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Abstract. There is a well established theory that links semi-Markov chains having Mittag-Leffler

waiting times to time-fractional equations. We here go beyond the semi-Markov setting, by defining

some non-Markovian chains whose waiting times, although marginally Mittag-Leffler, are assumed

to be stochastically dependent. This creates a long memory tail in the evolution, unlike what

happens for semi-Markov processes. As a special case of our chains, we study a particular counting

process which extends the well-known fractional Poisson process, the last one having independent,

Mittag-Leffler waiting times.
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1. Introduction

Continuous-time semi-Markov chains are obtained from Markov chains by relaxing the assump-

tion of exponential waiting times. Several papers were devoted to chains with Mittag-Leffler dis-

tributed waiting times, among which the well-known fractional Poisson process is included (the

reader can consult e.g. [2, 4, 9, 14, 21, 23, 26, 27, 28, 29, 32, 37]). A Mittag-Leffler distribu-

tion is characterized by a parameter ν ∈ (0, 1], such that if ν = 1 one re-obtains the exponential

distribution and a Markov chain, while, for ν ∈ (0, 1), the distribution has a density ψ with as-

ymptotic power-law decay, ψ(t) ∼ t−ν−1. In the latter case, the waiting times have infinite mean

and variance, which is useful in models of anomalous diffusion (see e.g. [30]) as well as in financial

applications (see e.g. [38]).

In the Markovian case, the transition matrix P (t) solves the Kolmogorov equation

d

dt
P (t) = GP (t)

where G is the infinitesimal generator of the chain. For semi-Markov chains with Mittag-Leffler

waiting times, this equation is replaced by

dν

dtν
P (t) = GP (t)

where dν/dtν denotes the Caputo fractional derivative, see also [12, 20, 34, 36] for the case where

ν depends on the current state of the process, which is applied to models of anomalous diffusion in

heterogenerous media.

Note that in the Markovian case, corresponding to ν = 1, one has a “local” equation: the time

derivative - a local operator - is consistent with the lack-of-memory property typical of Markov

chains. Indeed, the connection between Markov processes and first order differential equation is

well-established.

On the contrary, if ν ∈ (0, 1) one has a “non-local” equation: the integral operator of Volterra

type dν/dtν contains a memory kernel.

A limitation of these models is as follows. Semi-Markov processes lose memory of the past at

renewal times only, i.e. when the chain jumps. Therefore, the future evolution of a semi-Markov

process is only influenced by the recent past, and not by the whole past history. In this sense, the

time-fractional derivative only contains information on the recent past through the age (i.e. the

time elapsed from the previous renewal event).

In general, the study of non-Markovian processes is difficult. Therefore, any progress in this

direction is of potential interest to a wide community of mathematicians and applied scientists.
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One goal is then to use the apparatus of fractional operators and time-fractional equations to treat

the long-memory tail of some non-Markovian processes (which are not semi-Markov).

Our contribution to this goal is to define a class of processes that we call (fractional) para-Markov

chains. These processes have a property in common with semi-Markov ones: the marginal distri-

bution of each waiting time is Mittag-Leffler. However, all the waiting times are stochastically

dependent, hence the process keeps memory of the whole past history. We then extend the mathe-

matical techniques typically used for semi-Markov chains, including the use of fractional operators,

to such a class of non-Markovian processes. Eventually, we obtain a governing equation of the form

dν

dtν
P (t) = −(−G)νP (t).

What makes these processes analytically tractable is that, in distribution, they are proved to be a

suitable mixture of Markov processes, hence the choice of the name para-Markov.

Our most general results concern the case of finite state space. However, we also deal with an

important case with infinite countable state space, namely an extension of the fractional Poisson

process. We refer to it as the exchangeble fractional Poisson process, for reasons that will become

clear later. This is a counting process with unit jumps whose waiting times, although marginally

having a Mittag-Leffler distribution, present an appropriate stochastic dependence. The latter

is given by a particular Schur-type distribution (in the sense of [3, 6, 7]). Therefore, unlike the

fractional Poisson process, our counting process is not a renewal process.

The structure of the paper is the following: section 2 is devoted to some preliminaries on Markov

and semi-Markov chains; section 3 deals with the exchangeable fractional Poisson process; in section

4 we introduce the general theory of para-Markov chains and study the finite-state case.

2. Preliminaries

Let us consider a sequence of non-negative random variables θ = {θn}∞n=1, which we interpret as

the sequence of waiting times, and the stochastic process T := {Tn, n ∈ N} such that

Tn :=
n∑

k=1

θk,

with the convention T0 := 0. Let S be a countable state space and let Y = {Yn, n ∈ N} be a

discrete-time stochastic process which takes value in S. We say that the process X = {Xt, t ≥ 0},
defined by

Xt = Yn t ∈ [Tn, Tn+1), n ∈ N,

is a continuous-time chain.

We will consider three types of continuous-time chains, say Markov, semi-Markov, and para-

Markov, the last one being introduced in this paper. In all three cases, the embedded chain Y is a
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discrete-time Markov chain, and thus what distinguishes one from the others is the joint distribution

of the waiting times. Let H = [hik] be the transition matrix of Y , such that

hik := P[Yn+1 = k|Yn = i] i, k ∈ S

under the convention hii = 0.

Consider λ : S → (0,∞). The process X is a continuous-time Markov chain if (consult [31],

page 94) the waiting times are such that

P[θ1 > t1, . . . , θn > tn|Y0 = y0, . . . , Yn−1 = yn−1] = e−λ(y0)t1 · · · e−λ(yn−1)tn , (2.1)

i.e. the θis are conditionally independent, each of them having exponential distribution

P[θi > t|Yi−1 = x] = e−λ(x)t. (2.2)

According to the above definition, the Markov chain is homogeneous in time.

A key object of continuous-time Markov chains is the generator of the process, denoted as

G = [gij ], i, j ∈ S. If i ̸= j, then gij represents the instantaneous rate at which the process moves

from state i to state j, i.e. gij = λ(i)hij . Moreover, from (2.2), the time spent in state i before

transitioning to another state, is exponentially distributed with rate −gii = λ(i). In compact form,

we can write the generator as

gij = λ(i)(hij − δij). (2.3)

The probability that the process is in state j at time t, given that it started in i at time 0, is

denoted by Pij(t). We shall use the matrix form with P (t) = [Pij(t)]. The family of operators

{P (t), t ≥ 0} satisfies the semi-group property P (t + s) = P (t)P (s) and it is the solution of the

system of Kolmogorov backward (a) and forward (b) equation

(a)


d
dtP (t) = GP (t)

P (0) = I
(b)


d
dtP (t) = P (t)G

P (0) = I
. (2.4)

Semi-Markov chains are obtained from Markov ones by relaxing the assumption of exponential

waiting times. Then equation (2.2) is replaced by

P[θn > t|Yn−1 = x] = Sx(t), (2.5)

where Sx(·) is a generic survival function; this implies that the lack-of-memory property is satisfied

only at time instants when jumps occur.

Let the distribution (2.5) be absolutely continuous with density fx(·). Moreover, let pij(t) be

the probability that the process X moves from state i to state j in a time interval [0, t], under

the condition that 0 is a renewal time, and let P = [pij(t)] be the transition matrix. The family
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{P (t), t ≥ 0} cannot satisfy the semigroup property, i.e. P (t + s) ̸= P (t)P (s) unless in the

Markovian case where Sx is exponential. By standard conditioning arguments, one can see that

pij(t) =
∑
k∈S

hik

∫ t

0
fi(τ) pkj(t− τ)dτ + Si(t) δij . (2.6)

Equation (2.6) is called the semi-Markov renewal equation.

We are interested in semi-Markov chains whose waiting times follow the so-called Mittag-Leffler

distribution, which is defined by a particular choice of the survival function 2.5.

Definition 2.1. A non-negative random variable J is said to follow a Mittag-Leffler distribution

with parameters ν ∈ (0, 1] and λ ∈ (0,∞) if

P(J > t) = Mν(−λtν), t ≥ 0

where Mν(·) is the one-parameter Mittag-Leffler function, defined by

Mν(z) =
∞∑
k=0

zk

Γ(1 + νk)
z ∈ C. (2.7)

Definition (2.1) gives an absolutely continuous distribution. So, consider semi-Markov chains

whose waiting times are such that

P[θk > t|Yk−1 = x] = Mν(−λ(x)tν), x ∈ S, (2.8)

i.e., conditionally to Yk−1 = x, the variable θk has Mittag-Leffler distribution with parameters ν

and λ(x). For ν = 1, (2.8) reduces to an exponential distribution and hence the process becomes

a continuous-time Markov chain, with generator G defined by gij = λ(i)(hij − δij). For ν ∈ (0, 1)

the process X is semi-Markov.

Moreover, it is known that such a process is governed by the following backward (a) and forward

(b) fractional equations (for a proof sketch, which is based on the renewal equation (2.6), see

Proposition 2.1 in [36] and references therein):

(a)


dν

dtν P (t) = GP (t)

P (0) = I
(b)


dν

dtν P (t) = P (t)G

P (0) = I
. (2.9)

Note that the state space is not required to be finite. As a particular case, the fractional Poisson

process is obtained by setting λ(x) = λ for any x ∈ S and hi,j = 1 if j = i+1 and hij = 0 otherwise,

whence G is such that gii = −λ and gi,i+1 = λ. Therefore, considering the forward system (b) and

setting p0j(t) := pj(t), we obtain the governing equation often reported in the literature:

dν

dtν
pj(t) = −λpj(t) + λpj−1(t) pj(0) = δj,0. (2.10)

There are many extensions of the fractional Poisson process, such as the time inhomogeneous

extensions defined in [5, 24], as well as the counting processes studied in [10, 16, 25].
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3. The Exchangeable fractional Poisson process

The well-known fractional Poisson process has independent, Mittag-Leffler waiting times between

arrivals. The goal here is to build a counting process which, in analogy to the fractional Poisson

process, increases by 1 unit when an event occurs and each waiting time has marginal Mittag-Leffler

distribution. However, we relax the hypothesis of independence between waiting times, as shown

in the following definition.

Definition 3.1. Let {Jk}∞k=1 be a sequence of non-negative random variables, such that, for all

n ∈ N \ {0} we have

P[J1 > t1, . . . , Jn > tn] = Mν

(
−λν

(
n∑

k=1

tk

)ν)
ν ∈ (0, 1], λ ∈ (0,∞), (3.1)

where tk ≥ 0, k ∈ {1, . . . , n}. Moreover let Tn :=
∑n

k=1 Jk, with the convention T0 := 0. Then the

process N = {Nt, t ≥ 0} defined by

Nt = n t ∈ [Tn, Tn+1)

is said to be exchangeable fractional Poisson process with parameters λ and ν.

We note that each Jk follows a marginal Mittag-Leffler distribution with parameters λν and ν,

in the sense of Definition 2.1; this can be obtained from formula (3.1) with tj = 0 for each j ̸= k.

Another important feature is that the above sequence of waiting times is an infinite Schur-constant

sequence. We recall that a sequence {Xk}∞k=1 of non-negative random variables is said to be an

infinite Schur-constant sequence if, for any n ∈ N \ {0}, we have P(X1 > t1, X2 > t2, . . . , Xn >

tn) = S(t1+t2+ · · ·+tn), for a suitable function S which does not depend on n. This is a particular

model of exchangeable waiting times, in the sense that S depends on the tk through their sum only,

whence the name we have chosen for our counting process; this feature makes the process easily

tractable from a statistical point of view and has many applications, see [3, 6, 7].

We further observe that for ν = 1 we have that M1(x) = ex and (3.1) has the form

P[J1 > t1, . . . , Jn > tn] = e−λ
∑n

k=1 tk , (3.2)

namely the waiting times are i.i.d. exponential and Nt is a Poisson process of parameter λ.

Remark 3.2. From the joint survival function (3.1) it is possible to obtain the joint distribution

function. Indeed, by observing that

{J1 ≤ t1, . . . , Jn ≤ tn}c = {{J1 > t1} ∪ · · · ∪ {Jn > tn}} ,

by Poincaré Theorem we have

P[J1 ≤ t1, . . . , Jn ≤ tn]



7

= 1−
∑
i

P[Ji > ti] +
∑
i<j

P[Ji > ti, Jj > tj ] + · · ·+ (−1)nP[J1 > t1, . . . , Jn > tn]

= 1−
∑
i

Mν(−λνtνi ) +
∑
i<j

Mν (−λν (ti + tj)
ν) + · · ·+ (−1)nMν

(
−λν

(
n∑

k=1

tk

)ν)
. (3.3)

Moreover, we also get the joint density as

f(t1 . . . , tn) = (−1)n
∂n

∂t1 · · · ∂tn
Mν

(
−λν

(
n∑

k=1

tk

)ν)
. (3.4)

Remark 3.3. By using f(t1, . . . , tn), we can obtain the density of Tn, the time of the n-th jump:

fTn(u) =
d

du
P[Tn ≤ u]

=
d

du
P

[
n∑

k=1

Jk ≤ u

]

=
d

du

∫
t1+t2+...tn≤u

f(t1, . . . , tn)dt1 . . . dtn

=
(−1)n

Γ(n)
un−1M(n)

ν (−λνuν) u > 0. (3.5)

This can be seen as a generalization of the so-called Erlang distribution that is recovered for ν = 1.

Before discussing some properties of the exchangeable fractional Poisson process, we need to

recall the following definition (see [19, 22, 33]).

Definition 3.4. A non-negative random variable L follows a Lamperti distribution of parameter

ν ∈ (0, 1] if its Laplace transform is given by

E
[
e−ηL

]
= Mν (−ην) , η ≥ 0. (3.6)

Remark 3.5.

(1) For ν = 1 we get E
[
e−ηL

]
= e−η which implies L = 1 almost surely.

(2) For ν ∈ (0, 1) then L is absolutely continuous with density given by

f(t) =
sin(πν)

π

tν−1

t2ν + 2tν cos(πν) + 1
t > 0. (3.7)

The following theorem shows that the exchangeable fractional Poisson process is equal in distri-

bution to a time-changed Poisson process. This time-change consists in a random scaling of time

based on a Lamperti variable.

Theorem 3.6. Let Q = {Qt, t ≥ 0} be a Poisson process with intensity λ and N = {Nt, t ≥ 0}
be the exchangeable fractional Poisson process, with parameters λ and ν. Let L have Lamperti

distribution with parameter ν. Then we have

Nt
d
= QLt, ∀t ≥ 0,
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where
d
= denotes equality of finite dimensional distributions.

In section 4 below, we will provide the proof of Theorem 4.3, which includes Theorem 3.6 as a

particular case. For this reason, here we omit the proof of Theorem 3.6.

Once again, we stress that for ν = 1 we have L = 1 almost surely, that is the time parameter

Lt = t is no longer stochastic, obtaining the Poisson case as a special case of exchangeable fractional

Poisson process.

The equivalence in distribution of Theorem 3.6 leads to the governing equation of the process.

We shall use the notation P[Nt = k] =: pk(t).

Theorem 3.7. Let N be the exchangeable fractional Poisson process defined in 3.1. Then

dν

dtν
pk(t) = −λν(I −B)νpk(t) pk(0) = δk,0 (3.8)

where B is the shift operator such that Bpk(t) =: pk−1(t) and

(I −B)νpk(t) =

∞∑
j=0

(
ν

j

)
(−1)jBjpk(t) =

∞∑
j=0

(
ν

j

)
(−1)jpk−j(t)

Proof. Recalling that the Poisson process Qt is such that

E
[
e−ηQt

]
= e−λt(1−e−η) η ≥ 0,

and using Theorem 3.6 we have that QLt has the following moment generating function:

A(η, t) = E
[
e−ηQLt

]
=

∫ ∞

0
e−λt(1−e−η)lP(L ∈ dl)

= E
[
e−tλ(1−e−η)L

]
= Mν(−λν(1− e−η)νtν). (3.9)

Given that t 7→ Mν(ct
ν) is an eigenfunction of the Caputo derivative dν/dtν with eigenvalue c, we

get

dν

dtν
A(η, t) = −λν

(
1− e−η

)ν
A(η, t) A(η, 0) = 1. (3.10)

Using the equality

(1− e−η)ν =
∞∑
j=0

(
ν

j

)
(−1)je−ηj

and applying the inverse Laplace transform in η on both sides of Equation (3.10) we get the thesis.

Indeed, it is possible to prove that dνpk(t)/dt
ν is well posed, by using similar arguments as in point
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(3) of the proof of Theorem 4.6 : despite the state space is infinite, the right hand side of equation

(3.8) actually has a finite number of addends as in Theorem 4.6, because

(I −B)νpk(t) =
k∑

j=0

(
ν

j

)
(−1)jpk−j(t).

□

Before giving a final result, we recall the formula by Faà di Bruno that generalizes the chain rule

for the n-th derivative of a function composition, see [11]. For f, u satisfying appropriate regularity

conditions, we have (
d

dx

)n

f(u(x)) = n!
n∑

k=1

f (k)(u(x))

k!

∑
h1+···+hk=n

k∏
i=1

u(hi)(x)

hi!
(3.11)

where the second sum is over all k-tuples of non-negative integers (h1, . . . , hk) satisfying the con-

straint
∑k

i=1 hi = n.

We also recall that the n-th derivative of the Mittag-Leffler function Mν(z) is given by [13, 35](
d

dz

)n

Mν(z) = n!Mn+1
ν,nν+1(z), (3.12)

where Mγ
α,β(z) is the so-called Prabhakar function or three-parameter Mittag-Leffler function de-

fined as

Mγ
α,β(z) =

1

Γ(γ)

∞∑
k=0

Γ(k + γ)zk

k!Γ(αk + β)
. (3.13)

In the following theorem we find the explicit expression of pn(t) that solves the governing equation

(3.8).

Theorem 3.8. Let us consider the exchangeable fractional Poisson process N defined in 3.1. Then

the marginal distribution of Nt, pn(t) = P(Nt = n), is given by

pn(t) =

Mν(−λνtν) n = 0∑n
k=1(−1)(n+k)(λt)kνMk+1

ν,kν+1(−λ
νtν)c(k, n; ν) n ≥ 1

(3.14)

with

c(k, n; ν) =
∑

h1+···+hk=n

k∏
i=1

(ν)hi

hi!

where (ν)h := ν(ν − 1) · · · (ν − h + 1) and the sum is over all k-tuples of non-negative integers

(h1, . . . , hk) satisfying the constraint
∑k

i=1 hi = n.
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Proof. Theorem 3.6 guarantees that N is equal in distribution to a Poisson process with stochastic

time parameter Lt, where L follows the Lamperti distribution of parameter ν. Then, by condition-

ing, we have

pn(t) =

∫ ∞

0

e−λlt

n!
(λlt)n P(L ∈ dl)

=
tn

n!
(−1)n

(
d

dt

)n ∫ ∞

0
e−λltP(L ∈ dl)

=
tn

n!
(−1)n

(
d

dt

)n

E
[
e−λtL

]
=
tn

n!
(−1)n

(
d

dt

)n

Mν (−λνtν) n ∈ N, t ≥ 0 (3.15)

where we used (3.6). For n = 0 we immediately get the thesis. For n ≥ 1 we can now use formulae

(3.11) and (3.12), to get

pn(t) =
tn

n!
(−1)nn!

n∑
k=1

Mk+1
ν,kν+1(−λ

νtν)
∑

h1+···+hk=n

(−1)kλkν
k∏

s=1

(tν)(hs)

hs!

= (−1)ntn
n∑

k=1

Mk+1
ν,kν+1(−λ

νtν)tkν−n
∑

h1+···+hk=n

(−1)kλkν
k∏

s=1

(ν)hs

hs!

=

n∑
k=1

(−1)(n+k)(λt)kνMk+1
ν,kν+1(−λ

νtν)c(k, n; ν).

□

Remark 3.9. An alternative proof of the previous Theorem, also based on formulae (3.11) and

(3.12), is now proposed. Firstly, starting from Equation (3.9), we have that the probability gener-

ating function of Nt is given by

E
[
uNt
]
= Mν (−λνtν(1− u)ν) , |u| ≤ 1. (3.16)

Hence

pn(t) =
1

n!

(
d

dt

)n

Mν(−λνtν(1− u)ν)

∣∣∣∣
u=0

(3.17)

which, by applying (3.11) and (3.12), coincides with Equation (3.14).

3.1. Simulations.

This paragraph presents some results concerning the numerical and Monte Carlo simulations of

the analytical formulas derived in the previous section. We have used the software R and the

libraries MittagLeffleR, kStatistics and stabledist. Specifically, Figure 1 shows the values of pn(t)

for n ∈ {0, . . . , 9} of the exchangeable fractional Poisson process, obtained by using the analytical

formula (3.14) (red dots) and the corresponding simulated values (green triangles), in the case
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Figure 1. Comparison between analytical values of pn(t) obtained with formula

(3.14) and corresponding simulated values, for t = 1, 2, 5 and ν = 0.1, 0.5, 0.9.

λ = 1. Notably, these results are essentially coinciding. For the Monte Carlo simulation, we

have used 1, 000, 000 independent random numbers following the Lamperti distribution; to this

aim, we used that a Lamperti random variable of parameter ν is equal in law to the ratio of two

independent, positive, ν-stable random variables (see [19] for details). Then we have generated the

vector N, of length 1, 000, 000, whose j-th component is a realization of a Poisson random variable of

parameter tL[j], being L the vector which contains the realizations the Lamperti variable. Finally

we computed the relative frequency of the events that approximates pn(t) for each n. For the

computation of the analytical values, we have used the expression of (3.11) in terms of exponential

Bell polynomials (see [8] for details). Specifically, used the formula (3.15), firstly computing a

function of n and t which gives the value of the coefficient and then multiplying it by the n-th time

derivative of the Mittag-Leffler with parameter −λνtν . We repeated the simulation for t = 1, 2, 5

and ν = 0.1, 0.5, 0.9.

Figure 2 shows a trajectory of the exchangeable fractional Poisson process defined in Definition

3.1 for different values of the parameter ν, up to n = 10, 000 events. Here we have generated n

values from a Lamperti distribution of parameter ν, for ν = 0.5, 0.75, 0.9, as explained before, and

we have saved them in a vector L. Then we have generated the first n waiting times, each of them as
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Figure 2. Trajectory of the exchangeable fractional ProcessNt for ν = 0.5, 0.75, 0.9

and number of events n ≤ 10000.

a realization of an exponential distribution with parameter L[j], according to Theorem 3.6. Finally,

the trajectory is obtained cumulating the waiting times. The waiting times become longer, as the

value of ν decreases.

Note that before performing both simulations, the seed was set to 1. The interested reader can

find the code used to generate the figures at

https://github.com/Lorenzo-Facciaroni/Exchangeable-fractional-Poisson.
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4. Para-Markov chains in continuous-time

We here introduce para-Markov chains, which include the exchangeable fractional Poisson process

as a notable case.

Definition 4.1. Let Y = {Yn, n ∈ N} be a discrete time Markov chain on a finite or countable

state space S. For ν ∈ (0, 1] and λ : S → (0,∞), let {Jk}∞k=1 be a sequence of non-negative random

variables, such that, ∀n ∈ N \ {0},

P (J1 > t1, . . . , Jn > tn|Y0 = y0, . . . , Yn−1 = yn−1) = Mν

(
−

(
n∑

k=1

λ(yk−1)tk

)ν)
(4.1)

where tk ≥ 0, k ∈ {1, . . . , n}. A continuous-time chain X = {Xt, t ∈ [0,∞)} such that

Xt = Yn t ∈ [Tn, Tn+1), n ∈ N

where Tn :=
∑n

k=1 Jk and T0 := 0, is said to be a continuous-time para-Markov chain.

Note that if ν = 1 one re-obtains the joint survival function (2.1) and then the process is a

continuous-time Markov chain. For ν ∈ (0, 1) the above process is neither Markov nor semi-Markov,

because of the dependence between waiting times Jk.

Remark 4.2. We observe that the Definition 4.1 completely defines the finite dimensional distri-

butions of a para-Markov chain X. Indeed, denoting by Nt the number of jumps up to time t, and

letting t1 < t2 < · · · < tn we have

P

 n⋂
j=1

{Xtj = xj}

 =

∞∑
k1≤k2≤···≤kn

P

 n⋂
j=1

{Xtj = xj},
n⋂

j=1

{Ntj = kj}


=

∞∑
k1≤k2≤···≤kn

P

 n⋂
j=1

{YNtj
= xj},

n⋂
j=1

{Ntj = kj}


=

∞∑
k1≤k2≤···≤kn

P

 n⋂
j=1

{Ykj = xj},
n⋂

j=1

{Tkj ≤ tj < Tkj+1}


=

∞∑
k1≤k2≤···≤kn

P

 n⋂
j=1

{Tkj ≤ tj < Tkj+1}
∣∣ n⋂
j=1

{Ykj = xj}

P

 n⋂
j=1

{Ykj = xj}


where, in principle, the last term can be computed by means of the matrix H of the embedded chain

and the waiting time distribution given in Definition 4.1.

The reason for using the expression para-Markov is due to the following Theorem. According to

it, X is equal in distribution to a time-changed continuous-time Markov process. The time-change

consists in rescaling the time t by a Lamperti random variable.
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Theorem 4.3. Let M = {Mt, t ∈ [0,∞)} be a continuous-time Markov chain defined by (2.1) and

X = {Xt, t ∈ [0,∞)} be a para-Markov chain defined in 4.1. Let L be a Lamperti random variable,

as defined in 3.4. Then we have

Xt
d
=MLt ∀t ≥ 0,

where
d
= denotes equality of finite dimensional distributions.

Proof. Let {θk}∞k=1 be a sequence of exponential random variables as in (2.1). Then we have

Mt = Yn, τn ≤ t < τn+1,

where τn :=
∑n

k=1 θk and τ0 := 0. By the random scaling of time t→ Lt we have

MLt = Yn,
τn
L

≤ t <
τn+1

L
,

which means that the k-th waiting time of MLt is equal to

θk
L

=
τk+1 − τk

L
.

Thus, to prove that MLt coincides with Xt in the sense of finite-dimensional distributions, it is

sufficient to show that the sequence of waiting times {θk/L}∞k=1 of MLt has joint distribution given

by (4.1) . This can be done using a conditioning argument, together with the above definition of

Lamperti distribution:

P
[
θ1
L
> t1, . . . ,

θn
L
> tn

∣∣∣∣Y0 = y0, . . . Yn−1 = yn−1

]
=

∫ ∞

0
e−l

∑n
k=1 λ(yk−1)tkP(L ∈ dl)

= E
[
e−(

∑n
k=1 λ(yk−1)tk)L

]
= Mν

(
−

(
n∑

k=1

λ(yk−1)tk

)ν)
This completes the proof.

□

As explained before, the Definition of para-Markov process 4.1 holds even with S a countable set.

However, from now on, we shall consider the case of finite state space, say |S| = n ∈ N. Without

loss of generality, we shall write S = {1, . . . , n}. In this scenario, the generator G of the Markov

process M in Theorem 4.3 is an n×n matrix. Moreover, the systems of Kolmogorov backward and

forward equations (2.4) have the following solution

P (t) = eGt.

Furthermore, from Equation (2.3) the following decomposition holds in matrix from

G = Λ(H − I)
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being Λ = diag (λ(1), . . . , λ(n)) and I the identity matrix.

Remark 4.4. The above considerations allow us to reinterpret Theorem 4.3 as follows. The transi-

tion matrix of the Markov chain M can be written as P (t) = eΛ(H−I)t. Then changing time t→ Lt

is equivalent to replacing Λ with LΛ, i.e. rescaling the time parameter is equivalent to rescaling the

expectation of each waiting time.

The next Theorem is the main result of the paper and gives us the governing equation of a

para-Markov chain as well as its solution, written in matrix form.

For a matrix A ∈ Cn×n we shall indicate with ρ(A) the spectral radius of A and σ(A) the

spectrum. We use the natural norm || · || : Cn×n → R+; this is a matrix norm induced by a vector

norm, i.e.

||A|| := sup
||x||v=1

||Ax||v,

where || · ||v : Cn → R+ is a vector norm. Moreover, A is said to be convergent if there exists a

natural norm such that

lim
k→∞

||Ak|| = 0.

We shall use the notation C− := {z ∈ C s.t. ℜ{z} < 0}.
For a scalar function f : C → C, we refer to the meaning of f(A), being A ∈ Cn×n, as discussed

in Chapter 1 of [17]. Specifically, let A have canonical Jordan decomposition A = Z−1JZ, where

J is the block diagonal matrix, while Z is the matrix whose columns contain the generalized

eigenvectors. Hence J = diag(Jm1(α1), . . . , Jmp(αp)), where Jmk
(αk) denotes a Jordan block with

dimension mk corresponding to the eigenvalue αk, i.e. it has αk on the diagonal and 1 above the

diagonal; eigenvalues related to distinct blocks do not need to be distinct. For f(A) to be well

defined, we need to require that f(·), as a scalar function, is defined on the spectrum of A, i.e.

there must exist the derivatives

f (j)(αk), j = 0, . . . , nk − 1, k = 1, . . . , s

with s the number of distinct eigenvalues of A and nk the order of the largest Jordan block where

αk appears. We say that nk is the index of αk. In this case we can use the Jordan canonical

decomposition A = Z−1JZ to define

f(A) := Z−1f(J)Z = Z−1diag
(
f(Jm1(α1)), . . . , f(Jmp(αp))

)
Z (4.2)
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being p the number of Jordan blocks, i.e. the number of independent eigenvectors of A, and

f (Jmi(αi)) :=


f(αi) f ′(αi) · · · f (mi−1)(αi)

(mi−1)!

f(αi)
. . .

...
. . . f ′(αi)

f(αi)

 .

Remark 4.5. Since the Mittag-Leffler function Mν defined in (2.7) is entire, then it is defined on

the spectrum of any matrix A ∈ Cn×n. Let A have Jordan decomposition A = Z−1JZ. Then, being

Mν defined by a power series, the matrix Mν(A) can be explicitly obtained as follows (see [13])

Mν(A) =
∞∑
k=0

Ak

Γ(1 + νk)
=

∞∑
k=0

k times︷ ︸︸ ︷
Z−1JZ Z−1JZ · · · Z−1JZ

Γ(1 + νk)

= Z−1

( ∞∑
k=0

Jk

Γ(1 + νk)

)
Z = Z−1Mν(J)Z (4.3)

which coincides with expression given in (4.2). For ν = 1, we have Mν(x) = ex and thus we get

the exponential of a matrix as

eA = Z−1eJZ.

In this case, to compute eJ explicitly, we observe that each Jordan block can be decomposed as

Jmk
= αkI +Nk

where I is the identity matrix and Nk is nilpotent of order mk. The matrices αkI and Nk commute

and thus the k-th block is given by

eJmk = eαkeNk = eαk

mk−1∑
s=0

(Nk)
s

s!
,

i.e. it is sufficient to compute a finite sum.

Before stating the Theorem, we recall that a matrix A is said to be irreducible if it is not similar

via a permutation to a block upper triangular matrix, i.e. it does not have invariant subspaces.

Indeed, if the generator of a continuous time Markov chain is irreducible, then there is a non-zero

probability of transitioning from any state to any other state.

Theorem 4.6. Let us consider a para-Markov chain X and the related Markov chain M , in the

sense of Theorem 4.3, with generator G. Let P (t) = [pij(t)] be the transition matrix of X, i.e.

pij(t) = P(Xt = j|X0 = i), i, j ∈ S. If G is irreducible, then

(1) The matrix −(−G)ν exists for any ν ∈ (0, 1],



17

(2) The transition matrix has the form

P (t) = Mν(−(−G)νtν),

(3) P (t) is the solution of

dν

dtν
P (t) = −(−G)νP (t) (4.4)

with initial condition P (0) = I.

Proof. Let us split the proof in three parts.

(1) Since the function f(x) = (−x)ν , ν ∈ (0, 1], is not differentiable at x = 0, then, according

to (4.2), it is defined on the spectrum of G if either G does not have the eigenvalue 0 or

G does have the eigenvalue 0 with index n = 1. However, we shall see that G necessarily

has the eigenvalue 0. Thus, we shall show that a sufficient condition for G to have the

eigenvalue 0 with index 1 is its irreducibility; indeed, irreducibility of G implies that 0 is a

simple eigenvalue, i.e. its algebraic multiplicity is 1.

We indicate with 1 the vector in Rn with all coordinates equal to 1. The row sums are

0 by (2.3), which gives

G1 = 0.

It means that G has 0 as eigenvalue with correspondent eigenvector 1. Moreover, we know

that gij ≥ 0, i ̸= j so, given the definition of the diagonal elements, we define

Rii :=
∑
j ̸=i

|gij | =
∑
j ̸=i

gij = −gii i ∈ {1, . . . , n}

which implies that the so-called Gershgorin discs D(gii, Rii) = {z ∈ C s.t. |z − gii| ≤ Rii}
are subsets of C− ∪ {0}. The Gershgorin theorem in [15] ensures that all the eigenvalues of

G lie in the union of such discs, which, in our case, is contained in C− ∪ {0}.
Now, letting η := max{gij , i, j ∈ S} and considering that ρ(G) > 0, the matrix T defined

by

T :=
1

ηρ(G)
G+ I

is irreducible as well and it has non-negative entries. It follows by linearity of the eigen-

values that ρ(T ) = 1 is an eigenvalue of T . Moreover, since the eigenvalues of G lie in

C− ∪ {0}, then all the eigenvalues of T lie in D
(
1
2 ,

1
2

)
, which is the closed disc centered in

1
2 + 0i and radius 1

2 . The Perron-Frobenius theorem (see Paragraph 8.3 in [18]) guarantees

that 1 is actually a simple eigenvalue and it is called the Perron-Frobenius eigenvalue. By

applying the inverse formula T 7→ ηρ(G)(T − I), we get that α = 0 is simple for G.
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(2) For a Lamperti random variable L, the function

z 7→
∫ ∞

0
eztlP(L ∈ dl) (4.5)

is well defined for ℜ{z} ≤ 0. Moreover (4.5) is analytic for z ̸= 0, which is clear also by

expressing it as

z 7→
∫ ∞

0
eztlP(L ∈ dl) = Mν(−tν(−z)ν). (4.6)

Such a function is well defined on the spectrum of G, since G has 0 as a simple eigenvalue

by the irreducibility assumption, and furthermore all the other eigenvalues have negative

real part. By virtue of this consideration, together with the time-change Theorem 4.3, P (t)

takes the following matrix form in the sense of (4.2)

P (t) =

∫ ∞

0
eGtlP(L ∈ dl) = Mν(−(−G)νtν),

as desired.

(3) Assume, for the moment, that dν

dtν P (t) exists, it is continuous and Laplace transformable.

To prove the statement, we preliminary recall that a square matrix B is convergent iff

ρ(B) < 1; in this case I −B is non-singular, such that

(I −B)−1 =
∞∑
k=0

Bk. (4.7)

Now, let us consider g(t) = Mν (−Atν), being A ∈ Cn×n, and compute the Laplace trans-

form

g̃ (s) =

∫ ∞

0
e−stMν (−Atν) dt, s ∈ C, (4.8)

where the integral is meant component-wise. Being Mν entire, we have

g̃ (s) =

∫ ∞

0
e−st

∞∑
k=0

(−1)kAktkν

Γ(1 + νk)
dt

=
1

s

∞∑
k=0

(−1)kAk

sνk

=
1

s

∞∑
k=0

(
−A
sν

)k

and then g̃(s) converges for all s such that the spectral radius of −A/sν is less than 1, namely

the Laplace transform is certainly defined for ℜ{s} > (ρ(A))1/ν . Moreover, the Laplace

inversion Theorem ensures that g̃(s) is analytic in the same region ℜ{s} > (ρ(A))1/ν and

thus uniquely identifies g(t). Using (4.7) we obtain

g̃ (s) =
1

s

(
I +

A

sν

)−1



19

= sν−1 (sνI +A)−1 ℜ{s} > (ρ(A))
1
ν . (4.9)

We now look at the solution of the following problem

dν

dtν
h(t) = −Ah(t) h(0) = I, (4.10)

being A ∈ Cn×n. By applying the Laplace transform component-wise on both sides we get

sν h̃ (s)− sν−1h(0) = −Ah̃ (s) s ∈ C

namely (
I +

A

sν

)
h̃ (s) = s−1I s ∈ C

For ℜ{s} > (ρ(A))
1
ν , we have that

(
I + A

sν

)
is non-singular and then

h̃ (s) = sν−1 (sνI +A)−1 ℜ{s} > (ρ(A))
1
ν

which coincides with the Laplace transform (4.9). The inverse Laplace transform ensures

equality for almost all t > 0; moreover, continuity of t → P (t), which stems from the

expression in point (2) of the present Theorem, ensures equality for all t > 0. Hence

h(t) = Mν (−Atν) solves the problem (4.10). To conclude, we finally set A = (−G)ν .
It remains to prove that dν

dtν P (t) exists and it is continuous. The convolution t →∫ t
0

(
P (τ) − P (0)

) (t−τ)−ν

Γ(1−ν) dτ is well defined (see Prop. 1.6.4 in [1]). By using similar cal-

culations as above (of which we omit the details), it is easy to prove that the two functions

t →
∫ t
0

(
P (τ) − P (0)

) (t−τ)−ν

Γ(1−ν) dτ and t →
∫ t
0 −(−G)νP (τ)dτ have the same Laplace trans-

form. Hence they coincide for almost all t > 0. Moreover, both functions are continuous

since P (t) is continuous by the expression given in point (2) of the Theorem. Hence the

two functions coincide for any t > 0:∫ t

0

(
P (τ)− P (0)

)(t− τ)−ν

Γ(1− ν)
dτ =

∫ t

0
−(−G)νP (τ)dτ. (4.11)

The right side of (4.11) is differentiable for t > 0 because −(−G)νP (τ) is component-wise

continuous as it is a linear combination of continuous functions, and this is true also for

the left side because the equality holds pointwise. Hence the Caputo derivative exists and

is continuous. Now if we apply the time derivative to both sides, we obtain the desired

equation.

□

Remark 4.7. By the above considerations, the matrix (−G)ν is given by

(−G)ν = Z−1diag
(
(Jm1(α1))

ν , . . . , (Jmp(αp))
ν
)
Z
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where

(Jmi(αi))
ν =


αν
i ναν−1

i · · · (ν)mi−1α
ν−mi+1
i

(mi−1)!

αν
i

. . .
...

. . . ναν−1
i

αν
i


and one can see that the eigenvalue 0 must have index 1, being z 7→ (−z)ν not differentiable at 0

for ν ∈ (0, 1).

Remark 4.8. Equation (4.4) does not uniquely identify our para-Markov chain. For example,

consider the process M(H(L(t))) where M is a Markov chain with generator G, H is a stable

subordinator with index ν and L is an inverse stable subordinator with index ν, under the assumption

that M , H and L are independent. This process is governed by the same equation (4.4), even if it

is not a para-Markov chain but a semi-Markov one.

5. Final remarks

By using the same techniques as in the previous section, we find an interesting result on semi-

Markov chains. Consider, indeed, semi-Markov chains with Mittag-Leffler waiting times recalled in

Section 2, i.e. those governed by the equations (2.9).

Proposition 5.1. If the state space S is finite, then the solution of (2.9) has the following matrix

form

P (t) = Mν(Gt
ν).

Proof. It is sufficient to adapt the arguments used in the proof of point 3) of theorem 4.6, setting

A = −G. □

To the best of our knowledge, the result in Proposition 5.1 is new. Indeed, in the literature, P (t)

has been written by using the composition of the corresponding Markov process with an inverse

stable subordinator (see e.g. [29]), but the explicit solution in matrix form has never been written.

Table 1 sums up the main facts we have discussed on Markov, semi-Markov and para-Markov

chains.

Note that for ν = 1 semi-Markov and para-Markov chains reduce to Markov ones. Once again,

we stress the fact that the governing equation of Markov chains is driven by the first derivative,

which is a local operator, whereas the governing equations of the semi-Markov and para-Markov

chains depend on the Caputo derivative of order ν, which is a non-local operator. It is related to

the characteristic of the processes themselves: the probability of a future state depends both on

the present value of the process and also on the past.
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Governing Equation Solution

Markov d
dtP (t) = GP (t) P (t) = eGt

semi-Markov dν

dtν P (t) = GP (t) P (t) = Mν (Gt
ν)

para-Markov dν

dtν P (t) = −(−G)νP (t) P (t) = Mν(−(−G)νtν)

Table 1. Comparison between continuous-time Markov, semi-Markov and para-

Markov processes.
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