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Abstract

This paper proves some extensions of Brenier's [1] theorem that an integrable vector-
valued function u, satisfying a non-degeneracy condition, admits a unique polar factorisation
u = u

#
� s. Here u# is the monotone rearrangement of u, equal to the gradient of a convex

function almost everywhere on a bounded connected open set Y with smooth boundary, and
s is a measure-preserving mapping.

We show that two weaker alternative hypotheses are su�cient for the existence of the
factorisation; that u# be almost injective (in which case s is unique), or that u be countably

degenerate (which allows u to have level sets of positive measure). We allow Y to be any set
of �nite positive Lebesgue measure.

Our construction of the measure preserving map s is especially simple.

Newton Institute preprint number NI96017.

1 Introduction

The notions of increasing and decreasing rearrangement of a real function of a real variable are

classical, see for example Hardy, Littlewood and P�olya [5]. Some novel ideas were introduced

into rearrangement theory by Ry� in the 1960s. In particular he showed [9] that any real

integrable function on a bounded interval could be written as the composition of its increasing

rearrangement with a measure-preserving map; this expression has become known as the polar

factorisation. In recent years Brenier [1] and McCann [7] have taken up the vector-valued case;

the monotone rearrangement, which is the gradient of a convex function, plays the part of the

increasing rearrangement.

Brenier [1] proved the existence and uniqueness of the monotone rearrangement, de�ned on a

bounded connected open set with smooth boundary, of an integrable vector-valued function. For

such domains he also proved the existence and uniqueness of the polar factorisation for a special

class of functions, which he called non-degenerate, possessing the property that the inverse image

of every set of zero measure has zero measure. McCann's [7] main result ensures the existence

and uniqueness of the monotone rearrangement of an integrable vector-valued function on a

general set of �nite positive Lebesgue measure, but he did not consider the polar factorisation.

Our purpose here is to extend this work on vector-valued functions by establishing the polar
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factorisation for a larger class of functions than Brenier considered, and on general sets of �nite

positive Lebesgue measure.

In our situation, the monotone rearrangement u# of u on a set Y always exists as a conse-

quence of McCann's work. We obtain the measure-preserving mapping by a simple and direct

method involving the inverse function of u#. This construction is most natural when u# is

injective o� a set of measure zero; we then say u# is almost injective. We show that if u is

non-degenerate then u# is almost injective, thus our results are indeed an extension of Bre-

nier's. We are also able to extend the existence of the polar factorisation to a still wider class

of functions, that are rendered non-degenerate by the removal of countably many level sets of

positive measure. Before stating the results, we require some de�nitions and notation.

De�nition Let (X;�) and (Y; �) be �nite positive measure spaces with �(X) = �(Y ). Two

vector-valued functions f 2 L1(X;�;Rn) and g 2 L1(Y; �;Rn) are rearrangements if

�
�
f�1(S)

�
= �

�
g�1(S)

�
for every S 2 B(Rn);

whereB(Rn) denotes the Borel �eld of Rn . (Brenier [1] uses a di�erent de�nition which is shown

to be equivalent to the one above in Douglas [2].)

De�nition A measure-preserving mapping from a �nite positive measure space (U; �) to a

positive measure space (V; �) with �(U) = �(V ) is a mapping s : U ! V such that for each

�-measurable set A � V , �(s�1(A)) = �(A).

Throughout this paper we will denote n-dimensional Lebesgue measure by �n, and the

extended real numbers, that is the set R [ f�1;1g, by R .

De�nition A �nite measure space (U; �) is a measure interval if it is isomorphic to [0; �(U)]

with Lebesgue measure. (We defer the de�nition of isomorphism of measure spaces to the next

section.)

De�nition Let u 2 L1(X;�;Rn) where (X;�) is a measure interval. Let Y � R
n be such that

�n(Y ) = �(X). The monotone rearrangement of u on Y is the unique function u# : Y ! R
n

that is a rearrangement of u, and satis�es u# = r almost everywhere in Y for some proper

lower semicontinuous convex function  : Rn ! R .

In the case when Y is a bounded, connected, open subset of Rn , with smooth boundary, and

we make the stronger hypothesis that u 2 Lp(X;�;Rn), where 1 < p � 1, Brenier [1, Theorem

1.1] yields that  belongs to W 1;p(Y; �n;R
n).

De�nition Let u 2 L1(X;�;Rn) where (X;�) is a measure interval. Let Y � R
n be such that

�n(Y ) = �(X), and let u# denote the monotone rearrangement of u on Y . We say u has a

polar factorisation through Y if there exists a measure-preserving mapping s : X ! Y such that

u = u# � s. While u# must be unique, s need not be unique.

Existence (and uniqueness) of a polar factorisation has been proved under certain restrictions.

De�nition Let u be a vector-valued integrable function de�ned on a measure interval. We say

u is non-degenerate if �(u�1(E)) = 0 for each set E � R
n of zero Lebesgue measure, otherwise

u is degenerate. It is easily seen that all rearrangements of a non-degenerate function are non-

degenerate.

For Y a bounded connected open subset of Rn , with smooth boundary, and �n(Y ) = �(X),

Brenier [1, Theorem 1.2] showed that any non{degenerate function u has a unique polar facto-

risation through Y . Gangbo [3] subsequently gave an elementary proof of this result.

De�nition A mapping � : U ! V , where (U; �) is a �nite positive measure space, is almost

injective if there exists a set U0 � U such that � restricted to U0 is injective, and �(UrU0) = 0.

We prove the following results.
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Theorem 1 Suppose u 2 L1(X;�;Rn) where (X;�) is a measure interval. Let Y � R
n satisfy

�n(Y ) = �(X), and suppose that the monotone rearrangement of u on Y , denoted u#, is almost

injective. Then u has a unique polar factorisation u = u# � s, where s : X ! Y is a measure-

preserving mapping.

Remark: We will show in Lemma 5 that if u is non-degenerate then u# is almost injective, for

any admissible Y ; thus Theorem 1 applies to non-degenerate functions.

Theorem 2 Suppose u 2 L1(X;�;Rn) where (X;�) is a measure interval. Let Y � R
n satisfy

�n(Y ) = �(X), and let u# be the monotone rearrangement of u on Y . Suppose further that

there exists a countable set B with

(i) �n((u
#)�1(b)) > 0 for each b 2 B, and

(ii) u# restricted to (u#)�1(RnrB) is almost injective.

Then u has a polar factorisation u = u# � s, where s : X ! Y is a measure-preserving mapping.

De�nition Let u be an integrable vector-valued function de�ned on a measure interval. We say

u is countably degenerate if there exists a countable set B � R
n (called the degenerate set of u)

such that

(i) �(u�1(b)) > 0 for each b 2 B, and

(ii) u restricted to u�1(RnrB) is a non-degenerate function.

It is immediate that a rearrangement of a countably degenerate function is countably dege-

nerate with the same degenerate set. Unlike a non-degenerate function, a countably degenerate

function may have (countably many) level sets of positive measure.

Corollary 3 Let u 2 L1(X;�;Rn) be countably degenerate, where (X;�) is a measure interval.

Let Y � R
n satisfy �n(Y ) = �(X), and let u# denote the monotone rearrangement of u on Y .

Then u admits a polar factorisation u = u#�s for some measure preserving mapping s : X ! Y ,

and if in addition u is non{degenerate, then the polar factorisation is unique.

We now proceed to the proofs of these results and some of their rami�cations. In Section 3

we discuss existence and uniqueness of the polar factorisation in the context of some examples.

2 Proofs and Further Results

De�nition A mapping s : U ! V , where (U; �) and (V; �) are �nite measure spaces, is a

measure-preserving transformation if

(i) s : UrL ! V rM is a bijection, where L and M are some sets of zero (respectively � and

�) measure, and

(ii) s and s�1 are measure preserving mappings.

Measure-preserving mappings are surjective (up to sets of measure zero), but need not be

injective.

De�nition Two �nite measure spaces (U; �) and (V; �) are isomorphic if there exists a measure-

preserving transformation T : U ! V .

We justify our earlier assertion that the monotone rearrangement exists and is unique. Let

u be an integrable vector-valued function de�ned on a measure interval (X;�), and let Y � R
n

satisfy �n(Y ) = �(X). De�ne �, � by

�(S) = �n(Y \ S); �(S) = �(u�1(S))
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for each S 2 B(Rn). Now �=�n(Y ) and �=�n(Y ) are probability measures on R
n , with �

vanishing on (Borel) subsets of Rn having Hausdor� dimension n�1, therefore the main theorem

of McCann [7] yields the existence of a convex function  : Rn ! R whose derivative r at its

points of di�erentiability is such that

�
�
(r )�1(S)

�
= �(S) (1)

for each S 2 B(Rn). Then r : Y ! R
n is uniquely determined �n-almost everywhere in Y ;

moreover  can be chosen to be proper and lower semicontinuous. Rewriting (1) we obtain

�n
�
(r )�1(S)

�
= �

�
u�1(S)

�

for each S 2 B(Rn), which is exactly the statement that r and u are rearrangements. The

monotone rearrangement is unique in the sense that if � : Rn ! R is a convex function, and

r� (as a function de�ned on Y ) is a rearrangement of u, then r�(x) = r (x) for almost every

x 2 Y .

Our �rst lemma is a small modi�cation of the standard result that any complete separable

metric space with a �nite positive continuous Borel measure is a measure interval.

Lemma 4 Let X be a set of �nite positive Lebesgue measure a in Rn . Then there is a bijection

of X onto [0; a] that is an isomorphism (endowing [0; a] with �1).

Proof. We can �nd a G�-set W with X � W � R
n such that WrX has zero measure. Then

W is homeomorphic to a complete separable metric space (see for example Kechris [6, Theorem

3.11]) and therefore there is a bijection of W onto [0; a] that is an isomorphism relative to

the respective measures �n and �1 (see for example Kechris [6, Theorem 17.41]). To complete

the proof, it will be enough to show that if M � [0; a] has zero measure, then there exists a

bijection from [0; a]rM to [0; a] which is an isomorphism. We choose a set C � [0; a]rM , of

zero measure and cardinal c; this is possible since [0; a]rM contains a compact set of positive

measure which is therefore isomorphic to an interval, which in turn contains a Cantor set of

zero measure and cardinal c. Now choose � to map M [C bijectively onto C and let � leave all

points of [0; a]r(M [C) �xed, to obtain an isomorphism of [0; a] onto [0; a]rM . 2

Proof of Theorem 1

We begin by disposing of a measurability question. After discarding a set of zero measure,

we can assume u# = r throughout Y , where  : Rn ! R is some proper lower semicontinuous

convex function, that u# is injective on Y , and that Y is �-compact. Since r is continuous

relative to its domain of existence (see for example Rockafellar [8, Theorem 25.5]), it follows that

u# is continuous relative to Y . Hence u# maps each compact set K � Y homeomorphically

onto u#(K), and since Y is �-compact it follows that u# maps Borel subsets of Y to Borel

subsets of Rn . Moreover the range R of u# is �-compact.

It follows, since u is a rearrangement of u#, that by deleting a set of zero measure from X

we can assume the range of u lies in R. Let v : R ! Y be the inverse function of u# : Y ! R,

and de�ne s = v � u : X ! Y . Evidently u# � s = u throughout X; we now check that s is

measure-preserving.

It will su�ce to consider a Borel set S � Y , and prove that �(s�1(S)) = �n(S). Let

T = u#(S). Then T is Borel, (u#)�1(T ) = S, and

s�1(S) = u�1(v�1(S)) = u�1(u#(S)) = u�1(T ):
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Now (u#)�1(T ) and u�1(T ) have equal measure, so s�1(S) and S have equal measure, which

shows that s is a measure-preserving map.

It remains to prove the uniqueness of s. If a measure-preserving map t : X ! Y di�ers from

s on a set of positive measure, then since u# is injective, u# � t di�ers from u# � s on a set

of positive measure, so u# � t di�ers from u on a set of positive measure. This shows that the

measure-preserving map in the polar factorisation of u on Y is unique. 2

Proof of Theorem 2

Enumerate B = fbigi2I , where I is a countable index set. De�ne X0 = u�1(RnrB), Y0 =

(u#)�1(Rn rB), and for each i 2 I, Xi = u�1(bi), Yi = (u#)�1(bi). For i 2 I, Xi and Yi
are measurable sets with �(Xi) = �n(Yi) > 0. Lemma 4 ensures that (Xi; �) and (Yi; �n) are

measure intervals, therefore for each i 2 I there exists a measure-preserving transformation

si : Xi ! Yi. It is immediate that u = u# � si almost everywhere in Xi.

Suppose �(X0) > 0. (If not, de�ning s(x) = si(x) when x 2 Xi yields the result.) Then

u# restricted to Y0 is the monotone rearrangement of u restricted to X0, and furthermore

u# is almost injective on Y0. Theorem 1 gives the existence of a (unique) measure-preserving

mapping s0 : X0 ! Y0 such that u(x) = u# � s0(x) for almost every x 2 X0. De�ne s : X ! Y

by s(x) = si(x) when x 2 Xi for i 2 I [ f0g. Countable additivity of the measure yields that s

is a measure-preserving mapping, and u = u# � s follows from above. 2

If  : Rn ! R then  � : Rn ! R denotes the (Legendre-Fenchel) conjugate convex function

of  , de�ned by

 �(x) = supfx � y �  (y)jy 2 Rng:

A R-valued function is called proper if it is not identically 1, and nowhere has the value �1.

Lemma 5 Let Y � R
n be a set of �nite positive Lebesgue measure, let u : Y ! R

n be integrable,

and suppose there is a proper lower semicontinuous convex function  : Rn ! R such that

u = r almost everywhere on Y . Suppose further that u is non-degenerate. Then u is almost

injective on Y .

Proof. We can suppose, after discarding a set of zero measure, that  is di�erentiable with

gradient u throughout Y . De�ne

K = fk 2 Rn j �(k) <1 and  � is non-di�erentiable at kg;

so K has zero measure by Rademacher's Theorem on the di�erentiability of convex functions

(see for example Rockafellar [8, Theorem 25.5]). Suppose x; z 2 Y; z 6= x, are such that

u(x) = u(z) = k say. Then k 2 @ (x)\ @ (z). Since  is a proper lower semicontinuous convex

function we have  �� =  and therefore x; z 2 @ �(k) (see for example Rockafellar [8, Theorems

12.2 and 23.5]). Hence k 2 K. It follows that the restriction of u to Y ru�1(K) is injective;

moreover u�1(K) has zero measure since u is non-degenerate. 2

Proof of Corollary 3

The existence of a polar factorisation for a countably degenerate function follows from Theo-

rem 2 and Lemma 5, and uniqueness for a non{degenerate function from Theorem 1 and Lemma

5. 2

We show in Proposition 7 following, that if u is non{degenerate, then any two monotone

rearrangements of u are related by a unique measure-preserving transformation. We need the

following preliminary result:
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Lemma 6 Let (X;�) and (Y; �) be measure intervals of equal measure, and suppose � : X ! Y

is a measure preserving map. Suppose further that � is almost injective on X. Then � is a

measure-preserving transformation.

Proof. We lose nothing by assuming that X and Y are real intervals, that � = � = �1, and

that � is injective on the whole of X. It will su�ce to show that ��1 is measure-preserving.

Let S � X be measurable; then by Egoro�'s Theorem we can write H1 � S � H2 where H1

and XrH2 are countable unions of compact sets relative to each of which � is continuous, and

�1(H1) = �1(S) = �1(H2). Then �(H1) and �(H2) are measurable, being respectively F� and

G� relative to Y . Moreover �1(�(Hi)) = �1(�
�1(�(Hi))) = �1(Hi) for i = 1; 2. Hence �(S) is

measurable with �1(�(S)) = �1(S). 2

Proposition 7 Let X and Y be sets of equal �nite positive Lebesgue measure in Rn , let u 2

L1(X;�n;R
n) and v 2 L1(Y; �n;R

n) be rearrangements of each other, and suppose that u; v

are equal almost everywhere in X;Y to the gradients of proper lower semicontinuous convex

functions �;  : Rn ! R . Suppose further that u and v are almost injective. Then there is a

unique measure-preserving transformation � : X ! Y such that u = v � � almost everywhere in

X.

Proof. We can suppose, after removing sets of zero measure, that u; v are injective on the whole

of X;Y respectively. Since v is the monotone rearrangement of u on Y and is injective, we can by

Theorem 1 choose a unique measure-preserving mapping � : X ! Y such that u = v � � almost

everywhere in X. Discarding a further set of zero measure from X we can suppose that u = v��

throughout X. Suppose x; y 2 X with �(x) = �(y). Then u(x) = v(�(x)) = v(�(y)) = u(y),

hence x = y by injectivity of u. Thus � is injective, and is therefore a measure-preserving

transformation by Lemma 6. 2

Let (X;�) be a measure interval, and let 
 � R
n be an open connected bounded set with

smooth boundary, satisfying �n(
) = �(X). Brenier [1, Theorem 1.2 (b)] shows that for a

non-degenerate function u de�ned on X, the unique maximiser of
R
X
u � s over s in the set of

measure-preserving mappings from X to 
 is the s satisfying u = u# � s. We prove an extension

of this result; for any integrable u, any measure-preserving mapping which arises from a polar

factorisation of u through 
 is a maximiser of
R
X
u � s. We have not been able to prove that

such measure-preserving mappings are the only maximisers.

We recall (see Halmos [4, Theorem C, page 163]) that for a measure-preserving mapping s

from (U; �) to (V; �), for every �-integrable (scalar) function f (de�ned on V ), f �s is �-integrable

and Z
U

f � sd� =

Z
V

fd�:

Proposition 8 Let (X;�) be a measure interval, and u be an integrable function de�ned on X.

Let 
 be a bounded, connected, open subset of Rn , with smooth boundary, satisfying �n(
) =

�(X). Let u# denote the monotone rearrangement of u on 
. Then measure-preserving map-

pings s : X ! 
 which satisfy u = u# � s maximise
R
X
u(x) � s(x)d�(x) over the set of measure-

preserving mappings from X to 
.

Proof. Let s : X ! 
 be a measure-preserving mapping such that u = u#�s. Lemma 4 ensures

(X;�) and (
; �n) are isomorphic, therefore we can �nd a measure-preserving transformation
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� : 
! X. Now Z
X

u(x) � s(x)d�(x) =

Z



u#(x) � xd�n(x)

�

Z



(u � �)(x) � �(x)d�n(x) (2)

=

Z
X

u(x) � � � ��1(x)d�(x)

for every measure-preserving mapping � : 
 ! 
, where inequality (2) follows by Douglas [2,

Lemma 4]. Furthermore for every measure-preserving mapping � : X ! 
, � � � : 
 ! 
 is a

measure-preserving mapping. Combining this with the above inequality we obtain,

Z
X

u(x) � s(x)d�(x) �

Z
X

u(x) � �(x)d�(x)

for every measure-preserving mapping � : X ! 
. 2

Remark For a measure-preserving mapping � : X ! 
, the monotone rearrangement �# is the

identity function, and a corollary to the proof of the above proposition is that for u as above,

Z



u#(x) � �#(x)d�n(x) �

Z
X

u(x):�(x)d�(x):

This inequality fails for general � 2 L1(X;�;Rn) if n � 2 (see Brenier [1]).

3 Special Cases and Examples

The one-dimensional case.

The situation in dimension one is well-understood. Consider f 2 L1(I) where I = [0; 1]. Ry�

[9] showed that f has a polar factorisation f = f# � � almost everywhere, where f# 2 L1(I) is

the increasing rearrangement of f , and � : I ! I is a measure-preserving mapping.

Suppose f has at least one level set of positive measure, and is therefore degenerate. If

� : I ! I is chosen to act as a non-trivial measure-preserving transformation on one interval of

constancy of f# and to �x all other points of I, then ��� is measure-preserving and f = f#����.

Thus the polar factorisation is not generally unique in the countably degenerate case.

Suppose on the other hand that f has no level sets of positive measure, which ensures f#

is increasing but has no intervals of constancy, and therefore f# is injective. The uniqueness of

the polar decomposition now follows easily, as in the proof of Theorem 1.

It should be noted that this uniqueness of the polar factorisation holds even for degenerate

functions that have no level sets of positive measure. An example of such a function can be

constructed as follows. Let C � I denote the Cantor ternary set and let C 0 denote C with the

left-hand end-points of its contiguous intervals removed. There is a well-known construction of

a continuous increasing map g of I onto I, that is constant on the intervals contiguous to C,

and maps C 0 bijectively onto I. Let f : I ! C 0 be the inverse function of g. Then f is strictly

increasing (and therefore has no level sets of positive measure) but degenerate, because C 0 is a

set of zero measure whose inverse image I has positive measure.

A two-dimensional example.

In higher dimensions, for a countably degenerate function having a level set of positive

measure, the polar factorisation is not unique, as can be seen by the same argument given above
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in the one-dimensional case. However, when, in higher dimensions, a function lacks level sets of

positive measure, the polar factorisation, if it exists, may not be unique, as may be seen from

the following example. Let u : D ! R
2 be de�ned on the unit disc D � R

2 by

u(x) =

�
jxj�1e x; if x 6= 0;

0; if x = 0;

where j�je denotes the Euclidean norm on R2 . Then u is equal throughout Drf0g to the gradient

of the convex function de�ned by  (x) = jxje. The range of u comprises the unit circle together

with 0, and the inverse image under u of any point consists of 0 or a line-segment. It follows

that u is degenerate but not countably degenerate. Since  is convex, a polar factorisation

exists trivially, but the measure-preserving map is not unique, as may be seen by considering

any nontrivial area-preserving map of the disc that leaves each radius invariant.

Conjecture.

We conjecture that if (X;�) is a measure interval, u : X ! R
n an integrable function, and

Y � R
n a measurable set having �n(Y ) = �(X) then the polar factorisation of u through Y

exists, and it is unique only if the monotone rearrangement of u on Y is almost injective.

An alternative view of non-degeneracy.

Consider u 2 L1(X;�;Rn). Then u gives rise to a Borel measure � on Rn , by

�(S) = �(u�1(S)) 8S 2 B(Rn);

called the push-forward of � by u by McCann [7]. Non-degeneracy of u is equivalent to absolute

continuity of � with respect to Lebesgue measure on B(Rn). More generally, � has a Lebesgue

decomposition � = �ac + �s where �ac is absolutely continuous and �s is singular with respect

to Lebesgue measure; �ac and �s are concentrated on disjoint Borel sets. The function u is

countably degenerate if and only if �s is concentrated on a countable set (the degenerate set of

u), and in this case �s is purely atomic.
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