thus, we find

wβ(t, x;A)− qf (t, x) ≥ 0, ∀x > 0, t ∈ [0, T ]

With a similar argument one can prove that

wβ(t, x;A) + qf (t, x) ≤ 0, ∀x > 0, t ∈ [0, T ]

and then, since (6.96) holds for all x > 0 and t ∈ [0, T ], we have

|qf (t, x)| ≤ wβ(t, x;A) =
C

Cβ(T )
e(β0−β)| log(A)|qβ(t, x)

taking the limit as A → ∞ we get that |qf (t, x)| = 0 for all x > 0 and t ∈ [0, T ]. Since T > 0 is arbitrary, we
end the proof. □

6.3. Proof of Theorem 6.10. Before proving the main theorem of the section, we must state the last
preliminary result whose proof is in Appendix D.

Proposition 6.28. Let ϕ(λ) = λα for some α ∈ (0, 1). Then, on f ∈ C∞
c (R×R+) the generator Aϕ of

(Bϕ, S) acts as follows:

Aϕf(x, v) =

∫
R

∫
R
(f(x+ h, s+ v)− f(x, v)− h∂xf(x, v)1[−1,1](h))K(dh; ds) dh,

where K is defined in (6.34).

Now we are finally ready to prove Theorem 6.10.

Proof of Theorem 6.10. We already know by (6.19) that q⋆(T−t, x, 0) = q(t, x). Furthermore, by Proposition
6.18 we know that the function q solves (6.36) and by Proposition 6.27 that it is actually the unique solution.
We only need to prove (6.35). To do this, denote by (Qt)t≥0 the transition semigroup of (Xe(t), γ(t)) and
observe that

q⋆(t,X(t), γ(t)) = Q̃T−tu(X(t), γ(t))

= Ẽ
(x,v)

[(X(T )−K)+ | X(t), γ(t)]

= E(x,v)[(eXe(T )−T−v−γ(T )
2 −K)+ | X(t), γ(t)]

= QT−tgT,v(Xe(t), γ(t)) = QT−tgT,v(log(X(t)), γ(t)),

where

gT,v(x,w) = (ex−
T−v−w

2 −K)+.

By Proposition 6.28 and [46, Theorem 4.1], we have, for w > 0

Qtg(x,w) = g(x,w + t)Kw(x;Rd ×[w + t,∞)) +

∫
R×[w,w+t)

Qt+w−τg(x+ y, 0)Kw(dτ, dy),

In our case, this becomes

q⋆(t, x, w) = QT−tgT,v(log(x), w) = gT,v(log(x), w + T − t)Kw(x;Rd ×[w + T − t,∞))
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+

∫
R×[w,w+T−t)

QT−t+w−τgT,v(log(x) + y, 0)Kw(dτ, dy). (6.97)

Now, we just have to evaluate the inner term. We have, setting for brevity x̃ = log(x) + y + t − w + τ − v

and t̃ = T − t+ w − τ ,

QT−t+w−τgT,v(log(x) + y, 0)

= E(log(x)+y,0)

[(
exp

(
Xe(t̃)−

T − v − γ(t̃)

2

)
−K

)
+

]

= E(x̃,0)

[(
exp

(
Xe(t̃)−

t̃− γ(t̃)

2

)
−K

)
+

]

= E(x̃,0)[(X(t̃)e−
t̃−γ(t̃)

2 −K)+] = q(t̃, x̃).

Substituting the latter expression into (6.97) we get (6.35). □
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Appendix A. A simple property of conditional expectations

Lemma A.1. Let X,Y, Z be three random variables with values respectively in EX , EY , EZ . Assume that Z
is independent of both X and Y . Then, for any bounded measurable function F : EX × EZ → R

E[F (X,Z) | X,Y ] = E[F (X,Z) | X]

Proof. First consider two sets BX ∈ EX and BZ ∈ EZ . Then

E [1BX
(X)1BZ

(Z) | X,Y ] = 1BX
(X)E [1BZ

(Z) | X,Y ]

= 1BX
(X)E [1BZ

(Z)]

= 1BX
(X)E [1BZ

(Z) | X]

= E [1BX
(X)1BZ

(Z) | X] .

Now fix F ∈ σ(X,Y ) and define for any B ∈ EX ⊗EZ

µF (B) = E [1F E [1B(X,Z) | X,Y ]]

and

νF (B) = E [1F E [1B(X,Z) | X]] .
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Notice that on B = BX × BZ for some BX ∈ EX and BZ ∈ EZ it holds µF (BX × BZ) = νF (BX × BZ).
Since the sets of the form BX × BZ constitute a π-system generating EX ⊗EZ , this is enough to guarantee
that µF = νF . Furthermore, since F ∈ σ(X,Y ) is arbitrary, this leads to

E [1B(X,Z) | X,Y ] = E [1B(X,Z) | X]

for all B ∈ EX ×EZ . Once this has been shown for indicator functions, a standard argument leads to the
statement. □

Appendix B. Proof of Lemma 6.7

The proof is by direct calculation. Just notice that∫ +∞

−∞
eλ1|y|+λ2yp(t, x− y)dy =

1√
2πt

∫ +∞

−∞
eλ1|y|+λ2y− y2

2t −
x2

2t +
xy
t dy

=
1√
2πt

∫ +∞

0

eλ1y+λ2y− y2

2t −
x2

2t +
xy
t dy

+
1√
2πt

∫ 0

−∞
e−λ1y+λ2y− y2

2t −
x2

2t +
xy
t dy

= F (t, x;λ1 + λ2) + F (t,−x;λ1 − λ2)

where

F (t, x;λ) =
1√
2πt

∫ +∞

0

eλy−
y2

2t −
x2

2t +
xy
t dy.

We only need to evaluate F . To do this, notice that

λy − y2

2t
− x2

2t
+

xy

t
= − (y − (λt+ x))2

2t
+

λ(λt+ 2x)

2

hence

F (t, x;λ) =
1√
2πt

e
λ(λt+2x)

2

∫ +∞

0

e−
(y−(λt+x))2

2t dy.

Using the change of variables v = y−(λt+x)√
t

, we have

F (t, x;λ) =
1√
2π

e
λ(λt+2x)

2

∫ +∞

−λt+x√
t

e−v2

2dv = e
λ(λt+2x)

2 Φ

(
−λt+ x√

t

)
.

This ends the proof. □

Appendix C. Proof of Lemma 6.8

We first recall that, by [50, Theorems 6.20 and 8.6], the equation{
∂tv(t, y) =

1
2∂

2
yv(t, y), t > 0, x ∈ R

v(0, y) = g(y), x ∈ R
(C.1)

admits a solution vg whenever g ∈ C(R) satisfies |g(y)| ≤ Ceβ|y| for suitable constants C, β > 0 and such

a solution is unique among functions v(t, y) satisfying, for all T > 0, |v(t, y)| ≤ C1e
C2y

2

for some constants
C1, C2 > 0 and t ∈ [0, T ]. Furthermore, still by [50, Theorem 8.6], we know that,

vg(t, y) = E
(y,0)[g(B(t))]
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Hence, for any T > 0 and t ∈ [0, T ],

|vg(t, y)| ≤ E(y,0)[|g(B(t))|] ≤ C E(y,0)
[
eβ|B(t)|

]
≤ 2Ceβ|y|+

β2t
2 ,

where we also used Lemma 6.7. Now consider the equation{
∂tu(t, x) = Gu(t, x), t > 0, x ∈ R+

u(0, x) = f(x) x ∈ R+,
(C.2)

where f ∈ C0 and let β > 0 be such that f ∈ C0(β). Then if we set

g(y) = e−
y
2 f(ey), x ∈ R

we do have |g(y)| ≤ [f ]βe
(β+ 1

2 )|y| and g ∈ C(R), hence we can solve the heat equation (C.1), providing the
unique solution vg(t, y) that satisfies

|vg(t, y)| ≤ 2[f ]βe
1
2 (β+

1
2 )

2
t+(β+ 1

2 )|y|.

According to [50, Proposition 7.9], we know that

uf (t, x) = e
log(x)

2 − t
8 vg(t, log(x))

is a classical solution of (C.2). Hence, in particular, uf ∈ C(R+
0 ×R+) ∩ C1(R+ ×R+) and for all t > 0 it

holds uf (t, ·) ∈ C2(R+). Moreover, for x > 0 we get

|uf (t, x)| ≤ e
| log(x)|

2 |vg(t, log(x))| ≤ 2[f ]βe
(β+1)| log(x)|+ β(β+1)

2 t (C.3)

hence uf ∈ Csol. To show uniqueness, notice that if we consider any other solution of (C.2) in Csol, then we

have, still by [50, Proposition 7.9], that v′g(t, x) = e−
x
2+

t
8u(t, ex) satisfies (C.1) with

|v′g(t, x)| ≤ C̃T e
T
8 e(β̃T+ 1

2 )|x|

for all T > 0, t ∈ [0, T ], x ∈ R. By [50, Theorem 6.20], we know that v′g = vg hence u′
f = uf .

Denote by (Ps)s≥0 the semigroup action on C0 such that for all f ∈ C0 the function uf (s, x) = Psf(x) is
the unique solution of (6.33) in Csol.

Notice that for the special initial data fβ1,β2
(x) = eβ1| log(x)|+β2 log(x), that belongs to C0(|β1| + |β2|), we

have g(y) = e(β2− 1
2 )y+β1|y|, hence, by Lemma 6.7, it holds

vg(t, y) = E
(y,0)[g(B(t))] = e(β1+β2− 1

2 )y+
1
2 (β1+β2− 1

2 )
2
tΦ

(
−
(
β1 + β2 −

1

2

)√
t− y√

t

)
+ e−(β1−β2+

1
2 )y+

1
2 (β1−β2+

1
2 )

2
tΦ

(
−
(
β1 − β2 +

1

2

)√
t+

y√
t

)
.

As a consequence, we get, in such a case

Ptfβ1,β2
(x) = e(β1+β2) log(x)+

(β1+β2)(β1+β2−1)
2 tΦ

(
−
(
β1 + β2 −

1

2

)√
t− log(x)√

t

)
+ e−(β1−β2) log(x)+

(β1−β2)(β1−β2+1)
2 tΦ

(
−
(
β1 − β2 +

1

2

)√
t+

log(x)√
t

)
.

This shows Item (4).
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Now we prove Item (1). Recall that for f ∈ C0 it holds Ptf(x) = e
log(x)

2 − t
8 vg(t, log(x)), where vg satisfies

(C.1) with g(y) = e−
y
2 f(ey). As before, we also recall that

vg(t, y) =

∫
R
g(z)p(t, z − y)dz =

∫
R
e−

z
2 f(ez)p(t, z − y)dz,

where

p(t, z − y) =
1√
2πt

e−
(z−y)2

2t

is the heat kernel, as in (6.25). Hence,

Ptf(x) = e
log(x)

2 − t
8

∫
R
e−

z
2 f(ez)p(t, z − log(x))dz.

Using the change of variables z = log(w), we achieve

Ptf(x) = e
log(x)

2 − t
8

∫ +∞

0

e−
log(w)

2

w
f(w)p(t, log(w)− log(x))dw

=

∫ +∞

0

f(w)pGBM(t, w;x)dw.

Since pGBM(t, ·;x) is a probability density function, this also guarantees that Pt is positivity preserving and
sub-Markov. In particular, if f ∈ C0(β), then |f | ≤ fβ,0 =: fβ and then

|Ptf(x)| ≤ Pt|f |(x) ≤ [f ]βPtfβ,0(x) ≤ [f ]βe
β log(x)+

β(β−1)
2 tΦ

(
−
(
β − 1

2

)√
t− log(x)√

t

)
+ [f ]βe

−β log(x)+
β(β+1)

2 tΦ

(
−
(
β +

1

2

)√
t+

log(x)√
t

)
≤ 2[f ]βe

β(β+1)
2 t+β| log(x)|,

that shows Item (5).
To prove Item (2) observe that

pGBM(t, w;x) =
1

w
√
2π

exp

(
− (2 log(w)− 2 log(x) + t)

2

8t

)
and then

∂xpGBM(t, w;x) =
2 log(w)− 2 log(x) + t

2txw
√
2π

exp

(
− (2 log(w)− 2 log(x) + t)

2

8t

)
.

Fix 0 < a < b and let x ∈ [a, b]. Let also β ≥ 0 be such that f ∈ C0(β) and set M = max{| log(a)|, | log(b)|}.
Then we have

|f(w)∂xpGBM(t, w;x)|

≤ [f ]β
|2 log(w)− 2 log(x) + t|

2txw
√
2π

exp

(
β| log(w)| − (2 log(w)− 2 log(x) + t)

2

8t

)

≤ [f ]β

2at
√
2π

gt(log(w)) exp

(
− log(w)− log2(w)

16t

)
exp

(
− log2(w)

32t

)
× exp

(
β| log(w)| − log2(w)

8t

)
exp

(
− log2(w) + 2 log(w)(2 log(x)− t)

4t

)
,
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where

gt(z) = (2|z|+ 2M + t)e−
z2

32t .

First, notice that gt ∈ C(R), gt(z) ≥ 0 for all z ∈ R and limz→±∞ gt(z) = 0. Hence, there exists M1(t) =

maxz∈R gt(z). Next, consider the parabola r ∈ R 7→ − r2

8t + βr ∈ R and we notice that its vertex, which is its

maximum, lies in the point
(
4βt, 2β2t

)
. Similarly, the vertex of the parabola r ∈ R 7→ − r2

4t +
r(2 log(x)−t)

2t ∈ R
lies in the point

(
2 log(x)− t, (2 log(x)−t)2

4t

)
, which is its maximum. Finally, consider the parabola r ∈ R 7→

− r2

16t − r ∈ R and notice that its vertex, that is its maximum, lies in the point (−8t, 4t). Hence, if we set

Ct :=
[f ]βM1(t)

2at
√
2π

exp
(
2(β2 + 2)t

)
max
x∈[a,b]

exp

(
(2 log(x)− t)2

4t

)
we get

|f(w)∂xpGBM(t, w;x)| ≤ Ct exp

(
− log2(w)

32t

)
,

where the right-hand side is integrable and independent of x. Hence, by dominated convergence,

∂xPtf(x) =

∫ +∞

0

f(w)∂xpGBM(t, w;x) dw.

To prove the bound, we argue as follows: first we notice that

|∂xPtf(x)| ≤
∫ +∞

0

|f(w)∂xpGBM(t, w;x)| dw

=
[f ]β

2tx
√
2π

∫ +∞

0

|2 log(w)− 2 log(x) + t|
w

× exp

(
β| log(w)| − (2 log(w)− 2 log(x) + t)2

8t

)
dw.

Next, we apply the change of variables z = 2 log(w)−2 log(x)+t

2
√
t

, obtaining

|∂xPtf(x)| ≤
[f ]β

x
√
2π

∫ +∞

−∞
|z| exp

(
β

∣∣∣∣z√t+ log(x)− t

2

∣∣∣∣− z2

2

)
dz

≤ [f ]β

2x
√
2π

exp

(
β |log(x)|+ β

t

2

)∫ +∞

0

z exp

(
β
√
tz − z2

2

)
dz

=
[f ]β

2x
√
2π

exp

(
β |log(x)|+ β

t

2

)∫ +∞

0

(z − β
√
t) exp

(
β
√
tz − z2

2

)
dz

+
[f ]ββ

√
t

2x
√
2π

exp

(
β |log(x)|+ β

t

2

)∫ +∞

0

exp

(
β
√
tz − z2

2

)
dz.

:=
2[f ]β

x
√
2π

exp

(
β |log(x)|+ β

t

2

)
(I1 + I2).

Concerning I1, it is easy to check that I1 = 1. For I2, we rewrite it as

I2 =

√
π

2
E(0,0)

[
eβ

√
t|B(1)|

]
=

√
2πe

β2t2

2 Φ
(
−β

√
t
)
.
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Hence we get

|∂xPtf(x)| ≤
2[f ]β

x
√
2π

exp

(
β |log(x)|+ β

t

2

)(
1 +

√
2πe

β2t2

2 Φ
(
−β

√
t
))

≤ 4[f ]β exp

(
(β + 1) |log(x)|+ β

t

2
+

β2t2

2

)
,

that proves Item (2).
Finally, we prove Item (3). Let f as required, in particular with f ∈ C0(β), ∂xf ∈ C0(β

′) and Gf ∈ C0(β
′′.

Recall that

∂xPtf(x) =

∫ ∞

0

f(w) ∂xpGBM(t, w;x) dw. (C.4)

We want to prove a similar property for the second derivative. To do this, first notice that

∂2
xpGBM(t, w;x) =

(−8t+ (2 log(w)− 2 log(x) + t)2 − 4t(2 log(w)− 2 log(x) + t))

8t2w
√
2πx2

× exp

(
− (2 log(w)− 2 log(x) + t)2

8t

)
. (C.5)

By a similar argument as the one adopted in Item (2), we obtain, for fixed x ∈ [a, b], 0 < a < b, and t > 0,

|f(x)∂2
yp(t, x;x)| ≤ Ct exp

(
− log2(w)

32t

)
(C.6)

for some constant Ct depending on t, a, b, β and [f ]β . Again, by dominated convergence, we have

∂2
xPtf(x) =

∫ ∞

0

f(w) ∂2
xpGBM(t, w;x) dw. (C.7)

Next, notice that

x2

2
∂2
xpGBM(t, w;x) = ∂2

w

(
w2

2
pGBM(t, w;x)

)
. (C.8)

Hence we get

GPtf(x) =

∫ ∞

0

f(w) ∂2
w

(
w2

2
pGBM(t, w;x)

)
dw. (C.9)

Now we want to integrate by parts. To do this, we first notice that, again with the same exact argument, we
have ∣∣∣∣f(w) ∂w (w2

2
pGBM(t, w;x)

)∣∣∣∣ ≤ C exp

(
− log2(w)

32t

)
for some constant C depending on t, x, β and [f ]β . Hence, in particular,

lim
w→0

∣∣∣∣f(w) ∂w (w2

2
pGBM(t, w;x)

)∣∣∣∣ = lim
w→+∞

∣∣∣∣f(w) ∂w (w2

2
pGBM(t, w;x)

)∣∣∣∣ = 0

and then, integrating by parts in (C.9),

GPtf(x) = −
∫ ∞

0

∂wf(w) ∂w

(
w2

2
pGBM(t, w;x)

)
dw. (C.10)
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To integrate by parts a second time, we notice again that

w2

2
|∂wf(w) pGBM(t, w;x)| ≤ C exp

(
− log2(w)

32t

)
(C.11)

for some constant C depending on t, x, β′ and [∂xf ]β′ . Thus, again

lim
w→0

w2

2
|∂wf(w) pGBM(t, w;x)| = lim

w→+∞

w2

2
|∂wf(w) pGBM(t, w;x)| = 0

and then, integrating by parts in (C.10),

GPtf(x) = −
∫ ∞

0

Gf(w)pGBM(t, w;x) dw = PtGf(x), (C.12)

where the integral on the right-hand side is finite since Gf ∈ C0. □

Appendix D. Proof of Proposition 6.28

Let us consider the process (B(t), τ(t)), where B(t) is a Brownian motion such that P(x,v)(B(0) = x) = 1
and P(x,v)(τ(t) = t + v) = 1. Notice that (Bϕ, S) is obtained from (B, τ) by means of subordination.
Furthermore, the semigroup (Tt)t≥0 of (B(t), τ(t)) is given by

Ttf(x, v) =
∫ +∞

−∞
f(y, t+ v)p(t, x− y)dy,∀f ∈ Cb(R×R+

0 ).

where p is given by (6.25). By Phillips’ Theorem, we know that at least on C∞
c (R×R+) the generator Aϕ

of (Bϕ, σ) is given by

Aϕf(x, v) =
α

Γ(1− α)

∫ +∞

0

(Ttf(x, v)− f(x, v))t−1−α dt

=
α

Γ(1− α)

∫ +∞

0

∫ +∞

−∞
(f(y, t+ v)− f(x, v))p(t, x− y)t−1−α dy dt

=
α

Γ(1− α)

∫ +∞

0

∫ +∞

−∞
(f(x+ h, t+ v)− f(x, v))p(t, h)t−1−α dh dt,

where we applied the change of variables x− y = h. Now notice that by symmetry∫ 1

−1

h∂xf(x, v)p(t, h) dh = 0

hence we can rewrite

Aϕf(x, v) =
α

Γ(1− α)

∫ +∞

0

∫ +∞

−∞
(f(x+ h, t+ v)− f(x, v)− h∂xf(x, v)1[−1,1](h))p(t, h)t

−1−α dh dt. (D.1)

Now let us first show that the integral is absolutely convergent. Indeed, we have∫ +∞

0

∫ +∞

−∞
|f(x+ h, t+ v)− f(x, v)− h∂xf(x, v)|p(t, h)t−1−α dh dt

≤
∫ +∞

0

∫ +∞

−∞
|f(x+ h, t+ v)− f(x+ h, v)|p(t, h)t−1−α dh dt

+

∫ +∞

0

∫ +∞

−∞
|f(x+ h, v)− f(x, v)− h∂xf(x, v)1[−1,1](h)|p(t, h)t−1−α dh dt
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= I1 + I2.

As for I1, we split the integral in two parts:

I1 =

∫ 1

0

∫ +∞

−∞
|f(x+ h, t+ v)− f(x+ h, v)|p(t, h)t−1−α dh dt

+

∫ +∞

1

∫ +∞

−∞
|f(x+ h, t+ v)− f(x+ h, v)|p(t, h)t−1−α dh dt = I3 + I4.

Since f ∈ C∞
c (R×R+) and

∫ +∞
−∞ p(t, h)dh = 1 we have

I3 ≤ max
(x,v)∈R×R+

|∂vf(x, v)|
∫ 1

0

t−α dt =
max(x,v)∈R×R+ |∂vf(x, v)|

1− α

while

I4 ≤ 2 max
(x,v)∈R×R+

|f(x, v)|
∫ +∞

1

t−1−α dt =
max(x,v)∈R×R+ |f(x, v)|

α
.

To handle I2, we first change the order of the integral, defining

j(h) :=

∫ +∞

0

p(t, h)t−1−αdt = Cα|h|1+2α

for some normalizing constant Cα > 0. Then we split the integral in two parts:

I2 =

∫
h̸∈[−1,1]

|f(x+ h, v)− f(x, v)|j(h) dh dt

+

∫
h∈[−1,1]

|f(x+ h, v)− f(x, v)− h∂xf(x, v)|j(h) dh dt = I5 + I6.

For I5, we have

I5 ≤ 4 max
(x,v)∈R×R+

|f(x, v)|
∫ +∞

1

h−1−2α dh =
4max(x,v)∈R×R+

2α
,

while to handle I6 we observe that

I6 ≤ max
(x,v)∈R×R+

|∂2
xf(x, v)|

∫ 1

0

h1−2α dh =
max(x,v)∈R×R+ |∂2

xf(x, v)|
2(1− α)

.

Now we want to find an alternative way of writing (D.1). To do this, we define the following family of
measures on R:

A ∈ B(R) 7→ K̃(A, h) =

∫ +∞

0

1A(t)p(t, h)
αt−1−α

Γ(1− α)
dt.

We can then define a further measure on R2 by setting for any A1, A2 ∈ B(R)

K(A1 ×A2) =

∫ +∞

−∞
1A1

(h)K̃(A2, h) dh.

On the other hand, notice that (D.1) can be rewritten as

Aϕf(x, v) =

∫ +∞

−∞

∫ +∞

0

∫
R

αt−1−α

Γ(1− α)
(f(x+ h, s+ v)− f(x, v)− h∂xf(x, v)1[−1,1](h))p(t, h) δt(ds) dt dh.
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However, observe that for any A ∈ B(R) it holds

K̃(A, h) =

∫ +∞

0

1A(t)p(t, h)
αt−1−α

Γ(1− α)
dt =

∫ +∞

0

δt(A)p(t, h)
αt−1−α

Γ(1− α)
dt

=

∫ +∞

0

∫
R
1A(s)p(t, h)

αt−1−α

Γ(1− α)
δt(ds) dt.

By a standard measure theory argument we can conclude that

Aϕf(x, v) =

∫ +∞

−∞

∫
R
(f(x+ h, s+ v)− f(x, v)− h∂xf(x, v)1[−1,1](h))K̃(ds;h) dh

=

∫
R

∫
R
(f(x+ h, s+ v)− f(x, v)− h∂xf(x, v)1[−1,1](h))K(dh; ds) dh,

where the latter follows by definition of the measure K. □

References

[1] W. Arendt, C. J. K. Batty, M. Hieber, and F. Neubrander. Vector-valued Laplace Transforms and
Cauchy Problems, volume 96. Springer Science & Business Media, 2011.
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