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Abstract. We establish the joint scaling limit of a critical Bienaymé-Galton-Watson process
with immigration (BGWI) and its (counting) local time at zero to the corresponding self-
similar continuous-state branching process with immigration (CBI) and its (Markovian) local
time at zero for balanced offspring and immigration laws in stable domains of attraction.
Using a general framework for invariance principles of local times [MUB22], the problem
reduces to the analysis of the structure of excursions from zero and positive levels, together
with the weak convergence of the hitting times of points of the BGWI to those of the CBI.
A key step in the proof of our main limit theorem is a novel Yaglom limit for the law at time
t of an excursion with lifetime exceeding t of a scaled infinite-variance critical BGWI.

Our main result implies a joint septuple scaling limit of BGWI Z1, its local time at 0,
the random walks X1 and Y1 associated to the reproduction and immigration mechanisms,
respectively, the counting local time at 0 of X1, an additive functional of Z1 and X1 evaluated
at this functional. In the septuple limit, four different scaling sequences are identified and
given explicitly in terms of the offspring generating function (modulo asymptotic inversion),
the local extinction probabilities of the BGWI and the tails of return times to zero of X1.

1. Introduction and main results

1.1. Scaling limits of the critical BGWIs and their counting local times at zero.
It is known that the scaling limits of Bienaymé-Galton-Watson processes with immigration
(BGWI) are self-similar continuous-state branching processes with immigration (CBI), see
[KW71, Li06], [CPGUB13] and Theorem 4 below. However, little is known about the conver-
gence of natural functionals of the BGWI processes, such as their local times (as representative
aspects of the structure of their zero sets), to their continuum analogues. The main aim of
this paper is to provide results in this direction. The setup naturally includes branching
processes with infinite immigration mean and critical reproduction mechanism with infinite
offspring variance. Some of our results are well known and classical in the finite-variance
setting without immigration (known by names such as Feller’s diffusion, Kolmogorov’s esti-
mate or Yaglom’s limit). In particular, the convergence of one-dimensional distributions has
been investigated in [KW71] and, conditioned on non-extinction in the finite variance case,
in [Sen70] and [Vat77]. For the analysis of the asymptotic tails of the life spans of BGWI
processes see [Zub72], [ST83], [Vat77],[IS85]. The cases of infinite offspring variance or infinite
immigration mean appear not to have been analysed as much. More recent results, still in the
finite-variance reproduction case, have considered random environment or state-dependent
BGW processes, as in [Ada18, DLVZ20, LVZ21]. On the other hand, limit theorems for local
times have been studied for random walks or reflected random walks (as in [Per82], [Bor81],
[Bor84], [CD10], [DW16]). More recently, a general framework to obtain invariance principles
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2 LOCAL EXTINCTIONS OF BRANCHING PROCESSES WITH IMMIGRATION: SCALING LIMITS

for local times was put forth in [MUB22]; it is this general framework that we will apply in
the setting of branching processes with immigration.

Let Z1 denote a BGWI process started at 0 with the offspring and immigration distributions
µ and ν on N :“ t0, 1, . . .u, respectively (see (11) below for a definition of BGWI). We assume
throughout the paper µp1q ă 1 and νp0q ą 0, implying that the reproduction mechanism
is not deterministic and that Z1 may return zero. Following [Zol57, Sla68, KW71], we now
introduce Assumption (SL).

Assumption (SL). The generating functions

fpsq :“
ÿ

nPN

snµpnq and gpsq :“
ÿ

nPN

snνpnq, s P r0, 1s,

of the offspring and immigration distributions µ and ν take the form

(1) fpsq “ s ` cp1 ´ sq1`αlp1 ´ sq and gpsq “ 1 ´ dp1 ´ sqαkp1 ´ sq, s P p0, 1q,

for some constants c, d ą 0 and α P p0, 1s and functions l, k : p0, 1q Ñ p0,8q, slowly varying
at zero, with lpsq{kpsq Ñ 1 as s Ñ 0.

As shown in [KW71, Thm 2.3], [Li06], [Li20, Thm 5.8] or [CPGUB13] (see also the proof
of Theorem 4 below), Assumption (SL) is equivalent to the existence of a scaling limit
for Z1, which we now describe. Define a scaling sequence pbnq via asymptotic inversion of
the regularly varying function x ÞÑ xα{lp1{xq at infinity [BGT87, Thm 1.5.12]. Thus pbnq

is regularly varying with index 1{α and satisfies bαn{pnlp1{bnqq Ñ 1 as n Ñ 8, denoted
throughout the paper by

(2) bαn „ nlp1{bnq as n Ñ 8.

For u P R, let tuu :“ maxtn P Z : n ď uu. The continuous-time extension of the scaled BGWI,

(3)
1

bn
Z1ptn¨uq,

converges weakly as n Ñ 8 in Skorokhod space (of càdlàg functions mapping r0,8q into
itself) to a process Z, which is a self-similar continuous-state branching process with immi-
gration (CBI) of index α started at 0 (see (12) below for a definition of a CBI process).1 The
law of the self-similar CBI Z is characterised by the Laplace transform of its one-dimensional
distributions with arbitrary initial state z P r0,8q:

(4) Ez

`

e´λZptq
˘

“ p1 ` αcλαtq´δe
´ λz

p1`αcλαtq1{α , where δ :“
d

αc
.

The finite-variance case α “ 1 is special in that Z has continuous sample paths; indeed, when
c “ 2 it is a squared Bessel process of dimension 2δ and a multiple of it otherwise.
Our main result gives a scaling limit of the zero (or local extinction) set tm P N : Z1pmq “ 0u

of Z1, encoded via the counting local time L1 of Z1 at 0, defined for any t ě 0 as

(5) L1ptq :“ |tm P N : Z1pmq “ 0u X r0, ts| .

The main aim is to prove that the scaling limit of L1 is the Markovian local time L at 0 of
the self-similar CBI Z started at 0. This local time L is non-trivial if and only if δ P p0, 1q

1See [Li20] for an introduction to CBI processes. The weak convergence Z1ptn¨uq{bn
d

Ñ Z follows from
the finite dimensional convergence [KW71, Thm 2.3] and the tightness of [Li06]. [KW71] also establish the
necessity of Assumption (SL) for the finite dimensional distributions of Z1ptn¨uq{bn to converge weakly. The

limit Z1ptn¨uq{bn
d

Ñ Z also follows under Assumption (SL) as part of the time-change coupling construction
in Subsection 1.2 below, given before the proof of our septuple limit result (see Theorem 4).
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(see [FUB14, §5.2.1]). Indeed, recall that Z is point recurrent at 0 if and only if δ P p0, 1q.
If δ ě 1, Z does not return to 0 at positive times. In the particular case of a squared Bessel
process, i.e. α “ 1 and c “ 2, this dichotomy is manifested through its dimension 2δ.

When δ P p0, 1q, the right continuous inverse of L is a stable subordinator of index 1 ´ δ.
Our main result adds a limit theorem to the celebrated determination of the structure of the
zero set of a squared Bessel process [MO69], corresponding to the special case α “ 1 and
c “ 2 of the preceding discussion.

Theorem 1. Let Assumption (SL) hold with δ “ d
αc

P p0, 1q. Then, for any κ ą 0, the
sequence pcnq given by

(6) cn :“ κnPpZ1pnq “ 0q , n P N,

is regularly varying of index 1 ´ δ. Furthermore, there exists κ so that the weak convergence

(7)

ˆ

1

bn
Z1ptn¨uq,

1

cn
L1ptn¨uq

˙

d
Ñ pZ,Lq as n Ñ 8

holds in the product Skorokhod topology.

Remark. (a) Both the scaling sequence pcnq in Theorem 1 and the Markov local time L of
Z are defined up to positive multiplicative constants only. Thus, fixing the scaling sequence
determines the multiplicative constant in the definition of the local time L and vice versa.
(b) As shown in Proposition 14 of Appendix A.1 below, in the case α P p0, 1q, Assump-
tion (SL) is equivalent to the following: the offspring distribution µ is critical (i.e. has mean
one), its tail µpkq :“ µppk,8q XNq is regularly varying with index ´p1`αq and the following
tail balance condition holds:

νpkq

kµpkq
converges to a limit in p0,8q as k Ñ 8.

The tail νpkq :“ νppk,8qq is also regularly varying of index ´α, placing µ and ν in the p1`αq-
stable and α-stable domains of attraction, respectively, and making Theorem 1 applicable to
the entire class.
(c) Any critical finite-variance offspring generating function satisfies Assumption (SL) with
α “ 1, in which case the slowly varying function l is bounded on a neighbourhood of zero.
Moreover, in this case, the corresponding immigration has finite mean and k is likewise locally
bounded at zero (see Lemma 15 in Appendix A.2 below). Thus Theorem 1 covers all critical
BGWIs with finite-variance offspring distributions. Note further that Assumption (SL) with
α “ 1 does not require the offspring distribution to have finite variance (see the Remark in
Appendix A.2 below). This case is also covered by Theorem 1.
(d) The convergence of the counting local time in (7) is fragile. The example in Appendix B
below gives a convergent sequence of BGWIs, with the same reproduction mechanism as
pZ1ptn¨uq{bnqně1 and only a local perturbation of the immigration law ν at 0, such that its
limit is the self-similar CBI process Z (as in Theorem 1) but the corresponding counting local
times are proved not to converge to the Markov local time of Z at zero.

We will obtain the joint convergence of the local time process, together with the scaled
BGWI process, using the recently established general framework of [MUB22]. We now state
a simplified version of [MUB22, Thm 1] in the context of the models studied in the present
paper, which satisfy Assumption (SL) with δ “ d

αc
P p0, 1q. Note that the convergence of

local time in Theorem 2 below is in probability.
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Theorem 2 ([MUB22, Thm 1]). Let Assumption (SL) hold with δ “ d
αc

P p0, 1q and the
sequence pbnq satisfy (2). Let pZnq be a sequence of continuous-time stochastic processes on

the same probability space as Z, such that Zn
d
“ Z1ptn¨uq{bn. For any t P r0,8q, define

(8) gtpZq :“ sup ts ď t : Zpsq “ 0u and dtpZq :“ inf ts ą t : Zpsq “ 0u ,

and the corresponding gtpZnq and dtpZnq. Define Lnptq :“ |ts P N{n : Znpsq “ 0u X r0, ts|. If

Zn
P

Ñ Z and, for every t ą 0,

(9) gtpZnq
P

Ñ gtpZq and dtpZnq
P

Ñ dtpZq, as n Ñ 8,

there exists a constant κ̃ ą 0 such that for the scaling sequence c̃n :“ κ̃{P
`

d1{npZnq ą 1
˘

the
following limit in probability holds:

pZn, Ln{c̃nq
P

Ñ pZ,Lq as n Ñ 8.

We will see in the proof of Theorem 1 (cf. equations (33) and (34) of Lemma 8 below) that
the sequences pcnq and pc̃nq are asymptotically equivalent. Hence, to apply Theorem 2, we
need to verify the limits in (9) of the endpoints of excursions of the scaled BGWI process.
The applications in [MUB22] of the general form of Theorem 2 for regenerative processes are
mainly path-wise and do not apply in our setting for two reasons: the BGWI process Z1 is
not downwards skip-free and the CBI process Z is not downwards regular at zero (since it is
non-negative). This makes the hitting times by Z of the boundary point zero much harder
to detect from the hitting times of zero by Z1.

One of the main contributions in this paper is to present a new paradigm, combining
path-wise and distributional arguments, enlarging the scope of applications of the framework
in [MUB22]. In the setting of the present paper, this new paradigm rests on the branching
properties of both the BGWI Z1 and the CBI Z, as well as the self-similarity of Z. In
particular, we establish the following Yaglom limit for infinite-variance critical branching
processes with immigration.

Theorem 3 (Yaglom limit for BGWI). Under Assumption (SL) with δ “ d
αc

P p0, 1q, fix
any t ą 0 and consider a sequence ptnq such that tn Ñ t. Then, Znptnq, conditioned on Zn

remaining positive on r1{n, tns, converges weakly to the Linnik law νt:

(10) lim
nÑ8

E
`

e´λZnptnq
ˇ

ˇ d1{npZnq ą tn
˘

“ p1 ` αctλαq
´1 for all λ ě 0.

While Assumption (SL) covers all finite variance offspring distributions (see Appendix A.2
below), the novelty in Theorem 3 is in the infinite-variance case (see the classical finite-
variance result in [Vat77, Thm 1]). Theorem 3 plays a key role in the proof of Theorem 1
and is of independent interest. The limiting Laplace transform in (10) is that of a Linnik law
νt (cf. [Dev90]). Note that the Laplace transform in (10) coincides with that of the marginal
at time t (with δ “ 1) under P0 in (4) but, unlike its unconditioned version, surprisingly
depends neither on d nor on δ. The presence of the immigration in the BGWI Zn persists
in the limit in (10): the corresponding Yaglom limit for BGW process in [Sla68, Thm 1] is
not Linnik (for α P p0, 1q). Note also that the Linnik law νt is a natural generalisation of the
corresponding Yaglom limit for finite-variance critical BGWIs (α “ 1 in our setting), where
the limit is exponential [Vat77, Thm 1(a)].

It is natural to consider an extension of Theorem 3 to the limit of the law of the entire
excursion of Zn, straddling the time 1{n, with lifetime greater than tn. However, as this is
unnecessary for the scaling limits of local extinctions of BGWIs, it is left for future research.
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Two further results, crucial in our proof of Theorem 1, are the local limit theorem for
gtpZnq{t with generalised arcsine limit law of parameter 1 ´ δ (see Corollary 9 below for the
precise statement) and the characterisation of the conditional law of the marginal of the CBI
process Zptq, given gtpZq “ s, as the Linnik law νt´s. The local limit theorem follows from
the asymptotics of both the local extinction probabilities of the BGWI and the tails of its
return times to zero. The conditional law has a short direct proof using excursion theory
and the self-similarity of the CBI process Z (see Proposition 12 below for details). Since
this conditional law equals the limit law in (10), Proposition 12 and Theorem 3 imply that
excursions with lifetime greater than t (evaluated at time t) of BGWIs converge to those of
the limiting CBI.

A short YouTube presentation [MPUB25] describes our results. Part 2 of this video dis-
cusses the ideas behind the proofs as well as their structure.

1.2. The septuple limit theorem. Before proceeding to the proof of Theorem 1 in Sec-

tions 2 and 3 below, we explain why Z1ptn¨uq{bn
d

Ñ Z as n Ñ 8 and construct a probability
space on which the convergence takes place in probability (and not only weakly) as Theorem 2
requires. The latter can of course be achieved through Skorokhod’s representation for weak
convergence, but a much more concrete construction (in terms of the scaling limits of random
walks) yields a far-reaching extension of Theorem 1, given in Theorem 4 below, hard to obtain
through other methods.

Define the distribution µ̃ on NYt´1u by µ̃pkq “ µpk`1q and let X1 and Y1 be independent
random walks with jump distributions µ̃ and ν, respectively. The discrete Lamperti transfor-
mation (see, for example, [EK86, Eq. (1.1) in Ch. 9§1], [Cha15, p. 2] or [CPGUB13, Eq. (1)])
tells us that Z1 has the same law as the solution to the recursion

(11) Z1 “ X1 ˝ C1 ` Y1, where C1pkq “
ÿ

0ďjăk

Z1pjq for all k P N.

As remarked above, under Assumption (SL), µ is critical, implying that X1 is a centred
random walk. Recall that X1 and Y1 are in the domain of attraction of (independent) stable
Lévy processes X and Y with positive jumps of indices 1`α and α P p0, 1s, respectively (see
also Appendix A.1). More specifically, for the scaling sequence pbnq in (3) above, we have

pX1ptnbn¨uq, Y1ptn¨uqq {bn
d

Ñ pX, Y q as n Ñ 8

in the product Skorokhod topology. Since X is a spectrally positive stable Lévy process and
Y is a stable subordinator, their respective Laplace exponents take the form Ψpλq “ cλ1`α

and Φpλq “ dλα, λ ě 0. Note that, when α “ 1, X is a multiple of Brownian motion and
Y is the deterministic subordinator t ÞÑ d ¨ t. Heuristically (and rigorously established in
Theorem 4 below), the discrete Lamperti transformation of X1 and Y1 in (11) can be scaled
to converge to the continuous Lamperti transformation Z of X and Y , the unique solution to
the equation

(12) Z “ X ˝ C ` Y, where Cptq “

ż t

0

Zpsq ds for all t ě 0.

The process Z defined in (12) is a continuous-state branching process whose dynamics are
characterised by their Laplace transforms in (4) above. By analogy with the discrete case, the
Laplace exponents of X and Y are then called the branching and immigration mechanisms
of Z.2 The above method of establishing weak convergence of branching processes in terms

2See [CPGUB13, CPGUB17] for an analysis of the time-change equation.

https://youtu.be/M6cBiiJt_90?si=VRRoRmTYZMzTjat4
https://youtu.be/PCuIkPBApoE?si=abwrWDXAy9uYOqO4
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of associated random walks is a path-wise version of results of [Gri74] when there is no
immigration. We can now state the following septuple limit theorem.

Theorem 4. Let Assumption (SL) hold with δ “ d
αc

P p0, 1q and the regularly varying
scaling sequence pbnq satisfy (2). Consider independent random walks X1 and Y1 whose jump
distributions have generating functions fpsq{s and gpsq and independent stable Lévy processes
X and Y with Laplace exponents Ψpλq “ cλ1`α and Φpλq “ dλα. Let Z1 and C1 (resp. Z
and C) be constructed from X1 and Y1 (resp. X and Y ) as in (11) (resp. (12)). Let L1pX1q

and L1pZ1q be the counting local times at 0 of X1 and Z1 (cf. (5)) and let LpXq and LpZq be
(Markovian) local times at 0 of X and Z. Then there exists a regularly varying sequence panq

of index 1 ` 1{α, such that
ˆ

X1ptnbn¨uq

bn
,
L1pX1qptnbn¨uq

anbn
,
Y1ptn¨uq

bn
,
C1ptn¨uq

nbn
,
X1 ˝ C1ptn¨uq

bn
,
Z1ptn¨uq

bn
,
L1pZ1qptn¨uq

cn

˙

d
Ñ pX,LpXq, Y, C,X ˝ C,Z, LpZqq as n Ñ 8.

Note the scaling in the second component L1pX1q: in general the temporal scaling would
be n and the spatial scaling would be an. In this case we pass to a subsequence for the joint
convergence of the random vector. Also, note that the regularly varying sequence nbn can
always be assumed to be integer valued (since tbnu also satisfies (2) if bn does). The simplest
scalings are those of Y1 and Z1, which then dictate the form of the others as seen in the proof.

The above result is essentially a straightforward consequence of Theorem 1. The hard part
of the proof of Theorem 1 consists of establishing the assumptions of Theorem 2. Assuming
we have done so, we now proceed with a simple proof of Theorem 4. This includes a proof of
the weak convergence of the scaled BGWI processes to the CBI processes, which is essentially
(but not explicitly) given in [CPGUB13]. This convergence depends on the following explicit
coupling.

The Laplace transforms λ ÞÑ gpe´λ{bnqn and λ ÞÑ eλtnbnu{bnfpe´λ{bnqtnbnu (of Y1pnq{bn and
X1ptnbnuq{bn) converge towards expp´dλαq and expp´cλ1`αq as n Ñ 8, respectively (see (68)
and (69) in Appendix A.1). Thus we see that these random variables converge to Xp1q and
Y p1q as n Ñ 8. Skorokhod’s theorem [Kal21, Thm 23.14] then implies the weak convergence

of the scaled processes X1ptnbn¨uq{bn
d

Ñ X and Y1ptn¨uq{bn
d

Ñ Y in the Skorokhod topology.
Independence implies their joint weak convergence to pX, Y q in the product Skorokhod topol-
ogy. From this point onwards, we work on a probability space where this convergence holds
almost surely: assume then, that on an adequate probability space, there exist a sequence of

processes Xn and Yn such that Xn
d
“ X1ptnbn¨uq{bn and Yn

d
“ Y1ptn¨uq{bn and that Xn Ñ X

and Yn Ñ Y almost surely (in the Skorokhod topology). Note that the temporal scaling of the
process X1, with law equal to that of Xn, allows us to apply [CPGUB13, Lem. 6] and obtain
the scalings that should be used for Z1 and C1. Indeed, in the terminology of [CPGUB13],
for a recursion h1{n, analogous to the discrete Lamperti transformation in (11), but in which
time increases each 1{n (i.e. 1{n is a discretisation parameter), we have

1

bn
Z1ptn¨uq

d
“ Zn “ h1{n

pXn, Ynq &
1

nbn
C1ptbn¨uq

d
“ Cn “ c1{n

pXn, Ynq

(see [CPGUB13, Lem. 6] for the latter recursion). Assuming (12), together with a certain
differential inequality, has a unique solution and the processes X ˝ C and Y do not jump
at the same time, [CPGUB13, Thm 3] gives the convergence Zn Ñ Z and Cn Ñ C, almost
surely. The fact that (12) and the differential inequality have a unique solution follows
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from [CPGUB13, Prop. 2]. By [CPGUB13, Prop. 4], X ˝ C and Y do not jump at the same
time since X is quasi left continuous.

The coupling pZn, Zq, where Zn
d
“ Z1ptn¨uq{bn, is crucial in the proof of Theorem 4.

Proof of Theorem 4. The coupling constructed above implies pXn, Yn, Cn, Xn ˝ Cn, Znq Ñ

pX, Y,C,X ˝C,Zq almost surely as n Ñ 8. It remains to justify the convergence of the local
time components. This is where we can no longer assert the almost sure convergence and
have to resort to convergence in probability. In the case of L1pX1q, this follows from [MUB22,
Thm 2], except that we do not immediately get that the scaling sequence is regularly varying.
Indeed, the scaling sequence panq obtained in [MUB22], for which Lnptq :“ L1pX1qptntuq{an
converges as n Ñ 8 to LpXq, is expressed in terms of the excursion measure of Xn. The
regular variation of panq is established in Appendix A.3 below.

The scaling limit of L1pZ1q is, of course, the content of Theorem 1 and follows from our
assumption, which in turn imply the assumptions of Theorem 2 above. Since the above limit
theorems all hold in probability whenever the random walk components converge almost
surely, the stated joint weak convergence follows. □

1.3. Organisation of the remainder of the paper. In Section 2, we discuss the proof
of Theorem 1 in the context of the framework of Theorem 2. Section 2 gives a proof of
Theorem 1 using a result on branching processes, Theorem 6, stated and applied at the end
of the section. Finally, in Section 3, we prove Theorem 6. This proof is of independent interest
as it extends classical results on (local) extinction times of branching processes to the setting
of infinite variance and establishes a new Yaglom limit for BGWIs stated in Theorem 3 above.
The proof of Theorem 6 relies on a web of results, discussed briefly in the first paragraph
of Section 3 and pictorially represented in the diagram following it. Appendix A discusses
Assumption (SL). Appendix B illustrates the fragility of the convergence of local time in the
context of critical BGWIs.

2. Proof of Theorem 1

The of our main result in Theorem 1 consists of verifying the assumptions in equation (9)
of Theorem 2. In the applications of Theorem 2 in [MUB22], its assumptions were verified
using path-wise arguments. Indeed, we see that (9) mostly involves the convergence of the
hitting times of zero, both forwards and backwards in time from a given time t. However, the
path-wise arguments of [MUB22] do not suffice in the setting of Theorem 1 because, for the
CBI, we wish to analyse the hitting times of the boundary point 0, which is difficult to detect
from the hitting times of the approximating BGWI processes (see example in Appendix B
below where BGWIs converge to the CBI Z but the counting local times at 0 do not converge
to the Markov local time of Z at 0).

The innovation in the proof of Theorem 1 comes from introducing a new technique for
establishing the limits in probability in (9), where Zn and Z are coupled as in Subsection 1.2
above. Unlike the applications in [MUB22], our new technique relies on a mixture of path-wise
and distributional arguments. In order to prove the assumptions in (9) involving the limits
of starts and ends of excursions gt and dt defined in (8), we introduce analogous quantities
(both for Z and Zn) at any positive level ε ą 0:

(13) gεt pZq :“ sup ts ď t : Zptq P r0, εqu and dεtpZq :“ inf ts ą t : Zptq P r0, εqu .

with conventions supH “ 0 and inf H “ 8.
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The following inequalities are valid for any t ě 0 and any ε, η ą 0:

Pp|dtpZq ´ dtpZnq| ą ηq ď Id ` IId ` IIId and Pp|gtpZq ´ gtpZnq| ą ηq ď Ig ` IIg ` IIIg,

where the summands on the right-hand sides of the two inequalities are given by

(14)
Id :“ Pp|dtpZq ´ dεtpZq| ą η{3q , Ig :“ Pp|gtpZq ´ gεt pZq| ą η{3q ,
IId :“ Pp|dεtpZq ´ dεtpZnq| ą η{3q , IIg :“ Pp|gεt pZq ´ gεt pZnq| ą η{3q ,
IIId :“ Pp|dtpZnq ´ dεtpZnq| ą η{3q , IIIg :“ Pp|gtpZnq ´ gεt pZnq| ą η{3q .

By the coupling pZn, Zq, constructed before the proof of Theorem 4 above, we may assume

that the scaled BGWI processes Zn
d
“ Z1ptn¨uq{bn converge to the CBI process Z almost

surely Zn
a.s.
Ñ Z as n Ñ 8.3 Since this implies convergence in probability Zn

P
Ñ Z as n Ñ 8,

Theorem 1 will follow from Theorem 2 if we can prove that, for every η ą 0, we have

(15) lim
εÑ0

lim sup
nÑ8

P pn, εq “ 0, where P pn, εq P tId, IId, IIId, Ig, IIg, IIIgu.

The remainder of the paper analyses each of these limits. We first deal with the limits of
the probabilities Id, Ig, which involve the limiting process only and essentially only require
the quasi left continuity of Z. We then analyse the limits of IId, IIg, requiring the coupling
pZn, Zq mentioned above and a general path-wise convergence result in Lemma 5, downwards
regularity of Z and its quasi left continuity. The limits in (15) of probabilities IIId, IIIg
follow from Theorem 6 below, whose proof in Section 3 below requires both weak convergence
of the hitting times of branching processes as well as path-wise arguments, including the
aforementioned Skorokhod convergence result in Lemma 5.

Proof of Theorem 1 (case limεÑ0 Id,g “ 0 for Id,g in (14)). Note that by (4) the following limit
holds PpZptq “ 0q “ limλÑ8 Ez

`

e´λZptq
˘

“ 0 for all Zp0q “ z P r0,8q and t ą 0. Moreover,
since δ P p0, 1q, [FUB14, §5.2.1] implies that Z is recurrent. As neither Id nor Ig depend on
Zn, we will in this part of the proof temporarily denote dt “ dtpZq and dεt “ dεtpZq and,
similarly, gt “ gtpZq and gεt “ gεt pZq. Pick t ą 0.

Since Z has no negative jumps, for 0 ă ε ă Zptq we get dεt ď dt ă 8 and Zpdεtq “ ε.

Moreover, dεt increases strictly, say to d̃t ď dt, as ε Ñ 0. Recall that the self similar CBI
process Z of Theorem 1 is Feller (evident from the one-dimensional distributions in (4)) and

therefore quasi left continuous, implying ε “ Zpdεtq Ñ Zpd̃tq so that Zpd̃tq “ 0 and hence

d̃t “ dt. Hence d
ε
t Ñ dt as ε Ñ 0 a.s. for all t ą 0, implying Id Ñ 0 as ε Ñ 0.

Regarding Ig, on the interval pgt, dtq, g
ε
t decreases (as ε Ñ 0) to a limit we will denote

g̃t ě gt. Note that, by definition ε ě Zpgεt ´q Ñ 0 as ε Ñ 0 (Z has left limits Zps´q,
s ě 0, with Zp0´q :“ 0). If gεt ą g̃t for all small ε ą 0 then 0 “ limεÑ0 Zpgεt ´q “ Zpg̃tq
by right continuity, so that Zpg̃tq “ 0 and therefore g̃t “ gt. If gεt “ g̃t for all ε small
enough, it means that Z jumps at g̃t and, by the lack of negative jumps, Zpg̃tq ą 0. Since
ε ě Zpgεt ´q “ Zpg̃t´q for all small ε ą 0, we get Zpg̃t´q “ 0. To conclude, we will use the
following claim, found in [MUB22, p. 44] and which essentially uses quasi left continuity:
during each excursion interval pg, dq of Z away from 0 (i.e. a connected component of the

excursion set r0,8qzts ě 0 : Zpsq “ 0u), for every u P pg, dq, we have not only that Zpuq ‰ 0
but also that Zpu´q ‰ 0. (We prove a similar statement at level ε in our analysis of IId below.)
The claim implies that g̃t does not belong to the interval pgt, ts Ă pgt, dtq and therefore g̃t “ gt.
Thus limεÑ0 g

ε
t “ gt a.s., implying Ig Ñ 0 as ε Ñ 0. □

3The properties of the coupling pZn, Zq used in the remainder of the paper are the almost sure convergence
and the correct distributions of the processes Zn and Z. The processes Xn, Yn, Cn, X, Y, C, used in this
coupling construction, do not feature in the proof of Theorem 1.
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The path-wise arguments for probabilities IId, IIg in (14) rely on a Skorokhod space result
below, stated for a metric space pE, dq. Let D denote the Skorokhod space of càdlàg functions
from r0,8q into E (i.e. f P D is right continuous and has left limits). Recall that if a sequence
pfnqnPN tends to f in the Skorokhod J1-topology onD, for every T ą 0 at which f is continuous
there exists a sequence of increasing homeomorphisms pλnqnPN from r0, T s to itself, satisfying
suptPr0,T s maxt|λnptq ´ t|, dpfnptq, fpλnptqqu Ñ 0 as n Ñ 8, see [EK86, Sec. 5] for details. In
particular, for any sequence tn Ñ t P r0, T q, where f is continuous at the time t, we have

(16) dpfnptnq, fptqq ď dpfnptnq, fpλnptnqqq ` dpfpλnptnqq, fptqq Ñ 0 as n Ñ 8.

Using the convention inf H “ 8, for any set U Ă E, define the hitting time (resp. left-limit
hitting time) of U by a function f P D as follows:

(17) TUpfq :“ inf tt ě 0 : fptq P Uu (resp. T´
U pfq :“ inf tt ě 0 : fpt´q P Uu ).

Here and throughout we define the left limit at t ą 0 by fpt´q :“ limsÒt fptq and at t “ 0 by
fp0´q :“ fp0q. It follows easily from the definition in (17) that for any open set O in E the
following holds: if t satisfies fptq P O (resp. fpt´q P O), then T´

O pfq ď t (resp. TOpfq ď t).
Thus any càdlàg function f satisfies

(18) TOpfq “ T´
O pfq for any open set O in E.

Lemma 5. Let O Ă E be open and denote its closure in E by C. Let f P D satisfy

(19) TOpfq ď mintTCpfq , T´
C pfqu.

If a sequence pfnqnPN in D converges in J1-topology to f , then TOpfnq Ñ TOpfq as n Ñ 8 in
r0,8s. If, in addition, we assume

(20) TOpfq ă 8 and fpTOpfqq “ fpTOpfq´q,

then TOpfnq ă 8 for all large n and pTOpfnq , fnpTOpfnqqq Ñ pTOpfq , fpTOpfqqq as n Ñ 8 in
r0,8q ˆ E

Proof. Under assumption (20), f is continuous at TOpfq ă 8. Thus, by (16), the second
assertion of the lemma follows from the first. We now prove that (19) implies TOpfnq Ñ TOpfq.
We first show lim supn TOpfnq ď TOpfq. If TOpfq “ 8, this is obvious. If TOpfq ă 8, for

any δ ą 0, there exists a continuity point t1 P rTOpfq , TOpfq ` δs of f such that fpt1q P O.
By (16) (with tn “ t1 for all n P N) we have fnpt1q P O for all large n, implying the inequality.
Moreover, since lim infn TOpfnq ě 0, if TOpfq “ 0 then the limit TOpfnq Ñ 0 holds.
We assume TOpfq P p0,8s and have to prove lim infn TOpfnq ě TOpfq. By (19), for any

s P r0, TOpfqq, we have fpsq R C and fps´q R C. Fix arbitrary T P r0, TOpfqq. Then we have

(21) η :“ inftdpfpsq, Cq ^ dpfps´q, Cq : s P r0, T su ą 0,

where u ^ v :“ mintu, vu, u, v P R. Indeed, if to the contrary η “ 0, there exists a sequence
psnqnPN in r0, T s converging to s1 P r0, T s, such that dpfpsnq, Cq^dpfpsn´q, Cq Ñ 0 as n Ñ 8.
Thus there exists ps1

nqnPN in r0, T s, such that s1
n Ñ s1 and dpfps1

nq, Cq Ñ 0. Since f is càdlàg,
dpfps1q, Cq ď dpfps1

nq, Cq ` dpfps1
nq, fps1qq and dpfps1´q, Cq ď dpfps1

nq, Cq ` dpfps1
nq, fps1´qq,

we have

dpfps1
q, Cq ^ dpfps1

´q, Cq ď dpfps1
nq, Cq ` dpfps1

nq, fps1
qq ^ dpfps1

nq, fps1
´qq Ñ 0

as n Ñ 8, implying either fps1q P C or fps1´q P C (recall C is closed) and contradicting (19).
We now show that (21) implies the following claim: there exists N P N such that

(22) inftdpfnpsq, Cq ^ dpfnps´q, Cq : s P r0, T su ą η{4 for all n ě N .
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Assume claim (22) is false. Then there exist sequences pnkqkPN in N, with nk Ñ 8, and
pskqkPN in r0, T s, such that dpfnk

pskq, Cq ^ dpfnk
psk´q, Cq ď 3η{8 for all k P N. Hence there

exists a sequence ps1
kqkPN, such that dpfnk

ps1
kq, Cq ă η{2 for all k P N. Moreover, by passing

to a subsequence, we may assume that s1
k Ñ s1 P r0, T s as k Ñ 8. Hence, for k P N, we have

dpfps1
q, Cq ^ dpfps1

´q, Cq ď dpfnk
ps1

kq, Cq ` dpfps1
q, fnk

ps1
kqq ^ dpfps1

´q, fnk
ps1

kqq.(23)

Convergence fnk
Ñ f in J1-topology on D and a triangle inequality (analogous to (16), using

fpλkps1
kqq with increasing homeomorphisms λk; r0, T s Ñ r0, T s, k P N) imply

dpfps1
q, fnk

ps1
kqq ^ dpfps1

´q, fnk
ps1

kqq ďdpfps1
q, fpλkps1

kqqq ^ dpfps1
´q, fpλkps1

kqqq

` sup
uPr0,T s

dpfpλkpuqq, fnk
puqq Ñ 0 as k Ñ 8.

Thus by (23) we obtain dpfps1q, Cq ^ dpfps1´q, Cq ď η{2, contradicting (21) since s1 P r0, T s.
By (22) we get TOpfnq ě T for all n ě N . Since T P r0, TOpfqq was arbitrary, we have

lim infn TOpfnq ě TOpfq, concluding the proof of the lemma. □

Recall that the coupling pZn, Zq, where Zn
d
“ Z1ptn¨uq{bn and Z denotes the self-similar

CBI in (12), is such that Zn
a.s.
Ñ Z as n Ñ 8.

Proof of Theorem 1 (case limεÑ0 limnÑ8 IId “ 0 for IId in (14)). Pick arbitrary ε ą 0 and
t ě 0 and define O :“ r0, εq Ă E :“ r0,8q and its closure C :“ r0, εs. Recall dεtpZq “

infts ą t : Zpsq P Ou and dεtpZnq “ infts ą t : Znpsq P Ou. Since O is open, note that TOpfq

(defined in (17) for any càdlàg f : r0,8q Ñ E) satisfies TOpfq “ inftt ą 0 : fptq P Ou. Define
the càdlàg processes Zt :“ Zpt ` ¨q and Zt

n :“ Znpt ` ¨q with the same semigroups as Z and
Zn, respectively. Then, by Lemma 5, dεtpZq “ t` TOpZtq ă 8 and dεtpZnq “ t` TOpZt

nq ă 8

satisfy |dεtpZq ´ dεtpZnq|
nÑ8
ÝÑ 0 almost surely, thus implying Theorem 1 in this case (since

IId “ Pp|dεtpZq ´ dεtpZnq| ą η{3q Ñ 0 as n Ñ 8, the limit in (15) holds for IId), if we establish

(24) TOpZt
q ď TCpZt

q ^ T´
C pZt

q almost surely.

We first prove TOpZtq “ TCpZtq a.s. Since O Ă C, we have TOpZtq ě TCpZtq and, as
TCpZtq is a stopping time, also PpTCpZtq ă TOpZtqq “ E

`

PZpTCpZtqqp0 ă TOpZqq
˘

as well as
ZpTCpZtqq P C a.s. If ZpTCpZtqq P O, then PZpTCpZtqqp0 ă TOpZqq “ 0. If ZpTCpZtqq “ ε,
then [MUB22, p. 45] (under the heading Regular and instantaneous character of z) yields
downwords regularity of Z at any positive level, implying Pεp0 ă TOpZqq “ 0. Hence
PpTCpZtq ă TOpZtqq “ 0 and the equality TOpZtq “ TCpZtq holds almost surely.
We now prove TCpZtq “ T´

C pZtq a.s. Notice that the downwards regularity of Z in the
previous paragraph and the strong Markov property at TCpZtq yield T´

C pZtq ď TCpZtq a.s.
Consider Cδ :“ r0, ε` δs and note that for δ ą 0 we have TCδ

pZtq ď T´
C pZtq ď TCpZtq a.s. If

δ1 ą δ ą 0, then TCδ1 pZ
tq ď TCδ

pZtq with strict inequality on the event tZtpTCδ1 pZ
tqq ą δu.

Hence the stopping time T̃ :“ limδÓ0 TCδ
pZtq satisfies

(25) T̃ ď T´
C pZt

q ď TCpZt
q a.s.

If Ztp0q P C, then by definition (17) we have TCpZtq “ 0. Moreover, in this case we have
TCδ

pZtq “ 0 for all δ ą 0, implying T̃ “ 0 and, by (25), the equality T´
C pZtq “ TCpZtq. If

Ztp0q R C, then ZtpTCδ
pZtqq ą ε for all small δ ą 0 and TCδ

pZtq Ò T̃ as δ Ó 0. The quasi

left continuity of Z at T̃ implies ZtpT̃ q “ limδÓ0 Z
tpTCδ

pZtqq “ ε P C, where the last equality
follows from ZtpTCδ

pZtqq “ ε ` δ for all small δ ą 0 (which holds since Z has no negative

jumps). In particular we get T̃ ě TCpZtq. By (25) we obtain T̃ “ T´
C pZtq “ TCpZtq a.s.

Thus (24) holds. □
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Proof of Theorem 1 (case limεÑ0 limnÑ8 IIg “ 0 for IIg in (14)). Let O “ r0, εq, C “ r0, εs

and define the càdlàg process Ẑ by Ẑpsq :“ Zpmaxtt ´ s, 0u´q for s P r0,8q. Note that

Ẑ runs along the path of Z backward from time t to 0 and for s P rt,8q we have Ẑpsq “

Zp0´q “ Zp0q “ 0. By the definitions in (13) of gεt pZq and in (17) of T´
O pẐq we obtain

gεt pZq “ supts P r0, ts : Zpsq P Ou “ suptt ´ s P r0, ts : Zpt ´ sq P Ou

“ t ´ infts P r0, ts : Zpt ´ sq P Ou

“ t ´ infts P r0,8q : Zpmaxtt ´ s, 0uq P Ou

“ t ´ infts P r0,8q : Ẑps´q P Ou “ t ´ T´
O pẐq “ t ´ TOpẐq,

where the last equality holds by (18) since O is open in E “ r0,8q and Ẑ is càdlàg. The same

argument applied to the càdlàg process Ẑn, where Ẑnpsq :“ Znpmaxtt´ s, 0u´q for s P r0,8q,

yields gεt pZnq “ t ´ TOpẐnq.

Given the representations gεt pZq “ t ´ TOpẐq and gεt pZnq “ t ´ TOpẐnq, as in the case IId,

the aim is to verify Assumption (19) of Lemma 5, which (phrased in terms of Ẑ) requires

(26) TOpẐq ď mintTCpẐq, T´
C pẐqu.

Then, by Lemma 5, we have TOpẐnq Ñ TOpẐq almost surely as n Ñ 8, implying by defini-
tion (14) the limit limnÑ8 IIg “ 0 for every ε ą 0 and concluding the proof of this case of
Theorem 1.

It remains to prove the inequality in (26). The key difference with the case IId is that the

dynamics of Ẑ is not tractable, making its regularity at ε hard to establish. The solution
is to rephrase (26) in terms of the forward process Z and its behaviour upon touching or

approaching level ε. Note first that Ẑ only has negative jumps and hence TCpẐq ď T´
C pẐq.

Indeed, if s is such that Ẑps´q ď ε, then Ẑpsq “ Ẑps´q ` pẐpsq ´ Ẑps´qq ď ε. Hence (26)

holds if we show TOpẐq ď TCpẐq a.s.

Recall that by definition TOpẐq ď t, since Ẑptq “ Zp0q “ 0. On the event tTCpẐq ă TOpẐqu,
the forward process Z behaves as follows at some time s P r0, ts: either Z approaches ε from
above by a left limit at s and jumps up at s and remains above ε on rs, ts or Z touches ε
from above continuously at s and remains above ε on ps, ts. Hence

tTCpẐq ă TOpẐqu Ă YrPQXr0,tstTCpZr
q ă TOpZr

qu,

where, as shown in the proof of IId above, we have PpTCpZrq ă TOpZrqq “ 0 for all r P QXr0, ts

(recall Zr “ Zpr ` ¨q). Therefor TOpẐq ď TCpẐq ď T´
C pẐq and (26) holds. □

We now proceed with the proof of the limits of the probabilities IIId and IIIg in (14). It is
based on Theorem 6, which will be established in Section 3 below via uniform distributional
control of forward-looking hitting times of zeros of BGWI processes.

Theorem 6. Under Assumption (SL) with δ “ d
αc

P p0, 1q, for any t ě 0 and ε ą 0, we have

pgεt pZnq, gtpZnqq
d

Ñ pgεt pZq, gtpZqq and pdεtpZnq, dtpZnqq
d

Ñ pdεtpZq, dtpZqq as n Ñ 8.

Before concluding the proof of Theorem 1, note that, as seen in the proof above of the
limits of the probabilities IId and IIg in (14), under our coupling we in fact have almost sure
convergence of the first components in the both weak limits of Theorem 6.
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Proof of Theorem 1: limεÑ0 limnÑ8 IIIg,d “ 0 for IIId in (14). Theorem 6 implies the weak
convergence

gεt pZnq ´ gtpZnq
d

Ñ gεt pZq ´ gtpZq and dtpZnq ´ dεtpZnq
d

Ñ dtpZq ´ dεtpZq as n Ñ 8.

Therefore, upon taking the limit as n Ñ 8 of probabilities IIId and IIIg in (14), we obtain Id
and Ig. By the preceding proof of the cases Id and Ig, we can then take the limit as ε Ñ 0 to
get 0, concluding the proof of Theorem 1. □

3. Convergence of the hitting times of BGW and BGWI: proofs of the
Yaglom limit and Theorem 6

To conclude the proof of Theorem 1, it remains to establish Theorem 6. The proof is a
succession of steps which at first glance appear unrelated. We first prove the convergence of
the extinction times of BGW process (Lemma 7 below). We then establish the asymptotics
of the probability PpZ1pnq “ 0q for the BGWI process Z1 and apply Tauberian theorems to
determine the asymptotics for the tails of the first return time to zero Ppd1pZ1q ą nq for BGWI
processes Z1, see Lemma 8 below. We use the asymptotics of PpZ1pnq “ 0q and Ppd1pZ1q ą nq

to prove a local limit theorem for gtpZnq (with limit gtpZq), cf. Corollary 9 below. Using this
local limit theorem and the extinction time convergence of the BGW processes, we prove the
limit of the hitting times of zero for BGWI started away from zero (cf. Lemma 11 below) and
then establish the weak limit of the pair pdεtpZnq, dtpZnqq. The limit of pgεt pZnq, gtpZnqq follows
from the limit in Lemma 13, which in turn requires a general fact relating excursions exceeding
a given length to the excursion straddling time t (see [Get79, Thm 7.35]), the Yaglom limit
for BGWIs in Theorem 3 (stated above) and a characterisation of the conditional law of Zptq,
given gtpZq “ s, in Proposition 12 below. It is crucial for our proof of Theorem 6 (and hence
that of Theorem 1) that this conditional law coincides with the limit law in the Yaglom limit
of Theorem 3. The overview of the steps in the proof of Theorem 6 is given in the diagram:

pdεtpZnq, dtpZnqq
d

Ñ pdεtpZq, dtpZqq

pgεt pZnq, gtpZnqq
d

Ñ pgεt pZq, gtpZqq

Theorem 6

Proposition 12:
Conditional law of CBI
Zptq, given gtpZq “ s,

is Linnik law

Lemma 13:
pgtpZnq, Znptqq
d

Ñ pgtpZq, Zptqq

Lemma 5:
pTOpfnq , fnpTOpfnqqq

Ñ pTOpfq , fpTOpfqqq

Lemma 10:
Joint convergence (tn Ñ t):

pgtnpZnq, dtnpZnqq
d

Ñ pgtpZq, dtpZqq

Lemma 11:
Convergence of hitting times of 0
for starting points zn Ñ z ą 0

of BGWI/CBI: d0pZ
zn
n q

d
Ñ d0pZ

zq

Theorem 3:
Yaglom limit of Znptnq,
given d1{npZnq ą tn, as

tn
nÑ8
ÝÑ t ą 0 is Linnik law

Corollary 9:
Local limit theorem

gtpZnq{t
nÑ8
ÝÑ Betap1 ´ δ, δq

Lemma 7:
Convergence of hitting times of 0

for starting points zn Ñ z

of BGW/CB: d0pZ̃
zn
n q

d
Ñ d0pZ̃

zq

Lemma 8:
For BGWI Z1, asymptotics of
PpZ1pnq “ 0q & Ppd1pZ1q ą nq
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3.1. The local limit theorem for gtpZnq{t and the proof of the Yaglom limit. Given
our offspring distribution µ with generating function f satisfying the domain of attraction
condition (SL), let Z̃1 be a BGW process whose reproduction dynamics are governed by µ.
This can be explicitly constructed using the random walk X1 (with jump distribution given
by the shifted offspring distribution µ̃) by solving recursion (11) with Y1 ” 0 and a starting
state l P N:

Z̃ l
1 “ l ` X1 ˝ C̃1 where C̃1pkq “

ÿ

0ďjăk

Z̃ l
1pjq.

We will denote the law of Z̃ l
1 by P̃l. The branching property of Z̃ l

1 is as follows,

P̃l1`l2 “ P̃l1 ˚ P̃l2 for any l1, l2 P N,

where P̃l1 ˚ P̃l2 denotes the law of the sum of independent copies of Z̃ l1
1 and Z̃ l2

1 . Recall also
that the law of Z̃ l

1pnq is characterised in terms of the n-th iteration f ˝n of the function f in
Assumption (SL) with itself (for n “ 0, we define f ˝0psq :“ s) for all n, l P N as follows:

(27) EpsZ̃
l
1pnq

q “ f ˝n
psql.

Since 0 is an absorbing state for Z̃ l
1 (as no immigration is present), the hitting time of 0 of

Z̃ l
1, which equals d0pZ̃ l

1q, then satisfies

(28) P
´

d0pZ̃ l
1q ď n

¯

“ P
´

Z̃ l
1pnq “ 0

¯

“ f ˝n
p0q

l, for all n, l P N.

Analogous to (11), by e.g. [CPGUB13], we can define the CB process Z̃z started at z P r0,8q

as the unique solution of

Z̃z
ptq “ z ` X

ˆ
ż t

0

Z̃z
psq ds

˙

.

By [Li06, Thm 2.1], Z̃z is the (large population) scaling limit of Z̃zn
n , where Z̃zn

n ptq “

Z̃ ln
1 ptntuq{bn, the scaling sequence bn satisfies equation (2), ln :“ tbnzu and hence zn :“ ln{bn Ñ

z as n Ñ 8. It is perhaps no surprise (although we cannot find it in the literature) that the
extinction times (i.e. hitting times of zero) of Z̃zn also converge weakly to those of Z̃z.

Lemma 7. Let µ be an offspring distribution with the generating function f satisfying (1) in
Assumption (SL). If ln P N is such that zn :“ ln{bn Ñ z ą 0, where pbnq satisfies equation
(2), then, as n Ñ 8,

P
´

d0pZ̃
zn
n q ď t

¯

“ P
´

d0pZ̃ ln
1 q{n ď t

¯

Ñ e
´ z

pαctq1{α “ P
´

d0pZ̃
z
q ď t

¯

for any t P r0,8q.

Proof. Under Assumption (SL), [Sla68, Lem. 2] tells us that, as n Ñ 8, we have

(29) cp1 ´ f ˝n
p0qq

αlp1 ´ f ˝n
p0qq „

1

αn
.

Define un :“ pαcq´1{αp1´ f ˝np0qq´1. Since l is slowly varying at zero and un Ñ 8 as n Ñ 8,
by (29) we get n „ uαn{lp1{unq. Thus the sequence punq is asymptotically equivalent to an
asymptotic inverse of the sequence pnα{lp1{nqq. Since, by the property in (2), the scaling
sequence pbnq is also an asymptotic inverse of the sequence pnα{lp1{nqq, we get

bn „ un “ pαcq´1{α
r1 ´ f ˝n

p0qs
´1 as n Ñ 8.
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Since the sequence pbnq is regularly varying with index 1{α, the limit btntu{bn Ñ t1{α holds by
definition. By (28),

P
´

d0pZ̃
ln
1 q{n ď t

¯

“ f ˝tntu
p0q

ln “
`

1 ´ p1 ´ f ˝tntu
p0qq

˘ln

„

ˆ

1 ´
1

pαctq1{αbn

˙bnz

Ñ e
´ z

pαctq1{α as n Ñ 8.

The Laplace transforms of the one-dimensional distributions of the CBI process under Pz

specialize to those of Z̃z upon setting d “ 0 in (4). Since 0 is also absorbing for Z̃z, we
therefore recover the expression for the hitting times of the left-hand side:

P
´

d0pZ̃z
q ď t

¯

“ P
´

Z̃z
ptq “ 0

¯

“ e
´ z

pαctq1{α . □

The proof of Theorem 6 requires a result, analogous to Lemma 7, for the BGWI process
Z1 introduced in Section 1 above, cf. (11). Let Z l

1 be a BGWI process started at l P N with
the same offspring and immigration mechanisms as Z1. In particular, note that Z1 “ Z0

1 . We
can explicitly construct Z l

1 via the discrete Lamperti transformation as in (11):

(30) Z l
1 “ l ` X1 ˝ C l

1 ` Y1, where C l
1pkq “

ÿ

0ďjăk

Z l
1pjq.

Let Pl stand for the law of Z l
1. Recall that the generating function of Z l

1pnq, for any n, l P N,
can be expressed in terms of g and the iterates of f by (30) as follows:

(31) E
´

sZ
l
1pnq

¯

“ f ˝n
psql ¨

ź

0ďmăn

g ˝ f ˝m
psq.

By (31), we deduce the following branching property relating BGWI and BGW processes:

(32) Pl “ P̃l ˚ P0.

Differently put, if Z1 is independent of Z̃ l, we have Z l
1

d
“ Z̃ l

1 ` Z1. As a consequence, we will
make use of the relation of the hitting times of zero of Z l

1 and Z1.

Lemma 8. Let the offspring and immigration generating functions f and g, respectively,
satisfy Assumption (SL) and denote δ “ d

cα
. Then there exists a function l˚ : r0,8q Ñ p0,8q,

slowly varying at infinity, such that

PpZ1pnq “ 0q „ l˚
pnqn´δ as n Ñ 8.(33)

If δ P p0, 1q, then we have

Ppd1pZ1q ą nq „
1

ΓpδqΓp1 ´ δql˚pnqn1´δ
“

sinpπδq

π
nδ´1

{l˚
pnq as n Ñ 8.(34)

Note that (33)–(34) in Lemma 8 imply the asymptotic equivalence

nPpZ1pnq “ 0q „
1

ΓpδqΓp1 ´ δqPpd1pZ1q ą nq
, as n Ñ 8.

As Zn
d
“ Z1ptn¨uq{bn and d1pZ1q{n

d
“ d1{npZnq, the scaling sequences pcnq and pc̃nq in Theo-

rems 1 and 2, respectively, are asymptotically equivalent (up to a constant factor).
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Proof of Lemma 8. We first construct the regularly varying function l˚ and prove (33). To
this end, we start with the asymptotic analysis of the product formula (31) for l “ 0:

PpZ1pnq “ 0q “
ź

0ďiăn

g ˝ f ˝i
p0q.

By Assumption (SL), kpsq{lpsq Ñ 1 as s Ñ 0 and the offspring distribution µ is critical,
implying f ˝np0q Ñ 1 as n Ñ 8. The asymptotic equivalence in (29) (i.e. [Sla68, Lem. 2])
implies

1 ´ g ˝ f ˝n
p0q „ dp1 ´ f ˝n

p0qq
αkp1 ´ f ˝n

p0qq „
dkp1 ´ f ˝np0qq

αcnlp1 ´ f ˝np0qq
„
δ

n
as n Ñ 8.

Put differently, we have 1´ g ˝ f ˝np0q “ p1` εpnqqδ{n where εpnq Ñ 0 as n Ñ 8. Recall that
for every s P p0, 1q there exists ξs P p0, sq such that logp1 ´ sq “ ´s ` s2{p2p1 ´ ξsq

2q. Then

PpZ1pnq “ 0q “ e
ř

0ďiăn logp1´p1´g˝f˝ip0qqq
“ e´

ř

0ăiăn δ{i
¨ l˚

pnq,

where l˚pnq :“ gp0qe´
ř

0ăiăn δ2p1`εpiqq2{p2p1´ξiq
2i2q¨e´

ř

0ăiăn εpiqδ{i and 0 ă ξi ă 1´g˝f ˝ip0q ă 1 for
all i P N (recall that gp0q “ νp0q P p0, 1q by our standing assumption; if we had νp0q “ 0, the
BGWI process Z1 could not return to zero, cf. Appendix B below). Since 1 ´ g ˝ f ˝ip0q Ñ 0

as i Ñ 8, the factor gp0qe´
ř

0ăiăn δ2p1`εpiqq2{p2p1´ξiq
2i2q in the definition of l˚ converges to

a finite positive value, by Karamata’s representation [BGT87, Thm 1.3.1], l˚ is a slowly
varying function. Note that, modulo a constant, the factor e´

ř

0ăiăn δ{i in the expression for
PpZ1pnq “ 0q above is asymptotic to n´δ, implying (33).

The next step is to prove (34), assuming 0 ă δ ă 1. We now consider the tail asymptotics
for the first return to zero of Z1 (which equals d1pZ1q). Let Upxq “

ř

0ďnďx PpZ1pnq “ 0q

be the renewal function corresponding to the returns to zero of Z1. The (direct half of the)
Karamata integral theorem (cf. [BGT87, Thm 1.5.11]) and (33) imply

(35) Upxq „
x1´δ

1 ´ δ
l˚

pxq as x Ñ 8.

Let Ûpλq :“
ş

r0,8q
e´λx Updxq be the Laplace transform of the measure associated to U . Since

tZ1pnq “ 0u “
Ť

kPNtDk “ nu, where D0 :“ 0 and Dk :“ d1`Dk´1
pZ1q, k ě 1, and, by the

strong Markov property of Z1, we have Epe´λDkq “
`

Epe´λd1pZ1qq
˘k
. It holds that

Ûpλq “
ÿ

nPN

e´λnPpZ1pnq “ 0q “
ÿ

nPN

e´λn
ÿ

kPN

PpDk “ nq “
1

1 ´ E pe´λd1pZ1qq
.

By (35), the Karamata Tauberian theorem implies

Ûpλq „ Γp2 ´ δq
λ´p1´δq

1 ´ δ
l˚

p1{λq as λ Ñ 0,

so that

(36) 1 ´ E
`

e´λd1pZ1q
˘

„
λ1´δ

Γp1 ´ δql˚p1{λq
as λ Ñ 0.

By (36) and Example c in [Fel71, XIII§5, p.447] we get the asymptotic equivalence in (34). □

Corollary 9. Let Assumption (SL) hold with δ “ d
αc

P p0, 1q and assume Zn
d
“ Z1ptn¨uq{bn.

The following local limit theorem holds: for any t ą 0 and any sequence psnq such that nsn P N
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and sn Ñ s P p0, tq, we have

(37) PpgtpZnq “ snq „
1

n

1

ΓpδqΓp1 ´ δqsδpt ´ sq1´δ
as n Ñ 8.

Proof. The asymptotic equivalences in Lemma 8 imply the local limit theorem for gtpZnq

as stated in (37). Indeed, for any sequence psnq, such that sn P N{n for all n P N and
sn Ñ s P p0, tq, we have nsn ě 1 for all sufficiently large n and

tgtpZnq “ snu “ tgntpZ1q{n “ snu “ tZ1pnsn ´ 1q “ 0, dnsnpZ1q ą npt ´ snqu.

(We assume the almost sure equality Zn “ Z1ptn¨uq{bn holds.) By the Markov property at
time nsn ´ 1, we obtain

PpgtpZnq “ snq “ PpZ1pnsn ´ 1q “ 0qPpd1pZ1q ą npt ´ snqq

„
l˚pnsn ´ 1qpnsn ´ 1q´δ

ΓpδqΓp1 ´ δql˚pnpt ´ snqqpnpt ´ snqq1´δ

„
1

n

1

ΓpδqΓp1 ´ δqpsn ´ 1{nqδpt ´ snq1´δ

„
1

n

1

ΓpδqΓp1 ´ δqsδpt ´ sq1´δ
as n Ñ 8,

where the first asymptotic equivalence follows from (33)–(34) and the second holds since l˚

is slowly varying. □

The local limit theorem in Corollary 9, Scheffé’s Lemma and a general observation about
ends of excursion straddling a given time yield the following weak limit result.

Lemma 10. Recall that Zn
d
“ Z1ptn¨uq{bn. Under Assumption (SL) with δ “ d

αc
P p0, 1q, if

tn Ñ t ą 0, we have the weak convergence

(38) pgtnpZnq, dtnpZnqq
d

Ñ pgtpZq, dtpZqq as n Ñ 8.

Proof. Theorem 3.3 in [Bil99, Ch.1§3, p. 30] (essentially Scheffé’s Lemma) implies that the
local limit theorem in Corollary 9 above yields a weak limit theorem for gtpZnq. By (37), the
density of the limit equals s ÞÑ 1{pΓpδqΓp1 ´ δqsδpt ´ sq1´δq on the interval s P p0, tq. This
weak limit is the generalised arcsine law of parameter 1´δ, which corresponds to the Beta law
Bp1 ´ δ, δq. Proposition 13 in [FUB14] implies that the zero set of Z is the range of a stable
subordinator of index 1 ´ δ. Therefore, we see that gtpZq{t also has the genralised arcsine
law of parameter 1 ´ δ (as shown, for example, in Proposition 3.1 of [Ber99]) and therefore

(39) gtpZnq
d

Ñ gtpZq as n Ñ 8, for every t P p0,8q.

Pick any s1 ă t ă s2 straddling t. Since tn Ñ t, for all large n we have s1 ă tn ă s2 and

tgtnpZnq ă s1 ă s2 ă dtnpZnqu “ tgs2pZnq ă s1u .

Since tgtpZq ă s1 ă s2 ă dtpZqu “ tgs2pZq ă s1u and, by (39), the following limit holds
Ppgs2pZnq ă s1q Ñ Ppgs2pZq ă s1q as n Ñ 8 for all s1 ă s2, since for every s2 the limit
law in (39) has no atoms. By the Portmanteau Theorem, [Bil99, Ch.1, §2, Thm 2.1], we
obtain the weak limit in (38). In particular, note that we then also get the weak convergence
of the second coordinate dtnpZnq. □
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We establish, using the convergence of the hitting times of zero of BGWs in Lemma 7,
the limit in Lemma 10 above and the brancing properties of both the limit and the pre-limit
processes, a limit theorem for the hitting times of zero of the scaled BGWI processes started
from an arbitrary positive state. Recall from (30) the notation Z l

1 for the BGWI process
started at level l P Nzt0u and denote by Zz the CBI process started from z ą 0.

Lemma 11. Under Assumption (SL) with δ “ d
αc

P p0, 1q, if the sequence pznq is such that

bnzn P N and zn Ñ z P p0,8q, where the scaling sequence pbnq satisfies (2), and Zzn
n

d
“

Zbnzn
1 ptn¨uq{bn we have

(40) d0pZ
zn
n q

d
Ñ d0pZz

q as n Ñ 8.

Proof. The branching property of BGWI processes in (32) implies that, starting from l P N,
the hitting time of 0 of Z l

1 equals the first zero of Z1 after Z̃
l
1 hits 0 at d0pZ̃

l
1q. Succinctly put,

d0pZ
l
1q

d
“ dd0pZ̃l

1qpZ1q, where Z1 and Z̃ l
1 are independent.

This equality in law also holds for Zzn
n (resp. Zz) with Z̃zn

n and Zn (resp. Z̃z and Z)
independent:

(41) d0pZ
zn
n q

d
“ dd0pZ̃zn

n qpZnq (resp. d0pZz
q

d
“ dd0pZ̃zqpZq).

For a bounded continuous h : r0,8q Ñ R, define bounded functions Hn, H : r0,8q Ñ R by

Hnptq :“ EphpdtpZnqqq, Hptq :“ EphpdtpZqqq.

Since, by (38) in Lemma 10, it holds that dtnpZnq
d

Ñ dtpZq as n Ñ 8 for any sequence tn Ñ t,
we have

(42) Hnptnq Ñ Hptq as n Ñ 8.

As zn Ñ z, the weak convergence d0pZ̃
zn
n q

d
Ñ d0pZ̃

zq holds by Lemma 7. By the Skorokhod
representation theorem, we may assume almost sure convergence d0pZ̃

zn
n q Ñ d0pZ̃

zq, which,
together with (42), yields an almost sure limit Hnpd0pZ̃

zn
n qq Ñ Hpd0pZ̃zqq. By (41), we obtain

E phpd0pZzn
n qqq “ E

´

Hnpd0pZ̃
zn
n qq

¯

Ñ E
´

Hpd0pZ̃
z
qq

¯

“ E phpd0pZz
qqq as n Ñ 8,

where the limit follows by the Dominated Convergence Theorem applied to the bounded
sequence of almost surely convergent random variables pHnpd0pZ̃

zn
n qqqně1. □

Remark. Note that the weak limit in (38) appears similar to the assumptions of Theorem 2
(i.e. the convergence of gtpZnq Ñ gtpZq and dtpZnq Ñ dtpZq, together with Zn Ñ Z, in
probability), which we are striving to establish, in order to apply Theorem 2. However,
note also that the joint weak convergence in (38) of Lemma 10 does not imply the requisite
convergence in probability by, say, the Shorokhod representation theorem, as we have not

established the weak convergence of the triplet pgtnpZnq, dtnpZnq, Znq
d

Ñ pgtpZq, dtpZq, Zq.
Note also that extending directly the weak convergence in Lemma 10 to that of the triplet
appears difficult.

We now give a proof of Theorem 3, which relies in an essential way on the asymptotics in
Lemma 8 above.
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Proof of Theorem 3. Set ρ “ d1pZ1q as the first return to zero of Z1. Note that by the defi-
nition in (8) above, on the event Z1p1q “ 0 we have ρ “ 1. Define Npn, sq :“ E

`

1 ´ sZ1pn^ρq
˘

and note the following: Np0, sq “ 0, the right-limit as s Ó 0 equals Npn, 0q :“ limsÓ0Npn, sq “

Ppρ ą nq “: qn, and 1 ´ sZ1pn^ρq “ 0 on the set tρ ď nu “ tZ1pn ^ ρq “ 0u. Moreover,
Zk

1 p1 ^ ρq “ Zk
1 p1q for any starting point k P N and, by (31), we have

E
´

sZ
k
1 p1^ρq

¯

“ E
´

sZ
k
1 p1q

¯

“ fpsqk ¨ gpsq.

Hence, by conditioning on Z1pn ^ ρq and the strong Markov property at n ^ ρ, we obtain

Npn ` 1, sq “ E
`

1 ´ sZ1ppn`1q^ρq
˘

“ E
`

p1 ´ sZ1ppn`1q^ρq
q1tZ1pn^ρqą0u

˘

“ E
`

1tZ1pn^ρqą0up1 ´ fpsqZ1pn^ρq
¨ gpsqq

˘

“ E
`

1tρąnup1 ´ gpsq ` gpsqp1 ´ fpsqZ1pn^ρq
q
˘

,

where 1A denotes the indicator of the event A, implying the recursion

Npn ` 1, sq “ r1 ´ gpsqs qn ` gpsqNpn, fpsqq.

It is easily seen that by induction this recursion yields

Npn ` 1, sq “

n
ÿ

k“0

qn´k

“

1 ´ g ˝ f ˝k
psq

‰

Πkpsq,

where by (31) we have

(43) Πkpsq :“
ź

0ďiăk

g ˝ f ˝i
psq “ E

`

sZ1pkq
˘

.

We can rewrite the above as

(44) E
`

1 ´ e´λZ1ppn`1q ^ρq{bn
ˇ

ˇ ρ ą n ` 1
˘

“

n
ÿ

k“0

qn´k

qn`1

“

1 ´ g ˝ f ˝k
pe´λ{bnq

‰

Πkpe´λ{bnq.

We now analyse the asymptotic behaviour of each of the three factors in the summands
on the right-hand side of (44). With this in mind, pick arbitrary γ P p0, 1{2q. From the
asymptotics in (34) of Lemma 8 above and the uniform convergence theorem (UCT) for
slowly varying functions [BGT87, Ch.1§2, Thm 1.2.1], we obtain

qn´k

qn`1

„
l˚pnp1 ` 1{nqq

l˚pnp1 ´ k{nqq
¨

ˆ

1 ` 1{n

1 ´ k{n

˙1´δ

„ p1 ´ k{nq
´p1´δq as n Ñ 8(45)

uniformly in k P r0, p1 ´ γqns (recall that l˚ is slowly varying at infinity).

Since b´1
n Z1pnq

d
Ñ Zp1q as n Ñ 8, the corresponding Laplace transforms converge pointwise

and the sequence of laws of b´1
n Z1pnq is tight. By (4) we thus get

(46) Πnpe´λ{bnq Ñ p1 ` αcλαq
´δ as n Ñ 8,

locally uniformly in λ P r0,8q. Applying the UCT [BGT87, Ch.1§2, Thm 1.2.1] to the
regularly varying saclling sequence pbnq, satisfying (2), yields bk{bn „ pk{nq1{α as n Ñ 8

uniformly for k P rγn, p1 ´ γqns. Since convergence in (46) is locally uniform in λ, we get

Πkpe´λ{bnq “ Πkpe´λpbk{bnq{bkq „ p1 ` αcpbk{bnq
αλαq

´δ

„ p1 ` αcpk{nqλαq
´δ as n Ñ 8,(47)

uniformly in k P rγn, p1 ´ γqns.
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We now analyse the asymptotic behaviour of the term 1´ g ˝ f ˝kpe´λ{bnq in the summands
on the right-hand side of (44). Recall the weak convergence of the BGW processes, started
at bn, to the CB process started at one: by [Li06, Thm 2.1], the CB process Z̃1 is the (large
population) scaling limit of Z̃1

n, where Z̃
1
nptq “ Z̃bn

1 ptntuq{bn, the scaling sequence pbnq satisfies
the asymptotic relation (2) and is assumed (with out loss of generality) to be in N. Thus,
by (4) (with d “ δ “ 0) and (27) above, the following limit holds

f ˝n
pe´λ{bnq

bn “ E
´

e´λZ̃bn
1 pnq{bn

¯

Ñ E
´

e´λZ̃1p1q
¯

“ e´λ{p1`αctλαq1{α

as n Ñ 8.

Taking logarithms and applying Taylor expansion at 1 yields

(48) p1 ´ f ˝k
pe´λ{bkqq „

λ

bkp1 ` αcλαq1{α
as k Ñ 8.

By the representation of the immigration moment generating function g in (1) of Assump-
tion (SL) and the asymptotic relation in (48), we obtain

1 ´ g ˝ f ˝k
pe´λ{bnq “ dp1 ´ f ˝k

pe´pbk{bnqλ{bkqq
αkp1 ´ f ˝k

pe´pbk{bnqλ{bkqq

„ d
λα

bαnp1 ` αcpλbk{bnqαq
k

ˆ

1

bn

λ

p1 ` αcpλbk{bnqαq1{α

˙

„
d

nlp1{bnq

λα

1 ` αcpk{nqλα
kp1{bnq

„
d

n

λα

1 ` αcpk{nqλα
as n Ñ 8,(49)

uniformly in k P rγn, p1´ γqns. The second asymptotic equivalence in the last display follows
from the property bαn „ nlp1{bnq in (2) and the UCT [BGT87, Ch.1§2, Thm 1.2.1] applied to
the slowly varying function k, while the third equivalence holds by the asymptotic equivalence
of k and l in Assumption (SL).

The asymptotic equivalences in (45), (47) and (49) imply that for every ε ą 0 there exists
nε P N such that for all n ě nε the following inequalities hold, uniformly in k P rγn, p1´γqns:

p1 ´ εq
d

n

λα

1 ` αcpk{nqλα
p1 ´ k{nq

´p1´δq
p1 ` αcpk{nqλαq

´δ

ď
qn´k

qn`1

“

1 ´ g ˝ f ˝k
psq

‰

Πkpsq

ď p1 ` εq
d

n

λα

1 ` αcpk{nqλα
p1 ´ k{nq

´p1´δq
p1 ` αcpk{nqλαq

´δ.

Summing the upper bounds in this display over the integers k P trγns, . . . , tp1 ´ γqnuu and

taking the limit as n Ñ 8 yields p1 ` εqd
ş1´γ

γ
p1 ´ tq´p1´δq 1

p1`αctλαqδ
λα

1`αctλα dt (the Riemann

sums converge to the integral). The lower bound has the same limit with the factor p1 ´ εq
instead of p1 ` εq. Since ε ą 0 was arbitrary, we obtain

(50) lim
nÑ8

tp1´γqnu
ÿ

k“rγns

qn´k

qn`1

“

1 ´ g ˝ f ˝k
psq

‰

Πkpsq “ d

ż 1´γ

γ

p1 ´ tq´p1´δq 1

p1 ` αctλαqδ

λα

1 ` αctλα
dt.

The limit of the right-hand side in (44) requires the analysis of terms corresponding to
k P r0, γns Y rp1 ´ γqn, ns. Recall fpsq “

ř

nPN s
nµpnq, s P r0, 1q, where µ is a critical (i.e.

ř

nPN nµpnq “ 1) offspring distribution on N, satisfying µp1q ă 1. Since fp0q “ µp0q ă 1,
fp1q “ µpNq “ 1, f 1p0q “ µp1q P p0, 1q, f 1psq Ò 1 as s Ò 1 and f2 ą 0 on p0, 1q (making
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f convex), the sequence pf ˝kpsqqkPN is increases for every s P p0, 1q. Since the immigration
generating function g is increasing, we have the following uniform bounds for all k P N:

0 ď 1 ´ g ˝ f ˝k
pe´λ{bnq ď 1 ´ gpe´λ{bnq „ dp1 ´ e´λ{bnq

αkp1 ´ e´λ{bnq

„ dλα
kp1{bnq

bαn
„ dλα

kp1{bnq

lp1{bnq

lp1{bnq

bαn

„
dλα

n
as n Ñ 8.(51)

The last equivalence follows from the asymptotic equivalence of the slowly varying functions
k and l in Assumption (SL) and the property bαn „ nlp1{bnq in (2).
Consider k P r0, γns. By (43) we have Πkpsq ă 1 for all s P p0, 1q and k P N. By

UCT [BGT87, Ch.1§2, Thm 1.2.1] applied to the slowly varying function l˚ in (45), the limit
limnÑ8 supkďγn l

˚pn ` 1q{l˚pnp1 ´ k{nqq “ 1 holds. Together with (51), this implies

0 ď lim sup
nÑ8

tγnu
ÿ

k“0

qn´k

qn`1

“

1 ´ g ˝ f ˝k
psq

‰

Πkpsq

ď lim sup
nÑ8

„

sup
kďγn

l˚pn ` 1q

l˚pn ´ kq

ȷ

dλα

n

tγnu
ÿ

k“0

p1 ´
k

n
q
δ´1

“ dλαp1 ´ p1 ´ γq
δ
q{δ

Since γ P p0, 1{2q was arbitrary, we obtain

(52) 0 ď lim sup
γÑ0

lim sup
nÑ8

tγnu
ÿ

k“0

qn´k

qn`1

“

1 ´ g ˝ f ˝k
psq

‰

Πkpsq ď lim sup
γÑ0

dλαp1 ´ p1 ´ γq
δ
q{δ “ 0.

Consider now k P rp1´γqn, ns. An integral of a regularly varying function m ÞÑ mδ´1l˚pmq

is again regularly varying with the same slowly varying function l˚ and index δ, see [BGT87,
Prop. 1.5.8]. Thus by the asymptotic equivalence (34) of Lemma 8 above, giving the asymp-
totic behaviour of the tail probability qk, we obtain

(53) δΓpδqΓp1 ´ δq

tγnu
ÿ

k“0

qk „ δ

tγnu
ÿ

k“0

kδ´1
{l˚

pkq „ pγnq
δ
{l˚

pγnq „ γδnδ
{l˚

pnq as n Ñ 8.

Recalling Πkpsq ă 1 (for all s P p0, 1q and k P N) and the asymptotic bound in (51), the
asymptotic equivalence in (53) implies

0 ď lim sup
nÑ8

n
ÿ

k“rp1´γqns

qn´k

qn`1

“

1 ´ g ˝ f ˝k
psq

‰

Πkpsq ď lim sup
nÑ8

dλα

n

n
ÿ

k“rp1´γqns

qn´k

qn`1

“ lim sup
nÑ8

dλα

n

1

qn`1

tγnu
ÿ

k“0

qk “ lim sup
nÑ8

dλα

n

γδnδ

l˚pnqδΓpδqΓp1 ´ δq

1

qn`1

“ lim sup
nÑ8

dλαγδ

δ

nδ´1

l˚pnq
pn ` 1q

1´δl˚
pn ` 1q.

The last equality in the previous display follows from the asymptotic equivalence in (34) of
Lemma 8 applied to the tail probability qn`1. As γ P p0, 1{2q was arbitrary, we may take the
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following limit:

0 ď lim sup
γÑ0

lim sup
nÑ8

n
ÿ

k“rp1´γqns

qn´k

qn`1

“

1 ´ g ˝ f ˝k
psq

‰

Πkpsq

ď lim sup
γÑ0

lim sup
nÑ8

dλαγδ

δ

nδ´1

l˚pnq
pn ` 1q

1´δl˚
pn ` 1q “ 0.(54)

The limits in (50), (52) and (54), together with the representation of the conditional ex-
pectation E

`

1 ´ e´λZ1ppn`1q ^ρq{bn
ˇ

ˇ ρ ą n ` 1
˘

in (44), imply

lim
nÑ8

E
`

1 ´ e´λZ1ppn`1q ^ρq{bn
ˇ

ˇ ρ ą n ` 1
˘

“ d

ż 1

0

p1 ´ tq´p1´δq 1

p1 ` αctλαqδ

λα

1 ` αctλα
dt

“ dλα
ż 1

0

p1 ´ tqδ´1
p1 ` αctλαq

´p1`δq dt

“
αcλα

1 ` αcλα
.(55)

The formula in (55) follows from Euler’s integral formula for the hypergeometric series,
ż 1

0

p1 ´ tqδ´1
p1 ` ztq´p1`δq dt “ Bp1, δq 2F1p1 ` δ, 1, 1 ` δ;´zq,

and the facts that 2F1p1 ` δ, 1, 1 ` δ;´zq is in fact a geometric series equal to 1{p1 ´ zq (cf.
[AAR99, Def. 2.1.5 & Thm 2.2.1]), the Beta function B satisfies Bp1, δq “ 1{δ and δ “ d{αc.
Note that the right-hand side of the equality in (55) depends neither on δ nor on d.

Since the limit in (55) is that of the Laplace transforms of probability measures on r0,8q,
the convergence in (55) holds locally uniformly in λ. Since the scaling sequence pbnq is regularly
varying (see (2) above), the limit of the Laplace transforms in Theorem 3 for the sequence of
times tn “ 1 with limit t “ 1 holds:

(56) lim
nÑ8

E
`

e´λZ1pnq{bn
ˇ

ˇ ρ ą n
˘

“ lim
nÑ8

E
´

e
´λ bn

bn`1
Z1pn`1q{bn

ˇ

ˇ

ˇ
ρ ą n ` 1

¯

“
1

1 ` αcλα
.

For an arbitrary sequence of times ptnq, satisfying tn Ñ t ą 0, consider an eventually monoton-
ically increasing subsequence tntnu of integers and note that the locally uniform convergence
of the Laplace transforms in (56) implies

lim
nÑ8

E
`

e´λZ1ptntnuq{bn
ˇ

ˇ ρ ą tntnu
˘

“ lim
nÑ8

E
`

e´λpbtntnu{bnqZ1ptntnuq{btntnu

ˇ

ˇ ρ ą tntnu
˘

“ lim
nÑ8

E
´

e´pλt1{αZ1ptntnuq{btntnu

ˇ

ˇ

ˇ
ρ ą tntnu

¯

“
1

1 ` αctλα
,

since btntnu{bn Ñ t1{α as n Ñ 8 by (2) above.
Since, assuming Zn “ Z1ptn¨uq{bn, we have td1{npZnq ą tnu “ tρ “ d1pZ1q ą tntnuu, the

formula in (10) follows concluding the proof of the theorem. □

The following proposition is crucial in the proof of Theorem 6 and hence also in the proof
of our main result in Theorem 1. The proof of Proposition 12 is based on the following fact
from excursion theory: the excursion of Z straddling a time t, conditioned on its age at time
t, has the same law as the first excursion of Z exceeding that given age [Get79, Thm 7.35].

Proposition 12. Under Assumption (SL) with δ “ d
αc

P p0, 1q, for any 0 ă s ă t, the
conditional law of Zptq, given gtpZq “ s, is the Linnik law νt´s on positive reals with Laplace
transform E

`

e´λZptq|gtpZq “ s
˘

“ p1 ` αcpt ´ sqλαq´1.
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Proof of Proposition 12. Let τlpZq :“ inf tt ě 0 : t ´ gtpZq ą lu be the first time an excursion
away from 0 of Z exceeds length l. As mentioned above, Theorem 7.35 of [Get79] shows that
the conditional law of Zptq, given gtpZq “ t ´ l, equals the law of ZpτlpZqq. This implies

(57) E
`

e´λZptq
˘

“

ż t

0

PpgtpZq P dsqE
`

e´λZpτt´spZqq
˘

for all t ě 0.

The process Z is self-similar of index α, so that for each c ą 0 we have that the process

Z̄c “ pZ̄cptqqtPr0,8q, Z̄
cptq :“ c´1{αZpctq, satisfies Z̄c d

“ Z, implying gtpZ̄
cq “ gctpZq{c and

τlpZ̄
cq “ τclpZq{c. Hence ZpτlpZqq

d
“ Z̄cpτlpZ̄

cqq “ c´1{αZpcτlpZ̄
cqq “ c´1{αZpτclpZqq. Setting

c “ 1{l yields

(58) ZpτlpZqq
d
“ l1{αZpτ1pZqq for any l ą 0.

The Laplace transform of Zp1q in (4), the identity in (57) (for t “ 1) and the equality in law
in (58) (for l “ 1 ´ s) imply

p1 ` αcλαq
´δ

“ E
`

e´λZp1q
˘

“

ż 1

0

Ppg1pZq P dsqE
´

e´λp1´sq1{αZpτ1pZqq
¯

“ E
´

e´λp1´Gq1{αR
¯

,

where G and R are independent variables with the laws of g1pZq and Zpτ1pZqq, respectively.
Let Θδ (resp. Σ) be a gamma (resp. positive stable) random variable with Laplace trans-

form E
`

e´λΘδ
˘

“ 1{p1 ` λqδ (resp. E
`

e´λΣ
˘

“ e´λα
) for λ ě 0. Assuming Θδ and Σ are

independent, we get E
´

e´λpαcΘδq1{αΣ
¯

“ 1{p1 ` αcλαqδ, which implies

(59) pαcΘδq
1{αΣ

d
“ p1 ´ Gq

1{αR.

It follows for example from the local limit theorem in Corollary 9 and Lemma 10 that 1 ´G
has the generalised arcsine law with parameter δ. Equivalently, 1 ´G has a density on p0, 1q

proportional to s ÞÑ s´p1´δqp1 ´ sq´δ, yielding the representation 1 ´ G
d
“ Θδ{Θ1, where

Θ1 :“ Θδ ` Θ1´δ and Θδ, Θ1´δ are independent gamma distributed random variables with
Laplace transforms 1{p1 ` λqδ, 1{p1 ` λq1´δ, respectively. It is well known that in this case
the quotient Θδ{Θ1 is independent of Θ1, and thus also of pαcΘ1q

1{αΣ. We may assume that
R is also independent of Θδ{Θ1. Then, by (59), we obtain

pΘδ{Θ1q
1{α

pαcΘ1q
1{αΣ

d
“ pΘδ{Θ1q

1{αR.

Since 0 ă Θδ{Θ1 ă 1 almost surely and E
`

pΘδq
s{αΣs

˘

ă 8 for all s P r0, αq, we obtain

E
`

ppαcΘ1q
1{αΣq

s
˘

“
E
`

ppαcΘδq
1{αΣqs

˘

EppΘδ{Θ1q
s{αq

“
E
`

pΘδ{Θ1qs{αRs
˘

EppΘδ{Θ1q
s{αq

“ EpRs
q for all s P r0, αq.

In particular, since the Mellin transform determines a law on r0,8q uniquely, we get

pαcΘ1q
1{αΣ

d
“ R

(cf. Exercise 1.14 in [CY03]). Note that δ is no longer present on the left-hand side of the
last identity, implying that the law of R does not depend on δ. Since Θ1 is exponential with
unit mean, its Laplace transform equals E

`

e´λΘ1
˘

“ 1{p1 ` λq, implying

E
`

e´λR
˘

“ E
´

e´λpαcΘ1q1{αΣ
¯

“ E
`

e´λααcΘ1
˘

“ 1{p1 ` αcλαq for all λ ě 0.
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Hence R follows the Linnik law ν1. By (58) for any l ą 0 we have ZpτlpZqq
d
“ l1{αR. Hence

for any 0 ă s ă t, we obtain

E
`

e´λZptq
|gtpZq “ s

˘

“ E
`

e´λZpτt´spZqq
˘

“ E
´

e´λpt´sq1{αR
¯

“ 1{p1 ` αcpt ´ sqλαq,

as claimed in the lemma. □

3.2. Conclusion of the proof of Theorem 6. Recall that Theorem 6 consists of two weak
limits for any fixed t ě 0 and ε ą 0 as n Ñ 8:

pdεtpZnq, dtpZnqq
d

Ñ pdεtpZq, dtpZqq,(60)

pgεt pZnq, gtpZnqq
d

Ñ pgεt pZq, gtpZqq.(61)

3.2.1. Proof of the weak limit in (60). Note that, conditionally on dεtpZnq, the increment
dtpZnq ´ dεtpZnq has the law of the hitting time of zero of the scaled BGWI started at
ZnpdεtpZnqq. By using two continuous and bounded functions h1, h2 : r0,8q Ñ R, defin-
ing Hnpzq :“ Eph2pd0pZ

z
nqqq for any z P N{bn, and applying the strong Markov property at

the stopping time dεtpZnq, we get

E ph1pdεtpZnqqh2pdtpZnq ´ dεtpZnqqq “ E ph1pd
ε
tpZnqqHnpZnpdεtpZnqqqq .(62)

In the proof of the case limεÑ0 limnÑ8 IId “ 0 in Section 2 above we showed that Assump-
tion (19) of Lemma 5 holds at TOpZpt` ¨qq, where Zpt` ¨q is a CBI process, started at Zptq,
with the same semigroup as Z, the open set O equals the interval r0, εq and the equality
dεtpZq “ t`TOpZpt` ¨qq ă 8 holds. In order to verify Assumption (20) of Lemma 5, we need
to prove that the process Zpt ` ¨q is continuous at TOpZpt ` ¨qq, which is clearly equivalent
to the continuity of Z at dεtpZq. On the event tZptq ą εu, dεtpZq is predicted by strictly

increasing stopping times: dε`ε1

t pZq Ò dεtpZq almost surely on tZptq ą εu as ε1 Ó 0. On the
complement tZptq ď εu, since Z is downwards regular, we have dεtpZq “ t. In both cases Z is
continuous at dεtpZq by quasi left continuity, implying that assumption (20) of Lemma 5 also

holds. Thus, by Lemma 5 we obtain pdεtpZnq, ZnpdεtpZnqqq
a.s.
ÝÑ pdεtpZq, ZpdεtpZqqq as n Ñ 8.

For any sequence pznq converging to z P p0,8q, such that znbn P N, the weak limit in (40)
of Lemma 11 yields

(63) Hnpznq “ Eph2pd0pZzn
n qqq Ñ Eph2pd0pZ

z
qqq “: Hpzq as n Ñ 8.

Thus h1pd
ε
tpZnqqHnpZnpdεtpZnqqq

a.s.
ÝÑ h1pd

ε
tpZqqHpZpdεtpZqqq as n Ñ 8 (recall that h1 is

continuous and set zn “ ZnpdεtpZnqq Ñ ZpdεtpZqq “ z in (63)). Since, conditional on dεtpZq,
the increment dtpZq ´dεtpZq has the law of the hitting time of zero of the CBI process started
at ZpdεtpZqq and the functions h1 and h2 are bounded, as n Ñ 8, the Dominated Convergence
Theorem implies

E ph1pdεtpZnqqHnpZnpdεtpZnqqqq Ñ E ph1pd
ε
tpZqqHpZpdεtpZqqqq

“ E ph1pd
ε
tpZqqh2pdtpZq ´ dεtpZqqq .

This limit and (62) imply the weak limit in (60).

3.2.2. Proof of the weak limit in (61). In the case t “ 0, the limit in (61) holds by definition
since Zp0q “ Znp0q “ 0 and thus g0pZq “ gεt pZq “ g0pZnq “ gεt pZnq “ 0 (see definitions in (8)
and (13) above). In the remainder of the proof of (61) we assume t ą 0.
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Lemma 13. Recall that Zn
d
“ Z1ptn¨uq{bn. Under Assumption (SL) with δ “ d

αc
P p0, 1q, for

t ą 0, the following weak limit holds

(64) pgtpZnq, Znptqq
d

Ñ pgtpZq, Zptqq as n Ñ 8.

We will establish limit (64) in Lemma 13 via excursion theory and the Yaglom limit for
BGWIs in Theorem 3. We now prove the weak limit in (61) using Lemma 13.

Let zn Ñ z in r0,8q and assume bnzn P N for all n P N. Then, by [Li06, Thm 2.1],

Zzn
n

d
Ñ Zz and we may assume (by e.g. the Skorokhod representation) that the convergence

is in fact almost sure. As in the proof of the case limεÑ0 limnÑ8 IId “ 0 in Section 2 above,
it follows that Assumption (19) of Lemma 5 holds at dε0pZzq “ TOpZzq (where O “ r0, εq) for
the CBI process Zz started at z P r0,8q. By Lemma 5 we obtain almost sure convergence
dε0pZ

zn
n q Ñ dε0pZzq, and thus for any continuous and bounded h : r0,8q Ñ R we have

(65) Hnpznq :“ Ephpdε0pZ
zn
n qqq Ñ Ephpdε0pZ

z
qqq “: Hpzq as n Ñ 8.

For any 0 ă s1 ă s2 ă t, we have tgtpZnq ă s1, g
ε
t pZnq ă s2u “ tgs2pZnq ă s1, t ă dεs2pZnqu

and tgtpZq ă s1, g
ε
t pZq ă s2u “ tgs2pZq ă s1, t ă dεs2pZqu. Hence (61) holds once we prove

the following weak limit for any s P p0,8q:

(66) pgspZnq, dεspZnqq
d

Ñ pgspZq, dεspZqq as n Ñ 8.

To establish (66), pick bounded, continuous functions h1, h2 : r0,8q Ñ R. The weak limit
in (64) of Lemma 13 and Skorokhod’s representation imply that we may assume almost sure
convergence pgspZnq, Znpsqq Ñ pgspZq, Zpsqq holds. By the Markov property at time s and
the limit in (65) (for h “ h2p¨ ` sq), we obtain the following limit as n Ñ 8,

Eph1pgspZnqqh2pd
ε
spZnqqq “ Eph1pgspZnqqEZnpsqph2pdε0pZnq ` sqqq “ Eph1pgspZnqqHnpZnpsqqq

Ñ Eph1pgspZqqHpZpsqqq “ Eph1pgspZqqEZpsqph2pd
ε
0pZq ` sqqq

“ Eph1pgspZqqh2pdεspZqqq,

implying (66) and thus (61).
It remains to establish the limit in (64) of Lemma 13, which will imply Theorem 6.

Proof of Lemma 13. We will establish (64) using Theorem 3 and Proposition 12 above. The
key insight here is as follows: given t´gtpZnq “ l, the law of the excursion straddling t equals
the law of the first excursion El

n of Zn exceeding the length l P p0, tq. This well-known fact
can be proved directly and simply for the BGWI process Z1 and its scaled continuous-time

version Zn
d
“ Z1ptn¨uq{bn. We note that this fact has been rigorously established for Hunt

processes with transition densities (such as Z) in Theorem 7.35 of [Get79].
Let νlnn denote the law of Eln

n plnq and note that it coincides with the law of Znplnq, condi-
tioned on d1{npZnq ą ln. Theorem 3 thus implies that for any sequence ln Ñ l, νlnn converges
weakly to the Linnik law νl with Laplace transform given by λ ÞÑ 1{p1`αclλαq. By Lemma 10

we have t ´ gtpZnq
d

Ñ t ´ gtpZq and, by the Skorokhod representation, we may assume that
ln “ t´gtpZnq Ñ t´gtpZq “ l almost surely. For arbitrary continuous and bounded functions

h1, h2 : r0,8q Ñ R, we have: ν
t´gtpZnq
n ph2q Ñ νt´gtpZqph2q almost surely and the Dominated

Convergence Theorem implies the limit

Eph1pgtpZnqqνt´gtpZnq
n ph2qq Ñ Eph1pgtpZqqνt´gtpZq

ph2qq as n Ñ 8,(67)

where νlph2q denotes the integral of h2 with respect to the Linnik law νl and νlnn ph2q is
the integral of h2 with respect to the law νlnn of the first excursion Eln

n of Zn exceeding ln,
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evaluated at ln (i.e. νlnn is the law of the variable Eln
n plnq). Moreover, since Eln

n plnq has
the same law as Znplnq conditioned on d1{npZnq ą ln, the equality Eph1pgtpZnqqh2pZnptqqq “

Eph1pgtpZnqqν
t´gtpZnq
n ph2qq holds. By Proposition 12 above, the Linnik law νl equals that of

Zptq, given gtpZq “ t´ l. Thus Eph1pgtpZqqνt´gtpZqph2qq “ Eph1pgtpZqqh2pZptqqq, and by (67)
we get

Eph1pgtpZnqqh2pZnptqqq Ñ Eph1pgtpZqqh2pZptqqq as n Ñ 8.

Since the functions h1 and h2 were arbitrary, the weak limit in (64) holds, concluding the
proof. □
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Appendix A. On the tail behaviour of µ and ν and regular variation of a
certain scaling sequence

In this section, we will prove the asserted equivalence between (SL) and the following one
when α P p0, 1q. We will also see why the sequence an normalizing the random walk local
time L1pX1q, is regularly varying.

A.1. Regular variation of the tails of µ and ν in Assumptions (SL). Let µ and ν
be the offspring and immigration distributions associated to f and g. Consider the following
assumption on µ and ν.

Assumption (SL’). (1) µ is critical (i.e. has mean one);
(2) its tail µ is regularly varying with index ´p1 ` αq;
(3) the following tail balance condition holds:

kνpkq

µpkq
converges to a limit in p0,8q as k Ñ 8.

Proposition 14. For α P p0, 1q, Assumptions (SL) and (SL’) are equivalent. In this case
µ and ν are in the stable domains of attraction with index 1 ` α and α, respectively.

Proof. We rely on Tauberian theory, as found in [Fel71, XIII.5] or [BGT87]. This is simplified
by a shift in perspective from the offspring and immigration generating functions f and g
to the Laplace transforms ψ and ϕ of µ and ν. They are related by ψpλq “ f

`

e´λ
˘

and

ϕpλq “ gpe´λq. Note that, upon setting s “ e´λ, we have 1 ´ s „ λ as λ Ñ 0. In the case of
µ, it is convenient to define the tail and iterated tail of µ for any x P p0,8q as follows:

µpxq “ µppx,8qq “

ż

px,8q

µpdyq and µpxq “

ż 8

x

µpyq dy.
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When α P p0, 1q, [Fel71, Lemma, §XIII.5, p. 446] implies the equivalence, as x Ñ 8, of the
following

µpxq „
lp1{xq

xα
and µpxq „

lp1{xq

αx1`α
,

implying αµpxq „ µpxq{x. The tail balance condition in (3) of Assumption (SL’) is then
equivalent to the existence of the limit νpxq{µpxq as x Ñ 8.

On the other hand, a direct computation gives
ż 8

0

µpxqe´λx dx “
1

λ2

ż 8

0

re´λx
´ 1 ` λxsµpdxq “

1

λ2
rψpλq ´ 1 ` λs,

so that the Tauberian theorem (for densities as in [Fel71, Thm XIII.5.4]), gives us the equiv-
alence (for α P p0, 1q) of

λ ´ 1 ´ ψpλq „ λ1`αlpλq and µpxq „
lp1{xq

Γp1 ´ αqxα
.

But then, the tail balance condition of (SL’) and the asymptotic equivalence condition of
(SL) are seen to be equivalent.

Of course, when α P p0, 1q, either (SL) or (SL’) imply that both µ and ν are in the domain
of attraction of stable distribution. Indeed, define bn implicitly by bαn “ nlp1{bnq and compute
Laplace transforms:

gpe´λ{bnq
n

“
“

1 ´ p1 ´ gpe´λ{bnqq
‰n

“
“

1 ´ dp1 ´ e´λ{bnq
αlp1 ´ e´λ{bnq

‰n

„ r1 ´ dpλ{bnq
αlp1{bnqs

n
Ñ e´dλα

as n Ñ 8.
(68)

A similar argument using the moment generating function f of µ, tells us that for the function
f̃psq “ fpsq{s we have

□(69) f̃pe´λ{bnq
nbn Ñ ecλ

1`α

as n Ñ 8.

A.2. Behaviour of µ and ν for α “ 1 in Assumptions (SL). We identify the cases when
the immigration law ν has a finite mean and the offspring law µ has a finite variance. Recall

ÿ

nPN

n2µpnq “ 8 ðñ f2
p1q “ 8 &

ÿ

nPN

nνpnq “ 8 ðñ g1
p1q “ 8.

Lemma 15. Under Assumption (SL), for any α P p0, 1s we have

(70) f2
p1q “ 8 ðñ g1

p1q “ 8 ðñ α ă 1 or lim
uÓ0

lpuq “ 8.

Thus, µ and ν have finite variance and mean, respectively, if and only if α “ 1 and

D lim
uÓ0

lpuq P p0,8q (or equivalently D lim
uÓ0

kpuq P p0,8q).

Remark. As observed in [Sla68, p. 142, Remark], it is possible to have α “ 1 with offspring
distribution of infinite variance, e.g. fpsq :“ s ` cp1 ´ sq2 p1 ´ c1 log p1 ´ sqq for c1 P p0, 2{3q

and 0 ă c1p2 ´ cq ă 1. Similarly, for any d P p0, 1q, gpsq :“ 1 ´ dp1 ´ sqp1 ´ c1 logp1 ´ sqq is a
generating function with g1p1q “ 8. The corresponding pair of the offspring and immigration
laws µ and ν with infinite variance and mean, respectively, satisfy Assumptions (SL) with
α “ 1.

Proof of Lemma 15. Assume α P p0, 1q. Then, by Lagrange’s theorem, for any s P p0, 1q there

exists θs P ps, 1q such that g1pθsq “
1´gpsq

1´s
“ dp1 ´ sqα´1kp1 ´ sq. Hence, since k is slowly

varying at zero, letting s Ò 1 we see that g1p1q “ 8. Similarly, we can show that f2p1q “ 8.
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Now assume α “ 1. By a straightforward computation, we obtain

(71) f2
p1 ´ xq “ lpxq

ˆ

2c ` 4c
xl1pxq

lpxq
` c

x2l2pxq

lpxq

˙

and g1
pxq “ kpxq

ˆ

d ` d
xk1pxq

kpxq

˙

.

The following statement holds by [Lam58, Thm 2]: for any γ ą 0 and any slowly varying
function h (at zero), such that the regularly varying function Hpxq :“ xγhpxq has a derivative
which is monotone near 0, we have

(72) lim
xÑ0

xH 1pxq

Hpxq
“ γ.

To understand the behaviour of f2 near 1, consider F pxq :“ fp1´xq´p1´xq “ x2lpxq and
note that F 1pxq “ 1 ´ f 1p1 ´ xq. Since f 1 is increasing, F 1 is monotone in the neighbourhood
of 0. By (72) applied to F (with γ “ 2 and h “ l), we obtain

(73) 2 “ lim
xÑ0`

xF 1pxq

F pxq
“ lim

xÓ0

x px2lpxqq
1

x2lpxq
“ 2 ` lim

xÓ0

xl1pxq

lpxq
, implying lim

xÓ0

xl1pxq

lpxq
“ 0.

Similarly, applying (72) to Gpxq :“ 1 ´ gp1 ´ xq, we get limxÑ0` pxk1pxqq {kpxq “ 0.
It is clear that F 2pxq “ f2p1 ´ xq is monotone and, by (73), F 1 is proportional at zero to

F pxq{x and thus regularly varying with index α “ 1. By (72) applied to F 1 (with γ “ 1 and
hpxq “ 2clpxq ` cxl1pxqq we get

2 “ lim
xÓ0

xF 2pxq

F 1pxq
“ lim

xÓ0

2cxlpxq ` 4cx2l1pxq ` cx3l2pxq

2cxlpxq ` cx2l1pxq
“ 1 ` lim

xÓ0

x2l2pxq

2lpxq
,

where the last equality holds using the last limit in (73). We thus get limxÓ0
x2l2pxq

lpxq
“ 2.

Recall that c and d are positive and that lpxq „ kpxq as x Ñ 0. Then (71) implies:
f2p1q “ 8 ô limxÓ0 lpxq “ 8 ô limxÓ0 kpxq “ 8 ô g1p1q “ 8, proving (70).
It follows from (70) that ν and µ have finite mean and variance, respectively, if and only if

α “ 1 and lim supuÓ0 lpuq ă 8. If the latter holds, by (71) we have limuÓ0 lpuq “ 1
2c
f2p1q ă 8,

concluding the proof of the lemma. □

A.3. Regular variation of the sequence panq in Theorem 4. Since the finite-dimensional
distributions of L1pX1qptntuq{an converge to the non-trivial limit L, [Lam62, Thm 2] implies
the regular variation of panq with index equal to the self-similarity index of LpXq. We now
give two proofs that the latter equals 1 ` 1{α.

Since X is self-similar of index β “ 1 ` α, the density ft of Xt satisfies:

ftpxq “ f1pxt
´1{β

qt´1{β.

With this, one sees that the resolvent densities

uλpx, yq “

ż 8

0

e´λtftpy ´ xq dt

are bicontinuous and one can use the occupation times formula for the local time field of X
to get that the Laplace exponent of inverse local time is 1{uλp0, 0q. Since

uλp0, 0q “

ż 8

0

e´λtftp0q dt “

ż 8

0

e´λtf1p0qt´1{β dt “ cλ´p1´1{βq,

where c “ Γp1 ´ 1{βqf1p0q, we see that the inverse local time at zero of X is a stable
subordinator of index 1´1{β. Hence, the local time LpXq is self-similar of index 1{p1´1{βq “

1 ` 1{α.
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Appendix B. A sequence of BGWIs with a self-similar CBI limit and local
times that do not converge to the local time of the CBI

We construct a sequence of critical BGWIs which, although convergent to a self-similar
CBI, is such that its sequence of counting local times does not converge to the local time of
the CBI. The construction is based on a BGWI in the domain of attraction (i.e. satisfying
Assumption (SL)), which we perturb by a single immigrant with large positive probability at
each time step, see (75) below. The new immigration law retains the tails of the original im-
migration distribution, while the offspring distribution remains the same along the sequence.
Displacing the pre-limit process away from 0 with positive probability (which tends to one
along the sequence of the BGWIs) makes the corresponding scaled BGWIs eventually almost
surely not visit zero during a given compact time interval.

More specifically, it is easy to see from Taylor’s theorem that

(74) fpsq :“ s ` cp1 ´ sq1`α, gpsq :“ 1 ´ dp1 ´ sqα & gmpsq :“ 1 ´ pm ` pmsgpsq,

for s P p0, 1q, are generating functions if α P p0, 1q and

d, cp1 ` αq P p0, 1q and 0 ă pm ă 1 for all m P N.
The immigration generating function g describes the law of the increment the random walk
Y1 in the discrete Lamperti transform in (11). The increment of the immigration random
walk Y pmq, corresponding to the generating function gm, satisfies:

(75) P
`

Y pmq
p1q “ 1 ` Y1p1q

˘

“ pm & P
`

Y pmq
p1q “ 0

˘

“ 1 ´ pm.

Let Zpmq be a discrete-time BGWI process with offspring f and immigration gm. Consider
its scaled continuous-time extension Zpmqptm¨uq{bm, where the sequence pbmq satisfies (2) as
m Ñ 8. If pm Ñ 1 as m Ñ 8, the sequence pZpmqptm¨uq{bmqmě1 converges weakly to the
same limit as the sequence pZ1ptm¨uq{bmqqmě1, where Z1 is the BGWI in (3) corresponding
to f and g in (74). Indeed, by [Li06, Thm 2.1], it suffices to check that m{bm Ñ 0 and that
the functions Fbmpλq :“ m p1 ´ gmp1 ´ λ{bmqq converge,

Fbmpλq “ mpmp1 ´ p1 ´ λ{bmqgp1 ´ λ{bmqq “ mpmp1 ´ p1 ´ λ{bmqp1 ´ dpλ{bmq
α
qq

“ mpmpλ{bm ` dpλ{bmq
α

´ dpλ{bmq
1`α

q Ñ dλα, as m Ñ 8,

for all λ ą 0, where in both limits we used bαm „ m as m Ñ 8 from (2) and α ă 1. Thus the
weak limit of the sequence pZpmqptm¨uq{bmqmě1 of BGWIs is a self-similar CBI with δ “ d

αc

and marginals given by (4). As noted in the introduction, by [FUB14, §5.2.1], if δ P p0, 1q,
the limiting process is point recurrent at 0 with non-degenerate Markov local time L.

Lemma 16. Set pm :“ 1 ´ m´3 for m ě 1. Let Lpmqptq :“
ˇ

ˇ

␣

k P N : Zpmqpkq “ 0
(

X r0, ts
ˇ

ˇ be

the counting local time at zero of the BGWI process Zpmq constructed above. Then

(76) P
`

Y
8
k“1 X

8
m“k tLpmq

pmq “ 1u
˘

“ 1.

Under the assumption of Lemma 16, the sequence of counting local times Lpmqptm¨uq at
time 1, equal to Lpmqpmq, is eventually equal to one for all large values of m and hence almost
surely converges to 1 as m Ñ 8. Thus, when scaled by any sequence that tends to infinity,
Lpmqpmq cannot converge weakly to the local time L of the limiting CBI at time 1, which is
a non-trivial random variable.

Proof of Lemma 16. It is clear from the Lamperti transform in (11) for BGWI Zpmq that the
inclusion tLpmqpmq “ 1uc “ tLpmqpmq ą 1u “ tmin1ďkăm Z

pmqpkq “ 0u Ă Ac
m holds, where

Am :“ t@k P t1, . . . ,mu : Y pmq
pkq ´ Y pmq

pk ´ 1q ą 0u.
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By (75) and our assumption on pm we have

PpAmq “ pmm “ p1 ´ m´3
q
m

“

´

p1 ´ m´3
q
m3
¯m´2

„ e´m´2

, as m Ñ 8,

implying PpAc
mq „ 1 ´ e´m´2

„ m´2. In particular,
ř8

m“1 PpAc
mq ă 8. The Borel-Cantelli

lemma implies P
`

X8
k“1 Y8

m“k tLpmqpmq “ 1uc
˘

ď PpX8
k“1 Y8

m“k A
c
mq “ 0 and (76) follows. □
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