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Abstract

Applications of the mathematical theory of rearrangements to atmosphere and

ocean dynamics are discussed. Results in the existing literature, mainly for two-

dimensional incompressible 
ow, are reviewed. We prove that a state of geostrophic

and hydrostatic balance minimises the energy subject to conservation of absolute mo-

mentum and potential temperature, and show that a steady state of a semigeostrophic


ow can be characterised as a stationary point of the energy subject to rearrangements

of the potential vorticity. By restricting the class of rearrangements to those consistent

with the evolution equations, it is suggested that the enstrophy cascade may be pre-

vented in semigeostrophic 
ow.

Newton Institute preprint NI96011

1 Introduction

The description of weather systems in the atmosphere has always drawn a great deal on

a Lagrangian description of the 
ow. Obvious examples are the description of synoptic

developments in terms of air masses, the parcel theory of convection, and the description

of the dynamics of precipitation systems in terms of conveyor belts, (e.g. Browning and

Roberts(1994)). The importance of Lagrangian concepts in dynamical understanding has

been highlighted in recent years by the extensive use of potential vorticity diagnostics,

(Hoskins et al. (1985)). The power of Lagrangian methods in numerical simulation has

been demonstrated by contour dynamics algorithms (Dritschel (1988ab)). Unfortunately,

however, much theory still uses a Eulerian description of the 
ow because more mathe-

matical tools are available in that case. For instance, the analysis of numerical algorithms

for advection is very incomplete because, in a Eulerian sense, the problem is nonlinear

unless the advecting velocity is uniform. In general, little can be said about the solution

of nonlinear problems, apart from verifying global conservation properties, so that the

analysis stops with the linear case. However, the process being described is quite simple,

the advected quantity is transported along trajectories with no change in value. This is

exploited by Lagrangian numerical methods, and should be susceptible to analysis.
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A concept that arises naturally when considering the Lagrangian description of incom-

pressible 
uid motion is that of a rearrangement. Let � represent a quantity, associated

with a 
uid, which is conserved following the motion of a 
uid particle, such as poten-

tial vorticity in adiabatic 
ow. Assume we are working in a bounded region. As time

advances, the 
uid particles will, in general, exchange their spatial positions, but each

particle retains its original value of �. Then we can say that, for any given time t, �

considered as a function �(x; t) is a rearrangement of the initial function �(x; 0), where

x is the typical Eulerian position vector. Alternatively we say that � is rearrangement

preserved by the 
ow. In this paper, we de�ne this concept precisely and then show how

some tools available from rearrangement theory can be used in analysis of atmospheric (or

oceanic) 
ows. Further mathematical details and proofs are given by Douglas (1996).

Three practical results are illustrated. The �rst is the characterisation of minimum

energy states subject to conservation of properties following particles. It is shown that it

is necessary to consider whether the extreme state can be reached by mixing the 
uid, in

which case the use of conservation following particles may not be appropriate. The second

is the behaviour of the time evolution of a 
ow subject to (potential) vorticity conserva-

tion. Again it is crucial whether the long time evolution approximates mixing, equivalent

to the enstrophy cascade of two-dimensional turbulence, or whether this is prohibited.

The third is the study of the stability of steady states, following the work of Nycander

(1995). If we work in a class of perturbations which are rearrangements of the potential

vorticity, we can show that steady states can be characterised as stationary points of the

energy. This class of perturbations is a subclass of all possible perturbations and is chosen

to be consistent with the time dependent dynamics, which conserve potential vorticity.

The result is not true if all perturbations are allowed.
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2 Equivalent de�nitions of rearrangement of vector valued

functions

2.1 Introduction

In this section we establish four equivalent de�nitions of rearrangement for vector valued

functions, and give a characterisation of the set of rearrangements of a prescribed vector

valued function. We de�ne rearrangement for vector valued functions on �nite measure

spaces (U; �) which are isomorphic to (0; �(U)) endowed with Lebesgue measure �. By

isomorphic, we mean there exists a measure preserving transformation T : U ! (0; �(U)).

We recall the de�nition of measure preserving transformation in the next section. The

restriction to �nite measure spaces (U; �) isomorphic to (0; �(U)) with Lebesgue measure

is not severe: Royden [12] yields that any separable complete metric space U , equipped

with a Borel measure � such that �(U) <1 and �(fxg) = 0 for each x 2 U , is isomorphic

to ((0; �(U)); �).

De�nition Let (U; �) be a measure space which is isomorphic to ((0; �(U)); �). Let

f; g 2 Lp(U; �;Rd), for 1 � p <1. Then f is a rearrangement of g if

�
�
f�1(B)

�
= �

�
g�1(B)

�
for every Borel subset B of Rd.

We prove the following theorem.

Theorem 1 Let (U; �) be as above. Let f; g 2 Lp(U; �;Rd), for 1 � p < 1. Then the

following are equivalent.

(i) f is a rearrangement of g.

(ii) For each F 2 C(Rd) such that jF (�)j � K(1 + j�j
p

2) (where j:j2 denotes Euclidean

distance on Rd, and K is a constant), the following equation is satis�ed:Z
U

F (f(x))d�(x) =

Z
U

F (g(x))d�(x):

(iii) �(f�1(C)) = �(g�1(C)) for each set C 2 f
Q
d

i=1[�i;1) : �i 2 R for each i =

1; :::; dg
S
f;;Rdg.

(iv) For each � 2 Rd, � > 0,Z
U

(jg � �j1 � �)+d� =

Z
U

(jf � �j1 � �)+d�

where j:j1 denotes the in�nity norm on Rd, and the + subscript denotes the positive part

of the function.

Brenier [2] used property (ii) to de�ne rearrangement of vector valued functions, whilst

Cullen, Norbury and Purser used property (iii). This theorem shows that their de�nitions

are equivalent. Property (iv) is a vector valued extension of the characterisation of the

set of rearrangements of a given real valued function by Eydeland, Spruck and Turkington

[6]: for non{negative f0 2 Lp(U; �),

R(f0) = fw measurable; w � 0 :

Z
U

(w � �)+ =

Z
U

(f0 � �)+;8� > 0g:

It follows from (iv) that for f0 2 Lp(U; �;Rd), where 1 � p < 1 and (U; �) is as in

Theorem 1

R(f0) = f w �{measurable :

Z
U

(jw � �j1 � �)+ d�

=

Z
U

(jf0 � �j1 � �)+ d�;8� 2 R
d;8� > 0g:
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It may be shown that R(f0) is closed, and using the characterisation above, that for

w 2 R(f0), jjwjjp = jjf0jjp, where

jjwjjp =

�Z
U

jwjp
1
d�

� 1

p

:

We omit the proofs, which are elementary.

2.2 Measure preserving mappings and transformations

We recall the concept of a measure preserving mapping.

De�nition A measure preserving mapping from a �nite measure space (U; �) to a measure

space (V; �) with �(U) = �(V ) is a mapping s : U ! V such that for each �{measurable

set A � V , �(s�1(A)) = �(A).

Halmos [7, Theorem 2, page 163] yields that this is equivalent to requiring that for

every �{integrable function f , f � s is �{integrable andZ
U

f � sd� =

Z
V

fd�:

Measure preserving mappings are surjective (up to sets of measure zero), but not

necessarily injective. If a measure preserving mapping s is injective, and s maps �{

measurable sets to �{measurable sets, then s�1 exists and is a measure preserving mapping.

Such an s is called a measure preserving transformation.

2.3 Analytic set theory

We proceed with the proof of Theorem 1 in stages. We require a result from the theory of

analytic sets. As a preliminary, we establish some notation. Let H be a family of subsets

of a given set X. De�ne

H�� = f countable disjoint unions of elements of Hg

HC = f complements (relative to X) of elements of Hg

Bcd(H) will denote the smallest family H�, with H � H�, such that H�
C
= H�

��
= H�.

Kechris [9, page 65, Theorem 10.1 (iii)] yields the following result.

Theorem Let H be a family of subsets of X such that (i) X 2 H (ii) H1
T
H2 2 H

whenever H1;H2 2 H. Then Bcd(H) is a �{algebra.

Lemma 1 Let f; g be as in Theorem 1. De�ne

M = fA � Rd : �(f�1(A)) = �(g�1(A))g

H = f

dY
i=1

[ai; bi] : ai; bi 2 R; ai � bi; for i = 1; :::; dg
[
f;;Rd

g

Suppose H �M. Then M contains the Borel sets of Rd.

ProofH is closed under �nite intersection, therefore the above theorem yields that Bcd(H)

is a �{algebra. H generates the Borel sets, therefore it follows that the Borel sets are

contained in Bcd(H). M is closed under countable disjoint union and complementation

(relative to Rd). Given that H � M we have Bcd(H) � Bcd(M) = M, so M contains

the Borel sets. This completes the proof.
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2.4 Proof of Theorem 1

We begin by showing that (i) implies (ii). Let F 2 C(Rd) satisfy jF (�)j � Kf1 + j�j
p

2g

for each � 2 Rd, where K is some constant. We assume that F is non{negative. (If

not we work with the positive and negative parts of F .) F is measurable, therefore the

fundamental approximation lemma yields the existence of a sequence of simple functions

('n) such that

(i) 0 � 'n(�) � 'n+1(�) for each � 2 Rd.

(ii) 'n(�)! F (�) for each � 2 Rd.

We demonstrate that Z
U

'n(f(x))d�(x) =

Z
U

'n(g(x))d�(x): (1)

A simple function is a �nite linear combination of indicator (characteristic) functions of

measurable sets, therefore it is su�cient to showZ
U

1A(f(x))d�(x) = �(f�1(A)) = �(g�1(A)) =

Z
U

1A(g(x))d�(x); (2)

for each Lebesgue measurable set A � Rd, where 1A denotes the indicator function of A.

Noting that a Lebesgue set is the disjoint union of a Borel set and a Lebesgue negligible

set, we need only show (2) for Borel sets. This is immediate from (i). Thus we have

veri�ed (1).

We have that 'n�f(x)! F �f(x) for each x 2 U , and that j'n�f(x)j � Kf1+jf(x)j
p

2g

for each x 2 U and n 2 N, and analogous statements hold if we replace f with g. Applying

the Dominated Convergence theorem we obtainZ
U

F (f(x))d�(x) = lim
n!1

Z
U

'n(f(x))d�(x)

= lim
n!1

Z
U

'n(g(x))d�(x)

=

Z
U

F (g(x))d�(x):

This veri�es (ii).

We show that (ii) implies (i). Let families of sets H and M be as in Lemma 1. Let

H1 2 H. There exists a sequence ('n) � C(Rd) such that j'n(y)j � 1+jyj
p

2 for each y 2 R
d

and n 2 N, with 'n(y)! 1H1
(y) for each y 2 Rd. It follows that 'n � f(x)! 1H1

� f(x)

for each x 2 U and j'n � f(x)j � 1 + jf(x)j
p

2 for each x 2 U and n 2 N, with analogous

statements holding if we replace f by g. Noting that (ii) holds, we apply the Dominated

Convergence theorem to obtain

�(f�1(H1)) =

Z
U

1H1
� f(x)d�(x)

= lim
n!1

Z
U

'n � f(x)d�(x)

= lim
n!1

Z
U

'n � g(x)d�(x)

=

Z
U

1H1
� g(x)d�(x) = �(g�1(H1)):

Thus H1 2 M. It follows that H � M. Lemma 1 yields that M contains the Borel sets

of Rd, therefore f and g are rearrangements.
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All elements of the family f
Q
d

i=1[�i;1) : �i 2 R for each i = 1; :::; dg are Borel sets

of Rd, therefore (i) implies (iii). To see the converse, we show that H � M, given that

(iii) holds. We proceed by induction. Let P(k) be the proposition that all sets of the formQ
k

i=1[ai; bi]�
Q
d

i=k+1[ai;1) 2M, where ai; bi 2 R. We demonstrate P(1). Now

[a1; b1]�
dY
i=2

[ai;1) =
dY
i=1

[ai;1)\

 
1[
n=1

 
[b1 + 1=n;1)�

dY
i=2

[ai;1)

!!
;

and noting thatM is closed under countable increasing union, and di�erences of two orde-

red elements (with respect to the partial order �), we obtain that [a1; b1]�
Q
d

i=2[ai;1) 2

M. This shows P(1). We demonstrate that P(k + 1) is true given that P(k) holds. We

have that

k+1Y
i=1

[ai; bi]�
dY

i=k+2

[ai;1) =
kY
i=1

[ai; bi]�
dY

i=k+1

[ai;1)

\

0
@ 1[
n=1

0
@ kY
i=1

[ai; bi]� [bk+1 + 1=n;1) �
dY

i=k+2

[ai;1)

1
A
1
A :

We are given that P(k) holds, therefore
Q
k

i=1[ai; bi]�
Q
d

i=k+1[ai;1) 2M, and
Q
k

i=1[ai; bi]�

[bk+1+1=n;1)�
Q
d

i=k+2[ai;1) 2M for each n 2 N. Noting thatM is closed under coun-

table increasing union and di�erences of ordered elements, we obtain that
Q
k+1
i=1 [ai; bi] �Q

d

i=k+2[ai;1) 2 M. This veri�es P(k + 1). By induction P(d) holds, that is all sets of

the form
Q
d

i=1[ai; bi] 2 M for ai; bi 2 R, i = 1; :::; d. It is immediate that ;;Rd 2 M,

therefore H �M. Lemma 1 yields that M contains the Borel sets of Rd. This shows (i).

Let (iv) hold. The characterisation of the set of rearrangements of a scalar valued

function by Eydeland, Spruck and Turkington [6] yields that jg � �j1 2 R(jf � �j1) in

the scalar valued sense for each � 2 Rd. Therefore we have

�fx : jg(x) � �j1 � �g = �fx : jf(x)� �j1 � �g

for each positive � 2 R or equivalently,

�fx : jg(x)� �j1 < �g = �fx : jf(x)� �j1 < �g:

Therefore we have �(g�1(C�(�))) = �(f�1(C�(�))), where C�(�) denotes the open cube

of side 2� about � 2 Rd. Let K denote the set of all d{dimensional open cubes. We

have shown that K � M. We now demonstrate that this implies that all open subsets

of Rd belong to M. Recall that M is closed under countable decreasing intersections,

increasing countable unions, and di�erences of ordered elements of M. For j = 0; :::; d

every j{dimensional closed cube is a countable decreasing intersection of j{dimensional

open cubes. Further, for j = 1; ::; d every j{dimensional open cube with one (j � 1){

dimensional open face attached is an increasing countable union of j{ dimensional closed

cubes. Now, for j = 1; :::; d, every (j � 1){dimensional open cube is the di�erence of a set

of the type described in the preceding sentence, and a j dimensional open cube contained

in it. It follows by induction that open and closed cubes of dimensions 0; :::; d belong to

M. Every open subset of Rd is a countable disjoint union of open cubes of dimensions

0; :::; d, therefore such sets belong to M. The methods of Lemma 1, (noting that the

intersection of two open sets is open,) yield that M contains the Borel sets. Thus (iv)

implies (i). The converse follows because (i) implies that �(g�1(C�(�))) = �(f�1(C�(�)))

for each positive � 2 R, � 2 Rd. This completes the proof.
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3 Energy minimising solutions of atmospheric and oceanic


ow

3.1 Introduction

This section studies a variational problem over the set of rearrangements of a prescribed

vector valued function, which arises from an energy minimising principle. We study the

semigeostrophic equations, (recalled in the next section,) a standard model for slowly

varying 
ows constrained by rotation and strati�cation, using the methods of Cullen,

Norbury and Purser [5]. At any given time, X, which describes the state of the 
uid, is

known on particles. The Cullen{Norbury{Purser principle states that for a solution, the

particles are arranged to minimise geostrophic energy. This yields a variational problem,

minimise energy over the set of rearrangements of a prescribed 
uid con�guration. We

verify the conjecture of Cullen, Norbury and Purser [5, Section 5] that the energy minimum

is uniquely attained, and that the minimiser is equal to the gradient of a convex function.

We prove the following theorem.

Theorem 2 Let 
 be a bounded connected closed subset of R3, with smooth boundary.

De�ne, for X = (X;Y;Z) 2 Lp(
; �;R3), where 2 � p � 1 and � denotes 3{dimensional

Lebesgue measure,

E(X) =
1

2

Z


X2 + x2 + Y 2 + y2d�(x) �

Z


X:xd�(x)

where x = (x; y; z) 2 
. Suppose X0 2 Lp(
; �;R3), for p as above. Then there exists

X0
�
2 R(X0) such that

(i) E(X0
�) < E(X) for each X 2 R(X0)\fX0

�
g.

(ii) X0
� = r	 for some convex function 	 2W 1;p(
).

(iii) X0
� is a cyclically monotone function.

The functional E represents the Geostrophic energy of the 
uid. We de�ne E and X

in the next section. The unique energy minimiser is the monotone rearrangement of the

prescribed function: this concept was introduced by Brenier [2], and is recalled in section

3.3. The proof uses an approximation argument, with the strict inequality following by

the uniqueness of the monotone rearrangement.

3.2 The semigeostrophic equations, and the Cullen{Norbury{Purser prin-

ciple

We state the three dimensional Boussinesq equations of semigeostrophic theory on an

f plane. These are a standard model for slowly varying 
ows constrained by rotation

and strati�cation, and are used to study front formation in meteorology. We state the

equations in the form used by Hoskins [8].

Dug

Dt
� fvag = 0;

Dvg

Dt
+ fuag = 0; (3)

D�

Dt
= 0; (4)

r:u = 0;

r� =

�
fvg;�fug;

g�

�0

�
(5)
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where

u � (u; v; w) � ug + uag;

ug � (ug; vg; 0);

D

Dt
�

@

@t
+ u:r

f is the Coriolis parameter, assumed constant, g denotes the acceleration due to gravity, �0
is a reference value of the potential temperature �, and � is a pressure variable. Subscripts

g and ag denote geostrophic and ageostrophic velocity (or wind) components respectively,

where the geostrophic velocity is de�ned to be the horizontal component of velocity in

balance with the pressure gradient. This de�nition is included in equation (5), as is

the statement of hydrostatic balance. We solve the equations (for the velocity u) in

a closed bounded connected set 
 � R3, with normal velocity u:n given on @
. For

x = (x; y; z) 2 
, by making the the substitution

X � (X;Y;Z) � (x+ vg=f; y � ug=f; (g=f
2�0)�);

it is shown in Purser and Cullen [11] that we may replace (3) and (4) by

DX

Dt
= ug:

We think of X as a function of the physical space co{ordinates x. Rewriting in terms of

X and x, we have

DX

Dt
= f(y � Y ) (6)

DY

Dt
= f(X � x) (7)

DZ

Dt
= 0: (8)

The geostrophic energy E is de�ned as

E =

Z



1

2
u2
g
+
1

2
v2
g
�
g�z

�0
d�(x)

= f2
1

2

Z


X2 + x2 + Y 2 + y2d�(x)� f2

Z


x:Xd�(x)

Henceforth we ignore the constant f2. At any time t, X is found on particles by predicting

(X;Y;Z) on particles using the equations (6), (7) and (8). The Cullen{Norbury{Purser

principle states that for a solution, the particles are arranged to minimise geostrophic

energy. Suppose one possible state of the 
uid is described by values X0 = (X0; Y0; Z0)

which are known on particles. The Cullen{Norbury{Purser principle yields the energy

minimisation problem

inf
X2R(X0)

E(X);

where the energy minimiser (if it exists and is unique) gives the actual state of the 
uid.

In this way, solutions can be viewed as a sequence of minimum energy states.

We make some (physically reasonable) assumptions to enable us to use vector valued

rearrangement theory. Let 
 be a closed, bounded, connected subset of R3, with smooth

boundary. Suppose the possible 
uid con�guration X0 2 Lp(
; �;R3), for 2 � p <

1, where � denotes 3{dimensional Lebesgue measure. (Choosing p � 2 ensures �nite

geostrophic energy.)
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3.3 Monotone rearrangement of vector valued functions

We recall the concept of the monotone rearrangement of a vector valued function: essen-

tially, this is the vector valued analogue of the increasing rearrangement of a real valued

function. Let 
 and � be as in the last paragraph of the previous section. The following

theorem is due to Brenier [2, section 1.2, theorem 1.1].

Theorem 1.1 For each u 2 Lp(
; �;R3), where 1 � p <1, there is a unique u� 2 R(u)

such that

u� 2 fr	 : 	 2W 1;p(
; �);	 convexg;

and the mapping u! u� is continuous.

When 
 is not convex, 	 is understood to be the restriction to 
 of a convex function

de�ned onR3. We call u� themonotone rearrangement of u. The name comes from the fact

that u� is a cyclically monotone function. We note that McCann [10] has generalised the

�rst part of this result (concerning the existence of an essentially unique rearrangement

equal to the gradient of a convex function) to more general measures than Lebesgue

measure.

De�nition A function u 2 Lp(
; �;R3) is non{degenerate if �(u�1(E)) = 0 for each set

E � R3 with Lebesgue measure zero. We say that a function which fails to be non{

degenerate is degenerate.

Brenier established further properties of the monotone rearrangement of a non{degenerate

function in the following theorem [2, section 1.2, theorem 1.2]

Theorem 1.2 For each non{degenerate u 2 Lp(
; �;R3) there exists a unique pair (u�; s),

where u� is the monotone rearrangement of u, and s is a measure preserving mapping from

(
; �) to (
; �), such that

(i) u = u� � s.

(ii) s is the unique measure preserving mapping that maximises
R

 u(x):s(x)d�(x). Note

that Theorem 1.2 is not true if u is degenerate: the measure preserving mapping is not

unique, nor do we have uniqueness in property (ii). The author is not aware of any

corresponding result for degenerate functions.

3.4 Existence and uniqueness of energy minimiser

Recall that we are studying the energy minimisation problem

inf
X2R(X0)

Z


x2 +X2 + y2 + Y 2d�(x)�

Z


x:Xd�(x);

where X0 2 Lp(
; �;R3) for 2 � p < 1, and X = (X;Y;Z). We show that the �rst

integral is conserved under rearrangements.

Lemma 2 Let X0 be as in Theorem 2. Let X1 2 R(X0). ThenZ


x2 +X2

1 + y2 + Y 2
1 d�(x) =

Z


x2 +X2

0 + y2 + Y 2
0 d�(x)

where X0 = (X0; Y0; Z0) and X1 = (X1; Y1; Z1).

Proof X1 2 R(X0) implies that X1 2 R(X0). It follows thatZ


X2
1d�(x) =

Z


X2
0d�(x):

A similar result holds for Y0 and Y1. The result follows.
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To show that there is a unique energy minimiser, it remains to show that

sup
X2R(X0)

Z


x:Xd�(x)

is uniquely attained. If X0 is non{degenerate, the result follows easily using Theorem

1.2. Our method of proof is to approximate degenerate functions with a sequence of

non{degenerate functions. This shows that the monotone rearrangement is an energy

minimiser. We demonstrate that an energy minimiser is the gradient of a convex func-

tion: the monotone rearrangement is the unique such amongst the set of rearrangements,

therefore the result follows.

Lemma 3 Let X 2 Lp(
; �;R3) (where 
, � and p are as in section 3.2). Then there

exists a sequence of non{degenerate functions (Xn) such that Xn ! X in Lp(
; �;R3).

Proof For each n 2 N, choose a simple function 'n such that jjX � 'njjp � 1=n. Now

for each n 2 N, de�ne Xn by Xn(x) = 'n(x) + (1=n)x for x 2 
. It is immediate that

Xn ! X in Lp(
; �;R3). It remains to show that Xn is non{degenerate for each n 2 N.

Fix n 2 N. 'n is a simple function, therefore it takes �nitely many values which we

enumerate fb1;b2; :::;bmg. De�ne Ai = 'n
�1(bi) for each i = 1; :::;m. Write Xn

i for

XnjAi
. For a given i, Xn

i = bi + (1=n)x. Let E be a Lebesgue negligible subset of R3.

Then

�
�
(Xn

i)�1(E)
�

= �
�
Ai

\
(nE � nbi)

�
� �(nE � nbi)

= �(nE) = 0: (9)

By way of explanation, we have used translation invariance of Lebesgue measure to obtain

the �rst equality in (9), and properties of Lebesgue measure to obtain the second. This

demonstrates that Xn
i is non{degenerate (as an element in Lp(Ai; �;R

3)), for each i =

1; :::;m.

Let E be a Lebesgue negligible subset of R3. Then

�
�
Xn

�1(E)
�

= �

 
m[
i=1

(Xn
i)�1(E)

!

=
mX
i=1

�
�
(Xn

i)�1(E)
�
= 0: (10)

To obtain (10) we have used the countable additivity of �, and the fact that Xn
i is non{

degenerate for each i = 1; :::;m. This shows that Xn is non{degenerate, and completes

the proof.

Lemma 4 Let X0 be as in Theorem 2. ThenZ


X0

�(x):xd�(x) �

Z


X(x):s(x)d�(x)

for each X 2 R(X0) and each s : 
! 
 a measure preserving mapping.

Proof Let X 2 R(X0) and let s : 
 ! 
 be a measure preserving mapping. From the

previous lemma we may choose a sequence (Xn) of non{degenerate functions such that

Xn ! X in Lp(
; �;R3). For each n 2 N, Theorem 1.2 (i) yields the existence of a unique

10



measure preserving mapping sn : 
 ! 
 such that Xn = Xn
�
� sn. Applying Theorem

1.1 we have Xn
�
! X� = X0

�. NowZ


X0

�(x):xd�(x) = lim
n!1

Z


Xn

�(x):xd�(x)

= lim
n!1

Z


Xn

�
� sn(x):sn(x)d�(x) (11)

= lim
n!1

Z


Xn(x):sn(x)d�(x)

� lim
n!1

Z


Xn(x):s(x)d�(x) (12)

=

Z


X(x):s(x)d�(x)

as required. By way of explanation, (11) holds because sn is a measure preserving map,

and (12) follows because Theorem 1.2(ii) yields thatZ


Xn(x):sn(x)d�(x) �

Z


Xn(x):s(x)d�(x)

for each measure preserving mapping s : 
! 
, and for each n 2 N. This completes the

proof.

Lemma 5 Let X0 be as in Theorem 2. ThenZ


X0

�(x):xd�(x) >

Z


X(x):xd�(x)

for each X 2 R(X0)\fX0
�
g.

Proof Applying the previous lemma for the identity mapping, we haveZ


X0

�(x):xd�(x) �

Z


X(x):xd�(x)

for each X 2 R(X0)\fX0
�
g. It remains to show strict inequality. Suppose there exists

X1 2 R(X0) such that
R

X1:xd� =

R

X0

�:xd�. Applying the previous lemma to X1 2

R(X0) we obtain Z


X1(x):xd�(x) =

Z


X0

�(x):xd�(x)

�

Z


X1(x):s(x)d�(x)

for each measure preserving mapping s : 
 ! 
. Brenier [2, Proposition 2.1] yields that

X1 2 fr	 : 	 2W 1;2(
);	 convexg. However Theorem 1.1 states that X0
� is the unique

member of R(X0) belonging to fr	 : 	 2W 1;2(
);	 convexg, therefore X1 = X0
�. This

completes the proof.

Proof of Theorem 2

Follows from Lemmas 2 and 5.
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4 Discussion

We have discussed a number of applications of Lagrangian mathematics, particularly the

use of rearrangements arising from an area or volume preserving map. We have shown

that in various balanced models described in terms of potential vorticity and an inver-

tibility principle that useful nonlinear and large amplitude information can be obtained

about the 
ow evolution. This includes an important identi�cation of 
ows where the

potential enstrophy cascade can be prevented, and variational arguments to characterise

steady states. We have shown that the most powerful results occur in cases where we

can use a rearrangement inequality to extremise a function over all possible rearrange-

ments. Examples quoted used monotone or symmetrising rearrangements. It is important

to identify more such situations and exploit them.

Other possible applications are to numerical methods and data assimilation. It is

clearly desirable to satisfy the rearrangement property in a numerical solution of the evo-

lution equation for potential vorticity, and to preserve it as well as possible in formulations

where potential vorticity is not used as a model variable. This should form part of the

assessment of competing numerical methods. If the non-chaotic dynamics associated with

advection by a convex streamfunction is important, then a property equivalent to this has

to be preserved in the numerical approximation, so that the enstrophy cascade is absent

there also and no enstrophy sink has to be provided by adding arti�cial viscosity. In data

assimilation, it may be appealing to try and work with displacements or rearrangements

of �elds in the analysis procedure, rather than with Eulerian perturbations. This could

include minimisation over rearrangements, possibly restricted to those consistent with

convexity conditions, as part of a general variational framework.
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5 Figure Captions

Figure 1. Graphs of f(x) = x; x 2 [0; 1] and

g(x) =

(
1� 2x if x 2 [0; 1=2];

2x� 1 if x 2 [1=2; 1]:
(13)

illustrating the reason why f is a rearrangement of g.

Figure 2. Graphs of the inverse images of f and g, with f = f(x), g = g(x) de�ned

as in Fig.1. The sets f�1[1=2; 1] and g�1[1=2; 1] are illustrated.

Figure 3. Graphs of two di�erent rearrangements of f(x) = x; x 2 [0; 1]. The shaded

areas are the same.

Figure 4. Values of the vector valued functions f = f(x; y) and g = g(x; y) de�ned

on [0; 1] � [0; 1] by (??) and (??) respectively.

Figure 5. The rearrangements f3 = f3(x) and f8 = f8(x) de�ned by equation (??) of

the function f0 = f0(x) de�ned by equation (??).

Figure 6. The e�ect on the surface P = P (x) of local concentrations of its curvature.
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