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Abstract

We prove anomalous-diffusion scaling for a one-dimensional stochastic kinetic dynamics,
in which the stochastic drift is driven by an exogenous Bessel noise, and also includes
endogenous volatility which is permitted to have arbitrary dependence with the exogenous
noise. We identify the superdiffusive scaling exponent for the model, and prove strong and
weak convergence results on the corresponding scale. We show how our result extends to
admit, as exogenous noise processes, not only Bessel processes but more general processes
satisfying certain asymptotic conditions.
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1 Introduction and main results

The subject of this work is the long-term behaviour of an Itô process X = (Xt)t∈R+ in R+ :=
[0,∞) with a representation

Xt = X0 +

∫ t

0

f(s, Ys)

Xs
ds+Bt, X0 > 0, (1.1)

where the process Y = (Yt)t∈R+ is adapted to the same filtration as the Brownian motion (BM)
B = (Bt)t∈R+ . Under suitable assumptions on the function f : R+ × R+ → R+ and the
exogenous noise process Y , which drives the stochastic drift of X, the process X will exhibit
anomalous diffusion (see YouTube [8] for a short overview of our results). Physical motivation
includes dynamics of particles interacting with an external field or medium, or with an internal
relaxation mechanism; see e.g. [6, 15, 16] and §2 below for further discussion of motivation and
related literature.

We assume the function f(t, y) that contributes to the drift via (1.1) has certain polynomial
asymptotic growth behaviour for large t and y: rougly speaking, that f(t, y) ∼ ρtγyα as both
t, y → ∞, for a constant ρ > 0. In fact, the hypothesis is a little stronger than this (giving some
comparable control for fixed t and large y, for example):

(Af) Suppose that f : R+ × R+ → R+ is continuous, and that for some constant ρ ∈ (0,∞)
and exponents α ∈ R+ and γ ∈ (−α,∞) (i.e. α+ γ > 0) satisfies the following. For every
ε > 0, there is some rε ∈ R+ such that

sup
(t,y)∈R2

+: t+y≥rε

∣∣f(t, y)(1 + t)−γ(1 + y)−α − ρ
∣∣ ≤ ε. (1.2)
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The aim of this paper is to give some natural and robust growth and stability hypotheses on
the exogenous noise process Y so that process X satisfying (1.1) exhibits superdiffusive asymp-
totic behaviour, as quantified via (i) a distributional scaling limit, and (ii) an a.s.-quantification
of the transient growth exponent. Our general result is presented in Theorem 1.3 below. First
we present a prototypical example, in which Y is a squared-Bessel process; this is Theorem 1.1.
First we need some notation.

Denote by BESQδ(y) the law of a squared-Bessel process Y with “dimension” parameter
δ ∈ (0,∞) started at an arbitrary Y0 = y ∈ R+; this law can be defined as that of the solution
of the stochastic differential equation (SDE) in (1.6) below. Recall that δ > 0 ensures Y is not
absorbed at 0; for δ ∈ (0, 2), the process Y is point recurrent over R+, while for δ ≥ 2 it is point
transient (see [31, Ch. XI] for further details).

The following is our general result as applied to the case of squared-Bessel exogenous noise.
Because of the apparent singularity in the drift (1.1), in the same way as one does for the Bessel
process, it is more convenient to formulate the dynamics via “X squared”, which is essentially
the process S in (1.3): see Remark 1.2(ii) after the statement of the theorem. We denote

convergence in distribution by ‘
d−→’.

Theorem 1.1. Let f : R+×R+ → R+ satisfy (Af ) and assume δ ∈ (0,∞). Suppose the adapted
process (S, Y,B) consists of an R-valued Brownian motion B, a squared-Bessel process Y with
law BESQδ(y) (defined via SDE (1.6)) and an R+-valued process S = (St)t∈R+, satisfying

St = S0 +

∫ t

0

(
2f(s, Ys) + 1

)
ds+ 2

∫ t

0

√
Ss dBs, for all t ∈ R+, (1.3)

started at a deterministic level S0 ∈ R+. Then the R+-valued process X = (Xt)t∈R+, given by
Xt :=

√
St, t ∈ R+, has the following asymptotic properties.

(a) There is superdiffusive transience, namely,

lim
t→∞

logXt

log t
=

1 + γ + α

2
, a.s. (1.4)

(b) There is a distributional limit, namely,

t−(1+γ+α)/2Xt
d−→
(
2ρ

∫ 1

0
sγ Ỹ α

s ds

)1/2

, as t → ∞, (1.5)

where Ỹ in the limit follows BESQδ(0).

Remarks 1.2. (i) The result (1.5) implies an “in probability” version of (1.4), but not the
a.s. version. On the other hand, the almost-sure asymptotic (1.4) combined with a martingale
decomposition and the self-similarity of Bessel process yield (1.5), so in some sense it is the
rough a.s.-asymptotic (1.4) that is the key to the result. Our proof of Theorem 1.1 goes by
first proving a more general result, Theorem 1.3 below, that identifies the robust aspects of the
Bessel process that are essential for this behaviour, and hence extends the framework to admit
a considerably larger class of processes: see §2.2 below for further remarks on the proofs.

(ii) Under a mild additional hypothesis, X defined in Theorem 1.1 satisfies dynamics (1.1), see
Appendix A. In Theorem 1.1 it is more convenient to take as the primitive X2 = S, because
SDE (1.3) fully specifies the process for a general continuous function f (cf. Bessel process
defined as a square-root of BESQ in [31, Ch. XI]).

(iii) Since γ + α > 0 by (Af ), the scaling exponent (1 + γ + α)/2 in (1.4)–(1.5) exceeds 1/2,
making the process X superdiffusive and transient. Moreover, by (Af ), the values of f on
any compact set play no role. The log-scale convergence in (1.4) is a compact formulation
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of the statement that for every small ε > 0, it holds that for all t ∈ R+ sufficiently large,
t(1+γ+α)/2−ε < Xt < t(1+γ+α)/2+ε; put differently, Xt = t(1+γ+α)/2+o(1) as t → ∞, and, in
particular, lim inft→∞ tεXt/t

(1+γ+α)/2 = ∞ for all ε > 0 (cf. Assumption (AY )(c) below).

(iv) The dimension parameter δ ∈ (0,∞) of the squared-Bessel process Y does not appear in the
scaling exponent in (1.5). The condition δ > 0 ensures that the Bessel process

√
Y is diffusive,

which determines how the parameter α in (Af ) enters the scaling exponent in (1.4)–(1.5). In
particular, X in Theorem 1.1 exhibits superdiffusive transience for negative γ ∈ (−α, 0), even
if Y is topologically recurrent (i.e. δ ∈ (0, 2]).

(v) We emphasize that the hypotheses in Theorem 1.1 permit arbitrary dependence between
the process Y and the driving Brownian motion B in (1.3). Since Y with law BESQδ(y) is the
unique strong solution of the stochastic differential equation

dYt = δ dt+ 2|Yt|1/2 dWt, for Y0 = y ∈ R+, (1.6)

for some Brownian motion W = (Wt)t∈R+ , the limit in (1.5) requires only that the Brownian
motions W and B are adapted to the same filtration. In particular, W and B may be equal,
independent or have arbitrary stochastically evolving (adapted) covariation.

(vi) In the case α = 0, so that f(t, y) ∼ ρtγ as t → ∞, the impact of the process Y on the large-
scale dynamics of X vanishes as t → ∞. In particular, the limit in Theorem 1.1 is deterministic,
and, in fact, the convergence in distribution can in that case be strengthened to almost sure
convergence. Theorem 1.1 can thus be viewed as a generalisation of certain results in [18] to
non-polynomial time-inhomogeneous drift; see §2 below for some elaboration on this connection.

(vii) In contrast to Remark 1.2(iii), if we had γ = α = 0 (and hence f asymptotically constant),
then X would be (essentially) a Bessel process of dimension 1 + 2ρ > 1. In that case, the
statement (1.5) is false, because the distributional limit of t−1/2Xt is random, while the right-
hand side of (1.5) is deterministic when α = 0. This suggests that the condition γ + α > 0
in (Af ) cannot be omitted, essentially because Theorem 1.1 requires the (exogenous) Y -driven
stochastic drift to dominate the (endogenous) Brownian noise in the evolution of X.

(viii) We do not consider here the case where the process Y in (1.1) is ergodic, because we
anticipate rather different phenomena in that case. For example, if f(s, y) = h(y) depends
only on y, and if h is integrable with respect to the stationary measure of Y on R+, then it
seems natural to suspect that X behaves similarly to a Bessel process with drift coefficient given
via the stationary mean of h(Y ). While interesting, this case seems unlikely to generate the
anomalous diffusion that is the focus of the present work; see §2 below for more details.

Remark 1.2(viii) suggests that for an ergodic process Y , the model (S, Y ) in (1.3) does not
exhibit superdiffusivity. But what properties of Y do guarantee anomalous diffusive behaviour
in Theorem 1.1? By Theorem 1.3 below, Assumption (AY ) on the additive functional

At :=

∫ t

1
sγY α

s ds, for t ∈ [1,∞), (1.7)

ensures such behaviour. Theorem 1.1 then follows by proving Assumption (AY ) for squared-
Bessel processes and identifying the weak limit.

(AY ) Let α and γ be as in (Af ).

(a) It holds that
∫ 1
0 E
[
Y α
t

]
dt < ∞.

Assume that At in (1.7) satisfies the following hypotheses.

(b) For a random variable Ã in R+, At/t
1+γ+α d−→ Ã as t → ∞.
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(c) For every ε > 0, it holds that limt→∞ tεAt/t
1+γ+α = ∞, a.s.

(d) It holds that supt∈[1,∞) EAt/t
1+γ+α < ∞.

The next limit theorem requires no assumption beyond (AY ) on the dynamics of Y .

Theorem 1.3. Assume that (Af ) holds and that the adapted process (S, Y,B) consists of an
R-valued Brownian motion B, a process Y on R+ satisfying hypothesis (AY ), and an R+-valued
process S satisfying SDE (1.3). Then, for Xt =

√
St, it holds that

lim
t→∞

logXt

log t
=

1 + γ + α

2
, a.s., (1.8)

and, as t → ∞, for Ã the random variable in hypothesis (AY )(b),

t−(1+γ+α)/2Xt
d−→
(
2ρÃ

)1/2
. (1.9)

The proof of Theorem 1.3 is given in §3. The proof of Theorem 1.1 is presented in §4,
where we establish that the process Y with law BESQδ(y) satisfies Assumption (AY ). In §2.2
we give an overview of the proof strategy, after first (in §2.1) describing some motivation and
relevant literature. In indication of possible extensions, we remark that self-similarity of the
law BESQδ(y) is only used in the final step of the proof of Theorem 1.1 to identify the law
of the limit Ã. This leads to a natural open problem: To find and/or characterise self-similar
processes Y , such that X satisfies analogue of the weak limit in (1.5), appropriately adjusted
for the self-similarity index of Y .

2 Motivation and discussion

2.1 Motivation and literature

An example motivated by a self-interacting random walk. A discrete-time relative of the model
in Theorem 1.1 is studied in [11], motivated in part by a programme to study a certain self-
interacting planar random walk. The parameters in the present model that correspond, heur-
istically, to the process described in [11] are γ = 0, α = 1/2, and δ = 1; informally for Brownian
motions B,W on R with arbitrary dependence, dXt = ρ|Wt|/Xt dt+ dBt. Note that |W | (re-
flected BM) has the same law as

√
Y where Y follows BESQ1(0). By Theorem 1.1, as t → ∞,

t−3/4Xt converges weakly to the law of (2ρ
∫ 1
0 |Ws| ds)1/2, which can be expressed in terms of

Airy functions [5, p. 349]. Figure 1 plots the graphs of a path t 7→ Xt and t 7→ t3/4.

Stochastic kinetic dynamics. Various physical systems motivate stochastic kinetic models for

processes (X,V ) ∈ Rd × Rd with dynamics of the form

Xt =

∫ t

0
Vs ds, Vt =

∫ t

0
G(Vs) ds+Bt, (2.1)

where B is d-dimensional Brownian motion and G : Rd → Rd. Here V is an autonomous velocity
process which feeds into the stochastic drift of the d-dimensional process X. Associated to (2.1)
is the so-called kinetic Fokker–Planck equation [15,16]. A classical example is Paul Langevin’s
1908 work on the confining case G(v) = −v (see [29]), which was proposed to model physical
Brownian motion. In that case, V is a d-dimensional Ornstein–Uhlenbeck process, and, for
some mean-zero Gaussian random variable V ,

Vt
d−→ V , as t → ∞, (2.2)
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Figure 1: Simulated realizations (Euler scheme, step size of 1/10) of a trajectory t 7→ Xt of
X (with γ = 0, α = 1/2, i.e. f(t, y) =

√
y, and δ = 1) and the graph t 7→ tp for exponent

p = (1 + α+ γ)/2 = 3/4 on the time interval [0, T ] with T = 105.

i.e., there is weak convergence to a stationary, isotropic velocity distribution. Since V is light-
tailed and V is rapidly mixing, then X itself, defined through the additive functional in (2.1),
will look like Brownian motion on large scales.

Renewed interest in the system (2.1), where G(v) is of order 1/v for large v (so that V is
a Bessel-like process), has been stimulated by both modelling of specific physical systems and
realization that such processes can generate a variety of scaling behaviours corresponding to
anomalous diffusion; we refer to [1, 6, 7, 15–17,22,24], and references therein.

The mechanism for anomalous diffusion explored in these works is different from ours. In-
deed, these works maintain that G be confining, taking G(v) = −δ/(1 + v) (or variations on
this) for δ > 0. For appropriate δ, this leads to a heavy-tailed stationary distribution V for
which (2.2) holds. In this case a competition between the mixing rate of V and the index of the
domain of attraction in which V lives determines the asymptotics of the additive functional X
defined through (2.1). In contrast, our model G is positive and we are interested in velocity
processes V such that Vt → ∞ in probability, as t → ∞ (possibly recurrent, however). This
gives a quite distinct mechanism for anomalous diffusion, and some different phenomena; for
example, the range of scaling laws in [16, Thm 2] are on scale t1/2 (diffusive) through to t3/2

(super-ballistic), but our growth exponent in Theorem 1.1(a) has no upper bound in (1/2,∞).
A variation of (2.1) is to replace the dynamics of X by

dXt =
f(t, Yt)

Xt
dt, (2.3)

for example, where Y is an autonomous process. Then d(X2
t ) = 2f(t, Yt) dt, so, in some sense,

the generalization that (2.3) provides to (2.1) is only in the form of the velocity process Vt. Our
model (1.1) extends (2.3) further by introducing exogenous noise into the dynamics of X.

Other stochastic drift models. From an entirely different direction, a number of two-dimensional
models of a similar structure to (2.1) and (2.3) have been studied by Lefebvre and collaborat-
ors [25–28], motivated by lifetime studies and models of wear, among other applications. Spe-
cifically [27, 28] formulate a version of (2.3) for the model (X,Y ), where dXt = −c(Yt/Xt) dt
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and Y is geometric Brownian motion. The focus of these papers is evaluating certain hitting
distributions, rather than examining t → ∞ asymptotics.

Long-time behaviour of stochastic interest-rate models. Models for the instantaneous interest
rate (also known as the short rate) r typically use a mean-reverting diffusion as its stochastic
representation of r. Deelstra & Delbaen [13] (see also [12]) extend this framework to a model
where the mean-reversion level of the diffusion r is itself stochastic and has arbitrary dependence
with the driving Brownian motion: the SDE for the short rate r has constant negative mean-
reversion rate β < 0 and a stochastic mean-reversion level Y ,

drt = (βrt + Yt) dt+
√
rt dBt, with

1

t

∫ t

0
Ys ds

a.s.−→ Y as t → ∞. (2.4)

The main result in [13] shows that r is indeed mean-reverting, 1
t

∫ t
0 rs ds

a.s.−→ −Y /β as t → ∞,
allowing, as in our Theorem 1.3 above, arbitrary dependence between Y and the Brownian
motion B. In contrast to our setting, the process

√
r in [13] is diffusive. Moreover, as long as

Y is ergodic as in (2.4) above, the process r is likely to remain diffusive even if β = 0, as it
resembles the squared-Bessel process of positive dimension.

Time-inhomogeneous one-dimensional diffusions. In the case where the driving function f(t, y)
in (1.1) does not depend on y and is polynomial in t, the process X falls into a class of one-
dimensional diffusions with space-and-time-dependent drifts, studied in detail by Gradinaru &
Offret [18] among a more general class of time-inhomogeneous diffusions on R+, following earlier
discrete-time work of [30]; there are also structural links to the elephant random walk [2,3] and
to the noise-reinforced Bessel process [4].

Specifically, a special case of dynamics (1.1) is an SDE dXt = ρtγX−1
t dt + dBt, which is

the model of [18] in the case α = −1, β = −γ (their parametrization). Here, for γ > 0, [18,

Thm 4.10(i)] states limt→∞ t−
1+γ
2 Xt = (2ρ/(1 + γ))1/(1+γ), a.s., strengthening the log-scale

asymptotic in (1.4) (where our α = 0) in this special case.

2.2 Overview and discussion of the proofs

We outline our approach to Theorem 1.3. In what follows, the concrete case of Theorem 1.1
can also be kept in mind, where Y is a square-Bessel process. Recall that the adapted process
(S, Y,B), taking values in R2

+ × R satisfies the dynamics (1.3). In particular, defining

Mt := 2

∫ t

0

√
Ss dBs and Ut := 2

∫ t

0
f(s, Ys) ds, (2.5)

we can write, for all t ∈ R+,
St − S0 = Ut + t+Mt. (2.6)

The martingale decomposition (2.6) leads to a natural approach to the proofs, in which
the core step for both the weak limit (1.9) and a.s.-asymptotic (1.8) is to show that M is
a.s. asymptotically negligible compared to U . Hence U determines the asymptotics of X, both
in distribution (via hypothesis AY (b)) and in a.s.-asymptotic sense (via hypotheses AY (c)–(d)).

The growth rate of martingale M is governed by its quadratic variation ⟨M⟩ = 4
∫ ·
0 Ss ds: by

the Dambis–Dubins–Schwarz theorem, M = W⟨M⟩ for a one-dimensional Brownian motion W
time-changed by ⟨M⟩. A circular argument can be avoided, since (2.6) allows one to express
E⟨M⟩t in terms of EUt, which is controlled by hypotheses AY (a) and (d). An argument based
on Doob’s inequality then yields the desired a.s. upper bound on M (this is the content of
Proposition 3.1 below).

While known results about Bessel processes give access to alternative reasoning if one is
interested only in Theorem 1.1, the proof in §3 is not long, uses only basic martingale ideas,
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and is not confined to the Bessel case. We emphasize we do not know any proof that works
without some a.s. upper bound, and hence without a hypothesis like AY (d). Combined with
hypothesis AY (c) (which gives an a.s. lower bound on U), this ensures that U is genuinely
dominant over M in (2.6). Hypothesis AY (b) is required for the distributional limit to exist.

We make some comments on the more apparently technical conditions, which are to some
extent necessary but where some variations are possible (say relaxing one at the expense of
tightening another). The finite-time integrability hypothesis AY (a) is mild (automatically sat-
isfied in the Bessel case) and provides initial control over E⟨M⟩t that is not guaranteed by
hypothesis AY (d), since the integral in the definition of At in (1.7) starts at time 1. In the in-
tegral in (1.7), lower limit strictly greater than 0 avoids any possible singularity when γ < 0; so
would using 1+ s in place of s in the integrand, at the expense of some complications elsewhere
(the expression being less amenable to scaling and self-similarity). Finally, we comment on the
hypothesis on f given at (1.2). It is important in the present formulation that (1.2) provides an
upper bound for f(t, y) in terms of yα for all t (see (3.1) below), since it is used to reduce to the
hypothesis AY (a) what would otherwise be an hypothesis on

∫ 1
0 E
[
f(t, Yt)

]
dt, which becomes

a more indirect condition on f . In the Bessel case, Y spends almost all its time on order t, and
so it seems likely one could relax the hypothesis on f to demand precise asymptotics only in
a smaller region of (t, y)-space, but we do not know any examples that would make the extra
work needed worthwhile.

3 Strong law with stochastic drift

In this section we prove Theorem 1.3 under Assumptions (Af ) and (AY ). We start with a
simple observation about f under the hypothesis (Af ). By (1.2), there exists r1 > 0 such that
f(t, y) ≤ (ρ+ 1)(1 + t)γ(1 + y)α for all (t, y) ∈ R2

+ with t+ y ≥ r1. Since f is continuous (and
hence bounded on compacts), there exists C0 ∈ (0,∞) such that

f(t, y) ≤ C0(1 + (1 + t)γyα) for all (t, y) ∈ R2
+. (3.1)

By (3.1), there exists C < ∞ such that sup0≤t≤1 f(t, y) ≤ C(1+yα). Hence the hypothesis that

E
∫ 1
0 Y α

t dt < ∞ from (AY ) implies that EU1 < ∞, where U is as defined in (2.5). We use this
fact, as well as the bound (3.1), in several places in the proofs below.

Recall by (AY ) that for α ∈ R+ and γ ∈ (−α,∞), we have β := α+ γ > 0.

Proposition 3.1. Suppose α ∈ R+ and β = γ + α > 0. Assume (Af ) and (AY )(d) hold.
Then M = (Mt)t∈R+ in (2.5) is a martingale and there exists a constant C ∈ (0,∞) such that
E(M2

t ) ≤ Ct2+β for all t ∈ [1,∞). Moreover, for any ε > 0, we have

lim
t→∞

sup
0≤s≤t

|Ms|/t1+β/2+ε = 0, a.s. (3.2)

Proof. For any N ∈ R+, set τN := inf{t ∈ R+ : St ≥ N}. The quadratic variation of the local
martingale M τN = (Mt∧τN )t∈R+ is bounded: a.s., for all t ∈ R+, ⟨M⟩t∧τN ≤ 4

∫ t
0 Ss∧τN ds ≤

4tN . Hence, by [31, Prop. IV.1.23], M τN is a uniformly integrable martingale started at zero.
Thus EMt∧τN = 0 for all t ∈ R+. Moreover, by definition (1.7), the bound in (3.1) and (AY )(d),
we have, for all t ≥ 1, 0 ≤ E(Ut − U1) ≤ 2C0(t+ EAt) ≤ C ′

0(1 + t)1+β for a constant C ′
0 ∈ R+.

Hence, since U is non-decreasing and EU1 < ∞ (see the comment after (3.1) above), there
exists a constant C1 ∈ R+ such that

ESt∧τN ≤ ES0 + EU1 + E(Ut − U1) + t ≤ C1(1 + t)1+β, for all t,N ∈ R+.

Hence E⟨M⟩t∧τN ≤ 4
∫ t
0 ESs∧τN ds ≤ 2C1(1 + t)2+β for t,N ∈ R+. Since ⟨M⟩t∧τN ↑ ⟨M⟩t

as N → ∞, monotone convergence implies E⟨M⟩t ≤ Ct2+β for t ∈ [1,∞) and C := 23+βC1.
By [31, Cor. IV.1.25], M is a martingale and E(M2

t ) = E⟨M⟩t ≤ Ct2+β for t ∈ [1,∞).

7



The limit in (3.2) will follow by a Borel–Cantelli argument. Doob’s maximal inequality [31,
Thm II.1.7] and the L2-bound EM2

t ≤ Ct2+β (for all t ∈ [1,∞)) yield

P
(

sup
0≤s≤t

|Ms| > a

)
≤ EM2

t /a
2 ≤ Ct2+β/a2, for all t ≥ 1 and a > 0. (3.3)

Fix arbitrary ε > 0. Set tn := 2n and an := t
1+β/2+ε
n for n ∈ Z+ := N ∪ {0}. By the inequality

in (3.3), applied with t = tn and a = an, the probabilities of the events

En :=

{
sup

0≤s≤tn

|Ms| > an

}
are summable:

∞∑
n=0

P(En) ≤ C
∞∑
n=0

t−2ε
n < ∞.

Hence, by the Borel–Cantelli lemma, there exists a (random) n0 ∈ N, a.s., such that En occurs
for no n ≥ n0, i.e., sup0≤s≤tn |Ms| ≤ an for all n ≥ n0. Let T := 2n0 < ∞ a.s. For every
t ∈ [1,∞), there exists a unique k ∈ Z+, such that tk = 2k ≤ t < 2k+1 = tk+1. Thus, for all
t ≥ T , we have

sup
0≤s≤t

|Ms| ≤ sup
0≤s≤tk+1

|Ms| ≤ t
1+β/2+ε
k+1 = 21+β/2+ε

(
2k
)1+β/2+ε ≤ 21+β/2+εt1+β/2+ε.

Since ε > 0 was arbitrary, the limit in (3.2) holds almost surely.

Remark 3.2 (Squared-Bessel process). A solution Y of SDE (1.6) has a decomposition analogous
to (2.6), Yt = y + δt + M t, with the local martingale M t := 2

∫ t
0

√
Ys dWs. Since δ > 0 is a

constant, a simpler version of the argument in the first paragraph of the previous proof implies

EM
2
t ≤ Ct2 for t ∈ [1,∞) and a constant C > 0. Doob’s maximal inequality [31, Thm II.1.7]

yields the tail bound P(sup0≤s≤t |M s| > a) ≤ Ct2/a2 for all t, a > 1. As in the proof of
Proposition 3.1, the Borel–Cantelli lemma and a subsequence argument implies that, for any
ε > 0, a.s. sup0≤s≤t |M s| ≤ t1+(ε/2) for all sufficiently large t ∈ R+, and thus

lim
t→∞

Yt/t
1+ε = 0, a.s. (3.4)

We now establish the following key result giving the almost-sure rate of escape for the
additive functional U . In particular, by (2.6), the almost-sure behaviour (as t → ∞) of the
process S is dominated by U .

Proposition 3.3. Suppose that α ≥ 0 and β = γ + α > 0, and assume that (Af ) and
(AY )(c), (AY )(d) hold. Then, for every ε > 0, the process U in (2.6) a.s. satisfies

t−ε < Ut/t
1+β < tε for all sufficiently large t ∈ R+. (3.5)

Proof. By (1.2) in (Af ), there exists a large constant rρ > 1 such that f(t, y) ≥ (ρ/2)tγyα for
all (t, y) ∈ [rρ,∞)× R+. By the definition of Ut in (2.6), for all t > rρ, we have

ρ(At −Arρ) = ρ

∫ t

rρ

sγY α
s ds ≤ 2

∫ t

0
f(s, Ys) ds = Ut,

where At is defined in (1.7). Hypothesis (AY )(c) on At implies limt→∞ tε−(1+β)At = ∞ a.s. for
every ε > 0, yielding the lower bound in (3.5).

To prove the upper bound in (3.5), note that the definition of Ut in (2.6) and the upper
bound on f in (3.1) imply Ut−U1 ≤ 2C0(t+At) a.s. Hence, by (AY )(d), for a constant C2 < ∞,

EUt = E[Ut − U1] + EU1 ≤ 2C0(t+ EAt) + EU1 ≤ C2t
1+β for all t ∈ [1,∞).

8



Pick any ε > 0. The bound in the previous display and Markov’s inequality yield

P(Ut ≥ t1+β+ε) ≤ EUt/t
1+β+ε ≤ C2/t

ε.

Since
∑

n∈Z+
1/tεn < ∞, where tn := 2n, the Borel–Cantelli lemma implies Utn ≤ t1+β+ε

n for all
but finitely many n ∈ Z+, a.s. As in the proof of Proposition 3.1, for every t ∈ [1,∞), there
exists a unique k ∈ Z+, such that tk = 2k ≤ t < 2k+1 = tk+1. As U is increasing (since f ≥ 0)

Ut ≤ Utk+1
≤ (2k+1)1+β+ε = 21+β+ε · t1+β+ε

k ≤ 21+β+εt1+β+ε.

Since ε > 0 is arbitrary, the upper bound in (3.5) holds for all large t ∈ R+.

The next result establishes weak convergence of Ut, defined in (2.6) and suitably scaled, to
a random variable proportional to the limit Ã in hypothesis (AY )(b).

Lemma 3.4. Let α ≥ 0 and β = γ + α > 0. Assume (Af ) and (AY )(b) hold. Then,

Ut/t
1+β d−→ 2ρÃ, as t → ∞.

Proof. Recall the definitions of At in (1.7) and of Ut in (2.6). Define also

Dt := Ut/2− ρAt = U1/2 +

∫ t

1
f(s, Ys) ds− ρAt for any t ∈ [1,∞). (3.6)

Since Ut/t
1+β = 2(Dt+ρAt)/t

1+β, by Slutsky’s lemma (see e.g. [14, p. 105]) and the weak limit
in (AY )(b), it is sufficient to prove that Dt/t

1+β converges to zero in probability. In particular,
it suffices to show that for every ε′, ε′′ > 0 we have

lim sup
t→∞

P
(
|Dt|/t1+β > 2ε′

)
≤ ε′′. (3.7)

For every ε > 0, by (1.2), there exists rε ∈ (1,∞) such that, for every s ∈ [rε,∞) and
y ∈ R+, we have |f(s, y)− ρsγyα| ≤ εsγyα. Define Zε := U1/2+

∫ rε
1 f(s, Ys) ds+ ρArε and note

that, by (3.6), |Drε | ≤ Zε, a.s. Hence, for any t > rε, by (1.7) and (3.6) again, we have

|Dt| ≤ |Drε |+ |Dt −Drε |

≤ Zε +

∫ t

rε

|f(s, Ys)− ρsγY α
s | ds ≤ Zε + ε(At −Arε) ≤ Zε + εAt. (3.8)

Pick any ε′, ε′′ > 0. Fix small ε > 0, such that limt→∞ P(εAt/t
1+β > ε′) = P(Ã > ε′/ε)

(by (AY )(b), limit holds for all but countably many ε) and P(Ã > ε′/ε) < ε′′/2. Thus, by (3.8),

P
(
|Dt|/t1+β > 2ε′

)
≤ P

(
Zε/t

1+β > ε′
)
+ P(At/t

1+β > ε′/ε) ≤ ε′′/2 + ε′′/2

for all large t ∈ R+. Since ε′, ε′′ > 0 were arbitrary, (3.7) holds and the lemma follows.

We can now complete the proof of Theorem 1.3.

Proof of Theorem 1.3. Let β := γ+α. Since St = S0+Ut+t+Mt and (S0+t+Mt)/t
1+β a.s.−→ 0 as

t → ∞ by (3.2) of Prop. 3.1, the weak limit in Lemma 3.4 and Slutsky’s lemma (see [14, p. 105])

yield St/t
1+β d−→ 2ρÃ as t → ∞. Then (1.9) follows by continuous mapping. By (3.5) in

Prop. 3.3, for any ε > 0 a.s. logSt/ log t = 1 + β + log
(
(S0 + t+Mt)/t

1+β + Ut/t
1+β
)
/ log t ≤

1 + β + ε for all large t. Similarly, for any ε ∈ (0, β/2), (3.2) of Proposition 3.1 and the lower
bound in (3.5) imply 1 + β − ε ≤ logSt/ log t and limit (1.8) follows.
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4 Asymptotics of certain squared-Bessel functionals

The aim of this section is to verify Assumption (AY ) for the squared-Bessel process Y (with law
BESQδ(y)) of positive “dimension” δ > 0. This will, by Theorem 1.3, imply our main result
Theorem 1.1. The focus in this section is the additive functional At, defined in (1.7), when Y
follows SDE (1.6).

Theorem 4.1. Suppose that Y has law BESQδ(y) with parameter δ > 0, started at arbitrary
y ∈ R+. Let α ∈ R+ and γ ∈ (−α,∞). Recall At =

∫ t
1 s

γY α
s ds, t ∈ [1,∞), defined in (1.7).

(a) The following limit holds,

lim
t→∞

logAt

log t
= 1 + γ + α, a.s. (4.1)

(b) Let Ỹ follow BESQδ(0). Then, as t → ∞,

At/t
1+γ+α d−→

∫ 1

0
sγ Ỹ α

s ds. (4.2)

(c) The growth of the expectation EAt is at most polynomial, supt≥1 EAt/t
1+γ+α < ∞.

Note that, since α ≥ 0, for all t > 1 and Y0 = y ∈ R+ we have 0 < At < ∞. The
inequality lim supt→∞ logAt/ log t ≤ 1 + γ + α in (4.1) of Theorem 4.1(a) follows directly from
the a.s upper bound (3.4) above for the squared-Bessel process Y . Assumption (AY )(c) requires
only lim inft→∞ logAt/ log t ≥ 1 + γ + α in (4.1), the most involved part of Theorem 4.1.
Proposition 4.2 below states this as a stand-alone result, followed by an elementary, essentially
self-contained proof. From the perspective of our main result (Theorem 1.1), the case δ ∈ (0, 2] is
also the most interesting as it corresponds to the non-ergodic recurrent stochastic drift in (1.1),
which nevertheless induces anomalous diffusive behaviour of X =

√
S. In the Brownian case

(δ = 1), the log-limit statement (4.1) can also be deduced, with a little work, from results of [23].
Parts (b)&(c) of Theorem 4.1 follow directly from self-similarity of the Bessel processes.

Proposition 4.2. Suppose that δ > 0, α ∈ R+, and γ > −α. Then, for every ε > 0, a.s.

At > t1+γ+α−ε for all large t ∈ R+. (4.3)

Remarks 4.3. (i) The intuition behind (4.3) is that, typically, Yt ≈ t, by Bessel scaling. How-
ever, the proof below reveals that the δ-independent exponent in (4.3) emerges from a rather
delicate balance between the frequency and spatial extent of excursions, which both depend
critically on δ; in [9] bounds of a similar type yield lower bounds on the rates of convergence of
ergodic reflected Brownian motion. A related approach in discrete time can be found in [19].

(ii) In the case γ = 0, the quantity Aτℓ is studied in detail by Çetin in [10], where Y follows
BESQδ(y) and δ > 0 (the hitting time τℓ is defined below). The approach in [10] does not
address directly the a.s. asymptotics for At.

Throughout this section, we write Py for the probability measure inducing the law BESQδ(y),
and Ey for the corresponding expectation. Let τx := inf{t ∈ R+ : Yt = x} (with convention
inf ∅ = ∞) for x ∈ R+. The next lemma says the squared-Bessel process started at y will
typically spend time at least of order y at levels of order y.

Lemma 4.4. Suppose that δ > 0. Then there exists ε > 0 such that,

Py(τy/2 ≥ εy) ≥ 1/2, for all y ∈ R+.
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Proof. It suffices to suppose that Y0 = y ∈ (0,∞). From (1.6), we obtain, for all t ∈ R+,

Yt∧τ2y = y + δ(t ∧ τ2y) +Mt∧τ2y , where Mt := 2

∫ t

0
|Ys|1/2 dWs. (4.4)

The process (Mt∧τ2y)t∈R+ is a martingale since its quadratic variation is a.s. bounded at any
finite time t. Hence, by (4.4), we get Ey(Yt∧τ2y) ≤ y + δt. By [31, Prop. IV.1.23],

Ey M
2
t∧τ2y = Ey⟨M⟩t∧τ2y = 4

∫ t

0
Ey Ys∧τ2y ds ≤ 4yt+ 2δt2, for all t ∈ R+.

Consider the event Ey,t := {sup0≤s≤t |Ms∧τ2y | ≥ y/3}. Then, by Doob’s maximal inequality [31,
Thm II.1.7] applied to the non-negative submartingale (M2

t∧τ2y)t∈R+ ,

Py(Ey,t) ≤ (9/y2)Ey M
2
t∧τ2y ≤ 36(t/y) + 18δ(t/y)2. (4.5)

If t < y/(2δ), we have Ec
y,t ⊂ {τ2y > t} Py-a.s., implying Ec

y,t = {sup0≤s≤t |Ms| < y/3}.
By (4.4) we thus get Ec

y,t ⊂ {inf0≤s≤t Ys > y/2} = {τy/2 > t} Py-a.s., yielding (with (4.5))

Py

(
τy/2 > t

)
≥ Py(E

c
y,t) = 1− Py(Ey,t) ≥ 1− 36(t/y)− 18δ(t/y)2. (4.6)

For any ε ∈ (0, (2δ)−1), define t := εy < y/(2δ), and Py(τy/2 ≥ εy) ≥ 1− 36ε− 18δε2 by (4.6).
Choose ε ∈ (0, (2δ)−1), such that 1− 36ε− 18δε2 ≥ 1/2, to finish the proof.

We now establish a lower bound on the tail of a functional of an excursion of Y .

Lemma 4.5. Let δ ∈ (0, 2), α ∈ R+. Then there exists a constant cα,δ ∈ (0,∞) satisfying

P1

(∫ τ0

0
Y α
s ds ≥ z

)
≥ cα,δz

− 2−δ
2+2α , for all z ∈ (1,∞).

Proof. First observe that, since Ys ∈ R+ for all s ∈ R+, for every y ∈ (0,∞) and z ∈ R+,

P1

(∫ τ0

0
Y α
s ds ≥ z

)
≥ E1

[
1{τy<τ0}P1

(∫ τ0

τy

Y α
s ds ≥ z

∣∣∣∣Fτy

)]

= P1(τy < τ0)Py

(∫ τ0

0
Y α
s ds ≥ z

)
, (4.7)

where (Ft)t∈R+ is the filtration generated by the Brownian motion driving SDE (1.6). The
equality in (4.7) follows from the strong Markov property at τy, and the facts: {τy < τ0} ∈ Fτy

and Yτy = y P1-a.s. By Lemma 4.4 there exists ε > 0, such that Py(τy/2 ≥ εy) ≥ 1/2. Moreover,
on the event {τy/2 ≥ εy}, the inequality∫ τ0

0
Y α
s ds ≥

∫ εy

0
(y/2)α ds = εyα+1/2α holds Py-a.s.,

implying Py

(∫ τ0
0 Y α

s ds ≥ εyα+1/2α
)
≥ Py(τy/2 ≥ εy) ≥ 1/2 for all y ∈ (0,∞). By (4.7) with

z = εyα+1/2α, we obtain

P1

(∫ τ0

0
Y α
s ds ≥ εyα+1/2α

)
≥ 1

2
P1(τy < τ0) =

1

2y(2−δ)/2
for all y ≥ 1. (4.8)

The last equality follows from the optional sampling theorem since the process (Y
(2−δ)/2
t∧τ0∧τy )t∈R+

is (by Itô’s formula and SDE (1.6)) a bounded martingale. The following change of variable
y = (2αz/ε)1/(1+α) in (4.8) yields the stated bound.
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Proof of Proposition 4.2. Suppose that δ ∈ (0, 2) and α ∈ R+. We will first establish the case
γ = 0 of (4.3), then δ ≥ 2 and subsequently deduce the general case γ ∈ (−α,∞).

Define stopping times ϑ0 := 0 and, for n ∈ N,

φn := inf{t ≥ ϑn−1 : Yt = 1}, ϑn := inf{t ≥ φn : Yt = 0}. (4.9)

Since the squared-Bessel process is point-recurrent for δ ∈ (0, 2), we have 0 < ϑn < φn+1 <
ϑn+1 < ∞, a.s., for all n ∈ N (and 0 = ϑ0 < φ1 as well, unless Y0 = 1). Define

Nt := sup{n ∈ Z+ : ϑn ≤ t}, t ∈ R+, and Iα,n :=

∫ ϑn

φn

Y α
s ds, n ∈ N. (4.10)

Since Ys ≥ 0 for all s ∈ R+, and 0 ≤ ϑNt ≤ t, we can write∫ t

0
Y α
s ds ≥

∫ ϑNt

0
Y α
s ds ≥

Nt∑
n=1

Iα,n, for all t ∈ R+. (4.11)

The strong Markov property and the fact that P(Yφn = 1) = 1 imply the random variables
(Iα,n)n∈N are i.i.d. By Lemma 4.5 we have

P(Iα,1 ≥ z) = P1

(∫ τ0

0
Y α
s ds ≥ z

)
≥ cα,δz

− 1−δ/2
1+α , for all z ∈ (1,∞). (4.12)

For any ε > 0, this bound and the Borel–Cantelli lemma yield: a.s.

N∑
n=1

Iα,n ≥ N
1+α

1−δ/2
−ε

for all but finitely many N ∈ N. (4.13)

Indeed, denoting θ := 1−δ/2
1+α ∈ (0, 1) (recall 0 < δ < 2 and α ∈ R+) and picking r > 0 with

cα,δr > 1, by (4.12) for all N ≥ 2 we have P(Iα,1 ≥ (N/(r logN))1/θ) ≥ cα,δr(logN)/N . Since
the variables (Iα,n)n∈N are i.i.d., the events EN := {max1≤n≤N Iα,n < (N/(r logN))1/θ} satisfy

P(EN ) = (1− P(Iα,1 ≥ N1/θ/(r logN)1/θ))N ≤ (1− cα,δr(logN)/N)N ≤ N−c̄,

for all N ∈ N and c̄ := cα,δr > 1 (the last inequality follows by taking logarithms on both
sides and applying log(1 − x) ≤ −x for x < 1). Since c̄ > 1, the Borel–Cantelli lemma implies
a.s. max1≤n≤N Iα,n ≥ (N/(r logN))1/θ for all sufficiently large N . As the sum of positive terms

dominates the maximum and (N/(r logN))1/θ ≥ N
1+α

1−δ/2
−ε

for every ε > 0 and all N ∈ N
sufficiently large, (4.13) follows.

Let νn := ϑn − φn, for n ∈ N, be the duration of the excursion (at the epoch φn) of Y from
level 1 to level 0. We now prove (4.14) below that controls the tail of the duration νn. By the
strong Markov property at φn we have P(νn > t) = P1(τ0 > t) for all t ∈ R+ and n ∈ N. For any
Y0 = y ∈ R+ and t > 0, by the scaling property, the process (Yst/t)s∈R+ follows BESQδ(y/t).
Hence Py(τ0 > t) = Py(infs∈[0,t] Ys > 0) = Py/t(infs∈[0,1] Ys > 0) = G(y/t), for a measurable
function G : R+ → [0, 1] satisfying G(0) = 0 and G(y) → 1 as y → ∞.

The process (Zs)s∈[0,t], Zs := P(τ0 > t | Fs) = 1{τ0>s}G(Ys/(t − s)), is a martingale with
respect to the filtration (Fs)s∈[0,t] generated by the Brownian motion W in SDE (1.6). As-
suming G is twice differentiable on (0,∞), Itô’s formula and the infinitesimal drift of (Zs)s∈[0,t]
being equal to zero imply that G satisfies an ordinary differential equation (ODE) 2G′′(x) +
(1 + δ/x)G′(x) = 0 for x ∈ (0,∞) with boundary conditions above. The solution Ḡ(x) :=∫ x/2
0 u−δ/2e−u du/Γ(1 + δ/2) of the ODE, where Γ denotes the gamma function, yields a mar-
tingale Z̄s := 1{τ0>s}Ḡ(Ys/(t − s)), s ∈ [0, t], satisfying Zt = 1{τ0>t} = Z̄t. Thus Zs = Z̄s

for all s ∈ [0, t] a.s. Since the support of Ys (for s > 0) contains (0,∞), we have Ḡ(y/t) =
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G(y/t) = Py(τ0 > t) for all y ∈ R+ and t > 0. Using e−u ≤ 1 for u ∈ R+, we obtain the bound
Ḡ(1/t) ≤ cδt

−1+δ/2 for all t > 0, where cδ := 2−1+δ/2/((1− δ/2)Γ(1 + δ/2)). Thus, since τ0 has
a density, we get the upper tail bound1

P(νn ≥ t) = P1(τ0 > t) ≤ cδt
−1+δ/2 for all t ∈ (0,∞) and any n ∈ N. (4.14)

By (4.14), the i.i.d. sequence (νn)n∈N satisfies E ν
(1−δ/2)/(1+ε)
n < ∞ for any ε > 0. Since

0 < 1− δ/2 < 1, the Marcinkiewicz–Zygmund strong law [21, Thm 4.23] yields: a.s.,

N∑
n=1

νn ≤ N
1

1−δ/2
+ε

for all but finitely many N ∈ N. (4.15)

Define υn := φn − ϑn−1, for n ∈ N, to be the time taken to exit the interval [0, 1] started
from 0, after time ϑn−1. Since y 7→ Py(Y1 > 1) is positive and continuous on [0, 1], there exists

a constant c0 > 0 such that Py(Y1 > 1) > c0 for all y ∈ [0, 1]. Thus, P(υn ≥ t) ≤ P0(∩⌊t⌋
i=1{Yi ≤

1}) ≤ (1− c0)
⌊t⌋ for t ≥ 1 (here ⌊t⌋ := max{i ∈ Z+ : i ≤ t}), implying E υn < ∞ for all n ∈ N.

Since the sequence (vn)n∈N is i.i.d., the strong law of large numbers says N−1
∑N

n=1 υn → E ν1
as N → ∞ a.s. Recalling νn = ϑn − φn, by (4.15) and since 1 < 1/(1− δ/2), for any ε > 0 we
obtain a.s.

ϑN =
N∑

n=1

(ϑn − ϑn−1) =
N∑

n=1

νn +
N∑

n=1

υn ≤ N
1

1−δ/2
+ε

for all large N ∈ N. (4.16)

By (4.10), for every t ∈ R+ we have Nt < ∞, t < ϑNt+1, a.s., and Nt
a.s.−→ ∞ as t → ∞. Thus,

by (4.16), for any ε ∈ (0, 1), a.s. we have Nt ≥ t(1−δ/2)/(1+ε) ≥ t(1−δ/2)(1−ε) for all t ∈ R+

sufficiently large. This inequality and the bound in (4.13), combined with (4.11), imply (4.3)

when γ = 0: for any sufficiently small ε > 0, a.s.,
∫ t
0 Y

α
s ds ≥

∑Nt
n=1 Iα,n ≥ N

1+α
1−δ/2

−ε

t and hence,

for t ∈ R+ sufficiently large,
∫ t
0 Y

α
s ds ≥ t(1+α)(1−2ε). Thus, for any (possibly random) T > 0,

a.s.

∫ t

T
Y α
s ds ≥ t(1+α)(1−2ε) for all sufficiently large t ∈ R+. (4.17)

If δ ≥ 2, since Y with law BESQδ(y) is a continuous-state branching process with immigra-
tion, the process Y +Y ′, where Y and Y ′ are independent with laws BESQ1(0) and BESQδ−1(y),
respectively, has the same law as Y [31, Thm XI.1.2]. Since Y ′

s ≥ 0 for s ∈ R+, by (4.17) a.s.∫ t
0 (Y s + Y ′

s )
α ds ≥

∫ t
0 Y

α
s ds ≥ t(1+α)(1−2ε) for large t, implying (4.17) for all δ > 0.

Suppose γ > 0. By (3.4), for every ε ∈ (0, γ ∧ 1) we have limt→∞ Y 1−ε
t /t = 0. Hence, there

exists (a random) T ∈ R+, such that tγ ≥ Y γ−ε
t and

∫ t
0 s

γY α
s ds ≥

∫ t
T Y γ+α−ε

s ds for t ≥ T .
Thus, by (4.17) (with α+ γ − ε in place of α), (4.3) follows. If γ ∈ (−α, 0), (4.3) remains valid
by (4.17) (with T = 1) and

∫ t
1 s

γY α
s ds ≥ tγ

∫ t
1 Y

α
s ds, concluding the proof.

Proof of Theorem 4.1. Part (a). By (3.4), for every ε > 0, limt→∞ Yt/t
1+ε = 0 a.s. Hence, a.s.,

Yt ≤ t1+ε for all sufficiently large t ∈ R+. Thus, by (1.7), At ≤ t1+γ+α+ε for large t, implying

lim sup
t→∞

logAt

log t
≤ 1 + γ + α, a.s. (4.18)

The lower bound in (4.1) follows from (4.3) in Proposition 4.2, since, for any ε > 0,

lim inf
t→∞

logAt

log t
≥ 1 + α+ γ − ε+ lim inf

t→∞

log(tεAt/t
1+α+γ)

log t
≥ 1 + γ + α− ε a.s.

1This upper bound is of the same order as the lower bound in the special case α = 0 of the Lemma 4.5.

13



Part (b). By self-similarity of the Bessel process, it follows that, for every t ∈ (0,∞) and

starting point y ∈ R+, the process (t−1Yts)s∈R+ follows BESQδ(y/t), where Y has the law

BESQδ(y). Moreover, for εt := y/t ≥ 0 and Ỹ with law BESQδ(0), the process (Ỹs+τ̃εt
)s∈R+

also follows BESQδ(y/t) by the strong Markov property, where τ̃εt = inf{s ∈ R+ : Ỹs = εt}. By
substituting s = tv in definition (1.7) of At, we obtain (4.2):

At/t
1+γ+α =

∫ 1

1/t
vγ(t−1Ytv)

α dv
d
=

∫ 1

1/t
vγ Ỹ α

v+τ̃εt
dv

a.s.−→
∫ 1

0
vγ Ỹ α

v dv as t → ∞. (4.19)

If γ ≥ 0, the a.s. convergence in (4.19) clearly holds. If γ ∈ (−α, 0), and hence α > 0, time-

reversal (Ỹt)t>0
d
= (t2Ỹ1/t)t>0 and bound (3.4) imply a.s. Ỹv ≤ v1−ε for small v > 0 and any

ε ∈ (0, 1 ∧ (1 + γ/α)). Thus
∫ 1
0 vγ Ỹ α

v dv < ∞ and the a.s. limit holds.

Part (c). The scaling property implies Yt
d
= tY 1, where Y follows BESQδ(y/t). Thus, for

α ≥ 0, there is a constant Cδ,α,y < ∞, such that EY α
t = tα EY α

1 ≤ Cδ,α,yt
α for all t ∈ [1,∞).

Since 1 + γ + α > 0, definition (1.7) implies EAt = O(t1+γ+α) as t → ∞.

Proof of Theorem 1.1. Suppose that Y follows BESQδ(y), δ > 0, for a fixed y ∈ R+. We check
the hypotheses of Theorem 1.3. The fact that

∫ 1
0 E
[
Y α
t

]
dt < ∞ is immediate, since moments

of all orders for Yt are bounded over compact time intervals: this follows from continuity and
the Gaussian-like tails of the explicit Bessel transition density (see e.g. [5, §IV.6]). Theorem 4.1
establishes that hypothesis (AY ) is satisfied by Y following BESQδ(y), provided that δ > 0,
α ∈ R+, and γ + α > 0. Indeed, Theorem 4.1(a) implies hypothesis (AY )(c), Theorem 4.1(b)
implies (AY )(b), with limit Ã =

∫ 1
0 sγ Ỹ α

s ds, and Theorem 4.1(c) implies (AY )(d). Hence
Theorem 1.1 is a consequence of Theorem 1.3.

A Existence, uniqueness and positivity for SDE (1.3)

Let (Y,B) be an adapted process, on a filtered probability space, where B is a scalar Brownian
motion with respect to the given filtration and Y is a continuous adapted process in R+.

Existence and pathwise uniqueness. As noted in [12], the SDE in (1.3) for S is a special case
of the Doléans-Dade and Protter equation, driven by the semimartingale B and an adapted
continuous process K = (Kt)t∈R+ , defined by Kt :=

∫ t
0 (2f(s, Ys) + 1) ds for some continuous

function f : R+ ×R+ → R+. This equation is well-known [20] to possess a solution and satisfy
pathwise uniqueness (making every solution strong). In [12], Deelstra & Delbaen construct the
solution S of SDE (1.3) (which may a priori take values in R with the volatility coefficient
given by

√
|Ss|) from an Euler scheme approximation, and prove that if S0 ∈ R+ then St ∈ R+

for all t ∈ R+ a.s. We stress that, beyond Y and B being adapted to the same filtration, no
assumption is made on the dependence between the two processes (or on the dynamics of Y ).

Positivity. Consider now the strong solution S of (1.3), driven by B and K and started at
S0 ∈ R+. Assume in addition that 1+2f ≥ δ0 a.s. for all t > 0 and a constant δ0 > 0. Since the
squared-Bessel SDE in (1.6) has pathwise uniqueness, we may construct a squared-Bessel process
Z, satisfying SDE (1.6) with “dimension” parameter δ0, started at Z0 = 0 and driven by the
Brownian motion B. Note that by (1.3) and (1.6) the quadratic variation of the semimartingale
S −Z equals ⟨S −Z⟩t = 4

∫ t
0 (
√
Ss −

√
Zs)

2 ds. In particular, since (
√
y−

√
x)2 ≤ |x− y| for all

x, y ∈ R+, we have∫ t

0
1{Zs−Ss>0}

∣∣∣√Ss −
√

Zs

∣∣∣−1
d⟨S − Z⟩s ≤ 4t < ∞ a.s. for all t ∈ R+.
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By [31, Lem. IX.3.3], the local time L0(S − Z) = 0 vanishes. Since S0 ≥ Z0 = 0, the Tanaka
formula [31, Thm VI.1.2] on [0, τN ], where τN := inf{s ≥ 0 : Ss ≥ N} for N > 0, yields
Emax{0, Zt∧τN −St∧τN } ≤ 0 (since sδ0 ≤ Ks for all s ∈ R+ and x∧y := min{x, y} for x, y ∈ R).
Thus Zt∧τN ≤ St∧τN , implying St ≥ Zt a.s. for all t ∈ R+ (since limN↑∞ τN = ∞).

Bessel-type representation (1.1) of X =
√
S. Since f ≥ 0, we can always take δ0 = 1, implying

that the modulus of BM (i.e.
√
Z for δ0 = 1) bounds X =

√
S from below, making the point

0 instantaneously reflecting for X. Moreover, if we had f ≥ ε/2 for for some ε > 0, a Bessel
process

√
Z with “dimension” δ0 = 1 + ε, which satisfies the Bessel SDE and, in particular,∫ t

0 ds/
√
Zs < ∞ for all t ∈ R+, would bound X from below. Thus,∫ t

0
(f(s, Ys)/Xs) ds ≤

∫ t

0
(f(s, Ys)/

√
Zs) ds < ∞ for all t ∈ R+. (A.1)

Once we know the integral in (A.1) is finite, by considering the excursions of X away from 0, it is
not hard to see that the quadratic variation at t of the continuous process X−

∫ ·
0(f(s, Ys)/Xs) ds

equals t, making it, by Lévy’s characterisation, a Brownian motion and thus implying SDE (1.1)
forX. However Assumption (Af ) is not consistent with f ≥ ε/2 when α > 0 (at large t, by (1.2),
f(t, y) → 0 as y ↓ 0). But we may assume f > 0 on (0,∞) × (0,∞), implying (A.1) on the

stochastic interval [0, τ
(f)
ε ), where τ

(f)
ε := {t ∈ R+ : f(t, Yt) = ε/2} for small ε > 0. Since, for

δ ≥ 2 and y > 0, the point 0 is polar for Y ∼ BESQδ(y), we have τ
(f)
ε → ∞ as ε ↓ 0 implying

SDE (1.1) for X in this case.
If δ ∈ (0, 2), Y hits zero a.s., bringing SDE (1.1) into the realm of the Bessel process with

δ = 1 (which does not satisfy the corresponding SDE) at times Yt = 0. This case would require
the analysis of the joint zeros St = Yt = 0, where the dependence in (Y,B) clearly matters.
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