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ABSTRACT. We study a class of endomomorphism algebras of certain g-permutation . ..
modules over the Hecke algebra of type B, whose summands involve both, parabolic , ,
and quasi-parabolic subgroups, and prove that these algebras are integrally free and L
quasi-hereditary, and are stable under base change. Some consequénces for decom-
position numbers are discussed. ' R S T

The notion of a g-Schur algebra was introduced by Dipper. and .James [DJ2],
who used these algebras to parametrize the irreducible representations of the finite
general linear groups in non-describing characteristics. With hindsight, these alge-
bras had already appeared earlier in an entirely diﬁ'erenp_quantum group context
[Ji] inspired by physics. .In [Ji] Jimbo considered the endomorphism algebras of
tensor spaces as Hecke algebra modules.. In his.context, a g-Schur algebra can be.
viewed as a quotient of the quantized enveloping algebra associated to gl,. In [PW],
these algebras were shown to be ‘quasi-hereditary. The quasi-heredity property is.-
an embodirii_en_t in classical algebra of the geometric derived_category stratification
exhibited by perverse sheaves [PS]. It means more applications can be deduced from
a ring-theoretic point of view; see e. g, [DPS3], and the possibility is raised of even
deeper results in the future, as suggested by [CPS2]. oo _ L e wes il

Certainly, these.-algebras play a central role in the representation theories. of
the finite and quantum general linear groups.. N aturally, one asks: Are there such
algebras for types other than A? Our paper. [DS] showed that there were similar
quasi-hereditary quotients of quantized enveloping algebras for all types of root
Systems. However, no connection with Hecke algebras and finite groups of Lie type
was found there.

This paper aims at the same question and constructs possible algebras directly
from Hecke algebras (hence from finite groups of Lie type). We restrict attention
to the type B case. Imitating the deﬁm’tion of a g-Schur algebra, we introduce
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2 JIE DU AND LEONARD SCOTT

the notion of a g-Schur? algebra. These algebras are the endomorphism algebras
of certain modules over the Hecke algebra of type B — called “tensor” spaces —
whose summands involve not only parabolic subgroups but also quasi-parabolic
subgroups of the Weyl group of type B. A main result of our paper shows that g-
Schur? algebras are quasi-hereditary. We speculate that similar constructions exist
for other classical types (only type D remains, actually, since type C is equivalent
to type B in our context), while a weaker variation, at least, applies in general. See
our papers [DPS1] and [DPS2] with Brian Parshall. N

We outline the contents of the paper. Section 1 collects some facts about Young
tableaux and bitableaux. The notion of a semi-standard bitableau is new. In section
2, we introduce the notion of a quasi-parabolic subgroup of the Weyl group of type
B in the restricted sense. We describe the distinguished coset and double coset
representatives for these subgroups. The notion of a g-Schur? algebra is given in
section 3. In section 4, we first characterize g-permutation modules associated to
quasi-parabolic subgroups in terms of certain eigenspaces in §4.1. Then we prove
the freeness of the g-Schur?- algebras and their base change property. In section 3,
we generalize the classical Young rule to the type B case, that is, we prove that the
number of semi-standard bitableaux is equal to the ultiplicity of a Specht module
in a permutation module. Integral Specht filtrations for, permutation modules are
discussed after introducing “Murphy” type bases for these modules. Finally, in
section 6, we prove the quasi-heredity of a g-Schur? algebra. We also discuss some
consequences for decomposition numbers for related algebras of known interest, and

make further remarks: Over a field our theory applies in all characteristics, without

exception.

The major part of the work, that is, the freeness and quasi-heredity of the ii;tégi'al =
g-Schur? algebras, was completed in late 1995. Parts of the ideas  and Tesults have
been communicated since then, both privately and publicly, and were anriounced *

briefly by the second author at the AMS (summer institute) conférence in Seattle,

July, 1996. All results here were presented by the first author at a ~semi‘r’i_ar'?‘ of
University of Chicago in November, 1996. We thank R. Dipper for letting us know

in late September about a base change property he and James had obtained in their
work on an endomorphism algebra of type B. We obtained our result (4:1.2), which

is crucial in proving the base change property, after knowing their result. existed. -
After an earlier version of this manuscript was completed, we received-a preprint by’

R. Dipper, G. James and A. Mathas entitled “The (Q, g)-Schur algebra” , evidently
influenced by our work (for example, through [D2]). It turns out that their algebra
is Morita equivalent to the g-Schur? algebra. - S

1. YOUNG TABLEAUX'

In this section we collect some definitions ‘and results on partitions and Young
tableaux. . .

1.1 Standard and semi-standard tableaux. A compositiona ofa nonnegativel
integer r, denoted o |= 7, is a finite sequence a = (a1, -+ , o) of nonnegative
integers with sum |a| =) ;s =71. A composition ¢ is tight if all zero parts appear

11t is useful to allow r = 0 here and in the definitions below, to avoid special cases.

LT



THE ¢-SCHUR2? ALGEBRA 3

at the right hand side of the sequence, and « is called a partition, denoted o F r,
if the sequence is non-decreasing. We denote by A(n,r) the set of all compositions
of r with n parts (counting zeros). Elements of A(n,r) may be identified with
elements of A(m,r), if m > n, by adding zeros on the right, though often we will
want to keep track of n.

Let < be the dominance order on compositions. Thus, @ <4 g if and only if
23—1 a; < 21_1 G; for all j. For a composition « of 7, we may identify o with its
corresponding diagram which consists of boxes arranged in a manner as illustrated
by the example a = (421), for which we have ’

aoo
O

R
|
noo

Let. o' be the dual partition of o |= 7: thus o = #{a_., > 4}. The double dual is

denoted o''; if « is a partition, then a = o

An o-tableau t is obtained by replacing boxes by posﬂ:lve integers: We W111 call-a:;

the a-tableau regular if its entries are the numbers 1, 2, - - -, r with no:repeats. ‘The :
symmetric group &, acts on the set of regular a—tableaux by permuting the entries 3
A regular tableau t is called row-standard if each row of t is an increasing sequence; -
and standard if both row and columns of t are increasing. Let t* be the a-tableauin -*

which the numbers 1,2, - - ,r appear in order along successive rows. Let G, be the

~r d [

row stabilizer of t and put Do = {w € G, | t*w is:row-standard}. Thus; we have::

a bijection § = J, from the set of all row-standard a-tableaux to Dy, satisfying -

s = t*6(s) for any s. We remark that D, is the distinguished cross section of

minimal length for G,\S,, in the sense of Coxeter groups. (As a permutation, 5(s)

has the smallest number of order inversions among elements in its right coset.)
For a partition 8 of r, let tg be the standard S-tableau in which the numbers

1,2,---,r appear in the same order down successive columns. Let wg be the element ..
in 6 deﬁned by tPwg = tg. Thus, by [DJ1; (1.5)], the set of all standard ﬁ- )

tableaux consists of all t?d where dz = wg for some z with Z(d) +2(z) = - (wg)..

A B-tableau of type o is a ,B—tableau such that, for each i, the number of entries f',__::.
i is equal to ;. A B-tableau t of type « is called semz-standard if its entrles are_'._'.:_
nondecreasing along each row and increasing along each column. .We denote by
(B, ) the set of all S-tableaux of type a and by 3°¢(3,a) the set of all semi-
standard (-tableaux of type a. Clearly, %9%(B,w) is the set of all standard ,3- K

tableaux, where w = (17).

We now define a map (%, *) W x %(B, ) = Dg as follows: If w e W and
s € %(B,a), we define §(w,s) € D, by letting t*d(w,s) be the row-standard o-
tableau for which 7 belongs to row a if the place occupied by i in thw is occupled

by a in s.

(1.1.1) The map 6(1, *) gives a bijection between (4, @) and Dq, and s has non-
decreasing rows if and only if 4(1, 5) € Dag = Dq n 'Dﬂ1 (IDJ1; (1.7)]).

As a Coxeter group, &, is generated by ba31c transposmons (1,2),- ,(r -1,7)
and every G, is generated by the subset consisting of those (z,7+1) _Wh1ch stabilize
the rows of t*. If « is tight, it may be recovered from, and identified with, this
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subset. For d € ﬁag, let adN B and aNdB denote the subsets defined by the Young
subgroups

(1.1.2 Godng = d 16,dN Gz and Gangg = Go NdSgd L,
B 8 8 8

respectively. We also identify ad N 8 and o N d@ with the corresponding tight
compositions: '

1.2 Bitableaux. A multi:composition of r is a finite sequence A = (A1), ... A(m))
of compositions A(® }= r; such that the total sum |A| =Y, ri =7. Whenm =2, A
is called a bicomposition. A bicomposition X is tight if both A(1) and A are tight,
and ) is called a bipartition if both A(t) and A are partitions.

Let A = (AW, X)) be a bicomposition. Thus, A®) = o, AD) i=1,2)
is a finite sequence of non-negative integers with sum |A(Y)| + IA(2)| = r, where
A®)| = 2 )\(’). Let I, be the set of all bicompositions of r and II} the set of .
all blpartltxons of r. Later in §3, we shall consider for a positive integer n the
set II(n,7) of bicompositions A such -that each: A¥) has n parts (some possibly
zero), i.e.; my = mg. = n. - Clearly, when n > r, I} can be viewed as a subset -
of H(n r) naturally. Note that II(n,r) identifies the orbits of the set I 2(n T) =
{(z'l, i) | —n < z_, <n,i# 0, V4} on which the symmetric- group &, acts by

“place permutations”.

For a bicomposition A, we sometimes. 1dent1fy A with its correspondmg ‘diagram
which consists of boxes arranged in a manner as illustrated by the example /\ ==
(331, 21), for which we ha.ve

ooc
0o
oo

0

ant

D
Il
looo

.

(1.2.1) Definition and Notation. Let X € II,.

(a) The dual bipartition )\ of X is defined as X' = (A®’, \(})’) where )\(’)' denote
the dual partition of A®. The double dual is denoted \"; if the ‘composition A
is a bipartition, then A = A”. Let < denote the dominance order on blcompos1-

tions, that is, )\ < uiff Zz—l /\(1_) < Zz—l B 1) for all j and |)\(1)| + EJ /\(2) <
|nM| + Z’ 2) for all j'. Then we clearly have that, for b1pa.rt1t1ons A s Ly
)\<lu1fand0nly1fp, aN.

(b) For compositions a and B, let a VvV 3 be the compos1t10n obta.lned by conca—
tenating @ and B, i. e., VB = (az, a2+ ,B1,02,---). Let A= AD Y 2@ Then X
is a composition of r. Sometlmes, we also identify A with the bicomposition (— A
in II,. (We could make a similar identification for any composition.) Thus, for
A uell(n,r), Wehave/\<1u1fandonly1f)\<ly

(c) Let A=(1---1,1---1) and A the bicomposition (|]A(], X®).

PO @)

Asin §1.1, replacing boxes by positive integers, we obtain a A-bitableau. A regular
A-bitableau t = (t1,t2) is obtained by replacing each box by one of the numbers
1,2,-.--,r, allowing no repeats. We call A the shape of t. A regular bitableau
t = (t1,t2) is called row-standard if each row of each t; is an increasing sequence,
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and standard if both rows and columns of the t; are increasing. We define t* to be
the standard A-bitableau in which the numbers 1,2, --- ,r appear in the same order
down successive rows in the first diagram of A and then in the second diagram, and
t, the standard A-bitableau in which the numbers 1,2,---,r appear in the same
order down successive columns in the second diagram of A and then in the first
diagram. For example, if A = (331, 21), then

y o [123 809 479 13
t*'=|456 10 and ty=[5810 2
7 6

Let G, act on the set of regular bitableaux by permuting the entries and define w)
to be the element of G, satisfying t*wy = tj.

For a A-bitableau t = (t1,t2), we define t = This is a tableau of shape X

tz .

Note that £* = t*. We define t' = (t ), where t/ denotes the transpose of t;. So _
we have (t5) = t* and (t*) = ty. -
We now define semi-standard bitableaux. Let-u be-a bipartition and A a bicom-- -
position. A p-bitableau of type A (indeed, of type M) is a u-bitableau with possibly
repeated positive integer entries such that, for each 4, the number of entries 7 is equal -
to X; where X = (A1, Ag,+--). (Recall X is defined as the composmon AD)y )\(2) )

(1.2.2) Definition. A p-bitableau t = (t1,t2) is called semz-standard it
(ss1) tis a u-bitableau of type )\, for some composition A - - i (3L
(ss2) both t;,t; are semi-standard (i.e., have nondecreasmg rows and mcrea.smg

columns), and : {7
(ss3) t; contains an a-tableau of type A(Y) as a subtableau for some partition .
This subtableau must appear at the top-left‘. corner in t1

For example, if u = (321 21) and A (211 32), the followmg are senn—standard
u-bitableaux of type A: . =

115 44 113 45
24 - 5 24 . 5
3 4

The first one has a semi-standard (211)-tableau of type (211) as a subtableau, and
the second has a semi-standard (31)-tableau of type (211) as a subtableau.

Let T(u, A) be the set of all p-bitableaux of type A and T°%(u, A) the set of all
semi-standard p-bitableaux of type A.

For a bipartition x4 € IL}, a bicomposition A € II, and each semi-standard
bitableau s € T%%(u, A), the induced tableau 5 is a j-tableau of type A with non-
decreasing rows. So, it defines a distinguished double coset representative §(1,3) €
D,\_ (cf. (1.1.1)). We write 6(s) = 6(1,5). For example, if p = (321,21) and

= (211, 32), we take L T

115 44
=124 5
3
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Then
123 78 N 12 578
t¥=|4s 9 | and t%6(s)=|4 39
6 6

Note that t#(s)~' can be obtained by replacing all the numbers ¢ in s by the
sequence obtained by reading the i-th row in t*. The replacements in 5 are made
from left to right, down successive rows. (For a proof, observe that replacing t* by
t*d(s) in this procedure gives t*.) Thus, in the previous example, we have

128 67
tho(s)t=|35 o
4

Let p be a bipartition of 7, and let T?(s) be the set of all standard p-bitableaux.
We define § : T°(u) — Z(g, A) by sending t to f(t) which is obtained by replacing
each number in t by its row index in t*. Thus, §(t#8(s)~1)'=’s from the above We
put .

| T, = Ts(1, ) = 7(5)

for any s € T(u, A). Note that 1£ f(t) is a semi-standard p-tableau of type A, then
there are no two elements in the same row of t* and in the same column of t. The
following result wﬂl be useful in §5 ‘ N e

(1.2.3) Lemma ‘ Keep the notation. mtroduced above and let 5,8 € T“""(p. /\)
(a) We have {1,---, I/\(1)|}6(5) c{1,---,|uM|}.
(b) Let a = AN 6(5);1. Then G5 N D, {:1: € G5 | th(s) 1z is. standard}

(¢) Ts "N Ty =0 if s #5', and Ts = {t*8(s) "'z | z.€ Gy ﬂ’Da} v

Proof. (a) is obvious ‘from the deﬁmtlon of seml-standard u—bltableaux of type A
To prove (b), we first note that: t#¢ (5)' is standard, as s has strictly increasing
columns. So, for z € Sy, if t“é(s)’  is standard, then §(s)lz € DF, forcing
z € D, since §(s) € Dx;. Conversely, for z € Dy N &3, write £ = w1 - - -wg with
w; € S and £(z) = k, and put t, = t*5(s) " w; - . We apply induction on
k. (Note that wy ---wg—1 € D, N S5, so we may apply mductlon to this element.)
The result is clear if £ = 0.  Suppose wr = (4,5 +1). Then j and j + 1 are not
in the same row of tx_1, as tx = tg—1(j,7 + 1) is row-standard. So j and j +1
belong to distinct rows of tx_1. Since f(t#d(s)™!) = s and wy - w1 € Gx; we.
have s = f(tk_l) So, f(tx—1) is semistandard. Now; the fact’ tha.t jand j+1
are in the same row of t*-forces that j and j + 1 are not in: the same column of
tx_1. Therefore, t; is standard by induction, proving (b). Finally; the inclusion’
“3” in (c) is obvious, since t#J(s)~! € T, and z € &5." Thus, T; is a subset of
{t e T(p) | t = t*o (5)“ z for some z € W5} which is contained in the set at the"
right hand side. [ -:

Suppose A® € A(n,b). If d is a nonnegative integer, and b > d, put TI(A®P) =
I(A®,d) = {(¢,0) | @ € A(n,b—d),B € A(n,d),a+ (3 = A®Y; otherwise, put
II(A®) = . The following lemma needed in §5 gives the relation between semi-
standard tableaux and bitableaux.
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(1.2.4) Lemma. Let p € IL} and A € II(n,r). Put b= |A?| and d = |u?)|. If
b>d, let p=(b—d,d) =b. Then we have :
(a) #Dy, = #II(AP) if b > d, and in general
(8) #T°° (1, A) = E(a,ﬁ)EH(A@)) #To0(uW, AV v a)#‘,f”(u(Z),,B)-

Proof. (a) follows from [JK; (1.3.10)], and (b) is obvious since
£ (ﬂ7 ’\) = U((::,,B)EH(A(%’))Ts‘9 (ﬂ'(l)’ A(l) v a) x 3% (p'(Z)’ ov :3)

where 0 = (0,--:,0) with the number of zeros equal to the number of parts of
A, O

2. THE WEYL GrROUP W OF TYPE B

2.1 The function ng. Let W = W, = W(B;) be the Weyl group of type B
Then W has the following equivalent characterlzatlons

(W1) W is the group with generators sg, s1,-:-, Sr—1 and relations. sk = 1 and 3
(sisj)™i = 1, where 0 < k < r —1, mo1 = 4, my; = 2.if i — |- > 2 and |
my; = 3 if J —z+1 0 < i< 7—1. As usual, we denote the set ofthese
generators by S. -

(W2) W-is isomorphic to the wreath product Z/2Z1 G,. S0 G isa subgroup of .
W, which will be denoted by W = W, in the sequel. - . . .. e

(W3) W is the reflection group consisting of orthogonal tra.nsformatlons on R"'
defined by all permutations and sign changes of an orthonormal bas1s -So *
we may identify W with the group of permutatlons

r r—1 .-« 1 -1 -+ —(r—1) -r
ir dp e G —dp e —dp —ip )
We shail write w = (z1, o ry —bpy ot —zl) for simplicity.

If we put t; ='so a.ndtﬁ—s,_lt’z 18i-1,2<i <, thent2—1 andtt —tt
and the subgroup C 2 C% generated by ¢; is a normal subgroup of W- 1somorph1c to
the subgroup (Z/2Z)" in (W2). Clearly, W/C = W. We shall call a subgroup of C-
generated by a subset of T = {t;,--- ,t.} a parabolic subgroup of C. This definition "
agrees with the deﬁmtlon of parabohc subgroups of W which are generated by a .
subset of S = {so, 81, ,8r—1} if we view C as a Coxeter group Note that the

mapping sendmg t; to the permutatlon (r,r—1,---,2,-1,1,-2,--- , —(r = 1), —r)
and s; to (r,--- ,4,7+1,- -, —t—=1,—1,-- —r) gives an 1somorphlsm between
the groups descrlbed in (Wl) and (W3). For 1'< 4 < r we shall view W; =
(30y311 : 31—1)7 (31, ,Sz-1) a,nd 0[1 i] = (t1,--- 1) as SUng'OUPS OfW

W and C, respectlvely, in a natural way.

As a Coxeter group, we have the length function £ and Bruhat- Cheva.lley order
< on W. For w € W the expression w = w1 - - W with w; € S is called reduced 1f
m = {(w). Note that each £;, as given recurs1ve1y above, is reduced, as follows usmg
the exchange condition. Also, note that the longest element wo of W is byt
Multiplied by any s;, it becomes shorter. Therefore, we have for any subset 7” of T,
(1 er ) = Y ze7 £(z)- (One way to prove all the assertions of this paragraph is
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to notice ¢ - - - ¢, is central and not equal to 1, so must be wg. The later has leﬁgth
r2=1+3+---+ (2r — 1) by an easy root system argument.)

We define a function ng : W — N such that ng(w) is the number of times sq
occurs in some (any — see below) reduced expression of w.

.

(2.1.1) Lemma. (a) The number no(w) (w € W) is the same fo'r any reduced
ezpression of w, and the image of the function ng is the subset {0,1,--- ,r}-

(6) If £(yw) = £(y) +4£(w) then no(yw) = no(y) + no(w). ' |

(¢) no(zwy) = no(w) for allz,yc W

(d) If w = (41,82, - ,tr, —%p, - , —12, —%1) then no(w) is the number of negative
numbers in the sequence 11,12, - - ,ir.

Proof. (a) follows from the relations in (W1) and the fact that any two reduced
expressmns can be transformed to each other by a sequence of relations (Wlth two
s0’s appearing on each side or none). (b) follows from (a). To see (c), it suffices to
show ng(sw) = no(w) for any s € S and s # sp. It is obvious from (b) if {(sw) =
£(w) + 1. Suppose now £(sw) = £(w) —1 and np(sw) < no(w). Since w = s(sw)
and-£(w) = £(sw) + 1, we have from' (b) ng(w) = no(s) + ne(sw) = no(sw), a
contradiction. We now prove (d). Let m be the number of negative numbers in the
sequence 7,1, i2,--- ,%r. Then there exists an element y € W such tha.t yw sends 1 to
—tfor1<i<m and fixes: the others.” That is; we have yw = t1 ~tm: ‘Now the
assertion follows from (c). s

2.2 Qu351-parab011c subgroups and distinguished coset representatlves.
Associated to each bicomposition A € II,., let W5 be the: -Young. subgroup of W,
i.e., Wj is the row stabilizer of t* in W. We define W, = CAWA where C), = C'[l a]
is the subgroup generated by {t1,---,%,} with a' = |A()|.. We sometimes use Wy
or W5 to denote the “top” part W of W.. Thus, using the notation in (1.2.1b,c),
we have Wy, = W5 = W3, C\ = W, and Wy = W, W5 with top part W5 and
“bottom” part Wy. Clearly we have the “sandwich”: W5 € W) € W;,. where W5
(resp. W) is the largest (resp. smallest) parabolic subgroup of W contained (resp.
containing) Wy. If Wy # Wj (see (1.2.1c)), then W) is not a parabohc subgroup
of W. However, WA is a, Weyl subgroup of. type BA(l) X. B)‘m X - >< A)‘(z) X
We call W), a quasz-pambolzc subgroup of W. :

(2.2. 1) Remark It Would also be pos31b1e to cons1der a more genera.l notlon of‘
a qua31—parabol1c subgroup in which the factors B,, did not all ¢ coine aft the begm— "
ning. This would be a perfectly reasonable approach, even having’ the advantage
that many 1ntersect10ns of conjugates one works with would be again_ of this type.
The dlsadvantage Would be in a more complicated notion of d1st1ngmshed coset "
representative, a notion which is quite s1mp1e for our restrlcted qua51-parabol1c :
subgroups above. :

Recall that in the classical parabolic subgroup case, a dzstmguzshed representa— .
tive of a coset or double coset is an element of minimal length. We begin in (2.2.2) -
with left cosets but later apply the corollary (2.2.3) to right cosets in (2 2. 4) and
(2. 2 5)

(2.2.2) Lemma. For "F.uE'_C, write w = d’w' with w’ € W and d' distinguished
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(as a left coset representative for the parabolic subgroup W ). Then £(d') > £(w’)
with equality iff w = 1.

Proof. We first note that if j < ¢ then s;t;;1 = t;y15; (obvious, in terms of per-
mutations). So if w = t;, +1---#;,_+1 With i3 < --- < 4, then w = d'w’ where &’ =
Si, +--5150° " Si,, ---S15pand w’ = sy ---8;; -+ 81+ 8, Clearly, £(d's;) = £(d')+1
for all 2 with 1 <7 <7 —1. This can be seen by induction on m and the fact. that
z8 > z, sy > y = zsy > zy ([Sh; Thml]). This proves that d’ is distinguished and
dy=m+i1+Fip >+ +ip=Lw)ifd£1. O

(2.2.3) Corollary. Forw e C and y € W, we have £(wy) > £(y) with equality
iffw=1. :

Proof. Write w = d'w'(# 1) as in (2.2.2). Then {(wy) = £(d') + £(w'y) > £(d') +
|£(y) — £(w)] > £(w') + [£(y) - £(w')| 2 £(y)- O

For A € II,. with I/\(I)l = a, let 25)(1) denote the distinguished cross section of the - -

right G -cosets in &, = W, and Dj the distinguished cross section of the rlght
cosets of the parabolic subgroup Wy in W. T

(2.2.4) Corollary. IfA= (A, ), then every coset Wid has a umque element
of minimal length and D) zs the set of minimal length representatwes for the

cosets W\W.

Proof. Clearly, every right coset of W has a unique representatlve in, D,\m For'-..".

d € Dyay and 1 # = = wy € Wy with w € C and y € W5, we have. that, if
w #°1, then £(zd) = £(wyd) > £(yd) > £(d) by the corollary above. Also, if y # 1,
then £(zd) = L(wyd) > £(yd) > £(d) as L(yd) = L(y) + £(d). So £(zd) > E(d)
whenever = # 1, and d is the shortest element in the coset W)d. The umqueness 1s
obvious. O

(2.2.5) Theorem. = "Keep the notation ‘introduced above. Let X '= = (A, /\(2))

be a bzcomposztzon of r. Then every coset Wixd has a unique element- of minimal,
length and DA = D,‘(I)D is the set of minimal length representatives for the cosets -

WA\W . . Ye o et gl it

Proof. This reduces to the previous case. For any d = xy € Dy with z € D) and ..

y € Ds,-we have £(d) = £(z) + £(y) as z € W;. Now if w € Wy and w # 1 then
wz € W;. So {(wd) = L(wz) + £(y) > £(z) + Z(y) = {(zy) = £(d), by the corollary
above. Therefore d is the shortest element in W d. The fact that Wd contains a
unique element in D) can be proved similarly. [J

For parabolic subgroups W; and Wk, it is well known that Dyx = DJ N DK
is the set of distinguished representatives of double cosets Ws\W/Wx. So, one

might expect that the same is valid for quasi-parabolic subgroups W and Dy. The

following theorem confirms this.

(2.2.6) Theorem. For bicompositions A and p of v, let Dy, def ’D,\OD' Then
(a) each double coset WaxwW,, contains a unique element of Dy,; 8
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(b) ifd € Dy, then d is the unique element of minimal length in its coset WxdW,,.

Proof. Let w be an element of minimal length in its double coset WwW,. Then
w has minimal length in Wyw and in wW,,. Thus w € Dj,. So part (a) will 1mply’
part (b).

Each double coset certainly contains an element of minimal length, hence an
element of D,,. We must show the element is unique. So let d;,dy € D, have the
property that D = Wid; W, = WixdaW,,. Then Wid;W, is a union of the subsets
W5d;Wp, Crd; W, Wsd;C,, and C»d;C,, where G, = CNW,,. Clearly, the mapping
ng on Wxd; W is constant, say m. We claim that

(2.2.6.1) Dy, := {w € Wad;W,, | no(w) = m} = W5d;Wj.

Thus, we have Wxd1W; = W5d2Wj, and therefore, di = d by [C; (2.7. 3)] _

We now prove our claim. Let d = d; and write d = ud'u where d € DI\.;‘;
and u € Dy as in (2.2.5) and some v € Wj. (By Howlett’s result [C; (2.7. 5)]
discussed above (2.3.1) below, we can write d = udyv for some u € Wiive W; with ~
additivity of lengths. Applying (2.2.3) forces u,v € W. Additivity now also shows
uGDAﬂW~ —D)\m) If £ = cdw € C\d;W; w1thc€C’>‘,w€W- and ¢ £ 1,
then no(cud) = no(cu) + no (d). by (2.1.1b). Since vw € &, it follows from (2.1.1c)
that ng(x) = no(cud'u'w) = no(cud) = no(cu) + no(d) = no(c) + no(d) > no(d), as
no(c) > 1. This proves that D, N Chd;W; = d;W; C de ;Wj. Similarly, one has
D, NW5d;C, C WidiWs.-. .

It remains to show tha.t D N Chd;Cy, C W,\d ;:Wg.. Take z = cidey € D n ’
C)d;Cy. As C is normal in W we have z = -cudves = ud, dc’zv for-some-c} € Cj -
and ¢, € C,- Smce no(:z:) = ng(d), we find, using (2.2:3) and (2 1:1b), that c €
Ws = Wdﬂ W, So ¢, = d~1¢}d for some ¢ € Wi N C and £ = ué,cjd Now':"
ucicy € W and we must have cjc = 1. (Otherwise, no(x) = no(ucicy) + no(d) >
m.) Consequently, we have T = d € W,\dW— Om' claim i is proved o

We shall call the elements in Dy and Dy, dzstznguzshed coset and double coset
representatives for quasi-parabolic subgroups. If, for A € Il., we view Qas a
bicomposition (see (1.2.1)), then W5 is a parabolic subgroup of W. Thus, we ‘have -
areversed “sandwich”: DX" C Dy C D5 forall A, p € I, Also, D,\ﬂW ’DAOW
and D3, NnW = DA“OW We denote these sets by Dy and ’D,\,,, respectlvely Thus,
with the notation introduced in §1.1 for symmetric groups, we have D A= Ds Y and
Dy = DA# The followmg result will be useful in §4:2. '

(2.2.7) Corollary. Let z € W; andy € Wj. Thend € Dyu & :z:dy € Dy

Proof Since W, = C',\ is normal in Wia we have W,\:ch e mW,\dW So
no(.'z:d) = no(d) is minimal in this double coset. Apply (2.2.6.1) to A and i, we
see that zd is the shortest element in WAde Therefore zd € Dy, by (2 2 6). '
Now our assertion follows easily. U

(2.2.8) Remark. We regmark that, for d € Dyy; Wg N W, is not in general a"
quasi-parabolic subgroup in our restricted sense (2.2.1). This subgroup is, however,
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generated by a set of reflections contained in {sy, -, 8,1} U{t1, -+ ,%-}. We will
call this set AdNy and define ANdy similarly as in (1.1.2). In case WENW,, is quasi-
parabolic, AddNy may be identified with the corresponding tight bicomposition. Note
that this case is equivalent to that where Wy N W,‘f—l is quasi-parabolic. If V is a
subgroup of W (e.g., V = C) and J is a set of reflections, it is useful to write V;
for the subgroup of V generated by the elements of J contained in V.

2.3 Distinguished decomposition. For any d € Dy, there is a unique element
de Dj,; such that d € WXJW;,. Thus, by a result of Howlett [C; (2.7.5)], there exist
(unique) u € W5 and v € Dj gna N Wa such that d = udv, and then dv € Dj and
£(d) = £(u) + £(d) + £(v). By the definition in (2.2.5), we have u € Dyw). We shall
call such a decomposition the right distinguished decomposition of d. Similarly,
we have also a left distinguished decomposition d = uodvy with vy € Wy and
uo € D} 45 N W3 Thus, uod € D} . ’

(2.3.1) Lemma. Ford € Dy, letd = udv be a right distinguished decomposition:
ofd. Thenv™le D,w - A similar resull holds for left distinguished decompositions.

Proof. Let d = udv as above, and let d = ugdup be a left distinguished de-.
composition of d. Then (vo)~! € D, and (uod)~! € Dz. So z = vov~! =
(uOJ)_luJ_E Wiina = Wg NWy. Since v € Dy 4, N Wi, it follows that vo = zv
and £(vo) = £(z) + £(v). Therefore, v € W,and v € D). O

Let d = udv be as above. Asd is a distinguished representative of a double coset
of parabolic subgroups, there exists a (tight} bicomposition # such that Wf NW; =
Ws. Clearly, we have C’; N Csz = Cj, and every element in C; is fixed under

-

conjugation by d.

Certainly, for any d € W, we have d~'t;d = t; for some j. The subgroup -
Cxany = d~1Cxd N C,, is a parabolic subgoup of C. Since v=1Cyv = C,,, we have_,
Ciranpg = v~ 1Csv. Thus, we have a decomposition

(2.3.2) - Cu = Chranp X Ciz\rdnp

where Cy\agn, is the “parabolic” complement of Cian, in C, generated by ¢;’s.
Similarly, we have Caxnap = Ca NdCud™! = uCsu~? and a decomposition as above
for Cj. o

Note also that, as W5 is parabolic and d € D5, WE N W} is parabolic by a well-
known result of Kilmoyer [C; (2.7.4)], call it W;. Clearly, W¢ N W, = Crin,Ws.
The following result is an easy group-theoretic consequence.

(2.3.3) Proposition. JVIaz'n.tain the notation introduced above, and let d € Day-
Then every element w € WxdW,, is uniquely expressible in the form w = zdcy
where £ € Wy, ¢ € Cipz\nanp and y € Dy N W

We shall call the decomposition in (2.3.3) the generalized distinguished decompo-
sition of w with respect to quasi-parabolic subgroups in the restricted sense (2.2.1).
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3. ¢-SCHUR? ALGEBRAS

3.1 The Hecke algebra # = #(W). Let Z = Z[q,q97%, 0,95 '] be the ring of
Laurent polynomials in two variables, and K the quotient field of Z. Let # = H(W)
be the Hecke algebra over Z associated with W. Thus, H is a free Z—module with
basis {T, | w € W} and multiplication defined by all the rules:

T T — { Tws, if L(ws)=2(w)+1
U@~ )T+ 0T, if £(ws) = 4(w) ~ 1

ifi=0
for all w € W and s € S, where qs‘ e { 1 £ £ 0. For any Z—module M and any
. gifs
commutatlve Z—algebra Z’ we wnte Mgz =M®z Z'. In partlcular, we wr1te 'H’
for Hz and T, for T,y ® 1 by abuse of notation. Note that the images of qo and q

are invertible in Z’. The defining basis of #’ has the followmg useful property.”

(3.1.1) Lemma. - (a) For z,y € W, put T.Ty = X.cw Joy,2Ts-- Thew Ty & z'
whenever fzy.z 7 0.-Also, Foy,2p = "qdq® for some nonnegative integers a and b.-

() Forz,2e W,y e W, put T,T,T, =3 cw foy.z 1,,T Then no(w) = no(y)
whenever foy,w #0.

Proof. The proof of (a) for Z is s1m11ar to the proof of the case g = gg g1ven by Sh1 ‘
in [Sh; Thm8]. For general Z’, it follows by base change. The second statement
follows from (a) and (2.1.1) El i

(3.1.2) Corollary.  If W.= G1G2 with W = |G1||Gz|, then the set-.
{T_.,le2 | :L', € G5}

forms a basis for H'. In partzcular, the set {T T | T E WA,y € ’D,\} forms a baszs
for H'. b

Proof. Choose an order wy, wz, - - - on W satisfying w; < w; imp].ies i <j. Then we
see, by the previous lemma, the transition matrix from the set {T%, Tz, | z; € G;} .
to the basis {T, | w € W} is upper triangular with invertible d1agonal product

Hence the set forms a basis. O Cee

3.2 ¢-Permutation modules. For a subset X of W, we define Tx =Y, cx T~
Clearly, if X = W), is a parabolic subgroup of W, the submodule #} = H'(W))
generated by all T,,, w € W), is a subalgebra and 2’ Tw, is a free H5 —module of rank
1. This is the q-analogue of the trivial representatlon of Wy. For the non-parabolic
subgroup C of W, we introduce the element m = [[}_, (¢*~* +T%,), following [DJ4;
(3. 2)1 This element is central in H' and Tl = qoﬂ'rT‘.,J 9,15, -.s;- We also note
that ()% = z-m, where 2 is central in ’H(W) and invertible in Hg (W) (see [DJ4
(4.5)]). In general, for a bicomposition X € II, with a = [A(|, we define

(3.2.1) m =7 = [ [(¢ +T))-

T i=1
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Clearly, my is in the center of #'(W,). Following [DJM; §4], we define the element
z) = waZy where z3 = Tyy;. T serves as (as a generator for) the “trivial repre-
sentation” for Wy and put 75 = zaH, 7, = zaH'. Recall that the g-permutation
module 7, for a parabolic subgroup W) is free of rank #D,. The following result
generalizes this to quasi-parabolic subgroups.

(3.2.2) Proposition. (a) The H'-module T, is free with basis {z2Ty | w € Dy }.
(d) If WA zs parabolic, then Ty = Tw,H'.
(¢) - (Recall X' is the dual bipartition of A, and ' is the double dual. )
(d) Let K be the quotient field of Z. Then Ty = Tag NH.

Proof. To see (a), we first note that the linear independence of the set follows
from Corollary 3.1.2. To prove the set spans it suffices to prove the corresponding';'
statement for the case W = Wy, in view of the factorlzatlon Dy = DAu)'D (Note
that W5 N Dy = Dyw.) Since z)T; = gz and 71T}, = 9022 Ty, .., T, ...s; Tor all
s€E W)‘ NS and t;41 € C), this follows easily (rewrite the product of T's as T,,Ty
with u € W) and d € Dy ), proving (a). .

The statement (b) follows from the claim that 7r,.TW - q(z)TW Indeed for:
a subsequence i = {ig,-- zm} of {0,1,---,7 —'1}, let #; = ¢;, 41~ ¢, 41 and
i ={0,1,--- ,r —=1}\{é1,--- ,im}, the complementary subsequence of {. Since "

b=t g1 tipr1 = (50 - S1t1 31t1)(31 S 15172 3%1) - d*"’ '

where the first product d; is in D _ ' y (as in the proof of (2. 2. 2)), (w) is the
composition sum-of-parts ||, and 1r,. = E Py th , it follows that

" Ty = Zq'- T T Zq" Ty T —q()ZTd .qG?,Tw,

"

proving (b). - e
Since [AD] =AM and [XB)] = |AZ)"], the part1t1ons obtamed by reordermg

A1) and A are just A(D” and A@”. So there exists d e Dsxv N W such that.

T" zxTq = zx» and T; YezTs = mx» = wx. Therefore, Ty YeaTy = zaw, and the’

map sending zxh to T 1y xh gives the required 1somorphlsm for (c): . ..
We leave (d) as an exercise, (using (3.1.2)). O

3.3 The g¢-Schur? algebras S2(n,r). Recall from §1.2 that II(n, ) is the set of
bicompositions of 7 in which each single composition has n parts. Then II(n, ) is
a poset with the dominance order <, and we have A < 4 if and only if A < & (cf.
(1.2.1b)). For our later use, we list some interesting subsets of II(n,r). Let

ﬁ(n, r)={A€l(n,r) | Wy = W5}

(3.3.1) T(n,r) = {} € U(n,r) | Wx = Wi}
Q= {(A®,A3)) € II(n,r) | # of parts of A < m}

Clearly, we have fIgn, r) C II(n,r) C M(n,r), and all Q,, are (order) coideals of
II(n,r). Note that II(n,r) is an ideal. Let II*(n,r) be the subset of all bipartitions
in II(n,r) and define II* (n, ) and II* (n,r) similarly. Note that II} = ITI*+(r, 7).
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Recall from §3.2 the g-permutation modules 7y = z ¥’ for any A € II(n,r). We
now consider their direct sums — the “tensor spaces” — and associated endomor-
phism algebras

=T(n,r) = ®ren(a,r) Tx» - 8%(n,r, 2') = Endg: (T7);
(332) 7—1 = ’i-(ny 7:), = ®,\€ﬂ(n,r)71” 3‘? (n’ 7 ZI) ='—'End’H" (7-’);
= 7_—('"'7 r) = eaeﬁ(n,r)’];& 53 (n,r, 2") = Endgp (’T’) X

By (3.2.2a), we see that S2 (n, 7, 2') is the endomorphism algebra of the tensor
space involving only pa.rabohc subgroups. We will call 82(n r, Z') the q-.S’ch'u.r2
algebra (pronounced as g-schur-two-algebra) of degree (n r) It is also convenient
to name &2 g(n,7, £2') and &2 s (n, 7, 2') the Hecke endomorphism algebras of type. B as
in [DPS1] and q-Schur’ algebms (compare [GH]). For simplicity, we write S2 ('n, r)
for S2(n,r, Z). - S ) o

Compa.rmg with q—Schur algebras, it is natural to ask the followmg questlons -
(1) Is a g-Schur? algebra Z'-free? (2) Is a g-Schur? algebra quam—heredﬂ:ary‘? (3)
Does base change induce an isomorphism 82(n,r)z = 82(n,1, ZN? In next three
sectlons, we shall give affirmative answers to all, three questmns |

3.4 Bistandard bases and twisted Specht modules. We recall some recent
results obtained in [DJM] in this subsection. ‘Recall, for a bipartition o of rythe set
T*(u) of all standard p-bitableaux. For t € T*(u), let 6(t) € Dz N W be given by,
t#6(t) = t. The element &(t) should not be confused with the’ coset representatlve' '
(s) associated to a semi-standard bitableau defined in §1.2.

Define, for any s,t € T*(u), the elements g = zky = Té(s)x,,T,;(t) where (—)*
is the anti-involution on  satisfying T% = T,-1. By [DIM; (4:14)], the" set
{zst | 8,t € T?(), pu € I} forms a basis for ’H’ We shall call the basis {xst} the
bistandard basis or Murphy basis (or Green-Mmphy basis) of H. For A € IL}, let
H'Z* (resp. 'H’>)‘) be spanned by all 2% with u > X (resp. p>A)., Then both ’H’>'\
and H">* are ideals of #' ([DIM; (4. 18)]) We also record the followmg useful fact\-
which is implicit in [DJM (4. 11)] L iy

(3-4.1) Proposition. For any h,h’ € #H' and s,t € Ts()\) write for ’"3'07”-.6""'
Es’, Ct’ c ZI e

= Z bar T mod(’H,'> Ay and d;;\th' = Z (tl:cg‘t.mod(’ﬂbx)
S'ET*(A) HET*(A)

Then & and (g are z'ndepéndent of t ands respectively.

Further, for a bipartition A of 7, let :7:\'+ T’ H'>* and Sh' T /T,*. Then
SY is Z'-free with basis

(3.4.2) {2 + T | t € T° (W)},

where zx = zyay = ZaT5(). Moreover, if F is a field which is also a Z—algebra
such that Hz is semi-simple. Then {S! # | A € I} is a complete set of simple
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#H p-modules and HZ/HZ & S8 with dy = #T*(A). In particular, we have a
decomposition '

(3.4.3) Tar = Sip ED(@rauSia ™)

for some integers my, € Z.

We remark that the modules S% are actually the so-called “twisted” Specht
modules. They appear at the top of permutation modules. In a later paper, we
will realize them as submodules of the twisted permutation modules. Thus, we are
able to define the notion of Specht modules and their bistandard bases (compare
[DJ1]).

4. FREENESS OF THE INTERTWINING MODULES Homy (7, 73)

In the rest of the paper, we aim at answering the questions raised at the end
of §3.3, especially the. qua51-hered1ty .of ¢-Schur? algebras. The approach we shall
adopt is the direct constructions of two bases — the natural “T-type” basis and
the “bistandard” basis — for a g-Schur? algebra. The latter may be regarded as a -
kind of generalization of the method of Green [G]. A second approach, when go is
a fractional power of ¢ as in [DPS2], will be sketched: later.. We follow. the notation
introduced in last section. Thus, Z’ is a commutative Z-algebra, H" = H.®z 2’

and 7' = Tz, etc.

4.1 Characterization of ¢-permutation modules. Recall from (3.2. 2) that for
any 0 < a < r, the module 7, H' is free with basis {7eTw | w € Dys,,....t,)}- The
following lemma gives another basis for wo#’ like that given in (3.1.2) for #".

(4.1.1) Lemma. For any non-negatwe mtegers a,t witha+i<r, the set '

et

{7Ta ta+1 T:‘.,H. w |w€D(t1, ta+,))6_7 G{O 1}} ==

is a basis for moH'. 2
Proof. Cléarly, by (3.1.2), the set is linearly independeﬁt: (Note: Tt +1 T =
Ty ; .) So it generates a free submodule M of m,#'. Now, for any field &

a+1
whlch 1s also a Z'-algebra, My = 1ra,’H' by comparison of dimensions. Therefore,

M= 1ra'H’ by [CPSl (3 3. 1)]

The followmg result i 1s the key to charactenzmg the g-permutation modules T’

(4.1.2) Theorem. For0<a <r we have

Top1H = (1+Te, )H' NT, '(_1+:Tt1 YH NToys, 1+ T3, YH N - -NTsy502gemsy 1+ T3 )H'.

Proof. We apply induction on a. Clearly, the result is true for @ = 0. Asstime now
a > 0 and the result is true for all numbers < a — 1. Thus, we need to prove that

7l'a7'{,’. ﬂTsasa'_l...sl_(l_-i- Ttl)'H,’- = 7l'a+1%'.
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Leth="Ts,5, ,..5; (14T, )h1 € mH'. Then T, _, ..., (1+T3, )y = Ts:1h € mi_ H:
that is, T 'k € mq 1M N To,_y.sy(1 + To)H'. Thus, Tolh € m M, or b €
Ts, (moH') by induction. Therefore, it suffices to prove moH' NT;, (1, H') = map1H'.

By Lemma 4.1.1, 7, ' has a basis {7oTw, TeTt, ., Tw | w € Dy,,... 1,,,)} While
Tat1H' has a basis {7a(q* + T3, ,)Tw | w € Dy, ... £,y }- It follows that

ﬂ'aH, = Wa_f.]_Hl 3] Z Z,Wana+1 T‘IU)
weD -

where D = Dy, ... +...), is a direct sum of free submodules;' .Ai‘,lius, we obtain
T, (WaH,) =T, (7"0+1HI) M= 7Ta+1(Tsa H’) eM= 7Ta+17"’ ®M

where

M=T,, ( 3 Z’ﬂ-aTtaHT )

'wED

. Z Z Tra_' [Tsa (qa' ! + ﬂa )ﬂa-i-l ]T
we‘D

Now, it is eqmva.lent to prove M NmH' = {0}
Suppose h € M Nw,H' and write, for some elements a,,-€ 2’

h= ) awTa1[Te, (8% + T4,)T40y: )T I —

(*) weD ' ' 5 -
=Y ouTa1[g°Thpe, + 070 = Dy 9T b0 sute + (@ = Dtatora ) Tur

weD

e
Rt -2

Note T3; T; .. =T} Tt On the other hand We have by 4 1 1
a a+1 a+1 a"

h= Z ﬂwﬂ'aT + Z ﬂta+1'w7ra.Tt.,+1T

(**) weD weD
= Z [ﬂwﬂ'a—-l(qa— + Tta) + .Bta+1w7ra—1(qa tha+1 + Tf-ata+1 )]T‘w’ .
weD '

for some B,.€ Z’. Using the basis for.mg_1H' with i=2in (4.1.1), we have B, =0
for all such w by equating the coefficients of m,—1 T}, in both (*) and (**).: (Note
that any term mo_1T},s,¢, Tw in (*) is a linear combination of basis elements of the
form m,_1T%,¢,,, Ty, Where y = w or sqw € D, cf. (2.2.7). ) "Thus, equatmg the
coefficients of m,—1T}, Ty, we obtain that e . -

B = gaasa,w + qa(q’f 1)%_:, lf sqw <w
“ qa+104;aw, if s,w > w.

Since By = 0 for all w € Dy, ... 1,,,), the relation above 1mphes that a,, =.0 for
all w. Therefore h=0, and the result is proved l:l )

Let Oy, = T, - T Te Tt -+ Tt and Oy, = T2 -+ - T3 Tt -+ Tk We
now have the following characterization of permutatmn modules.
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(4.1.3) Corollary.  For any bicomposition A = (A, X)) of r with a = |A()],
we have e L
TAH' = zxH NmH' :
={h € H' | Tsh = gh,Ys € W5 N 5,04,k = qo0y,h,1 < i < a}.

Proof. Clearly, we have 2 H' C z3H N m,H' since z)\ = 57, = wg}z:'x. Sﬁp§OSe
h = mah1 € z3H' and. write, for some &, € 2’ with w € D := Dy, .. +y, h.=
ZweD §wTaTw- Then we have Tsh = gh where s = s; € W5 for which we have.also
sw € D whenever w € D (see (2.2. 7)) Equatmg the coefficients of 7,7}, in Tsh
and gh, we obtain &, = £,,. Consequently, we have &4 = &wa for any w € Wy
and d € D). Therefore, we have hy = z3hs with hy = EdeD;. &4Ty, and hence
h =z hy € zxH', proving the first equality.

Now, by (4.1.2), we have m,H' = {h € H' | Os,h = qOOt h,1 < i< a}, Wh11e
z5 = {h € H' | Tsh = gh,Vs € W5 NS} (see, for example, [DPSl (2.1. 2)]) So the
second equality follows from the first one. . O s

4.2 Bases for Homy; (7, 7). Let A, u be b1comp031t1ons of r. Fixd € DA,‘ and
let d = udv be a right dlstmgulshed decompos1t1on of d as in §2. 3 Thus, de DA ,
u € D,‘(l) and v~ € D, (see (2.3.1)). Also, we have £(d) = £(u) + o(d) + £(v) .
and dv € Dypu. As dis a dlstmgmshed representative of a double coset of parabohc
subgroups, the subgroup WdﬂW~ W; is parabolic, where.?, identifies -with a tight
bicomposition. Clearly, C» 1s a subgroup of Cp, = C’F, and we have a decompos1t10n
Cp = Cp x Cp\s- Accordingly, we may wnte Ty = 7r,,7r,,\,, where 7, is in the
span of {T, | w € Cp\»} and m,,m; are given by (3.2.1). (The element Tp\o
is unique in #.) Note that this decomposition is different. from the one given in
(2.3.2), though it uses a similar notation scheme: The relation is v‘IC’,,v = Chdnp»
and v IC'M\,,U Cuyrdng- On the other hand, if ¢; € C) and d_lt de C, then
d~'t;d = t; by the additivity of lengths, and of no (see (2.1. 1b)) for tid = dd‘lt d.
So we ‘have Cj = Zeyie, (d), the centralizer of d in- C',\ ﬁ C’ Thus we may also
write C) = Cp X Cy\s and 7y = mpmy\5- . - .
Let d = uod'vo be the left distinguished decomposmon of d. , By deﬁmtlon, 1
ug € D. ﬂ WA, where 7 .= )\ﬂdp Also, ug € Dm) C D‘ . Cons1der the.

subgroup. Wy = W; N W(d”") of W; and the subgroup W,1 = W3°.N W,@;’l") .--;1.: =Sy,
Wye N Wy of Wy, and put Wy N W;f T = wo. Clearly, W,1 is conjugate to W,
and W1 = ug 'Wooug = CL‘SW:@ has top part Wy =Wy = W;‘o‘? and: bottom
part C¢ = C; = Cj. We have the following.

(4.2.1) Lemma. Keep the notation introduced above.

(@) Tymy = mTy.

(b) W, is parabolzc, “and hence W, is quasz-pambolzc (m the restricted sense
(2.2.1)). Moreover, we have T50Ty, = Ty, Tz : :

(C) Tp1TA\p-= TA\pZLpl-

Proof. We have seen that t; = d—1¢;d for any t; € Cp. So (a) is obvious. Since
L(ugy) = E(uo) + £(y) for all y € Wy, and W1 = uy'W,oug, we have, for all
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z € Wy, y = ugzug € Wy, zug = upy and £(z) + £(ug) = £(uo) + ¥(y).- In
particular, z € S if and only if y € S. Since W, is parabolic (see (2.2.8)), so is
W,1. On the other hand, W, is a subgroup of W; with the same bottom C; = Cj.
So it is quasi-parabolic. The last assertion in (b) follows easily. The assertion (c)
follows, calculating in #, from the fact that C,1 = Cj and the fact that, if sw = ws
with s € S, then T;T, = T, Ts. 0O

With the notation above, let h34n; = Tp; anaNWa and hxng; = Tpm az"Wi - Then

T5 = h%; apTo° and wadw_ = Twy Tahzanz = b5 d_TdTW_ Here ¢ is the Z’-linear

ant1—1nv01ut10n on H given by T}, = Ty wh1ch clearly fixes the elements and
Ty, for any A.

(4.2.2) Proposition. Mamtam the notation introduced above. For any d.€ 'D,\“ n
with right distinguished decomposition d = udv, let - S

(4.2.2.1) Xwyaw, = AT, j7u\o Toh3ang- - . iy 3t

(a)-Ifd = ﬁocf'uo. is a left _dist?nguished decomposition for d, then
(4.272‘.2) XW,@W,, = z,\TuO‘iWﬁ\,}T?;, h5ana-

() Xwyaw, = (XW,.d—lW_X)"- : . (SR YEB RS s ki Iia
(¢) Ford e Dip and s € W5NS, we have XW',"_dW = 1r>‘T dfr,,,\,,T,, and sd 3 D)(" o

XWAde,, i_f sd > d,

T: Xw dW“ . R
A {‘IXWxde,"l'(q D) Xwyaw, i sd <d. e

A szmzla'r result holds for s € W NS and XW,\dW Ts.

(d) Let 'H;’,‘ be the submodule of H' generated by all wadwp, cl E DA,,, -Then.it .
is a free Z"-module of rank #Dx,,. .

Proof. The statement (a) is easy (Wnte vo = zv where z '€ W~ (see the proof
of (2.3.1)), and u = uoz’ where 2’ € W; = dW;d~1. Then dz'= z'd with leng‘th
additivity on both sides, since d € D; 55+) From (4.2.1) above, we have by (a) -

Xw, aw, = 5Ty, WATJWH'\',;T,,O thnﬁ
= Z3Tuo T\6T gy, Pxara™n  bY (4.2.12)

= h3napZo0 Tuo ™a\o T gy, MRana™n -
= h; ,\ndﬁTuo Lt 7",\\qu,,0 h).dnp“’u by (4.2. lb)
hmdﬁTuowA\,,x,ﬂTdvoh,\dn-ﬂ' by (4.2.1c)
= B napTuo™\oTay T TahsangTu by (4.2.1b) again
= h5napTuo Ao Ty T

= (Xw,a-1w,)"



THE ¢-SCHURZ? ALGEBRA 19

proving (b). The first assertion in (c) is from the definition, since ) =, and the
rest follows easily, since sd € Dy, by (2.2.7). :
Observe from (3.2.1) and the definition of 7, that

T+ e, T Ty, Cuyo # {1}
Tu\e = 1 .
, otherwise.

Note no(uodyvoz) = no(dy) > no(&) = no(d) for every such y and z € W, by
(2.1.1b,c). Write ¥ = d'y’ with y’ € W and d’ (left) distinguished with respect to
Wi (cf. (2.2.2)). Then ugdd’ € Dz since uod € Dy !, Thus, in (4.2.2.2), every term
in T wod™\oTvoFizang of the form T, ;T vTooTe = Tu iar Ty Two Tz Where z € W; is

a linear combination of T,,’s with w e Wi uodd' Wg. Since Xw,aw, = zxTahsqnz,
we have by (3.1.1b) and (3.2.2)

Xwyaw, =" Xwyaws + Y- . EamaTa,

d' €Dy,
o (d'))‘no (d)

with £» € Z’. By (3.1.2), the set {Xw,aw, | d € D»,} is linearly 1ndependent An
argument by induction on ng(d) proves (d). [ . D R

gy~

For d € Dy, let 5(d) = #(d) = AdN 4, 5(d) = Ad /i be as before. B
(4.2.3) Lemma.  Maintain the notation zntroduced above, and let d = udv € D,\,,
be the left or right distinguished decomposition o_f d. :
(a) W is a disjoint union W = Udep,, WiudC, \,,(d)'v(D,,(d) N Wgz).
(b) If c € Cp\o(a) and ¢ # 1, then W3dWj N WidcW, = 0.

Proof. (a) follows from (2.3.3) and the relation vCy\rgn,v™! = C w\&(d)- TO prove
(b), note we € Dy forsome w-e Wy, as follows using (2.1.1) and (2.2:6.1). “We
have dw = w’d where w' &€ dWsd~1 C W. Thus, by [C; (2.7.5)] and '(2.1.1),
no(dc) > ng(d), minimum for its coset W~ dwc = W de, or for its double coset

W5 ch D
Put

i

0, ifC,, 1
(=] e 1
1, otherwise.

(4.2.4) Lemma. Keep the notation introduced above, -and assume A = A and .
p = p. For anyd € Dy, let d = udv be a left dzstmguzshed decomposztzon and
write C“\,,(d) (a(d)+17 .- a(d)_,_,(d)) where a(d),i(d) are non-negative zntegers,
and i(d) > 1 if Cp\p(a) # {1} Then the set '

T; a(d)+1 a(d)+i(d)

By = {mT T ... e DO 1) g = udy € Dy, 65 = 0,1 Y5}

forms a basis for myH'.
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Moreover, if My is the free Z'-submodule of mx\H’ spanned by the elements in By
with e; = 1 for some j, then m\H' = 7{:\3‘,‘ ® M. Each element of M), is a Z'-linear
combination of elements T, withzx € Wich,; asin (4.2.3b), withc# 1,c € C,;\a( d)

andd ¢ D)Zﬁ

Proof. The left distinguished decomposition d = udv implies that ud € ‘D;l. Ap-

plying (3.1.1b) to the product T}, (('?)ill - Ti((j):f(";) T,, we see that

(4.2.4.1) T, Te(d)61 ) TE(d)ez(d) T = 0°T jarure + Z E’"’Tmfd’w’

ta(d)+1 ta(d)+i(a) Y ~
wEW,,w'v<w

where £4(g)+1° e(d)er ...t a(d)+i (d)E(d)E-(a) = c=d'w’ asin (2.2.2) with d’ a dlstlngul-
shed left coset representatlve for W. As argued in the proof of (4.2. 3b), ne(dc) is
minimal for W dcWj. Thus, dc € Dj by (2.2.6.1). It follows that udd'w'v and all
udd’w in the sum belong to Dy = Dj, by (2.2.7). Also, udd'w'v < udd’w, since
ud € D. * and w'v < w. By (4.2.3a) and (3.1.2), the set By is linearly- independent,
and spa.ns over any field k¥ which is a Z’- algebra a subspace. with.the same dimen-
sion as ma#}. Now, applymg [CPS1; (3.3.1)] as in the proof of (4 1 1) proves the
first assertion.

Observe that Xw,aw, = maT, Tu\s(d) Tos and, if Cy\s(a). = {1}, then Xwpaw =
wzTy. Now, the direct sum assertion follows,. usmg the definition of M .- The. final

assertion is obtained by rewriting the elements udd'w'v; udd’w, and using the length
additivity for the products from C,, with D; O o N

(4.2.5) Proposition.  For any bicomposition . A s b of r the Z’ -MOdule :t:,\'H’
H'z, is free and HY = zxH' NH'z,. When Z' = Z, we have ’H’\" =HENH.

Proof. The inclusion #H é, C o’ NH :r,p follows from (4 2. 2b) :CGﬁ{r;ersely;‘B;f_':
(4.1.3), we have 2 ' NH'z, = 7r,\’H' NH' 7r,, NzxH' NN 5. It suffices to prove the
following: (1) maH! NH'm, = Has; (2) Hak NasH NH'zz C HY: T
To see (1), it suffices to prove My N'H'x, = {0} where M), is the complement of
HoL % in m\H' as given in (4.2.4). This can be seen as follows. Suppose h € H'm,.

By (4.2.4), #'m, has a basis B}, (reversing the roles of A and p in (4.2.4)). By
lookmg at the constant term in 7r,,, there is a term T, in h with z € Wid for some

d=udv € D). However, by the last assertion in (4.2.4) and (4 2.3b), the elements
in M) do not ‘have such a term, provmg (1). :

We now prove (2). Pickh € L iz H' N z; and write h = Z deDy, §aXwyaw, -

Then, for any s € WxNS, s’ € WzNS, Tsh = qh = hTy. By (4 2. 2c) and equating
the coefficients, one sees easily Ed = &g =&y forall s € W,\ NS, s e W— NS and
d € Dyu. Consequently, g = &uwq for all d € Dy, w € Wy and &4 = fdy for all
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de€Dy,, ¥y € W,_—,. Therefore,

h =z Z §aXwyaw, = Z §aXwraw,

d€Dxru d€Dixy
A
= Y GXwaaw,hsap= Y LaXwyaw, € HY
deDA“ dEDAp .

where h34nj is as in (4.2.2), as required.
The final assertion now follows from (4.1.3). O

The basis for ’H%’,‘ gives actually a basis for the intertwim'ng module between 7,
and 7j.- To this end, we define for d € Dy, a function ¢}, : 7, — T by setting
(,agﬂ(:c,,h) Xwyaw,h € zAH' = T for all h € H'. Note that <p,\# is well-defined,
since Xw,aw, = haz, for some hy € #', and ga,\ is a homomorphism. of right.
#’-modules. Here is the answer to the first and th1rd questions ralsed at the end
of §3.3.

(4.2.6) Theorem. The Z’-module Homyy (7:1,7" ) i8 fme with basis {¢%, | d €
Dau}- In particular, the q-Schur® algebra SZ(n,r, Z') s a free Z'-module. Moreo-'»“
ver, base change induces isomorphisms -

Homy (7;, Tx) z' =2 Homyy ( ) and Sg (n, r)z: = Sg ('n,i Ty Z’)_

Proof. As noted, the mappings ga§# are H'-linear, and they clearly form a linearly
independent set. It remains to check the spanning condition. Let ¢ be an ele-
ment in the Hom set. Then p(z,) € za#H’' N H'z, by (4:1.3). By (4:2.5), we have
olzy,) € ’H.A 80 plz,) = Edep‘\ EaXw,aw, for some & € Z’. Consequently,
we have ¢ = Edevx,, §d<p,\p, proving the first assertion. Notmg 82(17, r, 2"y =
D peninm Homq.u (7X,7,), we have immediately the second assertion. The last
assertion follows from the fact that the definition of <p hw is the same for a.ny coeﬂi—
cient rlngZ’ O o : - =28 mems E

We remark that the ﬁrst assertlon in the theorem is rea.]ly a version of the Frobe-
nius reciprocity and Mackey decomposition theorem for qua31—parabol1c subgroups,
though we couldn’t state. it in terms of induction from subalgebras.. (The 1nduced:.
modules have g-analogs, but not the subgroups or subgroup algebras involved. o

We remark also that, as the anti-automorphism & takes a right ideal of #'.to a
left ideal, the elements (‘PM)L defined by setting (cpAp) (h:c,,,) . (ga,\p(x,,‘h"))" for
any h € #' form a basis for Homy: (#'z,, H'z)). poe e .

4.3 Self duality of permutation modules. For any right H'-module M, let M L
be the left #'-module obtained by shifting the right action on M to the left vias .

That is, we have h * m = mh* for all h € H', m € M. In particular, if M happens -
to be a right ideal of H’, then M* is isomorphic to the left ideal M*, the image
of the right ideal M under:¢ . The .2’-dual M* = Homg/ (M, Z’) of M is a left
#'-module via the action (Af)(m) = f(mh) where h € #', f € M* and m € M.

o e
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We say that M is self dual if M* = M*. Note that we have (M*)* 2 (M*)*. Define

= (M*)*. Note that a ‘star’ and not an ‘asterisk’ is used for this same-side
dual, though the left/right context is also a guide as to which dual is being used.
Now, self-duality is equivalent to M™* = M.

Let 7 : H' — Z’ be the projection onto the identity element of H’' (with respect
to the usual basis of Tj,’s) and define a bilinear form (, ):.H' x H' —"Z’ by
(h, ') = 7(hh'). This is symmetric and associative, and the map h +— (—, &) gives
an H'-module isomorphism H’ — (#')*. In particular, #’ is self dual.

(4.3.1) Proposition.  The permutation modules z ' are self dual.

Proof. First, we assume 2’ = Z. It is enough to prove that (zaH)* = Hzx,. Let
22 = z)xz. Then z, is a unit in Hx and commutes with z (see [DJ4; (4.5)]). Define
(=, =) v z2AH X Hz, — Z by (zah, h'zy) = T(zAhh z)/2)) = T(zxhR'} = (:1:,\h R).
For y € D,, write

xATy = Z qszsz = any + Z & Tz,
zEC,WwEWrY

it

"

with @ = my, 2z ranging over Wyy, and £; € Z’. Since y has. memal Iength among .
the elements of Wyy by (2.2.3), we have by (3.1.1a) that £(z) > £(y) whenever &, #
0. Order the elements of W in the way wy, wa, - - - such that £(w;) < £(w;) =1 < .
We have for y,w—! € Dj, ot

, if f(w) < L(y),w#y
(#ATy, Twza) = (22Ty, Tw) = { m1 15%3 y( )

Then the matrix of the form (—,—) with respect to the induced order oh: ‘D,\ is
upper triangular with invertible diagonal product, and hence is non—degenera.te Ty
The general case follows from base change. The proposn:lon is proved I:I

5. BISTANDARD BASES AND SPECHT SERIES FOR PERMUTATION MODULES

The classical Young rule for symmetric groups [JK; p.89] gives the mult1p11c1ty of i\
a Specht module in a permutation module in terms of the number of seml—standard
tableaux. We shall show in this section that similar rule holds for the’ q—permutatlon‘
modules and (twisted) Specht modules introduced in previous sections. This is in’
fact a character problem which will be treated in the first subséction. -Our task then ™
is to prove the existence of Specht filtrations. We shall achieve this by introducing
the bistandard basis for 7 with which we will get bistandard bases for q—Schur
algebras.

By (4.2.6), it is sufficient to look at the mtegral case Z' = Z. From now on we
will keep this assumption. The reader can easily interpret our results for general
Z'; see (6.2.3c). | =

5.1 The multiplicities m,,. All representations in this subsectlon are complex g

representatlons
Let p € IT} be a bipartition and A € II, a blCOInpOSlthIl Let T5%(1, A) be the

set of all semi-standard p-bitableaux of type A (see (1.2.2)). To avoid too many
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indices we just write A = (o, ) and p = (v,d). We assume v - c and é I d.
Let €5 be the sign representation of Cs, where Cs = Clet1,7 = (g1, 0, r) is. .
the complement of Cy := C, = Cj3,.- We extend it to a linear representation. of
C, denoted again by 55, such that it acts on C, trivially. The group W acts on..
es by wes(z) = e5(w™ a:w), forwe W,z € C Clearly, the inertia. group. of &5
is CW(c,d) W((c,a),-)- Thus, €5 extends to a linear representation of W((c d),=)-
by setting es(zw) = €5(z) for z € C and w € W(c 4 Let S and S5 be the
irreducible modules of &, and Gy, respectively, corresponding to ~ and 6.- We lift
their outer tensor product S ® S to an irreducible module of W a),—) with C
acting trivially, and form the (1nner) tensor product (S ® Sa) ®e5. Note that this
can also be viewed as an outer tensor product S 0] S& of S' and 5'5 = S5 ¢y,
lifted to a module of W a) ). Then one sees easﬂy that the mduced CW -module
S, of 8, ® ¢ is irreducible. Let Ty be the complex permutation module of W on
the nght cosets of W..

(5.1.1) Theorem. The dimension of Homcw (S“,T,\) is equal to the number
#%5%(u, A) of semi-standard p-bitableauz of type X.' e

Proof. Let a = |a| and b = ||, and let T(, and Tﬁ be the permutation modules
of W, and &, on the right cosets of C(q,_)S, and Sg respectively. Then -

T, = ]-W TW(G b)TW N (T(a,—) O] Tﬁ) TWa 5
( Y (a,b) "

Let P = P, be the power set of {1,--- ,b}. For any J € P, we have a corresponding
linear representation &; of Cg, where Cg = Cjg41 4] is the complement of C, :=
Cl1,q} defined similarly as above, and € takes the sign representation on the copies
of Cz = (t;) with indices in J and the trivial representatlon on the remaining copies.
Thus, the regular representation of Cp is a direct sum of them: CCs = @ JepEJ-
This module extends to Cg&y = W}, by letting &, act by conjugation:: So we have. -
by transitivity of induction and a Well-known tensor 1dent1ty of Brauer '

"_»vi

TA - (T(a -) © Tﬁ) TW( By (T © (Tﬁ ® Ccﬂ)) TW((a b) ) [Pk '_ s

By Frobenius reciprocity, we have

b

\
PR

HomCW(SwTA) HomCW(( ) - )(S ®S¢$7(T(a—)®(Tﬂ®CCﬂ)) TW((,, by~ )“LW((c,d) ))

which is zero even on CC if b < d as there is no £ equal to a conJugate of 55 in
this case. (They all take —1 values on too few elements.¢;.) Clearly, #%°¢(p, )
equals zero, too, in this case.

We now assume b > d. Note that a+b = r = c+d. By the Mackey decomposition
theorem, we have : . '
(T(Q:_) @ (Tﬁ ® Ccﬂ)) TVWV((a b), _)J’W((c d),—) .
= @D TeHo@me CCﬁ))

d€Dq,b),(c,d)

= (Tiay) @ (Tp ® CCp)) Iivi(op—s.ay, - 150 +(

W((c,d),—)
Wla.b),— nW((c,d).—_))T

terms with no conjugate of
€5 as a subfactor on CC
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As above, we can ignore the terms on the right. Frobenius reciprocity can be
applied to calculate on the left, though we prefer to keep the induction in evidence.
We view W((5,—d,q),—) as the direct product of Wi, _y with W((_g,4),—)- Note that
any irreducible module for the latter group which contains &5 | Cg on Cg must be
in the induction of €5 | Cpg to W(y_4,4),—), S0 cannot contain any other 1rreduc1b1e
representatmn on Cg. So we have %

Homcew (S’,‘, Ty)
= Homew,, 4),_, (57 © 55, (T(a,~) © (T ® CC8)) IWiasosyiyy T (&97)
= HomCW((c.d).—) (S"Y © S’E’ (T(a,—) o (Tﬂ ® 55)) ’l’W((;z,b-.d,d),—)TW((C"&),-—))
= H"m@ff(c,d) (5,0 gJ’,(Ta ©Tp i‘,’?(b—_a,a).) W),

However, by (1.2.4) and the Mackey decomposition theorem again, we have

T lss-axes = @ © (1pr ©1p2) {s x0T So—a X Gy
(8*.82)el(B)

Thus, we eventually have, using (1.2.4b)

dim Homew (S, Th) = dim @ o Homeyy,, (5'.7 O S5, Tovpi © Tp2)
(68,8%)€11(B)

= Y  dimHomgs, (S, Tavp:)dim Homgs; (S5, Tp2) -

(8*,82)ell(B)
= #:ss(#, )‘)a

as required. O

As, under the specialization Z— quch thﬁt qo =qg=1 in Q, the Hecke é.fgébra |

‘Hg becomes the group algebra, which is still semi-simple, we have immediately from
Theorem 5.1.1 and [C; (10.11.2)] the following.
(5.1.2) Corollary. (a) Let my, be the multiplicity defined in (343} Then
map = #3°(1,.A). il

(b) For bicompositions A and v of r, we have

#Dy, = #{(s,8) | s € T(u, \), t € T7(, ), p € TI }.

Proof. (a) follows from that fact that S,, is isomorphic to the specialization of Sﬂ.,

at go = ¢ = 1. (See [DJ4; §5] and [DIM; (4.22)].)
The statement (b) follows from (a) and the fact that

HOIII‘HK (7—AK7 7-1/K) = @ HOIII’HK (ﬂKasﬂK) ®.H0m’HK (SELK’ 7-';K) O
pellt
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5.2 The bistandard bases for Tx» (and 7). Recall from §3.4 the bistandard
basis {zst | 5,t € T*(u), 4 € IT}} for H. We are now ready to introduce bistandard
bases for permutation modules 7. Let A be a bicomposition of r and p a bipar-
tition of . Associated to each 5 € 3%°(y, A), there is a distinguished  double coset -
representative 6(s) € D5; N W. Since Dx; N W = Dy, N W, we have §(s) € Diu '
and therefore, it defines a basis element <p,\( ) € Homy (7w, T3) (cf. (4.2.6)).
The following lemma is a generahzat_r_on of a result in [M; §7] to the type B case.

(5.2.1) Lemma. Fors € °(u,)) and any standard p-bitableau t € T(u), let
Xt =038 (@), Then the set Tx = {X5 | p € T, 5 € T(, 1), 6.€ T*(u)} *
forms a basis for T,. Putting X, = (X4)¢, the set x; ={Xf | v e H,‘.",sE-
3%(u, A),t € T*(u)} is a basis for Hzxy. " ' v

Proof By the definitions g1ven above (3.4 2) and above (4.2.6), we have Xs"t =
go)m (x,,t) = Xw,s(s)w, Ts(t)~ Using (1.2.3a), we have 6(s)"2Crd(s) C- C,,. Recall: ,
from (1.1.1) and (1.2.3) that d(s) € D5z € Day. So, putting d = &(s) and deﬁmng
d as above (4.2.1), we have C) = d- 10,\d C Cy and mp = m) where ¥ = Adﬂu In
particular, 755 = T3. Therefore, using (4.2. Za ,b) and (1 2 3c), . o

L

(5.2.2) X4 = Xw,sew, Ts) = > ToTs@ZuTse = D Tat-
: zepxns(’)"‘ W SET,

(See above (3.4.1) for the definition of the basis elements z%,.) By (1.2.3c), these
sums are all disjoint, and thus, linearly independent. They form a. basis for 75x by
(5.1.2) and a comparison on dimension. Fmally, the result follows from (3.2.2d),
since the z£, form a basis for #. O ..

(5.2.3) Theorem. . For any bzcomposztzon A ofr there isa submodule sequence “
Ofﬁf' o . ‘_ . R SN - s It

0 = TO C 7:\ - C Tm 7& PRSI FR | B L X
such that T3/Ty 1 & S} (1 < i< m) for some p(;) € T and pmy = M.

Proof. Since 7, is isomorphic to Ty~ (3.2.2c), we may assume that Ais a. b1part1t10n ,
We order II by (1), t4(2), - - - such that py > pe;) implies i < . Let p = p.(,) be
a bipartition of r and let 7} be the Z-submodule of 7, generated by all X4 " with
j <. Clearly, T = 0 unless g > X and each 7 is an #H-submodule of T by [D.] M;

(4.18)]. Moreover, 7;/7; " is Z-free with basis {X4 | t € T* (1), s € T°%(u, A}

For fixed s € T°%(u, A)}, the set {X;‘t | t € T°(u)} generates an H-submodule
of T;i/73~*, which is isomorphic to Si, by [DIM; (4.11)] (or (3.4.1)), (3.4.2) and
(5.2.2). Hence 731/7;71 is 1somorph1c to a direct sum of #%°%(u, A) copies of .S'h

Note that ,S'h appears at the top of 7, with multiplicity 1. Therefore, 7, has a
submodule sequence with .S't' as sectmns a

We call such a sequence for 7, a (tw1sted) Specht ﬁltmtzon of Th. We remark ;
that similar terminology can be used for 7. (See (6.2.3c) below.)
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6. QUASI-HEREDITY OF ¢-SCHUR? ALGEBRAS

We are now in a position to prove that a g-Schur? algebra is quasi-hereditary.
We shall construct a “codeterminant”-type basis which gives easily the required
structure. (No actual determinants are involved.) This kind of basis was first
introduced by J. A. Green [G; §7] for classical Schur algebras (see also [D1] for the
GL; case) A proof of the' qua31-hered1ty property can also be given using [DPS2]
when gy is a fractional power of g; see (6.2.3b) below." Also, see [DR] for a more
general construction of standa.rd bases for any split qua.51-hered1tary algebra

6.1 Bistandard bases for g¢-Schur? algebras. Recall from (4.2.6) the bas1s y
{3} for the algebra S7(n,r). This is the natural basis possessed by a centralizer
algebra of a permutatmn module. We are now ready to introduce a new basis for
SZ(n,r) which reflects quite well the structure of its module ca.tegorles CH (n, r)-mod
and mod-82(n, 7). Since it gives rise to bases (indexed by semi-standard bltableaux)
for certain “standard” objects in both these categories, we. w111 call it the bzstandard

basis. -

(6.1.1) Theorem. Let A, v € I(n,r) and p € H"‘(n T). For any 5 E E”(u, )\)

and t € T%°(u,v), we define $op = oL = isf)(ng) Then the set

{Bst | 5€ T(u, ), t € 09 0), 1 € Iy 1), A w € Ty )}
forms a basis for Sg (n, ).

.....

Proof. Fix A, v and put

Xy = XE = O (z,) = O3 (Xw, 509 lw,) = o3 (qua(t) :hma(x.),,)

J!

Note that the last equality is obtained from (1.2.3a), as in the, proof of (5.2. 1) and -
that ?N6(t) = Ed(t)~1 N v. From the argument given in (4.2.6), we see it suffices
to show that the set

(6.1.2) {X% |5 € T°(n, ), t € T, ), 1 € TH(n,7)}
is a basis for H*. Let

hi= Y.  Tpm and he= ) To=honsos

zEWAND5n5(s)a TEW.NDons(1)a
Then we have

(6.1.3)‘ Xst = 5t(1L‘,,) = tha(s)JJ#Tg(t)—l h2 = Z Tuv,
uETs,VE-Tg

by the above and the argument for the first part of (5.2.2), and (123c) for the
last equality. Here Ts = Ts(u, A) and Ty = T(u, v) as defined above (1.2.3), and
the basis elements z,, for # are discussed above (3.4.1). So the set in (6.1.2) is
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linearly independent and forms a basis for %3 by (5.1.2). Finally, by (4.2.5), we
have H* = H3¥ NH and, therefore, the set in (6.1.2) is a basis for H». O

We remark that, if v = (—, (17)) € IT} is the minimal element, then T°°(y, v) =
T*(u). In this case, the basis given in (6.1.2) for z,H is the same as the basis Xy
given in (5.2.1). Our notation is also consistent.-

(6.1.4) Corollary.  For any A, p,v € II(n,r) and x € D, y € D,,, the product
PXpPoy 18 a linear combination of 7, where s € T*°(1,1), t € T¥(1,v) and T €
O*(n,r) with T & p". In particular, if p € II*(n;r), the submodule SZ* (resp.

SP#) generated by all &), with A > p (resp. Ab p) and X € It (n,7) is.a two-sided

ideal of S%(n,r).

Proof. We have ¢5,0Y,(z,) = hl:rphz € H for some h; € #. On the other
hand, there exists d € Dy, such that T 'z,Ty = zon (see the proof of (3.2. 2c)

Therefore, we have hiz,hy = Bz € ’H""’, which, by [DIM; (4.8), (4. 10)], is a_ !

linear combination of z¥, with p > p” and s,t € T*(u). The first assertion follows..
For the second, note any product p®L4 with ¢, % € &2 ('n. r) isa hnear combmatlon
of products @3, ¢4, for suitable z ,¥,7,w, but the same L. EI - .

(6.1.5) Corollary. For any 0, % € S2(n,r), we have ..
@;‘t = qu mod (S"“) and- <I’ 1,0 ZC,, o mod (8"")

where &y, (, € Z are independent of t, s respectively.

Proof. This follows from (6.1.3) using (3.4.1). O

(6.1.6) Corellary Keep the notation znt'roduced in ( 5. 2 .4)- Let 7'z be._..t.h'_e‘ z-th
filtration term defined there. Then Ty NHzx, is free with baszs B A et y

{X&lp=pupi<ise T”(u,)\) te ’S”(M,V)}
Jor any v € I(n,r). :

Proof. Recall from the proof of (5.2.3) that T3 is spanned by all X _f 9 where j < <1,

s € T9%(p, )\) and t € T*(u), for p = H(i- By (6 1.3), XE = ZueT,,veTt -'L'uv =

>ves, Xbv = X uer, Xhi, which is in 73 N Hz,, by (5.2.1). Conversely, it is easy

4

to see that any element in the intersection is a linear combination of the elements ‘

in the given set. O

6.2 The quasi-heredity of §2(n,r). For S1mp1101ty, let S = S2(n, r) TFixa hnear

ordering for the set II"‘(n r) = {M(1) > piz) =2 pan} Wh1ch refines < (i.e.,
By = Be) lmplles B > p))- Put e; = Z,_l Fﬁu(,f,,_(f_i = Se;S and §; = §/7;,
where @) = p1,. We have the following main theorem of this paper.

(6.2.1) Theorem. The q-Schur? algebm S2(n,r) over Z is a (split) quasz—
heredztary algebra with the “defining” sequence ( or heredzty chain)

0=JCTNhCT2C CJN=3-
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Therefore, for any commutative Z-algebra Z’, Sg (n,r, Z") is quasi-hereditary.

Proof. From [CPS1; §3] we have to show that, for each 1 < i < N, J;/Ji—1 is a
heredity ideal of S;_; = §/J;-1. To avoid using too many indices, we put p = p),
J = J(p) = Ji/Ji-1 and S = §/F;—1. We shall denote by @ the image of a € S
in S.

‘From the theorem and corollary 6.14 above, we see that both S and J are Z--
free and have bases {5 | 5 € T°%(p,\),t € T*%(p,v), A,v € II(n,r),p < p} and .
{®s | 5 € T°%(u, ), t € T°2(i,v), A\, v € Il(n,r)}, respectively. Note that ¢, =
<I>5“5“ where s, € T%°(u, 1) is the unique p-bitableau of type u. So if <I>5t(pp #0
then (I>st<p e <?[>55 Therefore, we have J = S(?MS and, in particular, we have
(1): J%2 = J. Let ".7 ?,J and J* = Jp,. Then the argument above shows
also that X7 and J* have bases {®s,e ] te Ts*"(u, A), A € Il(m, 7)} and {<I>55p |se
T9%(p, A), A € H(n m}, respectlvely Thus, we have (2) Py <p# J#nﬂj Z(,o‘u _
and that the map f: J* ® ¥ — J given by F(€ ® 7)) = &h is b1.]ect1ve~ Smce'r:.
BT = cp,‘J is a projective right S—module, it follows that (3): J.is a projective "
right S-module. Altogether (1)-(3), we have proved that J is a heredlty ideal.

The last assertion follows easily, since S2(n,r, £) & 82 (n,r)z by (4.2.6). O

From the theorem and proof above, we can easily describe the standard objects
in the category of 82(n T)x-modules, where k is a field which is also a Z-algebra.
These modules are the counterparts of the ¢-Weyl modules for ¢-Schur algebras,
and have the following “semi-standard” bases (cf. [DJ3; (8.1)]).

(6.2.2) Corollary.  Maintain the notation introduced above and put A(u(,)) =
SZu,, where 2z, = pu, + Ji1 for all i. Then, for any field k which is-a Z-
algebra, the category S2(n,r)r-mod of SZ(n, r)k-modules is a highest 'wezghi" cate-
gory [CPS3], and {A(ﬂa)k},‘en+ (n,r) 18 the set of standard objects in 82 (n r)k-mod
Moreover, each A(u) is Z—free with “semi-standard” basis-

(K302, | X I(n,r),s € T (s N}

Also, (6 2.2) guarantees formally that the SZ(n, r)-module categorles are integral
highest weight categories in the sense of [DS]. We refer the reader to that paper for
further d1scussmn of the integral concept

(6.2.3) Remark. (a) By (6.1.5), one checks easily that the bistandard.basis for
S2(n,r) satisfies the axioms in [DR; (1.2.1)]. Thus, S2(n,r) is a standardly based
algebra in that sense. In fact, it is even cellular in the sense of [GL]. We leave the
details to the reader. Now the result in [DR; (3.2.1)] gives a second proof of (6.2. 1)
by showing that this standardly based algebra is full.

(b) When gy is a rational power of g, the ring £ has Krull dim. 2. Thus the
theory developed in [DPS1] applies. To get the quasi-heredity using that theory,
it suffices to check the condition [DPS2; (1.7(4))] by using the filtration given in
(5.2.4), result (6.1.6) and an argument similar to [DPS1; (2. 3 7)]- We leave further
details to the reader.
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(c) As we have mentioned at the beginning of §5, we only consider the integral
case 2’ = Z in §5.2 and §6. However, the definitions of bistandard bases for H, Tx
and SZ(n,r) are the same for any coefficient ring Z’ (using (4.2.6) in later cases).
Therefore all results in §5.2 and §6 remain true after base change. Iy

6.3 Integral centralizer subalgebras. Let )y = ¢}, as before. These are-"
idempotents, called weight idempotents. With these idempotents, we see that both
S%(n,r) and S2(n,r) are centralizer “subalgebras” (without the same identity ele-
ment in genera.l) of S7(n,r) of the form eS2(n,r)e for some idempotents ¢.” In
addition, the ‘¢g-Schur algebra is also a centralizer 'suBalgebra of the g-Schur?* al-

gebra: Recall from [DJ3] the g-Schur algebra S;(n,r) = Endyg (@Aen(n ") :1:,\7{)
where # = H(W), and from (3.3:1) the cmdeal Qp of H(n r). .

(6.3.1) Proposition. Lete = 2 oreq, Pr- Then eis an idempotent of 52(n r)
and eS2(n,r)e is isomorphic to the g-Schur algebra S, (n r). Therefore, the. res-rf_"
triction of the bzstandard basis descrzbed in (6.1.1) gives the (i bz)standard baszs for'f
a g-Schur algebra. _ |

Proof. Let H' =z where 2’ is a commutative Z-algebra. We note that, for any-
A € Qp (see (3.3.1)), 2rH = z\H' & zxH' as H'-module, where H' = Hz:. Thus
we have for A, u € :

Homyy (zaH', z,H') C Homg (zAH', z,H") = Homy, (z5H', z5H).

Now, applying [CPS1; (3.3.1)] gives the required isomorphism. O

Note that the standard basis for a g-Schur algebra obtamed in thrs .way is the .
g-analogue of Green’s codeterminant basis.for: a Schur: algebra [G]. Wt
Before stating our final results on Sz(n, T), we observe a- general theorem on

integral centralizer algebras. Let (O, K, k) be a loca,l system? with- o regular '

Then (O, K, k) determines a second local system (O, K , k) where the completmn O
is the completlon hm O/m® of O at the maximal ideal m. Let A be a finite. O—free

algebra and e € A a.n idempotent such that ede is O-free. Put B'= eAe

(6.3.2) Theorem. The decomposition matriz of B is part of the decomposztzon”“’
matriz of A. In particular, if A has a unztnangular decomposition matmz 30 does.

B.

Proof Without loss of generality, we assume © = l 5 Thus we have a decomposition '
e = ) ;e; over O such that each e;A is a PIM and e = E fj in AK wrth filk
irreducible. Then

dim HOHlAK (e,;AK, fJAK) = dlm (fjAKCi).
= dim (ijKe,;)
= dlmHomBK (e,BK,fJB ,5' —

a i

2A local system is a triple (O, K, k) consisting of a commutative, Noetherian local domain @
having fraction field K and residue field k = O/m.
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as desired. O

Applying this to the g-Schur? algebras, we have immediately the following.

(6.3.3) Corollary.  The decomposition mairiz for each of the algebras Sy(n,r),
82 (n,r) and Sz(n, r) i unitriangular and is part of the decomposztzon matnx of
82 (n, 7).

(6.3.4). Remark. Because of work of D1pper and James, the Hecke endomorphlsm_
algebras S; 52 (n r) are important for the non-describing representation theory of finite
groups of L1e type (see [DPS1]), and this has largely motivated our mvest1gat10n

Several years ago (1993), we calculated that 82 (2,2,F,) is quasi-hereditary when
p# 2and g = go = 2. (More precisely, as remarked in [CPS4 p.-111}, we calculated
that a Hecke endomorphism algebra associated to the finite group Sp(4, 2) is quasi-
hereditary over I, and used a correspondence of Dipper and Ja.mes descrlbed in
[DPS1].) This result may now be viewed as a special case of our maln theorem '
(6.2.1), since it turns out S (2,2,F,) is Morita equivalent to 82(2 2,F,). ThlS 1
may be seen by checking tha.t the natural surjection mH' — frz’H' ‘defined as left
multiplication by g+ T3,, is split in this case. The same argument, works, whenever
q = qo € 2" and 2 (as well as ¢) is invertible in 2’; showing S (2 2 Z’) is qua51-» -
hereditary in this generality. B cugd
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