CRITICAL BRANCHING PROCESSES WITH IMMIGRATION:
SCALING LIMITS OF LOCAL EXTINCTION SETS

ALEKSANDAR MIJATOVIC'3, BENJAMIN POVAR', AND GERONIMO URIBE BRAVO'!2

ABSTRACT. We establish the joint scaling limit of a critical Bienaymé-Galton-Watson process
with immigration (BGWI) and its (counting) local time at zero to the corresponding self-
similar continuous-state branching process with immigration (CBI) and its (Markovian) local
time at zero for balanced offspring and immigration laws in stable domains of attraction.
Using a general framework for invariance principles of local times [MUB22], the problem
reduces to the analysis of the structure of excursions from zero and positive levels, together
with the weak convergence of the hitting times of points of the BGWI to those of the CBI.
A key step in the proof of our main limit theorem is a novel Yaglom limit for the law at time
t of an excursion with lifetime exceeding ¢ of a scaled infinite-variance critical BGWI.

Our main result implies a joint septuple scaling limit of BGWI Z;, its local time at 0,
the random walks X7 and Y7 associated to the reproduction and immigration mechanisms,
respectively, the counting local time at 0 of X7, an additive functional of Z; and X; evaluated
at this functional. In the septuple limit, four different scaling sequences are identified and
given explicitly in terms of the offspring generating function (modulo asymptotic inversion),
the local extinction probabilities of the BGWI and the tails of return times to zero of Xj.

1. INTRODUCTION AND MAIN RESULTS

1.1. Scaling limits of the critical BGWIs and their counting local times at zero.
It is known that the scaling limits of Bienaymé-Galton-Watson processes with immigration
(BGWI) are self-similar continuous-state branching processes with immigration (CBI), see
[KWT1, Li06], [CPGUBI13] and Theorem 4 below. However, little is known about the conver-
gence of natural functionals of the BGWI processes, such as their local times (as representative
aspects of the structure of their zero sets), to their continuum analogues. The main aim of
this paper is to provide results in this direction. The setup naturally includes branching
processes with infinite immigration mean and critical reproduction mechanism with infinite
offspring variance. Some of our results are well known and classical in the finite-variance
setting without immigration (known by names such as Feller’s diffusion, Kolmogorov’s esti-
mate or Yaglom’s limit). In particular, the convergence of one-dimensional distributions has
been investigated in [KW71] and, conditioned on non-extinction in the finite variance case,
in [Sen70] and [Vat77]. For the analysis of the asymptotic tails of the life spans of BGWI
processes see [Zub72], [ST83], [Vat77],[IS85]. The cases of infinite offspring variance or infinite
immigration mean appear not to have been analysed as much. More recent results, still in the
finite-variance reproduction case, have considered random environment or state-dependent
BGW processes, as in [Adal8, DLVZ20, LVZ21]. On the other hand, limit theorems for local
times have been studied for random walks or reflected random walks (as in [Per82], [Bor81],
[Bor&4], [CD10], [DW16]). More recently, a general framework to obtain invariance principles
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2 LOCAL EXTINCTIONS OF BRANCHING PROCESSES WITH IMMIGRATION: SCALING LIMITS

for local times was put forth in [MUB22]; it is this general framework that we will apply in
the setting of branching processes with immigration.

Let Z; denote a BGWI process started at 0 with the offspring and immigration distributions
pand v on N := {0,1,...}, respectively (see (11) below for a definition of BGWI). We assume
throughout the paper p(1) < 1 and v(0) > 0, implying that the reproduction mechanism
is not deterministic and that Z; may return zero. Following [Zol57, Sla68, KWT71], we now
introduce Assumption (SL).

Assumption (SL). The generating functions
fs)i= Y shun) and g(s) = S shu(n),  se 0,1,
neN neN

of the offspring and immigration distributions p and v take the form
(1) f(s)=s+c(l—8)""(1—5) and g(s)=1—d(1—s)k(1—s), se(0,1),

for some constants ¢,d > 0 and « € (0, 1] and functions £, £ : (0,1) — (0, 0), slowly varying
at zero, with ((s)/k(s) > 1 as s — 0.

As shown in [KW71, Thm 2.3], [Li06], [Li20, Thm 5.8] or [CPGUBI13]| (see also the proof
of Theorem 4 below), Assumption (SL) is equivalent to the existence of a scaling limit
for Z;, which we now describe. Define a scaling sequence (b,) via asymptotic inversion of
the regularly varying function x — 2%/((1/x) at infinity [BGT87, Thm 1.5.12]. Thus (b,)
is regularly varying with index 1/« and satisfies b%/(nf(1/b,)) — 1 as n — o0, denoted
throughout the paper by

(2) b ~nl(1/b,) asn — .

For u € R, let |u] := max{n € Z : n < u}. The continuous-time extension of the scaled BGWI,
1

¥ ~Zi(|n)),

converges weakly as n — oo in Skorokhod space (of cadlag functions mapping [0, 0) into
itself) to a process Z, which is a self-similar continuous-state branching process with immi-
gration (CBI) of index « started at 0 (see (12) below for a definition of a CBI process)." The
law of the self-similar CBI Z is characterised by the Laplace transform of its one-dimensional
distributions with arbitrary initial state z € [0, 0):

_ Az d
(4) E, (e”\Z(t)) = (1 4+ acX)%e GreanV®  where § = —.
ac

The finite-variance case a = 1 is special in that Z has continuous sample paths; indeed, when
¢ = 2 it is a squared Bessel process of dimension 20 and a multiple of it otherwise.

Our main result gives a scaling limit of the zero (or local extinction) set {m € N : Z;(m) = 0}
of Z1, encoded via the counting local time L; of Z; at 0, defined for any ¢ > 0 as

(5) Li(t) == [{m e N: Z(m) = 0} A [0,£]| .

The main aim is to prove that the scaling limit of L; is the Markovian local time L at 0 of
the self-similar CBI Z started at 0. This local time L is non-trivial if and only if 6 € (0, 1)

ISee [Li20] for an introduction to CBI processes. The weak convergence Z;(|n-])/bn < 7 follows from
the finite dimensional convergence [KW71, Thm 2.3] and the tightness of [Li06]. [KW71] also establish the
necessity of Assumption (SL) for the finite dimensional distributions of Z; (|n-])/b, to converge weakly. The
limit Z;(|n-])/bn < 7 also follows under Assumption (SL) as part of the time-change coupling construction
in Subsection 1.2 below, given before the proof of our septuple limit result (see Theorem 4).
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(see [FUBI14, §5.2.1]). Indeed, recall that Z is point recurrent at 0 if and only if 6 € (0,1).
If 6 > 1, Z does not return to 0 at positive times. In the particular case of a squared Bessel
process, i.e. « =1 and ¢ = 2, this dichotomy is manifested through its dimension 2.

When § € (0,1), the right continuous inverse of L is a stable subordinator of index 1 — 4.
Our main result adds a limit theorem to the celebrated determination of the structure of the
zero set of a squared Bessel process [MOGY], corresponding to the special case v = 1 and
¢ = 2 of the preceding discussion.

Theorem 1. Let Assumption (SL) hold with § = £ € (0,1). Then, for any k > 0, the
sequence (c,) given by

(6) ¢, = knP(Z1(n) =0), neN,

1s reqularly varying of index 1 — 0. Furthermore, there exists k so that the weak convergence

™) (%Zlqn-p, ém(tn-n) 4(ZL) asn— @

holds in the product Skorokhod topology.

Remark. (a) Both the scaling sequence (¢,) in Theorem 1 and the Markov local time L of
Z are defined up to positive multiplicative constants only. Thus, fixing the scaling sequence
determines the multiplicative constant in the definition of the local time L and vice versa.
(b) As shown in Proposition 14 of Appendix A.l below, in the case a € (0,1), Assump-
tion (SL) is equivalent to the following: the offspring distribution p is critical (i.e. has mean
one), its tail 7i(k) := p((k, 0) N N) is regularly varying with index —(1 + «) and the following
tail balance condition holds:

v (k)
ki(k)

The tail 7(k) = v((k, 0)) is also regularly varying of index —a, placing p and v in the (1+ «)-
stable and a-stable domains of attraction, respectively, and making Theorem 1 applicable to
the entire class.

(¢) Any critical finite-variance offspring generating function satisfies Assumption (SL) with
a = 1, in which case the slowly varying function ( is bounded on a neighbourhood of zero.
Moreover, in this case, the corresponding immigration has finite mean and £ is likewise locally
bounded at zero (see Lemma 15 in Appendix A.2 below). Thus Theorem 1 covers all critical
BGWTIs with finite-variance offspring distributions. Note further that Assumption (SL) with
a = 1 does not require the offspring distribution to have finite variance (see the Remark in
Appendix A.2 below). This case is also covered by Theorem 1.

(d) The convergence of the counting local time in (7) is fragile. The example in Appendix B
below gives a convergent sequence of BGWIs, with the same reproduction mechanism as
(Z1(|n])/bn)n=1 and only a local perturbation of the immigration law v at 0, such that its
limit is the self-similar CBI process Z (as in Theorem 1) but the corresponding counting local
times are proved not to converge to the Markov local time of Z at zero.

converges to a limit in (0,0) as k — 0.

We will obtain the joint convergence of the local time process, together with the scaled
BGWI process, using the recently established general framework of [MUB22]. We now state
a simplified version of [MUB22, Thm 1] in the context of the models studied in the present
paper, which satisfy Assumption (SL) with 6 = % € (0,1). Note that the convergence of
local time in Theorem 2 below is in probability.
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Theorem 2 ([MUB22, Thm 1]). Let Assumption (SL) hold with § = - € (0,1) and the
sequence (by,) satisfy (2). Let (Z,) be a sequence of continuous-time stochastic processes on

the same probability space as Z, such that Z, < Z1(|n+])/bn. For anyt € [0,00), define
(8) g(Z) =sup{s<t:Z(s) =0} and d(Z):=inf{s>t:Z(s) =0},

and the corresponding gi(Z,) and di(Z,). Define L,(t) := |{se N/n: Z,(s) = 0} n [0,t]|. If
L Lz and, for everyt >0,

(9) 9+(Zn) B 9(Z) and  di(Z,) - di(Z), asn— o,

there exists a constant k > 0 such that for the scaling sequence ¢, = K/P (dl/n(Zn) > 1) the
following limit in probability holds:

(Zn, L /n) = (Z,L) as n — .

We will see in the proof of Theorem 1 (cf. equations (33) and (34) of Lemma 8 below) that
the sequences (c,) and (&,) are asymptotically equivalent. Hence, to apply Theorem 2, we
need to verify the limits in (9) of the endpoints of excursions of the scaled BGWI process.
The applications in [MUB22] of the general form of Theorem 2 for regenerative processes are
mainly path-wise and do not apply in our setting for two reasons: the BGWI process Z; is
not downwards skip-free and the CBI process Z is not downwards regular at zero (since it is
non-negative). This makes the hitting times by Z of the boundary point zero much harder
to detect from the hitting times of zero by Z;.

One of the main contributions in this paper is to present a new paradigm, combining
path-wise and distributional arguments, enlarging the scope of applications of the framework
in [MUB22]. In the setting of the present paper, this new paradigm rests on the branching
properties of both the BGWI Z; and the CBI Z, as well as the self-similarity of Z. In
particular, we establish the following Yaglom limit for infinite-variance critical branching
processes with immigration.

Theorem 3 (Yaglom limit for BGWI). Under Assumption (SL) with § = L € (0,1), fix
any t > 0 and consider a sequence (t,) such that t, — t. Then, Z,(t,), conditioned on Z,
remaining positive on [1/n,t,], converges weakly to the Linnik law v*:

(10) lim E(e”\z’l(t") ’dl/n(Zn) > tn) = (14 actA*)™t  for all A > 0.
n—o0

While Assumption (SL) covers all finite variance offspring distributions (see Appendix A.2
below), the novelty in Theorem 3 is in the infinite-variance case (see the classical finite-
variance result in [Vat77, Thm 1]). Theorem 3 plays a key role in the proof of Theorem 1
and is of independent interest. The limiting Laplace transform in (10) is that of a Linnik law
vt (cf. [Dev90]). Note that the Laplace transform in (10) coincides with that of the marginal
at time ¢ (with 6 = 1) under Py in (4) but, unlike its unconditioned version, surprisingly
depends neither on d nor on §. The presence of the immigration in the BGWI Z,, persists
in the limit in (10): the corresponding Yaglom limit for BGW process in [Sla68, Thm 1] is
not Linnik (for o € (0,1)). Note also that the Linnik law »* is a natural generalisation of the
corresponding Yaglom limit for finite-variance critical BGWIs (a = 1 in our setting), where
the limit is exponential [Vat77, Thm 1(a)].

It is natural to consider an extension of Theorem 3 to the limit of the law of the entire
excursion of Z,, straddling the time 1/n, with lifetime greater than t,. However, as this is
unnecessary for the scaling limits of local extinctions of BGWIs, it is left for future research.
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Two further results, crucial in our proof of Theorem 1, are the local limit theorem for
g1(Z,,)/t with generalised arcsine limit law of parameter 1 — ¢ (see Corollary 9 below for the
precise statement) and the characterisation of the conditional law of the marginal of the CBI
process Z(t), given ¢,(Z) = s, as the Linnik law v*~5. The local limit theorem follows from
the asymptotics of both the local extinction probabilities of the BGWI and the tails of its
return times to zero. The conditional law has a short direct proof using excursion theory
and the self-similarity of the CBI process Z (see Proposition 12 below for details). Since
this conditional law equals the limit law in (10), Proposition 12 and Theorem 3 imply that
excursions with lifetime greater than ¢ (evaluated at time t) of BGWIs converge to those of
the limiting CBI.

A short YouTube presentation [MPUB25] describes our results. Part 2 of this video dis-
cusses the ideas behind the proofs as well as their structure.

1.2. The septuple limit theorem. Before proceeding to the proof of Theorem 1 in Sec-

tions 2 and 3 below, we explain why Z;(|n-])/by, % 7 as n — o0 and construct a probability
space on which the convergence takes place in probability (and not only weakly) as Theorem 2
requires. The latter can of course be achieved through Skorokhod’s representation for weak
convergence, but a much more concrete construction (in terms of the scaling limits of random
walks) yields a far-reaching extension of Theorem 1, given in Theorem 4 below, hard to obtain
through other methods.

Define the distribution fi on Nu{—1} by ji(k) = p(k+1) and let X; and Y; be independent
random walks with jump distributions i and v, respectively. The discrete Lamperti transfor-
mation (see, for example, [EK86, Eq. (1.1) in Ch. 9§1], [Chal5, p. 2] or [CPGUBI13, Eq. (1)])
tells us that Z; has the same law as the solution to the recursion

(11) Zy=X10C1+Yy, where Ci(k)= Y. Zi(j) forallkeN

0<y<k

As remarked above, under Assumption (SL), u is critical, implying that X, is a centred
random walk. Recall that X; and Y; are in the domain of attraction of (independent) stable
Lévy processes X and Y with positive jumps of indices 1 + « and « € (0, 1], respectively (see
also Appendix A.1). More specifically, for the scaling sequence (b,) in (3) above, we have

(X1([nbp-]), Yi(ln-]) /b = (X,Y) as n— o

in the product Skorokhod topology. Since X is a spectrally positive stable Lévy process and
Y is a stable subordinator, their respective Laplace exponents take the form ¥(\) = cAl*t
and ®(\) = d\*, A = 0. Note that, when o = 1, X is a multiple of Brownian motion and
Y is the deterministic subordinator ¢ — d - t. Heuristically (and rigorously established in
Theorem 4 below), the discrete Lamperti transformation of X; and Y7 in (11) can be scaled
to converge to the continuous Lamperti transformation Z of X and Y, the unique solution to
the equation
t

(12) Z=XoC+Y, where C(t)= J Z(s)ds for all ¢ > 0.

0
The process Z defined in (12) is a continuous-state branching process whose dynamics are

characterised by their Laplace transforms in (4) above. By analogy with the discrete case, the
Laplace exponents of X and Y are then called the branching and immigration mechanisms

of Z.? The above method of establishing weak convergence of branching processes in terms

2See [CPGUB13, CPGUBL7] for an analysis of the time-change equation.


https://youtu.be/M6cBiiJt_90?si=VRRoRmTYZMzTjat4
https://youtu.be/PCuIkPBApoE?si=abwrWDXAy9uYOqO4
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of associated random walks is a path-wise version of results of [Gri74] when there is no
immigration. We can now state the following septuple limit theorem.

Theorem 4. Let Assumption (SL) hold with § = £ € (0,1) and the regularly varying
scaling sequence (b,) satisfy (2). Consider independent random walks X, and Yy whose jump
distributions have generating functions f(s)/s and g(s) and independent stable Lévy processes
X and Y with Laplace exponents U(\) = cA'™® and ®(\) = d\*. Let Z, and C (resp. Z
and C') be constructed from Xy and Yy (resp. X and Y ) as in (11) (resp. (12)). Let L1(X)
and Li(Zy) be the counting local times at 0 of Xy and Zy (cf. (5)) and let L(X) and L(Z) be
(Markovian) local times at 0 of X and Z. Then there ezists a reqularly varying sequence (ay,)
of index 1 + 1/a, such that

<X1(W9n'J) Ll(Xl)([anJ)’Yl([n-J),Ol([n-J) X, 0Ci(In]) Zi(|n]) Ll(Zl)([”'J))

) ) b )
b, Anp,, b, nb, b, b, Cn

L (X, L(X),Y,C,X 0C,Z,L(Z)) asn— .

Note the scaling in the second component L;(X;): in general the temporal scaling would
be n and the spatial scaling would be a,. In this case we pass to a subsequence for the joint
convergence of the random vector. Also, note that the regularly varying sequence nb, can
always be assumed to be integer valued (since |b,| also satisfies (2) if b, does). The simplest
scalings are those of Y; and Z;, which then dictate the form of the others as seen in the proof.

The above result is essentially a straightforward consequence of Theorem 1. The hard part
of the proof of Theorem 1 consists of establishing the assumptions of Theorem 2. Assuming
we have done so, we now proceed with a simple proof of Theorem 4. This includes a proof of
the weak convergence of the scaled BGWI processes to the CBI processes, which is essentially
(but not explicitly) given in [CPGUBI13|. This convergence depends on the following explicit
coupling.

The Laplace transforms A ~— g(e™b)" and \ — eMrbal/bn f(e=2ba)lnbal (of V7 (n)/b, and
X1 (|nby])/bn) converge towards exp(—dA®) and exp(—cA!T®) as n — o0, respectively (see (63)
and (69) in Appendix A.1). Thus we see that these random variables converge to X (1) and
Y (1) as n — oo. Skorokhod’s theorem [Kal21, Thm 23.14] then implies the weak convergence

of the scaled processes X (|nby|)/bn % X and Yi(|n-])/bx LY in the Skorokhod topology.
Independence implies their joint weak convergence to (X,Y’) in the product Skorokhod topol-
ogy. From this point onwards, we work on a probability space where this convergence holds
almost surely: assume then, that on an adequate probability space, there exist a sequence of

processes X,, and Y,, such that X, < Xi(|nby:])/b, and Y, Z Yi(|n-])/b, and that X,, — X
and Y,, — Y almost surely (in the Skorokhod topology). Note that the temporal scaling of the
process Xi, with law equal to that of X,,, allows us to apply [CPGUBI13, Lem. 6] and obtain
the scalings that should be used for Z; and C;. Indeed, in the terminology of [CPGUBI3],
for a recursion h'/", analogous to the discrete Lamperti transformation in (11), but in which
time increases each 1/n (i.e. 1/n is a discretisation parameter), we have
bizl([n-p 1y XY & %cl(wn-p 10— (X, Y

(see [CPGUBI13, Lem. 6] for the latter recursion). Assuming (12), together with a certain
differential inequality, has a unique solution and the processes X o C' and Y do not jump
at the same time, [CPGUB13, Thm 3] gives the convergence 7, — Z and C,, — C, almost
surely. The fact that (12) and the differential inequality have a unique solution follows
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from [CPGUBI13, Prop. 2|. By [CPGUBI13, Prop. 4], X o C and Y do not jump at the same
time since X is quasi left continuous.

The coupling (Z,,, Z), where Z, 4 Z1(|n+])/bn, is crucial in the proof of Theorem 4.

Proof of Theorem /. The coupling constructed above implies (X,,Y,,C,, X, o C,,Z,) —
(X,Y,C, X oC, Z) almost surely as n — oo. It remains to justify the convergence of the local
time components. This is where we can no longer assert the almost sure convergence and
have to resort to convergence in probability. In the case of L;(X;), this follows from [MUB22,
Thm 2|, except that we do not immediately get that the scaling sequence is regularly varying.
Indeed, the scaling sequence (a,) obtained in [MUB22|, for which L, (t) := L;(X1)(|nt])/a,
converges as n — o to L(X), is expressed in terms of the excursion measure of X,,. The
regular variation of (a,) is established in Appendix A.3 below.

The scaling limit of L,(Z) is, of course, the content of Theorem 1 and follows from our
assumption, which in turn imply the assumptions of Theorem 2 above. Since the above limit
theorems all hold in probability whenever the random walk components converge almost
surely, the stated joint weak convergence follows. U

1.3. Organisation of the remainder of the paper. In Section 2, we discuss the proof
of Theorem 1 in the context of the framework of Theorem 2. Section 2 gives a proof of
Theorem 1 using a result on branching processes, Theorem 6, stated and applied at the end
of the section. Finally, in Section 3, we prove Theorem 6. This proof is of independent interest
as it extends classical results on (local) extinction times of branching processes to the setting
of infinite variance and establishes a new Yaglom limit for BGWIs stated in Theorem 3 above.
The proof of Theorem 6 relies on a web of results, discussed briefly in the first paragraph
of Section 3 and pictorially represented in the diagram following it. Appendix A discusses
Assumption (SL). Appendix B illustrates the fragility of the convergence of local time in the
context of critical BGWIs.

2. PROOF OF THEOREM 1

The of our main result in Theorem 1 consists of verifying the assumptions in equation (9)
of Theorem 2. In the applications of Theorem 2 in [MUB22], its assumptions were verified
using path-wise arguments. Indeed, we see that (9) mostly involves the convergence of the
hitting times of zero, both forwards and backwards in time from a given time ¢. However, the
path-wise arguments of [MUB22] do not suffice in the setting of Theorem 1 because, for the
CBI, we wish to analyse the hitting times of the boundary point 0, which is difficult to detect
from the hitting times of the approximating BGWI processes (see example in Appendix B
below where BGWIs converge to the CBI Z but the counting local times at 0 do not converge
to the Markov local time of Z at 0).

The innovation in the proof of Theorem 1 comes from introducing a new technique for
establishing the limits in probability in (9), where Z,, and Z are coupled as in Subsection 1.2
above. Unlike the applications in [MUB22], our new technique relies on a mixture of path-wise
and distributional arguments. In order to prove the assumptions in (9) involving the limits
of starts and ends of excursions g; and d; defined in (8), we introduce analogous quantities
(both for Z and Z,,) at any positive level € > 0:

(13) gi(Z) =sup{s<t:Z(t)e[0,e)} and d;(Z):=inf{s>t:Z(t)e[0,¢)}.

with conventions sup @ = 0 and inf ¢J = oo.
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The following inequalities are valid for any ¢ > 0 and any €, > 0:
P(|d(Z) — di(Z,)| > n) <1g+1g+111; and P(|g(2) — g:(Zn)| > n) <1, + 11, + 111,
where the summands on the right-hand sides of the two inequalities are given by

lg == P(|d,(Z) — d;(Z)] > n/3), Iy :==P(lg:(2) — 9: (Z)| > 1/3),
(14) g =P(|di(2) - di(Zn)| > n/3), g :=P(|gi(Z) = g;(Zn)| >1/3),

Uy = P(d(Z0) — & (Zo)] > 0/3), 1L, = P(lgi(Z0) — g (Za)| > n/3).
By the coupling (Z,, Z), constructed before the proof of Theorem 4 above, we may assume
that the scaled BGWI processes Z, < Zy(|n+]) /by, converge to the CBI process Z almost

surely Z, “> Z as n — 0. Since this implies convergence in probability Z, 5 Zasn— 0,
Theorem 1 will follow from Theorem 2 if we can prove that, for every n > 0, we have
(15) lir% limsup P(n,e) =0, where P(n,¢)e {14,114, 1114, I, 11, I11,}.
e~V noow

The remainder of the paper analyses each of these limits. We first deal with the limits of
the probabilities Ig,I,, which involve the limiting process only and essentially only require
the quasi left continuity of Z. We then analyse the limits of 11,4, II,, requiring the coupling
(Zn, Z) mentioned above and a general path-wise convergence result in Lemma 5, downwards
regularity of Z and its quasi left continuity. The limits in (15) of probabilities 1114, 111,
follow from Theorem 6 below, whose proof in Section 3 below requires both weak convergence
of the hitting times of branching processes as well as path-wise arguments, including the
aforementioned Skorokhod convergence result in Lemma 5.

Proof of Theorem 1 (case lim._o1s4 =0 for 1, in (14)). Note that by (4) the following limit
holds P(Z(t) = 0) = limy_o E, (e *?®) = 0 for all Z(0) = z € [0,%0) and t > 0. Moreover,
since 0 € (0,1), [FUB14, §5.2.1] implies that Z is recurrent. As neither I; nor I, depend on
Zn, we will in this part of the proof temporarily denote d; = di(Z) and di = di(Z) and,
similarly, ¢: = g:(Z) and ¢; = ¢g;(Z). Pick t > 0.

Since Z has no negative jumps, for 0 < ¢ < Z(t) we get df < d; < o0 and Z(d5) = e.
Moreover, d; increases strictly, say to d;, < d;, as ¢ — 0. Recall that the self similar CBI
process Z of Theorem 1 is Feller (evident from the one-dimensional distributions in (1)) and
therefore quasi left continuous, implying ¢ = Z(d5) — Z(d;) so that Z(d;) = 0 and hence
Jt = d;. Hence d; — d; as € — 0 a.s. for all ¢ > 0, implying [ — 0 as ¢ — 0.

Regarding I,, on the interval (g:,d;), g decreases (as ¢ — 0) to a limit we will denote
g+ = ¢:. Note that, by definition ¢ > Z(¢;—) — 0 as ¢ — 0 (Z has left limits Z(s—),
s = 0, with Z(0—) := 0). If ¢ > @ for all small ¢ > 0 then 0 = lim. o Z(¢;—) = Z(G:)
by right continuity, so that Z(g;) = 0 and therefore g, = ¢;. If g = g for all € small
enough, it means that Z jumps at g, and, by the lack of negative jumps, Z(g;) > 0. Since
e = Z(g;—) = Z(g:—) for all small € > 0, we get Z(§:—) = 0. To conclude, we will use the
following claim, found in [MUB22, p. 44| and which essentially uses quasi left continuity:
during each excursion interval (g,d) of Z away from 0 (i.e. a connected component of the
excursion set [0,00)\{s = 0: Z(s) = 0}), for every u € (g, d), we have not only that Z(u) # 0
but also that Z(u—) # 0. (We prove a similar statement at level ¢ in our analysis of 115 below.)
The claim implies that g; does not belong to the interval (g, t] < (g, d;) and therefore g, = g;.
Thus lim._, g; = g; a.s., implying [, — 0 as ¢ — 0. U

3The properties of the coupling (Z,,, Z) used in the remainder of the paper are the almost sure convergence
and the correct distributions of the processes Z, and Z. The processes X,,,Y,,C,,X,Y,C, used in this
coupling construction, do not feature in the proof of Theorem 1.
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The path-wise arguments for probabilities 114, I, in (14) rely on a Skorokhod space result
below, stated for a metric space (F,d). Let D denote the Skorokhod space of cadlag functions
from [0, 0) into E (i.e. f € D isright continuous and has left limits). Recall that if a sequence
(fn)nen tends to f in the Skorokhod Ji-topology on D, for every T' > 0 at which f is continuous
there exists a sequence of increasing homeomorphisms (A, )nen from [0, 7] to itself, satisfying
SUDsefo, 71 Max{ [An (1) — t], d(fo(t), f(An(t))} — 0 as n — oo, see [EKS6, Sec. 5] for details. In
particular, for any sequence t,, — t € [0,7"), where f is continuous at the time ¢, we have

(16) d(fa(tn), f(8)) < d(fa(tn), fF(Aa(tn))) + d(f(Aultn)), f(t) = 0 asn — o0

Using the convention inf ¢§ = oo, for any set U < E, define the hitting time (resp. left-limit
hitting time) of U by a function f € D as follows:

(17)  Ty(f)=inf{t=0: f(t)e U} (resp. T (f) =inf{t=0: f(t—) e U}).

Here and throughout we define the left limit at ¢ > 0 by f(t—) = limgy f(f) and at ¢ = 0 by
f(0—) :== f(0). It follows easily from the definition in (17) that for any open set O in E the
following holds: if ¢ satisfies f(t) € O (resp. f(t—) € O), then T, (f) <t (resp. To(f) < 1).
Thus any cadlag function f satisfies

(18) To(f) =T5(f) for any open set O in E.
Lemma 5. Let O < E be open and denote its closure in E by C'. Let f € D satisfy

(19) To(f) < min{Te(f) , Te (f)}-

If a sequence (fy), oy n D converges in Jy-topology to f, then To(fn) — To(f) asn — w0 in
[0, 00]. If, in addition, we assume

(20) To(f) <o and  f(To(f)) = f(To(f)-),

then To(fn) < oo for all large n and (To(fn), fu(To(fn))) — (To(f), f(To(f))) as n — o in
[0,00) x E

Proof. Under assumption (20), f is continuous at Tp(f) < oo. Thus, by (16), the second
assertion of the lemma follows from the first. We now prove that (19) implies To(f,.) — To(f).

We first show limsup,, To(f.) < To(f). If To(f) = oo, this is obvious. If To(f) < o, for
any 0 > 0, there exists a continuity point ¢’ € [To(f),To(f) + 0] of f such that f(t') € O.
By (16) (with t,, = ¢’ for all n € N) we have f,(t) € O for all large n, implying the inequality.
Moreover, since liminf, To(f,) = 0, if To(f) = 0 then the limit To(f,) — 0 holds.

We assume Tp(f) € (0,00] and have to prove liminf, To(f,) = To(f). By (19), for any
s€ [0,To(f)), we have f(s) ¢ C and f(s—) ¢ C. Fix arbitrary T € [0,To(f)). Then we have

(21) n = inf{d(f(s),C) nd(f(s—),C):s€[0,T]} >0,

where u A v := min{u, v}, u,v € R. Indeed, if to the contrary n = 0, there exists a sequence
(Sn)nen in [0, T'] converging to s’ € [0, T'], such that d(f(s,), C) Ad(f(sp—),C) — 0 asn — .
Thus there exists (s}, )nen in [0, 7], such that s/, — s" and d(f(s},),C) — 0. Since f is cadlag,
A(f(5),C) < d(f(s,),C) + d(f(s],), F(s")) and d(f(s'~), C) < d{(s}), C) + d(f(5L), F(5'~).
we have
d(f(5), C) n d(f(s'=), C) < d(f(s,,), C) + d(f(s,), F(s) A d(f(s), f(s'=)) =0
as n — o0, implying either f(s") € C' or f(s'—) € C (recall C is closed) and contradicting (19).
We now show that (21) implies the following claim: there exists NV € N such that

(22) inf{d(f.(s),C) A d(fn(s—),C):s€[0,T]} > n/4 for all n > N.
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Assume claim (22) is false. Then there exist sequences (ny)reny in N, with n, — oo, and
(sk)ken in [0, T, such that d(f,, (sk), C) A d(fn,(sk—),C) < 3n/8 for all k € N. Hence there
exists a sequence (S} )ken, such that d(f,, (s;.),C) < n/2 for all k € N. Moreover, by passing
to a subsequence, we may assume that s;, — s’ € [0,7'] as k — 0. Hence, for k € N, we have

(23)  d(f(5),C) A d(f(5'=), C) < d(fu.(53), C) + d(f(5), fur (1)) A d(F(5'=), fri(5))-

Convergence f,, — f in Ji-topology on D and a triangle inequality (analogous to (16), using
f(Ak(sy,)) with increasing homeomorphisms Ag; [0, 7] — [0, 7], k € N) imply

d(f(s"), fur(s)) A d(f(5'=), fu (s2)) <d(f(5)), f(Mr(sk)) A d(f(s"=), f(Ar(si)))
b sup_ d(FO()), fu (1)) — 0 as &k — oo,
uel0,T]
Thus by (23) we obtain d(f(s),C) A d(f(s'—),C) < n/2, contradicting (21) since s’ € [0,T].
By (22) we get To(f,) = T for all n = N. Since T € [0,To(f)) was arbitrary, we have
liminf, To(f.) = To(f), concluding the proof of the lemma. O

Recall that the coupling (Z,, Z), where Z, L Z1(|n])/b, and Z denotes the self-similar
CBI in (12), is such that 7, *3 Z as n — oo.

Proof of Theorem 1 (case lim._,lim,_, 11y = 0 for II; in (14)). Pick arbitrary ¢ > 0 and
t = 0 and define O := [0,e) ¢ E := [0,00) and its closure C' := [0,¢]. Recall df(Z) =
inf{s > t: Z(s) e O} and d;(Z,,) = inf{s > t : Z,(s) € O}. Since O is open, note that Tp(f)
(defined in (17) for any cadlag f : [0,0) — E) satisfies To(f) = inf{t > 0: f(t) € O}. Define
the cadlag processes Z' := Z(t + -) and Z! := Z,(t + -) with the same semigroups as Z and
Zn, respectively. Then, by Lemma 5, d5(Z) =t + To(Z") < o0 and d5(Z,) =t + To(Z}) < ©
satisfy |d5(Z) — di(Z,)] =5 0 almost surely, thus implying Theorem 1 in this case (since
Iy =P(|d(Z2) — d5(Z,)| > n/3) — 0 as n — oo, the limit in (15) holds for I1,), if we establish

(24) To(ZY) < Te(Z') ATH(ZY) almost surely.

We first prove Tp(Z') = To(Z') as. Since O < C, we have Tp(Z') = To(Z') and, as
Tc(Z') is a stopping time, also P(To(Z') < To(Z")) = E(Pzruz)(0 < To(Z))) as well as
Z(Tc(ZY) € C as. If Z(Te(ZY)) € O, then Py 2)(0 < To(Z)) = 0. If Z(Te(ZY)) = e,
then [MUB22, p. 45] (under the heading Regular and instantaneous character of z) yields
downwords regularity of Z at any positive level, implying P.(0 < Tp(Z)) = 0. Hence
P(Te(ZY) < To(Z")) = 0 and the equality To(Z") = Te(Z") holds almost surely.

We now prove T¢(Z') = T;(Z") a.s. Notice that the downwards regularity of Z in the
previous paragraph and the strong Markov property at To(ZY) yield T (Z') < To(ZY) aus.
Consider Cs := [0,¢ + ¢] and note that for § > 0 we have T¢,(Z") < T (Z") < Tc(ZY) as. If
6" > 6 > 0, then T¢,, (Z') < Tg,(Z') with strict inequality on the event {Z'(T¢,, (Z")) > 6}.
Hence the stopping time 7" := lims 10 Te; (Z') satisfies

(25) T<T,(Z'") <Te(Z') as.

If Z'(0) € C, then by definition (17) we have T (Z") = 0. Moreover, in this case we have
Te,(Z1) = 0 for all § > 0, implying T' = 0 and, by (25), the equality T (Z*) = To(Z%). If
Z40) ¢ C, then Z'(T¢,(Z")) > e for all small § > 0 and T¢,(Z*) 1 T as 6 | 0. The quasi
left continuity of Z at T implies Z4(T) = limg,o Z'(Te,(Z')) = € € C, where the last equality
follows from Z'(T¢,(Z')) = € + 0 for all small 6 > 0 (which holds since Z has no negative
jumps). In particular we get T = Te(Z*). By (25) we obtain T = Tg(ZY) = Te(ZY) as.
Thus (24) holds. O
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Proof of Theorem 1 (case lim._,olim,_,o, II, = 0 for II, in (14)). Let O = [0,¢), C' = [0, €]
and define the cadlag process Z by Z(s) = Z(max{t — s,0}—) for s € [0,50). Note that
Z runs along the path of Z backward from time ¢ to 0 and for s € [t,00) we have Z (s) =
Z(0—) = Z(0) = 0. By the definitions in (13) of g;(Z) and in (17) of T}, (Z) we obtain

g;(Z) =sup{s € [0,t] : Z(s) e O} =sup{t —s e [0,t] : Z(t — s) € O}
=t—inf{se[0,t]: Z(t —s) € O}
=t —inf{s € [0,0) : Z(max{t — s,0}) € O}
=t—inf{se[0,0): Z(s—) e O} =t = T (2) = t — To(Z),

where the last equality holds by (18) since O is open in £ = [0, c0) and Z is cadlag. The same
argument applied to the cadlag process Z,, where Z,(s) := Z,(max{t —s,0}—) for s € [0, o),
yields ¢¢(Z,) = t — To(Zy).

Given the representations g5 (Z) = t — To(Z) and ¢:(Z,) = t — To(Z,), as in the case II,,
the aim is to verify Assumption (19) of Lemma 5, which (phrased in terms of Z) requires

(26) To(Z) < min{Te(2),T5 (2)}.

Then, by Lemma 5, we have TO(Zn) — TO(Z ) almost surely as n — oo, implying by defini-
tion (14) the limit lim,,,, II, = 0 for every ¢ > 0 and concluding the proof of this case of
Theorem 1.

It remains to prove the inequality in (26). The key difference with the case I, is that the
dynamics of Z is not tractable, making its regularity at € hard to establish. The solution
is to rephrase (26) in terms of the forward process Z and its behaviour upon touching or
approaching level . Note first that Z only has negatlve Jumps and hence TC(Z ) < Tg (Z ).
Indeed, if s is such that Z(s —) < ¢, then Z(s) = Z(s—) + (Z(s) — Z(s—)) < e. Hence (206)
holds if we show Tp(Z) < Te(Z) a

Recall that by definition Tp(Z) < t, since Z(t) = Z(0) = 0. On the event {To(Z) < To(Z)},
the forward process Z behaves as follows at some time s € [0, ¢]: either Z approaches € from
above by a left limit at s and jumps up at s and remains above € on [s,t] or Z touches ¢
from above continuously at s and remains above € on (s,¢]. Hence

{Te(Z) < To(2)} & VregrppaiTe(27) < To(27)},
where, as shown in the proof of 115 above, we have P(T¢(Z") < To(Z")) = 0 for all r € Qn |0, ]
(recall Z" = Z(r + -)). Therefor Tp(Z) < Te(Z) < T (Z) and (26) holds. O

We now proceed with the proof of the limits of the probabilities II1I; and III, in (14). It is
based on Theorem 6, which will be established in Section 3 below via uniform distributional
control of forward-looking hitting times of zeros of BGWI processes.

Theorem 6. Under Assumption (SL) with 6 = % € (0,1), for anyt = 0 and € > 0, we have

(95(Z0), 9(Z0)) 5 (95(2),9:(2))  and  (d5(Zy), d(Zn)) > (d5(Z), d(Z))  asn — .

Before concluding the proof of Theorem 1, note that, as seen in the proof above of the
limits of the probabilities II; and II, in (14), under our coupling we in fact have almost sure
convergence of the first components in the both weak limits of Theorem 6.
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Proof of Theorem 1: lim,_,olim, I, 4 = 0 for Il1; in (14). Theorem 6 implies the weak
convergence

G:(Z0) = 9u(Z0) > G (2) = u(2) and di(Z,) = di(Z,) > d(Z) — d;(Z) asn— .

Therefore, upon taking the limit as n — oo of probabilities 1115 and III, in (14), we obtain I,
and I,. By the preceding proof of the cases I; and I,;, we can then take the limit as ¢ — 0 to
get 0, concluding the proof of Theorem 1. O

3. CONVERGENCE OF THE HITTING TIMES OF BGW aAND BGWI: PROOFS OF THE
YAGLOM LIMIT AND THEOREM 6

To conclude the proof of Theorem 1, it remains to establish Theorem 6. The proof is a
succession of steps which at first glance appear unrelated. We first prove the convergence of
the extinction times of BGW process (Lemma 7 below). We then establish the asymptotics
of the probability P(Z;(n) = 0) for the BGWI process Z; and apply Tauberian theorems to
determine the asymptotics for the tails of the first return time to zero P(d;(Z;) > n) for BGWI
processes Z1, see Lemma 8 below. We use the asymptotics of P(Z;(n) = 0) and P(dy(Z;) > n)
to prove a local limit theorem for ¢g;(Z,) (with limit ¢;(Z)), cf. Corollary 9 below. Using this
local limit theorem and the extinction time convergence of the BGW processes, we prove the
limit of the hitting times of zero for BGWI started away from zero (cf. Lemma 11 below) and
then establish the weak limit of the pair (d5(Z,), di(Z,)). The limit of (¢;(Z,), g:(Z,)) follows
from the limit in Lemma 13, which in turn requires a general fact relating excursions exceeding
a given length to the excursion straddling time ¢ (see [Get79, Thm 7.35]), the Yaglom limit
for BGWIs in Theorem 3 (stated above) and a characterisation of the conditional law of Z(t),
given ¢;(Z) = s, in Proposition 12 below. It is crucial for our proof of Theorem 6 (and hence
that of Theorem 1) that this conditional law coincides with the limit law in the Yaglom limit
of Theorem 3. The overview of the steps in the proof of Theorem 6 is given in the diagram:

Proposition 12: Theorem 3:

. o Lemma &:
ot o | Yo B 50 5 i
) o - nATm " P(Z =0 P(d(Z

is Linnik law t, =% t > 0 is Linnik law (Zi(n) = 0) & P(di(Z1) > n)
e R ‘(
Lemma 13: [ Corollary 9:
i (Zn); 9:(Zn .
(gdt< 6)th< 2 < (9:(Zy), Zy(t)) Local limit theorem
N n—0o0
(9;(Z), gu( % 4 (g(2), Z(1) 9u(Zn)/t =% Beta(l - 6,6)
Theorem 6 ¢
L . [ Lemma 10:
d;(Z,),dy(Z, ( crhma o Joint convergence (t,, — t):
(i((dgzzf,(dtg)) - L (TO%?)(’;;”(?(OTU’E%))) (gtn(Zn),dtn(Z(m |
N J o : o L _d) (gt(Z)vdt(Z))

e

Lemma 7: Lemma 11:
Convergence of hitting times of 0 Convergence of hitting times of 0
for starting points z, — z for starting points z, — 2z >0

of BGW/CB: do(Zzn) % do(Z7) of BGWI/CBI: do(Z7") 5 do(Z7)
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3.1. The local limit theorem for ¢;(7,)/t and the proof of the Yaglom limit. Given
our offspring distribution p with generating function f satisfying the domain of attraction
condition (SL), let 71 be a BGW process whose reproduction dynamics are governed by p.
This can be explicitly constructed using the random walk X; (with jump distribution given
by the shifted offspring distribution /i) by solving recursion (11) with Y; = 0 and a starting
state [ e N:

ZL =1+ X,0C, where Cy(k)= Z ZL(5).
0<y<k
We will denote the law of Z{ by P,. The branching property of Z{ is as follows,
Ebll+12 = ]13)[1 * ]13)[2 for any ll, l2 € N,

where P, P, denotes the law of the sum of independent copies of Z!" and Z!?. Recall also
that the law of Z!(n) is characterised in terms of the n-th iteration f°" of the function f in
Assumption (SL) with itself (for n = 0, we define f°°(s) := s) for all n,l € N as follows:

(27) E(s4) = fo(s)".

Since 0 is an absorbing state for Z{ (as no immigration is present), the hitting time of 0 of
7! which equals dy(Z!), then satisfies

(28) P(do(Z{) < n) - P(Zi(m - o) — f°(0)!, for all m,l € N.

Analogous to (11), by e.g. [CPGUB13], we can define the CB process Z* started at z € [0, )

as the unique solution of
t
Z7(t) = z + X(J Z*(s) ds) :
0

By [Li06, Thm 2.1], Z* is the (large population) scaling limit of Z», where Z:(t) =
Z!"(|nt]) /by, the scaling sequence b, satisfies equation (2), I, := |b,z| and hence z, := I,, /b, —
z as m — o0. It is perhaps no surprise (although we cannot find it in the literature) that the
extinction times (i.e. hitting times of zero) of Z= also converge weakly to those of Z=.

Lemma 7. Let pu be an offspring distribution with the generating function f satisfying (1) in
Assumption (SL). If 1, € N is such that z, := l,,/b, — z > 0, where (b,) satisfies equation
(2), then, as n — oo,

P(do(zin) < t) - P(do(zin)/n < t) e e — p(dO(ZZ) < t) for any t € [0, 0).

Proof. Under Assumption (SL), [Sla68, Lem. 2| tells us that, as n — oo, we have

1
29 1 — f0)*C(1— f(0)) ~ —.
(29) oL~ 0100 f(0) ~
Define u,, := (ac)™*(1 — f°*(0))~1. Since ( is slowly varying at zero and u,, — 00 as n — o0,
by (29) we get n ~ u2/((1/u,). Thus the sequence (u,) is asymptotically equivalent to an
asymptotic inverse of the sequence (n®/((1/n)). Since, by the property in (2), the scaling
sequence (b,,) is also an asymptotic inverse of the sequence (n®/((1/n)), we get

by ~ up = (ac) V[1 — f*(0)]F as n — .
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Since the sequence (b,,) is regularly varying with index 1/, the limit by, /b, — ¢/ holds by
definition. By (28),

P(do(Zi)/m < t) = U (0) = (1= (1= (o))

1 bnz .
~ _—_— —> a act)l/a —>
(1 (act)l/ocbn) e as o

The Laplace transforms of the one-dimensional distributions of the CBI process under P,
specialize to those of Z% upon setting d = 0 in (4). Since 0 is also absorbing for Z7, we
therefore recover the expression for the hitting times of the left-hand side:

ln

P(dO(ZZ) < t) - P(ZZ(t) - 0) _ Gt O

The proof of Theorem 6 requires a result, analogous to Lemma 7, for the BGWI process
7, introduced in Section 1 above, cf. (11). Let Z! be a BGWI process started at [ € N with
the same offspring and immigration mechanisms as Z;. In particular, note that Z; = Z?. We
can explicitly construct Z! via the discrete Lamperti transformation as in (11):

(30) Zi =1+ X,0Ct +Y;, where Ci(k)= > Z{(j).
0<y<k

Let P; stand for the law of Z!. Recall that the generating function of Zi(n), for any n,l € N,
can be expressed in terms of g and the iterates of f by (30) as follows:

(31) (%) = /()" [T gos™(s).

By (31), we deduce the following branching property relating BGWI and BGW processes:
(32) P, = P, « P,

Differently put, if Z; is independent of Z!, we have Z! £ Z{ + Z1. As a consequence, we will
make use of the relation of the hitting times of zero of Z! and Z;.

Lemma 8. Let the offspring and immaigration generating functions f and g, respectively,
satisfy Assumption (SL) and denote § = “L. Then there exists a function (* : [0,00) — (0, 0),
slowly varying at infinity, such that

(33) P(Zy(n) = 0) ~ (*(n)n™° as n — 0.
If 6 € (0,1), then we have

(84)  Pli(Z)>n) ~ mra c15)l’*(n)nl—5 - Sm:ré)”é_l/ £(n) as n — .

Note that (33)—(34) in Lemma 8 imply the asymptotic equivalence

1
WP(Zi() =0~ sera =Pz =y ST

As Z, 2 Z1(|n]) /b, and dy(Z71)/n A di/n(Zy), the scaling sequences (c,) and (¢,) in Theo-
rems | and 2, respectively, are asymptotically equivalent (up to a constant factor).
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Proof of Lemma 8. We first construct the regularly varying function * and prove (33). To
this end, we start with the asymptotic analysis of the product formula (31) for [ = 0:

P(Zi(n) =0) = [] g0 f7(0).
0<i<n
By Assumption (SL), £(s)/((s) — 1 as s — 0 and the offspring distribution p is critical,
implying f°"(0) — 1 as n — oo. The asymptotic equivalence in (29) (i.e. [Sla68, Lem. 2])
implies
di(1—f(0)) 0
1_ on "\-‘d]_— on aﬁl_ on ~ ~ — — .
g o f(0) ~d(1— f7(0))*A(1 — f(0)) aenl(i= Fr(0)) ~n P TF

Put differently, we have 1 —go f"(0) = (1 +&(n))d/n where £(n) — 0 as n — . Recall that
for every s € (0,1) there exists & € (0, s) such that log(1 — s) = —s + s%/(2(1 — &)?). Then

P(Zy(n) = 0) = eXosi<n1080-(1=90/0) _ c=Xo<i<n 0/t . (*(p),

where [*(n) = g(0)e™ Zo<i<n 8 (1+e())*/(201-8)*") o= Zo<icn 00/l and 0 < &; < 1—go f(0) < 1 for
all i € N (recall that g(0) = v(0) € (0,1) by our standing assumption; if we had v(0) = 0, the
BGWTI process Z; could not return to zero, cf. Appendix B below). Since 1 — go f(0) — 0
as i — oo, the factor g(0)e™ Zo<icn ¥(1+e()*/2(1-6)*") in the definition of (* converges to
a finite positive value, by Karamata’s representation [BGT87, Thm 1.3.1], * is a slowly
varying function. Note that, modulo a constant, the factor e~ 20<i<n %7 in the expression for
P(Z1(n) = 0) above is asymptotic to n~°, implying (33).

The next step is to prove (34), assuming 0 < § < 1. We now consider the tail asymptotics
for the first return to zero of Z; (which equals di(Z1)). Let U(z) = > 1., P(Z1(n) = 0)
be the renewal function corresponding to the returns to zero of Z;. The (direct half of the)
Karamata integral theorem (cf. [BGT87, Thm 1.5.11]) and (33) imply

131_6

T4
Let U(\) = S[o ) e~ U(dz) be the Laplace transform of the measure associated to U. Since
{Z1(n) = 0} = Upen{Dr = n}, where Dy := 0 and Dy, := diyp, ,(Z1), k = 1, and, by the
strong Markov property of Z;, we have E(e *Pk) = (]E(e*Adl(Zl)))k. It holds that

1

(35) U(z) [*(x) as © — 0.

3 _ —-An _ _ —-n _ _
UN) =D e P(Zi(n) =0) = > e Y P(Dy = n) = TR (@)
neN neN keN
By (35), the Karamata Tauberian theorem implies
R A—(1=9)
UM ~T(2-9) T3 [*(1/\) as A—0,
so that
)\176
(36) 1-E (e_)‘dl(zl)) ~ as A — 0.

(1 —=0)*(1/N)
By (36) and Example ¢ in [Fel71, XIII§5, p.447] we get the asymptotic equivalence in (34). O

Corollary 9. Let Assumption (SL) hold with § = < € (0,1) and assume Z, < 7:(In-])/bn.
The following local limit theorem holds: for anyt > 0 and any sequence (s,) such that ns, € N
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and s, — s € (0,t), we have

1 1

(37) P9l Zn) = 50) ~ G 9yt — )13

as n — 0.

Proof. The asymptotic equivalences in Lemma & imply the local limit theorem for ¢,(Z,)
as stated in (37). Indeed, for any sequence (s,), such that s, € N/n for all n € N and
sp — s € (0,t), we have ns,, > 1 for all sufficiently large n and

{gt(Zn) = Sn} = {gnt(Zl)/n = Sn} = {Zl(nsn - 1) = O7dnsn(Zl) > n(t - Sn)}'

(We assume the almost sure equality Z, = Zi(|n-|)/b, holds.) By the Markov property at
time ns, — 1, we obtain

P(9:(Zn) = sn) = P(Zi(nsn — 1) = 0)P(di(Z1) > n(t — sn))

- (*(ns, —1)(ns, —1)7°
D@)I(L = 8)*(n(t — su)) (n(E — )"~

L 1
nI(0)(1—6)(s, — 1/n)5(t — 5,,)19
1 1

TATOTA —0)s(t —sis ST
where the first asymptotic equivalence follows from (33)—(34) and the second holds since (*
is slowly varying. 0

The local limit theorem in Corollary 9, Scheffé’s Lemma and a general observation about
ends of excursion straddling a given time yield the following weak limit result.

Lemma 10. Recall that Z, < Z\(|n-])/bn. Under Assumption (SL) with § = L e(0,1), if
t, — t >0, we have the weak convergence

(38) (90, (Z0), . (Z,))
Proof. Theorem 3.3 in [Bil99, Ch.1§3, p. 30] (essentially Scheffé’s Lemma) implies that the
local limit theorem in Corollary 9 above yields a weak limit theorem for ¢,(Z,). By (37), the
density of the limit equals s — 1/(I'(6)I'(1 — 6)s°(t — s)'=°) on the interval s € (0,¢). This
weak limit is the generalised arcsine law of parameter 1 — 9, which corresponds to the Beta law
B(1 —4,6). Proposition 13 in [FUB14] implies that the zero set of Z is the range of a stable
subordinator of index 1 — §. Therefore, we see that g,(Z)/t also has the genralised arcsine
law of parameter 1 — ¢ (as shown, for example, in Proposition 3.1 of [Ber99]) and therefore

(9:(2),di(Z)) as n — 0.

(39) 9:(Zy) <, g:(Z) as n — oo, for every t € (0, 0).
Pick any s; <t < sg straddling t. Since t,, — ¢, for all large n we have s; < t,, < so and

{90,(Z0) < 51 <89 < i, (Z0)} = {95, (Z0) < 51}

Since {g:(Z) < s1 < s9 < di(Z)} = {9s,(Z) < 51} and, by (39), the following limit holds
P(gs,(Zn) < s1) — P(gs,(Z) < s1) as n — oo for all s < s, since for every s, the limit
law in (39) has no atoms. By the Portmanteau Theorem, [Bil99, Ch.1, §2, Thm 2.1], we
obtain the weak limit in (38). In particular, note that we then also get the weak convergence
of the second coordinate d;, (Z,). O
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We establish, using the convergence of the hitting times of zero of BGWs in Lemma 7,
the limit in Lemma 10 above and the brancing properties of both the limit and the pre-limit
processes, a limit theorem for the hitting times of zero of the scaled BGWI processes started
from an arbitrary positive state. Recall from (30) the notation Z! for the BGWI process
started at level [ € N\{0} and denote by Z* the CBI process started from z > 0.

Lemma 11. Under Assumption (SL) with § = L € (0,1), if the sequence (z,) is such that
bnzn € N and z, — z € (0,0), where the scaling sequence (by,) satisfies (2), and Zz A
Zb#n (|n-]) /b, we have

(40) do(Z27) 5 do(Z7) as n — .

Proof. The branching property of BGWI processes in (32)~ implies that, starting from [ € N,
the hitting time of 0 of Z! equals the first zero of Z; after Z! hits 0 at do(Z!). Succinctly put,

do(Z}) £ dgoz1(Z1),  where Z; and Z! are independent.

This equality in law also holds for Z» (resp. Z7) with Z>» and Z, (resp. Z* and Z)
independent:

Zn d 2\ d
(41) do(Z7") = dagzzn)(Zn)  (resp. do(Z7) = dyy(7:(Z)).
For a bounded continuous h : [0,00) — R, define bounded functions H,,, H : [0,0) — R by
Hy(t) := E(h(di(Zy))),  H(t) := E(h(di(Z))).

Since, by (38) in Lemma 10, it holds that d;, (Z,) 4 dy(Z) as n — oo for any sequence t,, — t,
we have

(42) H,(t,) — H(t) as n — .

As 2z, — z, the weak convergence do(Z>") < do(Z%) holds by Lemma 7. By the Skorokhod
representation theorem, we may assume almost sure convergence do(Z;") — do(Z*), which,
together with (42), yields an almost sure limit H,,(do(Z7)) — H(dy(Z*)). By (41), we obtain

E (h(do(Z3"))) = E (Ha(do(Z3"))) = E (H(do(Z7))) = E (hl(do(27))) as n — e,

where the limit follows by the Dominated Convergence Theorem applied to the bounded
sequence of almost surely convergent random variables (H,,(do(Z7")))n>1- O

Remark. Note that the weak limit in (38) appears similar to the assumptions of Theorem 2
(i.e. the convergence of ¢:(Z,) — ¢:(Z) and di(Z,) — di(Z), together with Z,, — Z, in
probability), which we are striving to establish, in order to apply Theorem 2. However,
note also that the joint weak convergence in (38) of Lemma 10 does not imply the requisite
convergence in probability by, say, the Shorokhod representation theorem, as we have not

established the weak convergence of the triplet (gi.(Zn),ds (Zn), Zn) > (9:(2),dy(Z), Z).
Note also that extending directly the weak convergence in Lemma 10 to that of the triplet
appears difficult.

We now give a proof of Theorem 3, which relies in an essential way on the asymptotics in
Lemma & above.
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Proof of Theorem 5. Set p = di(Z;) as the first return to zero of Z;. Note that by the defi-
nition in (8) above, on the event Z;(1) = 0 we have p = 1. Define N(n,s) := E(1 — s#1("*?))
and note the following: N (0, s) = 0, the right-limit as s | 0 equals N(n,0) := limg o N(n,s) =
P(p>n) =: ¢, and 1 — s2:(®*?) = 0 on the set {p <n} = {Zi(n A p) =0}. Moreover,
ZF(1 A p) = ZE(1) for any starting point k& € N and, by (31), we have

E(ﬂ(mp)) _ E(ﬁ(l)) = F()F - g(s).
Hence, by conditioning on Z;(n A p) and the strong Markov property at n A p, we obtain
N(n+1,s)=E(1— le((”H)AP)) =E((1- SZl((nH)Ap))l{zl(mp)>0})
= E(Liziurp=03 (1 = f(5)20) - g(s)))
= E(L{pany (1 = g(s) + g(s)(1 = f(s)7 ")) |
where 1,4 denotes the indicator of the event A, implying the recursion
N(n+1,s) = [1=g(s)]gn + g(s)N(n, f(s)).

It is easily seen that by induction this recursion yields
Nn+1,s) = Z Gn—k [1 —go f"k(s)] I, (s),
k=0

where by (31) we have
(43) Mi(s):= [ [ g0 f7(s) =E(s?™).
0<i<k

We can rewrite the above as

n

(44) E(l — =M a(n+1) Ap)/bn ‘p > n+ 1) _ i]]nllc [1 _go fok(e—/\/bn)] Hk(e_/\/b"),
k=0 11F

We now analyse the asymptotic behaviour of each of the three factors in the summands
on the right-hand side of (44). With this in mind, pick arbitrary v € (0,1/2). From the
asymptotics in (34) of Lemma 8 above and the uniform convergence theorem (UCT) for
slowly varying functions [BGT87, Ch.1§2, Thm 1.2.1], we obtain

Qoo 4 1n) (141N sy
W) T Fn =) <1—k/n) (1=k/n)

uniformly in k& € [0, (1 — v)n] (recall that (* is slowly varying at infinity).

Since b, ' Z;(n) A (1) as n — oo, the corresponding Laplace transforms converge pointwise
and the sequence of laws of b1 Z;(n) is tight. By (4) we thus get

(46) IL, (e M) - (1 + acA®)™®  asn — o,

locally uniformly in A € [0,00). Applying the UCT [BGT87, Ch.1§2, Thm 1.2.1] to the
regularly varying saclling sequence (b,), satisfying (2), yields by/b, ~ (k/n)"/* as n — o
uniformly for k € [yn, (1 — v)n]. Since convergence in (46) is locally uniform in A, we get

I (e o) = T (e A O/onPry ~ (1 + cue(br/bn)*A)
(47) ~ (1 + ac(k/n)X*)™° asn — o,
uniformly in &k € [yn, (1 — y)n].
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We now analyse the asymptotic behaviour of the term 1 — go f°*(e="*#) in the summands
on the right-hand side of (44). Recall the weak convergence of the BGW processes, started
at by, to the CB process started at one: by [Li06, Thm 2.1], the CB process Z! is the (large
population) scaling limit of Z!, where Z!(t) = Z"(|nt|)/b,, the scaling sequence (b,,) satisfies
the asymptotic relation (2) and is assumed (with out loss of generality) to be in N. Thus,
by (4) (with d = § = 0) and (27) above, the following limit holds

For(eMonyon = ]E<67AZ~§’”(n)/bn) N E(e’)‘zl(l)) _ o Mraen)te oo

Taking logarithms and applying Taylor expansion at 1 yields

A
4 1 — Fok (= MoRY) k> o0
(48) (1= f7 (e ) bi(1 + aehe)l/e as *©

By the representation of the immigration moment generating function g in (1) of Assump-
tion (SL) and the asymptotic relation in (48), we obtain

1 _gofok(efA/bn) _ d(l o f ( —(bg/bn) )\/bk»aﬁ( o fOk(ef(bk/bn)A/bk))

A 1 A
- dbgu n ac(Abk/bn)a)ﬁ‘ (E (1+ ac()\bk/bn)a)l/a)
d A
(/o) T3 ac(hmpa (/)
d A

4 8 ~
(49) nl+ ac(k/n)\ asn e

uniformly in k € [yn, (1 —v)n]. The second asymptotic equivalence in the last display follows
from the property b¢ ~ nl(1/b,) in (2) and the UCT [BGT87, Ch.1§2, Thm 1.2.1] applied to
the slowly varying function £, while the third equivalence holds by the asymptotic equivalence
of £ and ( in Assumption (SL).

The asymptotic equivalences in (45), (47) and (49) imply that for every € > 0 there exists
ne € N such that for all n = n. the following inequalities hold, uniformly in k € [yn, (1 —v)n]:

d A
(1= 5)n 1+ ac(k/n)\

(1 —k/n)~ 01 + ac(k/n)A*) ™

< Z’“ [1—go f*(s)] Ti(s)
)\a

<(1+ s)g

n 1+ ac(k/n)A\
Summing the upper bounds in this display over the integers k € {[’yn] S 1(1 =~)n]} and
taking the limit as n — oo yields (1 + e)dgiﬂﬂ — )~ (Haiﬂa)g 2 dt (the Riemann
sums converge to the integral). The lower bound has the same limit with the factor (1 — ¢)

instead of (1 + ¢). Since € > 0 was arbitrary, we obtain

L(1—7)n] 1—y @

dn—k ok _ —(1-9) 1 )\
50) i E 1- I (s) = d 1—t dt
(50) lim [ gof (3)] k(s) f ( ) (1 + actA®)® 1 + act\™

n—a k= [’7”] qn+1 ¥

The limit of the right-hand side in (44) requires the analysis of terms corresponding to
ke [0,vyn] U [(1 —~7)n,n]. Recall f(s) = >, s"u(n), s € [0,1), where pu is a critical (i.e.
Dinen Mu(n) = 1) offspring distribution on N, satisfying p(1) < 1. Since f(0) = p(0) < 1,
fA) = p(N) =1, f/(0) = pu(1) € (0,1), f'(s) T Tas s T 1 and f” > 0 on (0,1) (making

(1 —k/n)" (1 + ac(k/n)A*)™°
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f convex), the sequence (f°%(s))ren is increases for every s € (0,1). Since the immigration
generating function ¢ is increasing, we have the following uniform bounds for all £ € N:

0<1—gof e)<1—gle V) ~d(l—e™m)%h(L—e )

o (1/Dy,) o (1/0,) ((1/by,)
~ AN e~ dA ((1/b,) b2

n

(51) LA as n — o0.
n
The last equivalence follows from the asymptotic equivalence of the slowly varying functions
# and ( in Assumption (SL) and the property b% ~ nl(1/b,) in (2).
Consider k € [0,vn]. By (43) we have TIx(s) < 1 for all s € (0,1) and £ € N. By
UCT [BGT87, Ch.1§2, Thm 1.2.1] applied to the slowly varying function £* in (45), the limit
limy, o SUPy<y, (*(n 4 1)/0*(n(1 — k/n)) = 1 holds. Together with (51), this implies

lyn]
0 < limsup Z ok [1—go f(s)] Mk(s)

n— 00 k=0 qn+1

[yn]
r* 1 @
< limsup [sup (n+ >] dX Z(l - %)5_1 = d\*(1—(1—~)°)/s

n—oo k<yn [*(n — k) n 0

Since v € (0,1/2) was arbitrary, we obtain
L)

(52) 0 < limsup limsup Z ok [1—go f(s)] Mi(s) < limsupdA*(1 — (1 —+)°)/5 = 0.
¥—0 n—00 k=0 dn+1 v—0

Consider now k € [(1—~)n,n]. An integral of a regularly varying function m — m®~1(*(m)
is again regularly varying with the same slowly varying function (* and index §, see [BGT87,
Prop. 1.5.8]. Thus by the asymptotic equivalence (34) of Lemma 8 above, giving the asymp-
totic behaviour of the tail probability g, we obtain

[yn] [yn]
(53)  OT(ON(1—0) Y aqe ~ 06 Y K1 /t*(k) ~ (yn)’/t*(yn) ~ °n’ /t*(n) as n — o0
k=0 k=0

Recalling II(s) < 1 (for all s € (0,1) and k£ € N) and the asymptotic bound in (51), the
asymptotic equivalence in (53) implies

0 < limsup Z In—k [1 —go fok(s)] I, (s) < limsup K Z Qn—k

O k=f(1mn] T LR S (e R

y e 1 ”Z"J y A\ ~Ond 1

= 11msup —— = l1m su

vt 1 e 2T T )T ()T (L~ ) g
d\® § ,,0—1

— limsup = ———(n + 1)'°C*(n + 1).

now 0 (*(n)

The last equality in the previous display follows from the asymptotic equivalence in (34) of
Lemma 8 applied to the tail probability ¢,.1. As v € (0,1/2) was arbitrary, we may take the
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following limit:

0 < lim sup lim sup Z It [1—go fOk(s)] [k (s)

O g1 It

d)\a,yé né—l
54 < lim sup lim su
(54) nsup lim sup =577

The limits in (50), (52) and (54), together with the representation of the conditional ex-
pectation E(1 — e 21D 20)/bn | 5 > 4 1) in (44), imply

(n+1)7°0*(n+1) =0.

1 A it
1 4+ actA*)d 1 + actA®

1
lim E(1 — e (020 |5 > 1) = df (1- t)*(1*5)(
0

n—0o0

1
_dAaJ (1 —1)°721 + actA*)~ 49 gt
0
e\

1+ ache
The formula in (55) follows from Euler’s integral formula for the hypergeometric series,

(55) =

1
f (1—1)0"Y 1+ 2t)" WD qt = B(1,0) o Fy (1 + 6,1,1 + 6; —2),
0

and the facts that o (1 + d,1,1 + 0; —z) is in fact a geometric series equal to 1/(1 — z) (cf.
[AAR99, Def. 2.1.5 & Thm 2.2.1]), the Beta function B satisfies B(1,d) = 1/6 and § = d/ac.
Note that the right-hand side of the equality in (55) depends neither on § nor on d.

Since the limit in (55) is that of the Laplace transforms of probability measures on [0, o),
the convergence in (55) holds locally uniformly in A. Since the scaling sequence (b,,) is regularly
varying (see (2) above), the limit of the Laplace transforms in Theorem 3 for the sequence of
times t,, = 1 with limit ¢ = 1 holds:

n—o0 n—o0

1
1 4+ ach®’

For an arbitrary sequence of times (t,,), satisfying ¢,, — t > 0, consider an eventually monoton-
ically increasing subsequence |nt,| of integers and note that the locally uniform convergence
of the Laplace transforms in (56) implies

lim E( ~AZ1(ntnl)/bn ’,0> |nt J) = lir{‘lo]E(e Antn ) /bn) Z1(Intn]) Binen) ‘p> |nt J)

p > [nth) =

p>n+1)

1

= lim ]E< A2 Zy (Intn ) /bt —_—
1+ act e’

n—o0

since by, /b, — tY/* as m — oo by (2) above.
Since, assuming Z,, = Zi(|n:])/bn, we have {di/n(Z,) > t,} = {p = di(Z1) > |nt,]}, the
formula in (10) follows concluding the proof of the theorem. O

The following proposition is crucial in the proof of Theorem 6 and hence also in the proof
of our main result in Theorem 1. The proof of Proposition 12 is based on the following fact
from excursion theory: the excursion of Z straddling a time ¢, conditioned on its age at time
t, has the same law as the first excursion of Z exceeding that given age [Get79, Thm 7.35].

Proposition 12. Under Assumption (SL) with 6 = 4 € (0,1), for any 0 < s < t, the
conditional law of Z(t), given g(Z) = s, is the Linnik law v'~% on positive reals with Laplace

transform E(e *?®W|g,(Z) = s) = (1 + ac(t — s)A*) ™
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Proof of Proposition 12. Let 7j(Z) :=inf{t > 0:t— g,(Z) > [} be the first time an excursion
away from 0 of Z exceeds length [. As mentioned above, Theorem 7.35 of [Get79] shows that
the conditional law of Z(t), given ¢:(Z) =t — [, equals the law of Z(7;(Z)). This implies

t

(57) E(e ") = J P(g(Z) € ds) E(e =) for all t > 0.
0

The process Z is self-similar of index «, so that for each ¢ > 0 we have that the process

Z° = (Z°(1))teoro), 2°(t) 1= cVZ(ct), satisfies Z¢ L 7, implying 9:(Z¢) = gu(Z)/c and

7(Z) = 74(Z)/c. Hence Z(1(2)) £ Z¢(1(Z¢)) = ¢V Z(cn(Z9)) = ¢V Z(74(Z)). Setting
¢ = 1/l yields

(58) Z(n(2)) L 1M Z(1(Z)) for any | > 0.

The Laplace transform of Z(1) in (4), the identity in (57) (for ¢ = 1) and the equality in law
n (58) (for I =1 —s) imply
1

(1+aeA®) ™ = E(e W) = J

B(0a(2) € ds) B0 50 @) _ p(o=31-0roR)
0

where G and R are independent variables with the laws of ¢;(Z) and Z(71(Z)), respectively.
Let O; (resp. ) be a gamma (resp. positive stable) random variable with Laplace trans-
form E(e™*9%) = 1/(1 + A)° (resp. E(e™¥) = e™*") for A > 0. Assuming Os and ¥ are

independent, we get E(e"\(m@“)l/az> = 1/(1 + acA®)®, which implies

(59) (acO®s)*x L (1 — G)V*R.

It follows for example from the local limit theorem in Corollary 9 and Lemma 10 that 1 — G
has the generalised arcsine law with parameter §. Equivalently, 1 — G has a density on (0, 1)
proportional to s — s 179(1 — 5)7%  yielding the representation 1 — G 4 ©5/01, where
O, = Os + ©1_s and O, O1_s are independent gamma distributed random variables with
Laplace transforms 1/(1 + \)°, 1/(1 + M), respectively. It is well known that in this case
the quotient ©;/0, is independent of ©;, and thus also of (acO®;)"*%. We may assume that
R is also independent of ©5/0;. Then, by (59), we obtain

(05/01)*(acOy) Vo5 £ (8;/0,)""R.
Since 0 < ©;/0; < 1 almost surely and E((05)¥*%*) < oo for all s € [0, @), we obtain

E 04065 1/0‘2 s E @5 @1 S/aRS
E(((ac©;)*8)%) = I(é(((@(;/(gl)s/a)) ) = ]g((@/(;/@>1)8/a)) = E(R") forall se|0,a).

In particular, since the Mellin transform determines a law on [0, c0) uniquely, we get

(ac©,)/*S £ R

(cf. Exercise 1.14 in [CYO03]). Note that ¢ is no longer present on the left-hand side of the
last identity, implying that the law of R does not depend on J. Since ©; is exponential with
unit mean, its Laplace transform equals E(e™*°1) = 1/(1 + X), implying

]E(e”\R) _ ]E<67)\(ac®1)1/°‘2) _ E(e*/\"ac@l) = 1/(1 + ac)®) for all A = 0.
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Hence R follows the Linnik law v!. By (58) for any | > 0 we have Z(7(Z)) < [Y*R. Hence
for any 0 < s < t, we obtain

]E(e_/\z(t)|gt(Z) _ S) _ E(G—AZ(MS(Z))) — E<e—/\(t—3)1/a3> =1/(1 + ac(t — s)\%),
as claimed in the lemma. O

3.2. Conclusion of the proof of Theorem 6. Recall that Theorem 6 consists of two weak
limits for any fixed t > 0 and € > 0 as n — oo:

(60) (dE(Z0), di(Z,)) S (d(2),dy(2)),
(61) (95(Zn), 91(Zn)) >

3.2.1. Proof of the weak limit in (60). Note that, conditionally on d;(Z,), the increment
di(Z,) — d5(Z,) has the law of the hitting time of zero of the scaled BGWI started at
Zn(d5(Zy,)). By using two continuous and bounded functions hq,hy : [0,00) — R, defin-
ing H,(z) := E(ha(do(Z7))) for any z € N/b,, and applying the strong Markov property at
the stopping time d5(Z,), we get

(62) E (hy(di (Zn))ha(di(Zn) — di(Zn))) = E (ha(d; (Zn)) Hn(Zn(d; (Z0))))

In the proof of the case lim._,qlim,,_, II; = 0 in Section 2 above we showed that Assump-
tion (19) of Lemma 5 holds at To(Z(t + -)), where Z(t + -) is a CBI process, started at Z(t),
with the same semigroup as Z, the open set O equals the interval [0,e) and the equality
d5(Z) =t+To(Z(t+-)) < oo holds. In order to verify Assumption (20) of Lemma 5, we need
to prove that the process Z(t + -) is continuous at Tpo(Z(t + -)), which is clearly equivalent
to the continuity of Z at di(Z). On the event {Z(t) > ¢}, d5(Z) is predicted by strictly
increasing stopping times: ds*<'(Z) 1 d:(Z) almost surely on {Z(t) > ¢} as €' | 0. On the
complement {Z(t) < €}, since Z is downwards regular, we have d;(Z) = ¢. In both cases Z is
continuous at d¢(Z) by quasi left continuity, implying that assumption (20) of Lemma 5 also
holds. Thus, by Lemma 5 we obtain (d5(Z,), Z,(d5(Z,))) 22> (d5(Z), Z(d;(Z))) as n — oo.

For any sequence (z,) converging to z € (0,00), such that z,b, € N, the weak limit in (40)
of Lemma 11 yields

(63) Hy(2) = E(ho(do(Z5))) — E(ho(do(Z7))) = H(2) asn — .

Thus hy(d5(Z,))Hp(Z,(d5(Z,))) 22 hi(d5(2))H(Z(d5(Z))) as m — oo (recall that hy is
continuous and set z, = Z,(d5(Z,)) — Z(d;(Z)) = z in (63)). Since, conditional on d;(7),
the increment d;(Z) — d5(Z) has the law of the hitting time of zero of the CBI process started
at Z(d;(Z)) and the functions hy and hs are bounded, as n — o0, the Dominated Convergence
Theorem implies

E (hi(d; (Zn)) Hn(Zn(d;(Z0)))) — E (hi(d;(2)) H (2 (d(Z))))
= E (h(d;(2))ha(di(2) — d;(2))) -
This limit and (62) imply the weak limit in (60).
3.2.2. Proof of the weak limit in (61). In the case t = 0, the limit in (61) holds by definition

since Z(0) = Z,(0) = 0 and thus ¢go(Z) = ¢5(Z) = 9o(Z,) = ¢5(Z,) = 0 (see definitions in (8)
and (13) above). In the remainder of the proof of (61) we assume ¢ > 0.
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Lemma 13. Recall that Z, < Zi(|n-])/b,. Under Assumption (SL) with § = L e (0,1), for
t > 0, the following weak limit holds

(64) (9:(Zn), Za(t)) > (9:(2), Z(t)) asn — 0.

We will establish limit (64) in Lemma 13 via excursion theory and the Yaglom limit for
BGWTIs in Theorem 3. We now prove the weak limit in (61) using Lemma 13.

Let z, — z in [0,0) and assume b,z, € N for all n € N. Then, by [Li06, Thm 2.1],
zin < 7% and we may assume (by e.g. the Skorokhod representation) that the convergence
is in fact almost sure. As in the proof of the case lim._,qlim,_, II; = 0 in Section 2 above,
it follows that Assumption (19) of Lemma 5 holds at d§(Z%) = Tp(Z?) (where O = [0, ¢)) for
the CBI process Z* started at z € [0,00). By Lemma 5 we obtain almost sure convergence
d5(Zz) — d§(Z7), and thus for any continuous and bounded A : [0,00) — R we have

(65) Ho(z) = B(W(d5(Z2))) — B(h(d5(Z7)) = H()  asn— .

For any 0 < s; < 55 <, we have {g:/(Z,) < s1,9;(Zn) < 52} = {95,(Zn) < 51, < d5,(Z,)}
and {g:(Z) < s1,9;(Z) < s2} = {9s,(Z) < 51,1 < d;,(Z)}. Hence (61) holds once we prove
the following weak limit for any s € (0, 0):

(66) (95(Z0), d2(Z0)) 5 (95(2),d5(Z))  asn— 0.

To establish (66), pick bounded, continuous functions hy, he : [0,00) — R. The weak limit
in (64) of Lemma 13 and Skorokhod’s representation imply that we may assume almost sure
convergence (gs(Z,), Zn(s)) — (9s(Z), Z(s)) holds. By the Markov property at time s and
the limit in (65) (for h = ha(- + s)), we obtain the following limit as n — oo,

E(h1(9s(Zn))ha(d5(Z0))) = E(hl(gs<Zn>>EZn(s)(hQ(dg(Zn) +5))) = E(h1(9s(Zn)) Hn(Z0(5)))
— E(hi(9s(2))H(Z(s))) = E(h1(95(Z2))Ez(s) (ha(d5(Z) + 5)))
= E(h1(g5(2))h2(d5(2))),

implying (66) and thus (61).
It remains to establish the limit in (64) of Lemma 13, which will imply Theorem 6.

Proof of Lemma 15. We will establish (64) using Theorem 3 and Proposition 12 above. The
key insight here is as follows: given t — g;(Z,) = [, the law of the excursion straddling ¢ equals
the law of the first excursion E! of Z, exceeding the length [ € (0,t). This well-known fact
can be proved directly and simply for the BGWI process Z; and its scaled continuous-time
version Z, < Z1(|n])/bn. We note that this fact has been rigorously established for Hunt
processes with transition densities (such as Z) in Theorem 7.35 of [Get79).

Let v!» denote the law of E'(I,) and note that it coincides with the law of Z,(l,,), condi-
tioned on d; /n(Zn) > [,. Theorem 3 thus implies that for any sequence [,, — [, I/f{” converges
weakly to the Linnik law ! with Laplace transform given by A — 1/(14+acl\®). By Lemma 10

we have t — g:(Z,) Ay — 9:(Z) and, by the Skorokhod representation, we may assume that
ln =t—g(Z,) > t—g,(Z) = | almost surely. For arbitrary continuous and bounded functions

hi,he : [0,00) — R, we have: Vfl_gt(zn)(hg) — p79:2)(hy) almost surely and the Dominated
Convergence Theorem implies the limit

(67) E(hi(9(Za))vy "% (he)) — E(ha(gi(Z2))V' "D (hs))  asn — o0,

where v!(hy) denotes the integral of hy with respect to the Linnik law ! and v'n(hy) is
the integral of hy with respect to the law v/n of the first excursion E'» of Z, exceeding I,,,
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evaluated at [, (i.e. vi» is the law of the variable E'(l,)). Moreover, since E'(l,) has
the same law as Z,(l,,) conditioned on dy/,(Z,) > I, the equality E(hi(g:(Z,))ha(Z,(t))) =
E(hl(gt(Zn))l/fL_gt(Z")(hz)) holds. By Proposition 12 above, the Linnik law v! equals that of
Z(t), given g,(Z) =t —1. Thus E(hy(g:(2))v'=99) (hy)) = E(h1(9.(Z))ha(Z(t))), and by (67)
we get

E(h1(g¢(Zn))ha(Zn(t))) — E(h1(9:(2))h2(Z(1)))  as n — 0.

Since the functions hy; and hy were arbitrary, the weak limit in (64) holds, concluding the
proof. [l
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APPENDIX A. ON THE TAIL BEHAVIOUR OF 1 AND v AND REGULAR VARIATION OF A
CERTAIN SCALING SEQUENCE

In this section, we will prove the asserted equivalence between (SL) and the following one
when « € (0,1). We will also see why the sequence a,, normalizing the random walk local
time L;(X), is regularly varying.

A.1. Regular variation of the tails of ; and v in Assumptions (SL). Let g and v
be the offspring and immigration distributions associated to f and g. Consider the following
assumption on p and v.

Assumption (SL’). (1) p is critical (i.e. has mean one);
(2) its tail 7z is regularly varying with index —(1 + «);
(3) the following tail balance condition holds:
kv (k)
f(k)

converges to a limit in (0,0) as k — 0.

Proposition 14. For o € (0,1), Assumptions (SL) and (SL’) are equivalent. In this case
i and v are in the stable domains of attraction with index 1 + o and o, respectively.

Proof. We rely on Tauberian theory, as found in [Fel71, XIIL.5] or [BGT87]. This is simplified
by a shift in perspective from the offspring and immigration generating functions f and g
to the Laplace transforms ¢ and ¢ of p and v. They are related by ¥(\) = f (e_)‘) and
#(\) = g(e™). Note that, upon setting s = e, we have 1 — s ~ X as A — 0. In the case of
i, it is convenient to define the tail and iterated tail of u for any x € (0, 00) as follows:

(o) = (e, 0) = |

(z,00)

0

u(dy) and Ti(z) = J () dy.

T
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When « € (0,1), [Fel71, Lemma, §XIIL.5, p. 446] implies the equivalence, as x — o0, of the

following
— ((1/x) _ [(1/x)
~ d ~
i) ~ 0 iy ~ L)
implying aji(x) ~ fi(x)/z. The tail balance condition in (3) of Assumption (SL’) is then
equivalent to the existence of the limit 7(x)/fi(x) as x — oo.
On the other hand, a direct computation gives

0 _ N 1 o0 N 1
L n(x)e dr = 3, [ — 1+ Az] p(de) = ﬁ[@b()\) — 1+ 2],
so that the Tauberian theorem (for densities as in [Fel71, Thm XIII.5.4]), gives us the equiv-
alence (for a € (0,1)) of

A—1—1(\) ~A"r()) and Fi(z) ~ F(i(i—/z))w

But then, the tail balance condition of (SL’) and the asymptotic equivalence condition of
(SL) are seen to be equivalent.

Of course, when « € (0, 1), either (SL) or (SL’) imply that both p and v are in the domain
of attraction of stable distribution. Indeed, define b,, implicitly by b¢ = nl(1/b,) and compute
Laplace transforms:
gl = [1= (1 =gl )]" = [1 —d(1 = e )1 = e M)

~[1—d(\/by)C(1)b,)]" — e asn — 0.

A similar argument using the moment generating function f of u, tells us that for the function

f(s) = f(s)/s we have

(69) FleMonynbn AT g o0, O

(68)

A.2. Behaviour of ;1 and v for a = 1 in Assumptions (SL). We identify the cases when
the immigration law v has a finite mean and the offspring law p has a finite variance. Recall

dintu(n) = = f'(1) =0 & Y nwv(n) =0 — g(1)=cx.

neN neN
Lemma 15. Under Assumption (SL), for any a € (0,1] we have

(70) f"1y=0 <= J(1) =0 <= a<1or li?ol[’(u) = .

Thus, 1 and v have finite variance and mean, respectively, if and only if « = 1 and

3 li?ol [(u) € (0,00) (or equivalently 3 lif}gﬁ(u) € (0,00)).

Remark. As observed in [Sla68, p. 142, Remark], it is possible to have a = 1 with offspring
distribution of infinite variance, e.g. f(s) = s+ ¢(1 — s)* (1 — ' log (1 — s)) for ¢ € (0,2/3)
and 0 < ¢(2 — ¢) < 1. Similarly, for any d € (0,1), g(s) =1 —d(1 —s)(1 —'log(l —s)) is a
generating function with ¢’(1) = oo. The corresponding pair of the offspring and immigration
laws p and v with infinite variance and mean, respectively, satisfy Assumptions (SL) with
a=1.

Proof of Lemma 15. Assume a € (0,1). Then, by Lagrange’s theorem, for any s € (0, 1) there

exists 05 € (s,1) such that ¢'(6;) = 1%@ = d(1 — s)* '£(1 — s). Hence, since £ is slowly

varying at zero, letting s T 1 we see that ¢’(1) = oo. Similarly, we can show that f”(1) = .
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Now assume a = 1. By a straightforward computation, we obtain

(71)  f(1—=) =((x) (26 * 40:65[(/;:;) i szf[(:c()x)) ) = <d ' dxf(g)) .

The following statement holds by [Lam58, Thm 2]: for any v > 0 and any slowly varying
function £ (at zero), such that the regularly varying function H(x) := 27/ (x) has a derivative
which is monotone near 0, we have

xH'(x)
72 li =
To understand the behaviour of f” near 1, consider F(z) := f(1—x)—(1—x) = 2*((x) and
note that F'(x) = 1 — f'(1 — x). Since f’ is increasing, F” is monotone in the neighbourhood

of 0. By (72) applied to F' (with v = 2 and & = ('), we obtain

_aF'(z) . x(2¥(z)) . zl'(x) xl'(x)
73 2=1 =lim ——F"—-+ =2+1

(73) P R T e R TS ()
Similarly, applying (72) to G(z) =1 — g(1 — z), we get lim, o, (xk'(x)) /k(x) = 0.
It is clear that F”(z) = f”(1 — x) is monotone and, by (73), F’ is proportional at zero to
F(z)/z and thus regularly varying with index oo = 1. By (72) applied to F’ (with v = 1 and

h(z) = 2cl(x) + cxl'(x)) we get
oF"(z) .. 2cxl(x) + dex?l'(z) + cx3"(x)

2 =i 1 14 lim 20 @)
= lim = lim = im
zl0 F'(x) =0 2cxl(x) + cx®('(x) zl0 20(x) ’

implying 1;%1 = 0.

where the last equality holds using the last limit in (73). We thus get lim, g “"2[,[(;(;) = 2.

Recall that ¢ and d are positive and that ((z) ~ £(z) as © — 0. Then (71) implies:
f"(1) = 0 < lim, o ((z) = 0 < lim, g A(x) = © < ¢'(1) = oo, proving (70).

It follows from (70) that v and u have finite mean and variance, respectively, if and only if
o =1 and limsup,,;, ((u) < 0. If the latter holds, by (71) we have limy o £ (u) = 5= f"(1) < o0,
O

concluding the proof of the lemma. ‘

A.3. Regular variation of the sequence (a,) in Theorem 4. Since the finite-dimensional
distributions of L;(X;)(|nt|)/a, converge to the non-trivial limit L, [Lam62, Thm 2] implies
the regular variation of (a,) with index equal to the self-similarity index of L(X). We now
give two proofs that the latter equals 1 + 1/a.

Since X is self-similar of index 5 = 1 + «, the density f; of X; satisfies:

fila) = fi(at™VP)e P,

With this, one sees that the resolvent densities

ux(z,y) = L e_)‘tft(y —x)dt

are bicontinuous and one can use the occupation times formula for the local time field of X
to get that the Laplace exponent of inverse local time is 1/u,(0,0). Since

o0 0
ux(0,0) :J e Mf,(0)dt = J e M f(0)t P dt = eATYE),
0 0
where ¢ = T'(1 — 1/5)f1(0), we see that the inverse local time at zero of X is a stable
subordinator of index 1—1//5. Hence, the local time L(X) is self-similar of index 1/(1-1/3) =
1+ 1/c.
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APPENDIX B. A SEQUENCE OF BGWIS WITH A SELF-SIMILAR CBI LIMIT AND LOCAL
TIMES THAT DO NOT CONVERGE TO THE LOCAL TIME OF THE CBI

We construct a sequence of critical BGWIs which, although convergent to a self-similar
CBI, is such that its sequence of counting local times does not converge to the local time of
the CBI. The construction is based on a BGWI in the domain of attraction (i.e. satisfying
Assumption (SL)), which we perturb by a single immigrant with large positive probability at
each time step, see (75) below. The new immigration law retains the tails of the original im-
migration distribution, while the offspring distribution remains the same along the sequence.
Displacing the pre-limit process away from 0 with positive probability (which tends to one
along the sequence of the BGWIs) makes the corresponding scaled BGWIs eventually almost
surely not visit zero during a given compact time interval.

More specifically, it is easy to see from Taylor’s theorem that

(74)  f(s)i=s+c(l=9)"" g(s):=1-d(1=5)* & gu(s):=1—pn+Dpnsg(s),
for s € (0, 1), are generating functions if « € (0, 1) and
d,c(l1+a)e(0,1) and 0 < p,, <1 for all me N.

The immigration generating function g describes the law of the increment the random walk
Y] in the discrete Lamperti transform in (11). The increment of the immigration random
walk Y™ corresponding to the generating function g,,, satisfies:

(75) PY™1) =1+Y(1) =pn & PY™(1)=0)=1-p,.

Let Z™ be a discrete-time BGWI process with offspring f and immigration g,,. Consider
its scaled continuous-time extension Z™(|m-|)/b,,, where the sequence (b,,) satisfies (2) as
m — . If p,, — 1 as m — oo, the sequence (Z™(|m-|)/by)m>1 converges weakly to the
same limit as the sequence (Zi(|m:])/bm))m=1, where Z; is the BGWI in (3) corresponding
to f and g in (74). Indeed, by [Li06, Thm 2.1], it suffices to check that m/b,, — 0 and that
the functions F,_ (A) :=m (1 — g,(1 — A\/b,,)) converge,

Fy, (A) = mpe (1 = (1= A/bm)g(1 = Afbm)) = mppm (1 = (1 = X/bn)(1 = d(X/brm)?))
= mPm (AN /by + d(N/bp)* — d(N/b) ) — dA*, as m — oo,
for all A > 0, where in both limits we used b ~ m as m — o from (2) and a < 1. Thus the
weak limit of the sequence (Z™(|m:])/by)m=1 of BGWIs is a self-similar CBI with § = <4

and marginals given by (4). As noted in the introduction, by [FUBI14, §5.2.1], if § € (0, 1),
the limiting process is point recurrent at 0 with non-degenerate Markov local time L.

Lemma 16. Set p,, =1 —m™3 form > 1. Let L™ (t) .= [{k e N: Z(" (k) = 0} n [0,¢]| be
the counting local time at zero of the BGWI process Z™) constructed above. Then

(76) P(Uf Mooy (L™ (m) = 1)) = 1

Under the assumption of Lemma 16, the sequence of counting local times L™ (|m-]) at
time 1, equal to L™ (m), is eventually equal to one for all large values of m and hence almost
surely converges to 1 as m — oo. Thus, when scaled by any sequence that tends to infinity,
L™ (m) cannot converge weakly to the local time L of the limiting CBI at time 1, which is
a non-trivial random variable.

Proof of Lemma 16. It is clear from the Lamperti transform in (11) for BGWI Z™ that the
inclusion {L(™(m) = 1}¢ = {L™(m) > 1} = {minj<pem 2™ (k) = 0} < A°, holds, where

Ap o= {Vke{l,...,m} : Y™ (k) = Y™ (k—1) > 0}.
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By (75) and our assumption on p,, we have

—2

P(A4,) =p=1-m>®)" = ((1 — m_3)m3>m ~ e_m%, as m — oo,

implying P(AS) ~ 1 —e™ ~ m~2. In particular, 3°_ P(A¢,) < co. The Borel-Cantelli
lemma implies P (N2, u%_, {L0™(m) = 1}¢) < P(n{,; vZ_, AS) = 0 and (76) follows. O
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