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ABSTRACT

For semi-geostrophic (SG) theories derived from the Hamiltonian principles sugges-

ted by Salmon it is known that a duality exists between the physical coordinates and

geopotential, on the one hand, and isentropic geostrophic momentum coordinates and

geostrophic Bernoulli function, on the other hand. The duality is characterized geome-

trically by a \contact structure". This enables the idealized balanced dynamics to be

represented by horizontal geostrophic motion in the dual coordinates while the mapping

back to physical space is determined uniquely by requiring each instantaneous state to

be the one of minimum energy with respect to volume-conserving rearrangements within

the physical domain.

It is found that the generic contact structure permits the emergence of topological

anomalies during the evolution of discontinuous ows. For both theoretical and compu-

tational reasons it is desirable to seek special forms of SG dynamics in which the struc-

ture of the contact geometry prohibits such anomalies. We prove that this desideratum

is equivalent to the existence of a mapping of geographical position to a Euclidean do-

main, combined with some position-dependent additive modi�cation of the geopotential,

which results in the SG theory being manifestly Legendre-transformable from this alter-

native representation to its associated dual variables.

Legendre transformable representations for standard Boussinesq f-plane SG theory

and for the axisymmetric gradient-balance version used to study the Eliassen vortex

are already known and exploited in �nite element algorithms. Here, we reexamine two

other potentially useful classes of SG theory discussed in a recent paper by the author:

(i) the non-axisymmetric f-plane vortex; (ii) hemispheric (variable-f) SG dynamics. We

�nd that the imposition of the natural dynamical and geometrical symmetry require-

ments together with the requirement of Legendre-transformability makes the choice of

the f-plane vortex theory unique. Moreover, with modi�cations to accommodate sphe-

ricity, this special vortex theory supplies what appears to be the most symmetrical and
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consistent formulation of variable-f SG theory on the hemisphere. The Legendre-transformable

representations of these theories appear super�cially to violate the original symmetry of

rotation about the vortex axis. But, remarkably, this symmetry is preserved provided we

interpret the metric of the new representation to be a pseudo-Euclidean \Minkowski"

metric. Rotation-invariance of the dynamical formulation in physical space becomes a

formal \Lorentz-invariance" of the dynamics in its Legendre-transformable representa-

tion.
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1. Introduction

In order to further our understanding of atmospheric and oceanic dynamics it is

desirable to possess a set of idealized and simpli�ed equations whose solutions can be

obtained with great precision (either numerically or analytically) while realistically

treating the dynamical features of interest. In this way the idealized system can

provide insights into the essential balanced dynamics which a more complete model

might often obscure with numerical or gravity-wave \noise". When it comes to the

study of discontinuous phenomena, such as atmospheric and oceanic fronts, then the

semi-geostrophic (SG) systems (Hoskins and Bretherton ,1972; Hoskins 1975), which

extended the earlier studies of vortex and frontal balance of Eliassen (1951, 1962),

seem uniquely suited to the study of the \slow" or \balanced" components of these

discontinuities. Being �ltered systems of equations, they automatically exclude the

obscuring gravity wave components, yet, in their Lagrangian form, they are expressible

as a set of parcel-conservation laws requiring no evaluations of spatial derivative. As �rst

pointed out by Cullen (1983), they are therefore able to tolerate contact discontinuities

within the uid and can be integrated using fully-Lagrangian �nite elements.

The theory of the Lagrangian �nite element \geometric model" form of SG dynamics

was put on a �rm foundation by Cullen and Purser (1984) and the method was applied

to a variety of highly idealized f-plane situations by Cullen et al. (1987a, 1987b), Shutts

(1987) and by Chynoweth (1987) who constructed the �rst general geometric model

algorithms. Shutts et al. (1988) were also able to demonstrate the applicability of the

geometric model, suitably modi�ed, to Eliassen's axisymmetric balanced vortex in which

gradient balance replaces geostrophic balance radially.

Independently, Salmon (1983, 1985), with mainly ocean simulations as his objective,

rediscovered and greatly extended SG dynamics by starting with a Hamiltonian

(variational) prescription. The �ltering assumptions were introduced in a careful way

that ensured retention of analogs of the important conservation laws of mass, energy
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and potential vorticity. The most signi�cant feature of this alternative derivation was

that it admitted a general spatial variation of the Coriolis parameter which, hitherto,

had not been accomplished without violating one or more of the conservation principles.

A global SG model based on similar pronciples was proposed by Shutts (1980). The

existence of a contact structure in SG theory was �rst recognized by Blumen (1982).

In an attempt to illuminate the common geometrical features of Salmon's Hamiltonian

model and the conventional SG models Purser (1993) (henceforth P93) paid particular

attention to the contact structure and showed how the SG models could be extended

in a way consistent with both the Hamiltonian and geometric model formulations to

non-axisymmetric vortex dynamics on either an f-plane or, with proper treatment of

the varying Coriolis parameter and sphericity, to the hemisphere. A brief description

of contact structure as it relates to Hamiltonian SG dynamics is given in section 2.

For further mathematical details, the reader may consult Sewell and Roulstone (1994).

Hamiltonian techniques in geophysical uids are reviewed in Shepherd (1990). A recent

interesting development, generalizing the SG models, is provided in McIntyre and

Roulstone (1996).

Associated with the contact structure is a duality relation between the physical

solution (comprising a geopotential function of physical coordinates) and the \dual

solution" (comprising a Bernoulli function of isentropic geostrophic momentum

coordinates, or a variant of these). The \graph" (hypersurface in the extended space

of physical coordinates x augmented by an extra coordinate measuring geopotential �)

of the physical solution is, in a well de�ned sense, the envelope of a continuous family

of what we call \neutral energy" (generating) surfaces coexisting in the same extended

space. Each neutral energy surface is itself labeled by a dual coordinate X and the dual

(Bernoulli) potential �, and therefore the entire surface can be identi�ed by a single

point in a dual extended space. The term, \duality" recognizes the fact that roles can be

reversed. Thus, from the totality of neutral energy surfaces one can consider the subset
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which pass through a given point x and geopotential � and notice that the locus of their

\labels" X and � now constitutes a single new \generating surface", in extended dual

space, whose own labels can be taken to be (x,�). Now, just as the physical solution can

be regarded as the envelope \above" (when the sense of increasing � is taken as \up")

the neutral energy surfaces labeled by the dual quantities (X;�), so the dual solution

can itself be regarded as the envelope \below" those dual generating surfaces labeled

by the quantities (x; �) present in the original physical solution. In this interpretation,

we �nd that the class of �nite element solutions are simply those solutions �(x) whose

graphs are each constructed as envelopes of only �nitely many neutral energy surfaces.

Each element is therefore characterized by a physical volume (which it conserves), a

single value of X and a single value of �.

Cullen and Purser (1984) showed that a trivial transformation of the geopotential of

Hoskins' (1975) constant Coriolis form of SG theory (the \standard theory") enabled

this version to be treated by the methods of Legendre duality. Based on a less obvious

mapping to Legendre-transformable form, Shutts et al. (1988) extended the geometrical

model to the SG form of the axisymmetric Eliassen vortex model described by Shutts

and Thorpe (1978) and by Schubert and Hack (1983). Geometrical implications of

Legendre duality were discussed by Purser and Cullen (1987), Chynoweth et al.(1988)

and by Chynoweth and Sewell (1989, 1991). Primarily, the practical signi�cance of

Legendre-transformability is that it leads to the simplest algorithms for the �nite

element solutions (computations of intersections among curved surfaces is incomparably

harder than the equivalent computations for intersecting hyperplanes). However, as

we show in section 3, there is another reason for preferring a Legendre-transformable

SG theory that is related to the topological structure of the connections between

distinct uid parcels in �nite element solutions or in originally smooth solutions during

frontal formation. In theories possessing a generic (not Legendre-transformable) contact

structure it can be shown that topological \anomalies" can occur whereby elements
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may either spontaneously split into disconnected pieces, or else may achieve multiple

contact (at disconnected interfaces) with the same neighboring elements. Apart from the

obvious computational di�culties implied for �nite element algorithms, the possibility

of such anomalies makes the uniqueness and regularity of the \weak" (discontinuous)

solutions resulting from initially continuous data questionable. This possibility thus

undermines the supreme purported virtue of SG dynamics { its ability to accommodate

discontinuous solutions. We therefore regard any SG theory not possessing a Legendre-

transformable representation as structurally de�cient.

Two such questionable theories were proposed in P93; one, a non-axisymmetric

generalization of the f-plane vortex model; the other a natural extension of this

model to the hemisphere (see Craig, 1991, and Magnusdottir and Schubert, 1991, for

alternative SG treatments not obviously exhibiting the form of contact structure we

have described). In sections 4 and 5, we re-examine the necessary properties of the

contact structures of the Hamiltonian SG theories introduced in P93 and propose very

minor modi�cations to the particular formulations suggested there in order to make

the modi�ed formulations exactly Legendre-transformable. The Legendre transformable

representations of the vortex models appear super�cially not to preserve the angular

symmetry since the concentric circles of the vortex are mapped to sectors of concentric

hyperbolae in each transformed horizontal plane. The symmetry-breaking is illusory,

however; the new representation does preserve the symmetry | provided the space of

points x̂ of the Legendre-transformable representation is regarded as being furnished

with the pseudo-Euclidean metric of a \Minkowski" space in place of a true Euclidean

metric. The operation of rotation by some angle about the axis of the vortex is then

represented by a proportionate \Lorentz boost", with cosines and sines of azimuth in

the components of the rotation operator being replaced by hyperbolic-cosines and sines

of the corresponding Lorentz angles. In section 6 we make some remarks concerning

the numerical implementation of the proposed new formulations and we conclude in
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section 7 with some more general suggestions about the potential applications, both

in numerical weather prediction and in oceanography, of the type of methods we are

advocating.

2. Contact structure in SG theories and Hamiltonian dynamics

We shall adopt most of the notational convention of P93. Thus, x and X are physical

and dual coordinates, � and � are physical and dual measures of the respective coor-

dinate volumes, � and � are physical and dual geopotentials, � is the pseudo-density

(mass per unit �) and � the potential density (mass per unit �). One essential feature

of SG theories is that the dynamics is speci�ed by the distribution of geopotential (and

boundary constraints) alone. Therefore, the Hamiltonian is expressible in terms only of

the geopotential distribution.

Let us de�ne the speci�c energy of a parcel with physical and dual coordinates x and

X to be E(x;X). In general, we need not require the domain of X to be isometric to the

domain of x; as we shall see in section 5, it is sometimes more appropriate that the dual

space di�ers from the physical space (for example, to enable the dual coordinates to be

made formally \canonical").

We postulate that, at each instant, the collective disposition of the x associated with

each X is such that the energy integral,

H =

Z
E(x;X) � d�; (2.1)

with respect to local rearrangements that conserve their X and mass � on material

parcels, and that conserve pseudo-density � and stay within the domain in physical

space, is minimized. The valid solution is then one associated with a scalar function �

that we identify as the geopotential and which satis�es:

�(x) = sup �
0
X(x); (2.2)
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where, for each su�x X, �0X(x) denotes the \neutral energy" function (or its graph,

the \neutral energy surface"):

�
0
X(x) = �(X)� E(x;X): (2.3)

If the solution � follows a neutral energy surface throughout some �nite volume, then

according to the precepts of SG theory, a prompt X-conserving lateral or vertical

displacement of any constituent parcel can be achieved with a net change in the total

energy of the system. This idea of a neutral energy surface therefore serves to extend the

one-dimensional concept of a neutral strati�cation to the horizontal dimensions also. In

the same way that a vertical stable strati�cation is convex relative to the neutral pro�les

tangent to it, a symmetrically stable distribution of � is (three-dimensionally) convex

relative to the neutral energy surfaces tangent to it.

The dual potentials �(X) are de�ned implicitly to be those such that, for each set �

of X{space of measure �, the corresponding set � of x{space of measure � (conserved by

potential rearrangements) is obtained as the volume of actual contact:

�� =

Z
�
d�; (2.4a)

� = fx : 9 X2�; �(x) = �(X)� E(x;X)g: (2.4b)

A more complete discussion of this idea is presented in P93, where it is shown that

this prescription provides a de�nition for the theory's inherent \contact structure" and

determines the basis for the geometrical duality between the physical solution �(x) and

the dual solution �(X). Properties of this contact structure are:

� X is regarded as a function jointly of x and r� , and therefore E(x;X) is also.

� If di�erent solutions �1 and �2 make tangential contact at x, then their duals, �1

and �2 make tangential contact at the image, X, of x.
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The quantity H of (2.1) is the Hamiltonian, which directly prescribes the evolution of

the ow in X{space and, indirectly (from the rearrangement result), the ow in physical

space also. The variational method for these problems is developed by Salmon (1983,

1985). During the period [t1; t2] an action-integral is extremized:

�

Z t2

t1
Ls dt = 0; (2.5)

where the Lagrangian Ls is de�ned:

Ls =

Z
A � DX

Dt
� d� �H (2.6)

The horizontal vector �eld A is a time-independent function of the horizontal dual

coordinates X such that its integral C:

C =

I
A � dX; (2.7)

in a circuit of constant Z measures an absolute circulation associated with the e�ective

Coriolis function,

f
�(X) =

@Ay

@X
� @Ax

@Y
: (2.8)

Variations of the action integral with respect to X and Y, subject to the constraint that

parcel values of Z and mass remain constant, imply \geostrophic" dynamics in X{space:

f
�DX

Dt
=

 
�@H
@Y

;
@H
@Y

; 0

!T

: (2.9)

Any circulation integral C de�ned by (2.9) is now a materially conserved quantity. We

note that a transformation of dual coordinates, X �! X0 accompanied by a circulation-

preserving re-de�nition of the e�ective Coriolis function,

f
��!f

0��f� @(X;Y )

@(X 0; Y 0)
; (2.10)

leaves the form of (2.9) unchanged. As discussed by Roulstone and Sewell (1996), this

enables a choice for X 0 and Y
0 to be made such that the new e�ective Coriolis function

f
0� is constant, whereupon, the X 0 and Y

0 of each material parcel become \canonical

coordinates" of the Hamiltonian description of the dynamics.
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3. Legendre-duality

As discussed in Schubert (1985) and P93, it is generally possible in SG theory to

express the dynamics for � or its dual, �, in terms of some linear elliptic \tendency

equation" and it is tempting therefore to think that standard numerical methods,

involving some form of \relaxation" procedure, will automatically supply a practical

way to integrate the time dependent solutions of interest. However, very frequently the

solutions of primary interest in SG studies are of a singular character, such as those

describing fronts. Here, the standard grid-point methods, which rely heavily on the use

of spatial di�erencing, can become severely compromised by the numerical di�culties

associated with evaluating derivatives near the modelled discontinuities or by the

spontaneous emergence of perceived non-elliptic regions at these places.

As noted in the introduction, an alternative numerical procedure designed speci�cally

to handle these otherwise intractable problems in SG theory is the Lagrangian �nite-

element \geometric method" proposed by Cullen (1983) and further elaborated by

Cullen and Purser (1984), Cullen et al. (1987a, b), Chynoweth (1987) and Chynoweth et

al. (1988). The �nite elements of this method each conserve their mass and (in adiabatic

dynamics, at least) a value of potential temperature that is assumed uniform throughout

the element. The horizontal dual coordinates X and Y are also assumed uniform

throughout the element, but subject to change in time according to the dynamics

implied by the Hamiltonian, which is evaluated by summing the contributions from each

polyhedral element. The total energy associated with each element can be computed

as an expression involving the \moments" of that element and simple functions of its

X, but at no time is it necessary to evaluate spatial derivatives. As a consequence, the

�nite element mode of computation stands aloof from the kinds of numerical problems

associated with frontal discontinuities that seriously beset other methods of calculation.

In principle, the �nite element methods should apply to any SG theory possessing

the contact structure described in the previous section. However, as a practical matter,
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actual implementations of the geometric method have been restricted to the special

class of SG dynamics for which a representation (possibly via a nontrivial spatial

mapping) exists in which the neutral energy generating surfaces become hyperplanes

in the \extended" physical space (x̂; �̂) of this representation. Only in this case do

the geometrical calculations involving the surfaces, edges and vertices of intersections

among the various generating surfaces become su�ciently simple to be feasible. The

Boussinesq standard f-plane SG theories in two and three dimensions have simple

Legendre-transformable representations, as exploited by Cullen and Purser (1984) and

discussed in detail in Purser and Cullen (1987). Also, Shutts et al. (1988) discovered

that the axisymmetric (two-dimensional) variant of SG theory on the f-plane (Shutts

and Thorpe, 1978), in which the radial component is balanced in the \gradient"

sense proposed by Eliassen (Eliassen and Kleinschmidt, 1957), possesses a Legendre-

transformable representation once the radial coordinate of the vortex has been suitably

mapped. This enables the geometric method to be applied to the investigation of

thermally forced solutions in the context of idealized axisymmetric tropical cyclones.

Other potentially useful extensions of SG theory have been formulated, but they do

not possess obvious Legendre-transformable representations. These include various f-

plane and hemispheric non-axisymmetric (three-dimensional) generalizations of vortex

models (Craig, 1991; Magnusdottir and Schubert, 1991; P93) and the variable-f form of

Salmon's (1985) Ls{dynamics. While it is obviously desirable, from the computational

point of view, to �nd Legendre-transformable variants of these non-axisymmetric vortex

and variable-f theories, we claim that such SG variants are to be preferred also on

theoretical grounds. We base this assertion on the following observations concerning

the possible forms of �nite element solutions (or other singular solutions, such as fronts,

which can occur spontaneously from initially smooth data).

The intersections, in a horizontal surface at some �xed elevation, of the neutral energy

surfaces associated with two neighboring dual-space labels, X1 and X2, constitute a
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family of non-intersecting curves (contours at this horizontal surface of the di�erence

of their respective energy functions E) that cover the area in physical space where both

of these particular generating surfaces come into play. If we select one such curve say

S1;2, together with some particular point x belonging to it, then we can generally �nd a

third neighboring dual-space label, say X3, for which the corresponding family of curves

formed by all possible intersections, at this same elevation, of neutral energy surfaces

�
0
2
and �

0
3
includes one member, the curve S2;3, which is tangent to S1;2 at x but

which fails to coincide elsewhere in the immediate neighborhood of x. Note, however,

that tangency without coincidence of the two curves becomes impossible whenever

the contact structure is transformable into one in which the duality takes the special

Legendre form in which the inersecting surfaces are all planes. Assuming the label order

(1; 2; 3) is monotonic in the sense of the gradients of their respective neutral energy

surfaces at x, then the two generic possibilities for the general contact structure are:

� (i) the curves of intersection S1;2 and S2;3 curl outward at x leaving a pinched o�

\bowtie"-shaped portion of �0
2
able to form part of the solution surface �, but now in

two virtually separate pieces (schematically depicted in �gute 1a);

� (ii) the curves curl inward at x so as to exclude the exposure [under the sup{

operation of (2.2)] of any �nite portion of uid element{2 beyond the single locus of

contact, x, itself.

In the former case, the theory permits the spontaneous destruction of the integrity of

�nite elements. In frontal formation, it would seem to allow the impulsive distribution

of potential vorticity associated with the resulting contact-discontinuity to be negative,

and introduce some undesirable problems associated with guaranteeing uniqueness of

solutions with respect to energy-minimizing local rearrangements of uid elements along

such a front. In the latter case, the formal di�culties are less severe but involve such

anomalies as one \crescent"-shaped �nite element being completely surrounded by only

two of its neighbors (illustrated in �gure 1b). The two outer elements in contact would
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then share an interface, possibly in many disconnected segments, on which there is also

an impulsive distribution of potential vorticity now of positive sign. These theoretical

complications are better avoided when the freedom in constructing generalized SG

formulations allows one to do so. A result of some help in seeking such anomaly-free

formulations is summarized in the following result (which is roughly analogous to the

theorem of Darboux in symplectic geometry discussed in Arnold, 1980).

a. Theorem 1

In an arbitrarily di�erentiable semi-geostrophic contact structure, bowtie and

crescent anomalies are impossible if and only if the semi-geostrophic solutions possess

a representation which, in each neighborhood, is Legendre-transformable.

b. Remarks

A proof of this result is provided in the appendix. The virtue of this result is that it

provides us with a criterion for judiciously modifying the existing non-axisymmetric

vortex and variable-f SG theories in order to identify those special forms which are not

only known to be anomaly-free, but which also promise the possession of Legendre-

transformable representations (and hence, computationally feasible dynamics). The

next section describes the minor modi�cations of the f-plane vortex theory of P93

required to render it Legendre-transformable, while section 5 extends this result to the

corresponding hemispheric vortex model which, away from the pole, can be regarded

essentially as a very minor modi�cation of Salmon's variable-f Ls{dynamics applied to

the hemispheric domain.

4. The f-plane non-axisymmetric vortex

In this and the following section, we shall simplify the algebraic development by

omitting the vertical dimension of the SG theories and therefore omit the associated

potential energy contribution to the speci�c energy function E(x;X) and to the
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Hamiltonian. In every case, the potential energy contribution, �Z z, to the total remains

unaltered by the various horizontal mappings we shall be considering.

First, we recall from P93 that, for the axisymmetric f-plane vortex at physical radius

r from the axis and with \potential radius" R (to which the ring of uid must be

expanded or contracted conserving its angular momentum in order to bring it to rest in

the rotating framework), the (kinetic component of the) energy function takes the form:

E(r; R) = f
2
R
4

8r2
+
f
2
r
2

8
� f

2
R
2

4
: (4.1)

If we relate such a vortex to an unrotated framework, then the speci�c energy is just

the �rst term on the right, which is manifestly self-similar with respect to rescaling

of either r or R. In P93 we argued that, in order to accommodate non-axisymmetric

e�ects consistent with the appropriate (frame-relative) de�nition of \geostrophy" for

�rst-order perturbations about any state of solid-body rotation, then it was necessary

for this self-similarity to extend to the form of the energy function generalized in the

azimuthal direction, and that the necessary geometrical constraint was that the Hessian

of each neutral energy surface evaluated at vanishing relative azimuth (��� = 0) should

have identical radial and tangential components, where � and � are the physical and

dual azimuth angles about the axis of the vortex. In section 6a of P93 we suggested one

particular form of the new energy function, E(r; �;R;�), satisfying this requirement. In

the light of theorem 1 and the related discussion of section 3, it is worth reconsidering

the exact choice for the azimuthal structure and seeking an alternative functional form

for E , equivalent to that proposed in P93 up to second-order in relative azimuth, but

departing from that form at fourth-order in such a way as to avoid the occurrence of

bowtie or crescent anomalies in the solution. As at least a necessary condition, we must

�nd that the curves of intersection (at a horizontal level) of the desired neutral energy

surfaces will collectively form a bi-parametric continuous family, just as the lines in a
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plane form such a family. If we write the energy function in a form that preserves the

manifest self-similarity, with respect to radial rescaling, of the �rst right-hand terms:

E(r; �;R;�) = f
2
R
4
F (� � �)

8r2
+
f
2
r
2

8
� f

2
R
2

4
(4.2)

for some yet to be determined function F , the isotropy of the Hessian at vanishing

relative azimuth requires that F satis�es:

F (0) = 1;

F
0(0) = 0;

F
00(0) = 8:

(4.3)

Now, since a limiting case of the Energy function obtained as R!0 gives,

E0(r; �) = f
2
r
2

8
;

a necessary condition for obtaining the desired bi-parametric family of intersections is

that F has the following property:

� Given arbitrary constants R1, R2, �1 and �2 then, except for sets in this four-

dimensional parameter space of measure zero, a further pair, R3 and �3, (possibly

complex) can be found such that, for all �,

R3F (� � �3) = R1F (� � �1)�R2F (� � �2): (4.4)

The only solution of such a problem that also satis�es (4.3) is

F (�) = cosh(
p
8�) (4.5)

If we write �̂ = (8)
1=2
� and �̂ = (8)

1=2�, then we do indeed con�rm that our choice for

F leads to a Legendre-duality,

�̂ = �̂ + x̂ � X̂; (4.6)

in the following representation of the physical and dual variables:

x̂ = � 1

2f2r2
cosh(�̂); (4.7a)

ŷ = +
1

2f2r2
sinh(�̂); (4.7b)

-16-



�̂ = �+
f
2
r
2

8
; (4.7c)

X̂ =
f
4
R
4

4
cosh(�̂); (4.7d)

Ŷ =
f
4
R
4

4
sinh(�̂); (4.7e)

�̂ = � +
f
2
R
2

4
: (4.7f)

While super�cially, it now seems that the angular symmetry in the original description

of the dynamics has been destroyed by the intrusion of these cosh and sinh functions

of azimuth, in fact, the underlying symmetry remains; in e�ect, the azimuth angles are

subjected to a multiplicative scaling by a constant which happens to be the imaginary

number, (�8)1=2. Real values are recovered by recognizing the equivalence of such a

scaling with a transformation from the horizontal Euclean plane to a two-dimensional

\Minkowski" space, considered either to be a Euclidean space with one coordinate

imaginary (the original application of this idea was to Special Relativity theory), or

more conveniently, to be a space of real coordinates but with a pseudo-Euclidean metric,

dr̂
2 = dx̂

2 � dŷ
2
: (4.8)

Then, the cyclic one-parameter group of axial rotations (generating displacements along

circles) is now replaced by the one-parameter group of two-dimensional Lorentz boosts

(generating displacements along hyperbolae). We note that, in the pseudo metric, the

radial coordinate r̂ is recovered from the components x̂ and ŷ by,

r̂
2 = x̂

2 � ŷ
2
; (4.9)

while scaled \Lorentz angles", �̂ and �̂, are recovered using,

�̂ = �arctanh( ŷ
x̂
); (4.10a)

�̂ = +arctanh(
Ŷ

X̂
): (4.10b)

The group of Lorentz boosts is not cyclic. Therefore, transformed back into the

original physical domain (x and y), the neutral energy surfaces formally wind repeatedly
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around the axis on a Riemann surface, but it is only portions possessing small relative

azimuths, j� � �j�0 that will ever be of practical signi�cance in constructing a solution.

It is instructive to see the shapes implied by this construction of the neutral energy

and dual generating surfaces. Figure 2a shows some of the curves, passing through a

�xed point, formed by intersections of pairs of generating surfaces. Note that some

of these curves (\cosh-type") avoid the axis while others (\sinh-type") intersect it,

according to their orientation relative to radial lines. (This topological distinction is

exactly analogous to that in two-dimensional relativity theory between \space-like" and

\time-like" lines). The picture corresponding to Fig. 2a for a focus of intersections at

some other distance from the axis is essentially no di�erent apart from a trivial change

of scale.

Figure 2b shows uniformly spaced contours in physical space (x; y) of the \speed",

u, that one would associate with the kinetic energy function, that is, u = (2E)1=2,
at the �xed X shown by the symbol. Note that near-circularity and even spacing of

these contours at small amplitudes give way to distorted loops of progressively uneven

spacing only when their scale becomes commensurate with the distance to the axis.

Figure 2c shows corresponding contours plotted in the dual plane, (X;Y ), when x is

kept �xed. Radial cross-sections corresponding to �gures 2b and 2c and at vanishing

relative azimuth can be seen in �gures 3a and 3b of P93.

5. Hemispheric SG theory

We continue to omit from our discussion the vertical components and associated

potential energy, but we further simplify the algebra for the hemispheric development by

choosing units of time and horizontal distance that make the polar value of the Coriolis

parameter and the radius of the earth both unity. Thus, in these units, the Coriolis

parameter at latitude � is,

f(r) = (1� r
2)1=2; (5.1)
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where

r = cos(�):

As discussed in P93, the neutral energy generating surfaces labeled by the uid

element's \potental radius", R, must possess a vanishing gradient and a horizontally

isotropic Hessian of magnitude �f2 at the location on the earth where r = R and where

physical and dual azimuth (or longitude) angles � and � are the same. This ensures

that, to �rst order, the SG dynamics reduces to geostrophy. It follows that the radial

and tangential components of the Hessian of each equatorially-projected neutral energy

function are, in our convenient units,

@
2
�
0
R

@r2
= �1 (5.2a)

1

r2

@
2
�
0
R

@�2
= �(1� r

2) (5.2b)

at r = R . (The angle � for which cos(�) = R is referred to as the \potential latitude"

by Schubert and Hack, 1983).

In order to obtain a Legendre-transformable representation we seek a mapping of the

physical coordinates and geopotential,

r̂ = r̂(r); (5.3a)

�̂ = ��; (5.3b)

�̂ = �+��(r); (5.3c)

such that the corresponding neutral energy surfaces �̂0 are linear functions of x̂ and ŷ

de�ned by,

x̂ = r̂ cos(�̂); (5.4a)

ŷ = r̂ sin(�̂): (5.4b)
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>From the Hessian conditions (5.2a) and (5.2b) it is then possible to derive the

identities,  
dr

dr̂

!
2

=
d
2��

dr̂2
; (5.5a)

1

r̂

d��

dr̂
=

r
2

r̂2

(1� r
2)

�2
; (5.5b)

and hence, by eliminating the derivatives of ��, to �nd that the logarithmic derivative,

p�d log r̂

d log r
; (5.6)

satis�es the quadratic equation,

p
2 � 2�p+  = 0: (5.7)

The � and  in (5.7) are the following functions of r:

� =
(1� 2r2)

(1� r2)
; (5.8a)

 =
�
2

(1� r2)
: (5.8b)

The appearance of solutions in pairs corresponds to the fact that the isotropic Hessian

condition for generating function �
0 implies a Hessian condition for the dual generating

function �0 of identical form except for a sign change. From the formula for the two

possible solutions, p,

p
� = ��(�2 � )1=2; (5.9)

and the de�nitions (5.8a) and (5.8b) it is apparent that, in order to obtain a real

valued logarithmic derivarive p over the whole hemispheric range, 0 < r < 1, the

quantity �
2 cannot be positive. As we have seen, the paradox of imaginary angular

scaling is nicely resolved with the aid of a pseudo-Euclidean mapped domain. It is

natural, then, to select the same angular scaling as used in the f-plane vortex so that

the hemispheric theory most closely corresponds with the previous development. This
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judicious choice also appears to lead to the hemispheric theory of greatest formal

simplicity and symmetry. Thus, choosing �
2 = �8, our solutions for p are,

p
� =

�2
1� r2

; (5.10a)

p
+ = 4: (5.10b)

The �rst solution, p�, is the one corresponding to the generalized vortex theory, which

gives r̂ within an arbitrary multiplicative constant and �� as follows:

r̂ = �(1� r
2)

2r2
; (5.11a)

�� =
r
2

8
: (5.11b)

As in the f-plane vortex, it is convenient to rede�ne the transformed angular variables

so that they become real, that is, replace the de�nition (5.3b) with �̂ = (+8)
1=2
� while

simultaneously replacing the circular functions in (5.4a) and (5.4b) by their hyperbolic

counterparts. The exact form for the horizontal part of the energy function compatible

with this geometry and with a vanishing kinetic energy when (r; �) = (R;�) is,

E(r; �;R;�) = R
4

8
(
1

r2
� 1) cosh(

p
8(� � �)) +

r
2

8
� R

2

4
+
R
4

8
; (5.12)

and, when,

R̂ =
R
4

4
; (5.13a)

�̂ = � +
R
2

4
� R

4

8
; (5.13b)

together with

x̂ = r̂ cosh(�); (5.14a)

ŷ = �r̂ sinh(�); (5.14b)

X̂ = R̂ cosh(�); (5.14c)

Ŷ = R̂ sinh(�); (5.14d)
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we reproduce the conditions (4.5) for Legendre-duality to hold. Note that (5.13a)

con�rms that the other solution, p+, of (5.10b) provides the dual radial transform.

As noted in P93, the representations of the dual radial variables R̂ in the f-plane and

hemispheric vortex models are identical if we identify the polar value of Coriolis of the

hemispheric case with the f used in the f-plane vortex model. Both vortex SG theories

possess a form of \frame invariance" in the sense that the choice of rotation rate (and

hence, Coriolis parameter) used to de�ne the frame of reference can be changed without

fundamentally changing the physical content of the theory itself (such a change involves

a consistent change in the de�nition of geopotential and of kinetic energy, of course; the

relevant transformations are discussed in P93). This frame invariance appears only to

hold in the hemispheric Legendre-transformable case when we adopt our present choice,

(�8)1=2, for the � in (5.3b).

Figure 3a plots the curves formed by various pairs of intersecting neutral energy

surfaces for this hemispheric vortex model. These curves are plotted in transverse

Mercator conformal projections in order to minimize the distortion of the shapes of

small �gures located near the principal meridian. Here we show two foci, since the

patterns in physical space are no longer invariant under scaling of r. Note that oblique

curves never intersect the equator. Figure 3b plots the contours of the energy function,

again, for several values of R. Fig. 3c includes the case of a value R slightly exceeding

the earth's radius; since the theory allows values of R (but obviously not r) larger than

the earth's radius, the implicitly restrictive \potential latitude" is not an appropriate

dual coordinate in general applications. This point is further reinforced when we plot

the energy contours, for the cases in which r is �xed, directly on the projected dual

equatorial plane. Figure 3d shows a selection of these contours, together with the

projection of lines of latitude and longitude (dotted). From the fact that some contours

cross the circle of the projected equator we deduce that this circle represents no intrinsic
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barrier in the dual domain (recall that dual ow is tangent to these contours of the dual

generating surface at the point of its contact with the dual solution).

6. Numerical considerations

For a �nite element implementation, it is natural to perform almost all the calcula-

tions in terms of the Legendre-dual coordinates and geopotentials (\hatted" physical

and dual variables). As we have seen, the dynamics can be expressed in a convenient

(but non-canonical) form when we have both the Hamiltonian and e�ective Coriolis pa-

rameter de�ned in the system of dual coordinates. In our case, the computation of the

Hamiltonian and its �rst derivative components with respect to Legendre-dual space

variables requires the intermediate computations of certain \moments" of each contribu-

ting element. A generic element takes its simplest form in these Legendre-transformable

physical coordinates (it then has the form of some convex polyhedron) but its internal

distribution of e�ective density �̂ and of speci�c energy E are both non-linear functions

of these coordinates. Fortunately, both functions are smooth away from the singularity

representing the equator. The element's total energy and its mass can therefore be ap-

proximated to any desired accuracy using an expansion in terms of successive moments

of the element combined with the �rst few Taylor series coe�cients, about the same

point, of the speci�c energy-density and of the mass-density. We shall not pursue these

technical issues in great detail, but a brief outline of the basic idea, exempli�ed by the

problem of estimating the mass in an element, is instructive.

Consider the example of the f-plane vortex, with uniform e�ective density � in the

physical space mapping to a non-uniform counterpart �̂ in the Legendre-transformable

domain via the Jacobian:

�̂ = �r

r̂

@(r; �)

@(r̂; �̂)
�: (6.1a)

=
�

4 (8)1=2 r̂3
: (6.1b)
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The total mass I�(�̂) of a �nite element � is therefore the integral,

I�(�̂)�
Z

�
�̂ d�̂; (6.2)

where,

d�̂�dx̂ dŷ dẑ�dx̂1 dx̂2 dx̂3:

We can expand �̂ about some point x̂� near element � as a Taylor series:

�̂(x) = �̂� +
X

i

@�̂�

@x̂i
(x̂i � x̂

i
�) +

1

2!

X
i;j

@
2
�̂�

@x̂i@x̂j
(x̂i � x̂

i
�)(x̂

j � x̂
j
�)� � �; (6.3)

Whence:

I�(�̂) = �̂�I�(1) +
X

i

@�̂�

@x̂i
I�(x̂i � x̂

i
�) +

1

2!

X
i;j

@
2
�̂�

@x̂i@x̂j
I�
�
(x̂i � x̂

i
�)(x̂

j � x̂
j
�)
�
� � � (6.4)

The mass, and more generally, mass-weighted moments (of which the parcel-integrated

energy is an example), are therefore expressed in terms of the parcel's ordinary moments

in x̂-space. The latter are relatively straight-forward to compute, since each element �

comprises a polyhedron.

This technique of employing moment expansions obviously applies to the evaluation

of the Hamiltonian as well as to verifying the mass of each element, but it can also be

shown that the derivatives of such mass-weighted moments, with respect to variations

of the dual extended-coordinates, (X̂� ; �̂� ), for � and � either identical or adjacent, can

be evaluated using analogous expansions with moments associated with the interfaces

between elements. Such methods should enable the bulk of the computations, associated

with both solution generation and the computation of its instantaneous trajectory, to be

carried out in the spaces of x̂ and X̂.

Optimal convergence will presumably be obtained when the location of each x̂� at

which the partial derivatives are evaluated is close to the center of the corresponding

element �. Then a reasonable resolution will ensure that the variations of �̂, or of

the product of this density with the energy function, will be small enough across the

element to make even a short moment expansion an extremely accurate estimate.
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7. Conclusions

We have shown that the contact structure of a generic form of the Hamiltonian

SG theory generalizing the work of Salmon (1985) may imply \anomalies" in the

connectivity of neighboring uid elements and that these anomalies can only be

completely eliminated by ensuring that the contact structure is of the special class that

admits a Legendre-transformable representation. We have proceeded to re-examine the

SG vortex theories on the f-plane and on the hemisphere proposed by this author in a

recent paper (P93) and determined the necessary minor modi�cations required to render

them Legendre-transformable, and hence, anomaly-free. The Legendre-transformable

representations exhibit the curious feature of preserving angular symmetry only when

we interpret the e�ective metric as being pseudo-Euclidean; rotational invariance of

the original theory takes the form of Lorentz invariance in the new representation and

concentric circles in the vortex are mapped to concentric hyperbolae.

The new versions of the SG vortex theories will enable the \geometric model"

techniques of Cullen (1983) and Cullen and Purser (1984) to be extended to fully

three-dimensional simulations for which these assumptions of approximately gradient

balance are valid. But, unlike the more restrictive model of Shutts et al. (1988), we are

now able to handle azimuthally varying components in such solutions, for example,

in a simulation of the internal structure of a developing tropical cyclone. A part of

one sector of this model can also be adapted to simulations of signi�cantly curved

fronts, largely overcoming the defects of standard SG in this area reported by Gent et

al. (1991). In the hemispheric case, the distinction between gradient and geostrophic

balance of a zonal wind is virtually insigni�cant (except very close to the pole itself)

and so we can legitimately regard the hemispheric vortex model as a minor variant

of Salmon's Ls-dynamics. We can therefore look forward to future implementations

of Salmon's powerful generalization of SG theory in both the atmosphere and oceans,

using the geometric method. In the oceanic case, this will allow simulation of a variety
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of discontinuous phenomena, such as boundary current separation, outcropping of sub-

surface layers and the evolution of unsteady currents where strong thermodynamic

and momentum gradients come into play. In the atmospheric case, we shall be able to

perform idealized simulations of the entire life-cycle of fully nonlinear baroclinic wave in

the total absence of arti�cial viscosity or thermal di�usion, since the geometric method

is not compromised by the formation of discontinuities. The new hemispheric model

is formally self-consistent even in tropical latitudes. It is therefore a candidate for the

study of quasi-steady monsoon circulations. As discussed in P93, it should be feasible

in practice to combine a pair of hemispheric models of this form with dual coordinates

matched at the equator, and allow exchange of mass (conserving this dual coordinate)

between the hemispheres, thereby obtaining a fully global model.

Other methods based on generalized \balance" but with consistent analogs of energy

conservation and circulation invariants have been proposed recently (e.g., Allen et al.

1990; Allen and Holm 1996; Shapiro and Montgomery 1993) but it is unclear how well

these methods are able to accommodate the formation of frontal contact discontinuities.

The SG models, while perhaps formally less accurate, do possess this ability to handle

the formation and evolution of contact discontinuities without di�culty. Because of

this, they can be used to generate a number of valuable \bench-mark" tests in which

such discontinuities are prominent, and against which the more conventional methods

of spatial discretization employed by operational forecasting and climate models can be

compared and improved. Thus, the methods proposed here could, indirectly, have an

impact on the technical development of operational forecast and climate models, now

that the typical resolution of such models is beginning to make the proper handling of

frontal details a relevant consideration.
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APPENDIX A

Proof of theorem 1

Write

E�� = E(x;X�)� E(x;X�); (A.1)

and use,

x̂(x) = �
 

@

@X�
;
@

@Y�

!
E�0j ^X�=^X0

; (A.2)

to de�ne new coordinates x̂�(x̂; ŷ) where the contact structure is \generic", or non-
degenerate in the sense that,

@(x̂; ŷ)

@(x; y)
6=0: (A.3)

By construction, the curvature of the contours of the di�erence, E��, vanishes
everywhere in x̂-space as we take the limit (in any direction), X ! X0. Therefore,

prohibition of the bowtie or crescent anomalies described in section 3 requires, for all

pairs X� , X�, that the contours of the general di�erence, E��, are also straight relative
to the new coordinates x̂. Thus we have a generic formula describing the contour:

â+ b̂x̂+ ĉŷ = 0; (A.4)

where the three coe�cients of this a�ne equation are functions jointly of E�� , X�

and X�. Consider the �rst-order variations of these coe�cients as we change X� in

the vicinity of X0. Denoting gradient with respect to X� at X0 by r� , and partial

derivatives of b̂ and ĉ with respect E�0, also at X� = X0, by b̂E and ĉE , then we �nd

that,

r� â+ (r� b̂)x̂+ (r� ĉ)ŷ + x̂(b̂E x̂+ ĉE ŷ) = 0: (A.5)
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Maintaining straight-line contours necessitates that the terms quadratic in x̂ and ŷ

vanish. Hence,

b̂E = ĉE = 0; (A.6)

and, since this is equivalent to saying that the contours of E�0 are mutually parallel

in x̂-space, we can therefore alway express each energy di�erence of the type, E�0 as a
scalar function of a dot product:

E�0�b�(x̂ � Û�); (A.7)

for some unit covector Û� independent of x̂. Finally, we write the general energy

di�erence E���E�0 � E�0 and substitute the form (A.7):

E�� = b�(x̂ � Û�)� b�(x̂ � Û�); (A.8)

to infer that an in�nitesimal displacement dx̂ parallel to a contour of this di�erence

must satisfy,

dx̂�(Û� b
0
� � Û� b

0
�) = 0: (A.9)

In the generic case, Û� will not be parallel to Û� and so both derivatives b0� and

b
0
� must vanish in order for (A.9) to hold over any �nite area. Thus, not only are

the contours parallel, but they are also uniformly spaced, implying that all the

energy di�erences E�� are a�ne functions of the new coordinates x̂. By an additive

modi�cation of each neutral energy function,

�̂
0
� = �

0
� + E(x;X)

��� � E�0;
(A.10)

and regarding �̂0� as a function of x̂, we �nd now that this modi�ed generating

function is expressible in manifestly Legendre-transformable form as asserted:

�̂
0
� = (�� � b�(0)) + x̂�

�
�Û� b

0
�

�

� �̂� + x̂ � X̂�:

(A.11)
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Figure Captions

FIG. 1. Schematic illustration of bowtie (a) and crescent (b) anomalies.

FIG. 2. Geometrical structures implied by the f-plane vortex model. (a) Curves

through a point in the (x; y)-plane formed by intersecting pairs of neutral energy

surfaces; (b) Contours of kinetic energy function E in the (x; y)-plane for two �xed

values of X; (c) Contours of E in the (X;Y )-plane for two �xed values of x.

FIG. 3. Geometrical structures implied for the hemispheric vortex model. (a) Curves

of intersection of pairs of neutral energy surfaces passing through the points at latitudes

45o and 50, as they would appear in a transverse Mercator projection. (b) Contours of

the energy function plotted in the same projection at intervals of 20ms
�1 in equivalent

speed, for �xed dual coordinates corresponding to locations on the central meridian

at latitudes 75o, 45o and 15o. (c) Energy contours as in (b), but for a dual coordinate

at R = 1:02 not corresponding to a latitude. The largest contour value is 100ms
�1;

(d) Contours of the energy function at intervals of 20ms
�1 in equivalent speed plotted

by normal projection onto the equatorial plane for �xed values of x corresponding to

latitudes 75o, 45o and 15o. Note that the contours may cross the projected circle of the

equator.

-32-


