CHARACTER SHEAVES AND GENERALIZED
GELFAND-GRAEV CHARACTERS

MEINOLF GECK

1. INTRODUCTION

Kawanaka [10] has associated with every unipotent class of a finite re-
ductive group a so-called generalized Gelfand-Graev character. These cha-
racters are deeply related with the geometry of unipotent classes of the
underlying algebraic group G. Lusztig [17] has expressed the generalized
Gelfand-Graev characters in terms of intersection cohomology complexes of
closures of unipotent classes with coefficients in various local systems. The
resulting formulas for their character values contain as unknown quantities
certain fourth roots of unity which relate the characteristic functions of those
intersection cohomology complexes with their Fourier transforms.

It is one purpose of this paper to determine these fourth roots of unity
explicitly, under the assumption that the center of G is connected and that
the characteristic of the field over which G is defined is large enough. After
some preparations in Section 2, this will be achieved in Theorem 3.6 and
Theorem 3.8. Note that if the center is not connected, the problem seems to
be more subtle; for the case of ordinary Gelfand-Graev characters associated
with regular unipotent elements, see [5]. The assumption on p comes from
[17] where it is also necessary.

Our main tools are formulas relating the values of a class function on
unipotent elements with the scalar products between that class function and
the various generalized Gelfand-Graev characters, see Corollary 2.6. These
results are formally deduced from Lusztig’s results in [17]. We then derive
in Corollary 3.2 an integrality condition which imposes sufficiently strong
restrictions on the possible values of the unknown roots of unity. In order
to apply this integrality condition we need some results from {12, Chap. 13]
about the classification of the irreducible characters of our finite reductive
group and relations with unipotent classes in G.

Lusztig’s theory of character sheaves [14] provides the framework for the
determination of character values of our finite reductive group. The explicit
formulas for the values of generalized Gelfand-Graev characters allow us
to revise a number of results concerning character sheaves with non-zero
restriction to the unipotent variety of G in a more conceptual framework;
see Theorem 4.5, Remark 5.4 and Proposition 5.5. Results of this kind were
first obtained by Lusztig in [15], where groups of type B, and exceptional
groups were considered in a thoroughly explicit manner. (See [2] for similar
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results about the other types of classical groups.) One of our motivations
was to find a conceptual approach to the remarks in [15, (1.6)], assuming
that the characteristic is large; see Theorem 4.5. It was mentioned to me
by Lusztig that some additional hypothesis as in Theorem 4.5 is actually
needed so that these remarks hold.

In order to prove these results, we use again integrality conditions coming
from ordinary irreducible characters and scalar product relations with gene-
ralized Gelfand-Graev characters. In order to make this work, we also need
a weak form of Shoji’s results [21] on the relation between irreducible cha-
racters and characteristic functions of character sheaves, see Theorem 7.1.

Applications of these results on character sheaves can be found in [6],
for example, where they were used to prove the existence of basic sets of
2-modular Brauer characters for finite classical groups over a field of odd
characteristic.

Basic assumptions. G will always be a connected reductive group over
an algebraic closure k of the finite field F; where g is a power of some prime p.
Whenever G is defined over F, we let F: G — G be the corresponding
Frobenius map. The finite group of fixed points will then be denoted by GF.
We assume throughout that p is good for G, so that the generalized Gelfand-
Graev characters are defined (see [10]). We will have to make use of the main
results of [17], which are only proved under the assumption that p and ¢ are
large enough. We have collected the results that we shall need in the form
of axioms in (2.4) below. The assumption that the characteristic is large
will only be used in reference to these axioms.

2. SOME BASIS RELATIONS

Let G be a connected reductive group defined over F, with corresponding
Frobenius map F. The purpose of this section is to introduce our basic
notation and establish some relations between the values of a class functions
on unipotent elements and the scalar products of this class function with the
various generalized Gelfand-Graev characters of GF; formulas of this kind
are due to Lusztig [17, (9.11)].

(2.1) All of our characters and class functions will have values in an algebraic
closure of Qj, where [ is prime not dividing ¢. If f, f’ are two class functions
on GF we denote by

(f, ') = |GF|ng)f’

geGF

their usual hermitian product, where z — Z is a field automorphism which
maps roots of unity to their inverses.

We denote by G i the set of unipotent elements in . For each element
g € G we let (g) denote the G-conjugacy class of g. There is a canonical
partial order on the set of unipotent classes of G: if C,C’ are two such



Generalized Gelfand-Graev characters 3

classes we write C < C' if C is contained in the Zariski closure of C'. We
write C < C'if C < C' but C # C'.

For each unipotent class C of G we choose once and for all a representative
u € C and let A(u) be the group of components of Cg(u). If C is F-stable
we tacitly assume that w € C¥ so that F induces an action on A(u). Let
N¢ be the set of pairs (C,7) where C is a unipotent class and 4 is an
irreducible character of A(u) (for the chosen u € C). If i € N we also write
i = (Ci, ¥i)-
(2.2) The map F' acts naturally on M. With each F-stable pairi = (C,9) €
N, g we can associate a class function Y; as follows. Since 9 is invariant under
the action of F, we can extend it to a character ¢ of the semidirect product
of A(u) with the cyclic group of automorphisms generated by F. For each
y € A(u), we denote by u, an element in C¥ obtained by twisting the given
representative u with y. We let

-~ _ | ¥(Fy) if g =uy for some y € A(u),

() Yilg) = { 0 otherwige.
The set of functions {V; | i« € NS} forms a basis of the space of class
functions of GF with support on CF. (Note that it depends on the choice of
extensions 1; thus, it is only well-defined up to non-zero scalar multiples.)

By the generalized Springer correspondence, we can partition the set Ng
into blocks, and with each block we can associate a Levi subgroup L of some
parabolic subgroup of G and a pair ¢’ € N, which is cuspidal (see [13] and
[17, Section 4]). We define

(b) b = %(dimG ~dimC — dim Z(L)°)

where Z (L) denotes the center of L. We will see later that b; is an integer
if the center of G is connected, see (3.3).

(2.8) Let C be an F-stable unipotent class in G and u = u,. .. ,uq be repre-
sentatives for the G¥-conjugacy classes contained in C¥. Let Ty ,... T 4
be the corresponding generalized Gelfand-Graev characters. We denote the
order of A(u) by a and that of A(u,)F by a,, for 1 <r <d. Asin [17, (7.5)]
we define:

d
(a) Ti=Y. aiY,;(u,)ru, for i € NE with C; = C.
r=1 T

Note that the functions Y; with C; = C satisfy orthogonality relations:

d
(b) Z Ea—Yi(uT)Y;, (’u.,.) = a,5,-i: and ZY:,-;(UT)Y,;(u,.;) = ararr’-
r=1 7 i

Thus, we also have

] = m—
(c) Ly, = EZY,-(UT)F,- foralll <r <d,
2
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where the sum is over all i € N with C; = C.

(2.4) We keep the notation of (2.3), and fix a pair i = (C,4) € N§. Lusz-
tig [17, Theorem 7.3] expresses each I'; as a linear combination of Y¥j’s, for
various j € M. The advantage of using I'; instead of T, is that the co-
efficients in these expressions are independent of the normalization of the
functions Yj. These coefficients involve a certain 4-th root of unity ¢ which,
for our purposes, is conveniently characterized as follows:

(a) (DG(F,;), Y;;:) = G,C,;q_bi Ji,i' if C.,' =C = C’i’7

where Dg denotes Alvis-Curtis-Kawanaka duality. This is deduced in [6,
Lemma 3.5] from the formulas in [17, (6.12), (7.3), (8.6)]. We have ¢} = 6¢ 1
where 9, ¢ are defined in [17, (8.4) and (7.2)]. Since § and { only depend on
the block of Mg containing 4, the same holds for (] as well. The definition
of these numbers shows that

(b) we have ¢; = 1 if the Levi subgroup L associated with the block of Ng
containing ¢ is just a maximal torus.

We shall not need the exact form of all the coefficients in the expression of
I'; as a linear combination of Y;’s but only the following additional basic
relation:

(c) if Dg(T;)(g) # 0 for some g € GF then (g) < Ci.

This is proved by combining [17, (6.13) and (8.6)]. Note that these results
are proved in [17] under the assumption that ¢ is a sufficiently large power
of a sufficiently large prime. We shall take these properties here as axioms
on which the subsequent arguments are built.

Lemma 2.5 (Cf. [17], (9.11)). Let i = (C,¢) € NE and f be any class
function on GF satisfying the condition:

&) f(g) =0 for all unipotent g € GF such that C < (g)

Then, with the notation in (2.8), we have

Z f ur UT)—' i bt(f:DG(F ))

r=1 0r

Proof. By condition (¥) and property (2.4)(c) we see that the scalar product
on the right hand side only depends on the restriction of f to CF. Clearly,
the same also holds for the left hand side. Thus, it will be sufficient to prove
the lemma in the special case where we take f =Yy with ¢/ € N§, Cy = C.
In this case, the left hand sides evaluates to:

Z Y (ur)Y;(ur) = abiy,

1'—1
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by the orthogonality relations in (2.3)(b). On the other hand, the right hand
side evaluates to:

g% (Ya, Da(T3)) = ¢lq% (Da(Ty), Yer) = ¢lg%allg ™6 = adiw,

by using the basic relation in (2.4)(a). In both cases we obtain the same
result. Since the functions Y; form a basis of the space of class functions
with support on CF, the proof is complete. O

Corollary 2.6. With the assumptions of Lemma 2.5 we have

Flur) = = Y2 G ¥ilur)tf, Do (D)) for 1 <7 <4,

where the sum is over all i € N with C; =C.

Proof. We multiply both sides of the equation in Lemma 2.5 by Y;(u,v) and
sum over all i € N§ with C; = C. Using the orthogonality relations in
(2.3)(b) the left hand side of that equation evaluates to:

d
'ZYi(ur') (Z a,if(u'r)yz(ur)) =
% =1 T

d d
Z f;f(ur) (Z Y-z("-"r’)f(u_r)) = Z f;f(ur)ar‘srr’ = af(ur).
r=1 7 i r=1 "

The right hand side just gives a times the desired expression. This completes
the proof. O

(2.7) Let p be an irreducible character of G¥. Then there is a canonical
unipotent class in G so that condition (*) in Lemma 2.5 is satisfied. This
canonical class is determined as follows. For each F-stable unipotent class
C we define
d

(a) AV(C,p) := Z aip(ur) (notation of (2.3)).

r=1 T
Following [17] we say that C is the unipotent support of p if AV(C,p) # 0
and if C is the unique class of maximal possible dimension with this property.
We shall denote the unipotent support of an irreducible character p by C,.
By [17], [7], [9] the unipotent support always exists, without any restriction
on p or q. The properties in (2.4) formally imply that

(b) if p(g) # 0 for some g € CF then dimC < dimC, or C = C),

where C is any F-stable unipotent class in G. Indeed, assume that p(g) # 0
for some g € CF and that C has maximal possible dimension with this
property. Then condition (*) in Lemma 2.5 is satisfied. So we can apply
Corollary 2.6 and conclude that there exists some i € Ng with C; = C
and {p, Dg(T;)} # 0. Using the defining formula (2.3)(a) we see that there
exists some r € {1,... ,d} such that (p, Dg(Ty, )} # 0. Now we take the
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pair (C,1) € Ng (where 1 stands for the trivial character) and normalize the
corresponding function Y(¢ ) so that it has constant value 1 on CF. Then
L'(c,1) is a sum of generalized Gelfand-Graev characters in which I',, appears
with non-zero multiplicity. Since +Dg(p) € Irr(GF) and (Dg(p),Ty,) =
(p, Dg(Ty,)) # 0, we also get that (p, Dg(I'(c,1))) # 0. Since this scalar
product is a non-zero scalar multiple of AV(C, p), we are done. (This is the
argument in the last part of the proof of [17, Theorem 11.2].)

(2.8) There is in fact an explicit formula for the average value of an irredu-
cible character p on its unipotent support C,. The Levi subgroup associated
with the block of Mg containing the pair (C,,1) is just a maximal torus of
G (see, for example, [7, (3.2)]), and hence we have b, 1) = dim B,, where
B, denotes the variety of Borel subgroups containing u € C, (see the di-
mension formula in [4, (5.10.1)]). By (2.4)(b), we have CEC,,,I) = 1 in this

case. Therefore, Lemma 2.5 implies (see also [17, (9.11)]) that

(a) AV(C,,p) = ¢*™5(Da(p), T(c, 1)-

By [9, Theorem 3.7] we can evaluate the scalar product on the right hand
side and obtain the formula:

i 2 dimB,
(b) AV(Cp, p) = ¢"™5(Da(p), T(c, ) = £—¢"™™,
p

where the sign is such that +Dg(p) € Irr(GF) and n, denotes the generic
denominator of p, see [9, Section 3B] and (6.1) below. Since p is a good
prime, n, is uniquely determined by the condition that n,p(1) = +¢%™m5 N
where N is an integer satisfying N = 1 mod g, see {12, (4.26.3)] and note
that n, is divisible by bad primes only.

The above results show that the formula in Corollary 2.6 expresses the
values of p on its unipotent support C, as a linear combination of the scalar
products of the dual of p with the various Gelfand-Graev characters asso-
ciated with C,, where the coefficients are |A(u)|~! times algebraic integers.
Since we know that the result is a character value, and hence an algebraic in-
teger, we therefore obtain a divisibility condition which imposes restrictions
on the coefficients of that linear combination. We shall make this explicit in
the next section.

3. DETERMINATION OF THE 4-TH ROOTS OF UNITY (]

Throughout this section we assume that the center of G is connected and
that G/Z(G) is simple. Recall also that the properties in (2.4) are assumed
to hold; in particular, p is a good prime.

If C is an F-stable unipotent class C in G, we let uj,... ,uq be repre-
sentatives for the G¥-classes contained in C¥, and a = |A(u)] (for u € C),
ar = |A(u,)F), as in (2.3). Recall also that p — C, denotes the map which
associates with each irreducible character its unipotent support. In this
section we determine explicitly the 4-th roots of unity ¢/ occuring in the
formula (2.4)(a). The main idea in our argument is to analyze the terms in
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the formula in Corollary 2.6 when applied to an irreducible character satis-
fying a certain extremality condition. The condition that we need and the
existence of a corresponding character p is contained in the following result,
which is merely a restatement of the remarks in [12, (13.3)].

Proposition 3.1. Let C be an F-stable unipotent class. Then there exists
an irreducible character p with unipotent support C and such that n, =
|A(u)] (u € C). For each character p satisfying these conditions, there
exists an rg € {1,... ,d} such that

a=ay, and (p,T;)=Y(ur),

for alli € Ng with C; = C, and where p' is the irreducible character such
that p' = £Dg(p). We have (¢/,Ty, ) =1 and (¢',Ty,) =0 for all  # ro.
Proof. Suppose first that p has unipotent support C and satisfies n, =
|A(u)|. The formulas in (2.8)(b) then show that

d

a
(P',Z G—Fur) = (¢ ,Tc1) =

r=1

Note that the sign must be + since p’ and all T',, are actual characters.
(Note also that @, divides a.) The above equation therefore implies that
there exists an index ro such that (¢/,Ty, ) = 1 and (0/,T'y,) = 0 for all
T # ro; moreover, we have a = ar,. Using the defining equation (2.3)(a) we
conclude that {0/, T;) = Y;(uy,) for all s € NE with C = C;. Hence we are
done.

It remains to show that there exists an irreducible character satisfying the
above conditions. By [17, Theorem 11.2] (for large p) and [9, Theorem 3.7]
(for arbitrary p, q) the map p — C, is the composition of the map p — p' =
+Dg(p) with the map £ from irreducible characters to unipotent classes
defined in [12, (13.4)]. By [12, (13.4.3)] there exists some p € Irr(GF) such
that £(p) = C and n, = a. By [1, (5.5)], we have n, = ny. Hence p' is a
character as desired. This completes the proof. |

Corollary 3.2. Let C,p,ro as in Proposition 3.1. Then
+p(ury) = Z 1a"i(1)?,

where the sum is over all i € Ng with C; = C. In particular, the ezpression
on the right hand side of the above formula is an algebraic integer.

Proof. Since C is the unipotent support of p, condition (*) in Lemma 2.5
is satisfied (see the remarks in (2.7)). Thus, the formula in Corollary 2.6
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yields that
1 )
plury) = —Zch"IY(um)@,Da(Fi))

= Z 19" Yi(ur ) (', )

Il

:t; Z Cz{qbixl(”ro)n(uro)

where the last equality comes from Proposition 3.1. Now, by [3] and [19], we
can always find a representative u € C¥ such that F acts trivially on A(u).
Hence, if A(u) is abelian then Y;(u,,) is a root of unity and Y;(ur,)Yi(ur,) =
1 = 1;(1) = 4;(1)2. If A(u) is not abelian, then the condition a = a,, forces
that Up, COITE corresponds to a central element in A(u). So, again, we get that
Y;i(ur,)Y;(tr,) = 1;(1)2. This completes the proof. O

The assumption that the center of G is connected was already used in
the proof of Proposition 3.1 where we explicitly refer to the classification of
irreducible characters of G in [12]. We will now describe other consequences
of that assumption; recall also that p is a good prime for G.

(3.3) If a block of Mg is a singleton set then the unique pair in that block is
called a cuspidal pair (see [13]). The Levi subgroup corresponding to such
a pair is just G. The classification of cuspidal pairs can be reduced to the
case where G is simple modulo its center (see [13, (10.1)]). From the list in
the introduction of [13] we then see that

(a) The set Ng contains at most one cuspidal pair, and if such a pair exists
then rank G/Z(G) is even.

We have already mentioned in (2.4) that ¢ only depends on the block of
Ng to which i belongs. More precisely, we have:

(b) Let L be a Levi subgroup in G and assume that ig € N, is cuspidal. If
i € Ng lies in a block to which L z'o are associated via the generalized

Springer correspondence then (] = (] .

Finally, there is one extreme case in which we know ¢]. This is the case
when 1 lies in a block for which the associated Levi subgroup L is a maximal
torus in G. (These pairs are called uniform pairs in Ng.) By (2.4)(b), we
have ¢ = 1 in this case.

These properties together with the divisibility condition in Corollary 3.2
will provide the frame for an inductive argument for the determination of ¢;.

Remark 3.4. Assume that G/Z(QG) is simple of type A,. Then all pairs
in Ng are uniform (see the table in the introduction of [13]) and hence we
have ¢! =1 for all i € N& by (2.4)(b).

(3.5) Assume that G/Z(G) is simple of type G2, Fy or Eg. By the table in
the introduction of [13] these are the only groups of exceptional type which
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have a cuspidal pair in Ng. In each of these cases the unique cuspidal pair
in Ng has the form 79 = (C, sgn) where C is the unique unipotent class such
that A(u) is isomorphic to &3, &4 or &g, respectively, and sgn denotes the
sign character. Moreover, all other elements in Mg are uniform. Hence, by
(2.4)(b), we have ¢! = 1 for all pairs ¢ € Ng except possibly for the unique
cuspidal pair.

Theorem 3.6. Let ig = (C, sgn) be the unique cuspidal pair in Ng where
G/Z(Q) is simple of type G2, Fy or Eg in good characteristic. Let e € {£1}
such that ¢ = € mod 3. Then

Cz{o — E(ra.nk G—dim Z(G’))/2.

Proof. Since G is the direct product of its derived subgroup and Z(G), we
may assume that Z(G) = 1. By Corollary 3.2, the expression

i LGP weo)

is an algebraic integer, where the sum is over all ¢ € Ng such that C; = C.
By [3], we can choose a representative u € C¥ so that F acts trivially on
A(u).

As remarked in (3.5), all pairs except the cuspidal one are uniform. Mo-
reover, for a uniform pair i € Ng with C; = C we have ¢ = 1, and
b; = dimB, (using the formula in [4, (5.10.1)]). Since, furthermore, the
sum of the squares of all character degrees of A(u) gives just the order of
this group, we conclude that the above expression can be written in the

form:

1 b i\ dimB,\ _ dimB, 1 ' by dimB,
Ty (Gog¥ + (A = 1)g™m5) = g8 4 e (Gogho — gm B ).

Since this is an algebraic integer, we deduce that
(1) |A(uw)] divides Cz!oqb"" _ gdimBu

in the ring of algebraic integers. We multiply the term on the right hand
with the similar term where we have replaced the sign — by the sign +.
Since (] is a 4-th root of unity, the resulting product is an integer and hence

(2) |A(u)] divides (¢f,)%q™0 — g?4™B in Z.

Since the exponents of ¢ are even integers, this implies (({0)2 =1 mod 3 and
hence that ¢, = 1. The tables in [4, (13.1)] give the following information:

Type |A(u)] dimB, b;
G2 6 1 2
Fy 24 4 6
Eg 120 16 20

In type Ga, the condition (1) yields that 3 | ¢j ¢ — ¢. Hence ¢}, = ¢ in this
case. Since rank G = 2, this yields the desired result. In type Fy and Eg,
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the condition (1) yields 3 | ¢} ¢° —¢* and 3 | ¢} ¢°° — ¢, respectively. Hence
we must have (] = 1 in these cases. Since furthermore rank G is divisible
by 4, this also yields the desired result. O

(3.7) Assume that G/Z(G) is simple of type By, Cy, or Dy, where n > 2.
The following table gives the conditions for the existence of a cuspidal pair
19 = (C,%¢) € Ng, the sizes of the Jordan blocks of u € C in the natural
matrix representation of such a group, and the exponent a(u) such that A(u)
has order 2%(%), (This information is extracted from [13] and the tables in
[4, p.399].) Note that, in any case, there exists at most one cuspidal pair
in Ng.

Type condition Jordan blocks a(u)

B, n=2iG+1) 1,3,5,... o

Cn n=2t4t+1) 2,4,6,... 4t -1
or n = 2t(4t — 1) 2,4,6,... 4t — 2

D, n=28t 1,3,5,... 4t—2

where ¢ > 1 in each case. Note that A(u) is always an elementary abelian
group of order 20(%),

Theorem 3.8. Let p # 2 and ig = (C,v) be the unigque cuspidal pair in
Ng where G/Z(G) is simple of type By, Cp, or Dy, (for suitable n >0). Let
€ € {*1} such that ¢ = ¢ mod 4. Then we have

C{ — E(ra.nk G—-dim Z(G))/2
0 "

Proof. We proceed by induction on rank G/Z(G). If this is zero then G
is a torus and ¢j = 1 by (2.4)(b). So we are done in this case. Now let
rank G/Z(G) > 0. If L is a Levi subgroup of some parabolic subgroup of
G then Z(L) is also connected; moreover, if Az contains a cuspidal pair
then L/Z(L) is simple. (For otherwise L/Z(L) would have a non-trivial
component of type A which is impossible by Remark 3.4.) By induction,
the root of unity corresponding to the unique cuspidal pair of such a Levi
subgroup L is given by the above formula. The strategy is now the same as
in Theorem 3.6, with the difference that now we have to take into account
various blocks and their associated Levi subgroups. By [19], a representative
u € CF can be chosen so that F acts trivially on A(u).

Let 7 € Ng with C; = C and denote by L; the Levi subgroup asso-
ciated with the block containing ¢. To abbreviate notation we let e; =
(rank L; — dim Z(L;))/2. Note that this is an integer, by (3.3)(a). By in-
duction and (3.3)(b) we have ¢/ = €% if L # G, and we must show that

! = g%, Since rank G = rank L; we can write b; in the form

0
b = (dimG—dimC —dim Z(L;))/2
= (2N +rank G —dimC — dim Z(L;))/2
(2N —dimC)/2 +¢;
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where N denotes the number of positive roots of G. Since dimC is al-
ways even (see the formula [4, (5.10.1)]) we can extract the integral power
gV—dimC/2 from each term g% and are left with ¢%. For the cuspidal pair
ip we obtain e;, = (rank G —dim Z(G))/2. Putting things together, Corol-
lary 3.2 now yields the condition that

|A(w)| divides ¢l g% + ) Clg% =g + Y (eq)™
i i

in the ring of algebraic integers, where the sum is over all ¢ € .N'g such that
C; = C and i # ip; note also that A(u) is abelian and so 9;(1) = 1 for
all i. The table in (3.7) shows that a(x) > 2 in all cases. This means that 4
divides the order of A(u). We will now just consider the above expression
modulo 4. Since eg = 1 mod 4 we conclude that

(3) 4 divides ¢l g% —1

in the ring of algebraic integers. As in the proof of Theorem 3.6 we deduce
from this a divisibility condition in the ring of rational integers:

4 - 4 divides (¢f,)%q%%0 —1.

Since e;, is an integer, we have g% = 1 mod 4. So (4) forces ¢} = +1. Now
we can again return to (3) and deduce that {; = ¢®0 mod 4, as desired. This
completes the proof. O

4. CHARACTER SHEAVES AND UNIPOTENT CLASSES

In this and the following sections we will revise some known results on
the restriction of character sheaves to their unipotent support. These results
were obtained in a case-by-case manner in [15], where in fact only groups of
type B, and exceptional groups were considered in detail. Note, however,
that we have to assume that p is large enough whenever we use results on
generalized Gelfand-Graev characters.

Throughout we will keep the assumptions from Section 3. In particular,
p is a good prime for G, the center of G is connected, and G/Z(G) is simple.
Let T be a fixed maximal torus in G and W = Ng(T')/T the Weyl group. Let
G* be a dual group and 7™ C G* a dual maximal torus. We can naturally
identify W with the Weyl group of G* with respect to T™.

(4.1) Let G be the set of character sheaves on G. These are certain G-
equivariant perverse sheaves in the derived category of constructible Q-
sheaves on G. We briefly summarize the main results about the classification
of character sheaves from [14]. First, by [14, Cor. 11.4], there is a canonical
surjective map from G to the W-orbits on T*. Let s € T* and G, be the set
of character sheaves in the fiber over (s) of this map. Let W, be the. Weyl
group of Cg~(s) (with respect to T™), identified with a subgroup of W. By
[14, Theorem 23.1] we have a bijection

(a) G+ H M(Gx), together with injections F — M(GF),
F
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where F runs over the families of irreducible characters of W;, G is a finite
group, and M(Gr) is the set of Gr-conjugacy classes of pairs (z,0) where
z € Gy and o is an irreducible character of the centralizer of z in Gr.
Note that W, is a finite Weyl group, since the center of G is connected;
for the definition of families, see [12, Chap. 4]. There is a non-degenerate,
hermitian pairing {, } on M(Gs), defined by the formula in [12, (4.14.3)].
For example, we have

0 {@0) @)} = e oy)7@) e lies in Z(Gr).

Icgr (?J) |
Then, the bijection in (a) satisfies an additional condition as follows: for each
E € F let Rs(FE) be the rational linear combination of perverse sheaves on
G defined in [14, (14.10)]. Then the multiplicity of A € G, in R,(E) is given
by

where g € M(Gx) corresponds to F under the embedding in (a).

(4.2) We will be mainly interested in the restriction of character sheaves to
Guni- This can be described as follows.

Let C be a unipotent class in G, and fix v € C. Then the isomorphism
classes of irreducible G-invariant Q-local systems on C are in bijection with
the irreducible characters of A(u). Thus, we can identify a pair (C, ), for
£ a local system as above, with the corresponding pair (C,v) € Ng. This
should not lead to any confusion.

Given a pair i = (C,&) € Ng we denote by IC(C, £) the corresponding
intersection cohomology complex on the closure of C. Recall that, by the
generalized Springer correspondence, we can associate with each i € Ng a
Levi subgroup L; we shall denote d; = dimC; + dim Z(L). Then, by [15,
(2.6)(e)] and [13, (6.5)], the restriction of a character sheaf A € G to Gun
can be expressed uniquely as follows:

(a.) AlGuni = Z mA,iAi where A,; = IC(C_'i,g,;)[di],
iENg
where the m 4 ; are certain non-negative integers. If the restriction of A to

Gluni is non-zero then m4; # 0 for some 4. Our aim will be to describe those
of these non-zero coefficients for which C; has maximal possible dimension.

(4.3) Let s € T* and F C Irr(W;) be a family. We wish to associate with
the pair (s, F) a unipotent class in G. This is done as follows, see [12, (13.3)]
and [17, (10.5)]: let Ey € F be the unique special character. Then there
exists a unique Ej € Irr(W') such that b(Ej) = b(Ep) and

Ind}} (Eo) = Ej + sum of characters E' with 5(E") > b(Ey),

where, for any irreducible character E of a finite Weyl group, we denote by
b(E) the smallest m > 0 such that E is a constituent of the m-th symmetric
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power of the natural reflection representation. Via the Springer correspon-
dence, E} corresponds to a pair i = (C,9) € Ng. Then C is the desired
unipotent class. We have in fact 9 = 1, see the remarks in [12, (13.3)], and
[17, Theorem 10.7(iii)] for a general proof. Moreover, we have

(a) dim B, = b(Ey) (ue0).

Now let G s, be the subset of G, corresponding to pairs in M(Gz) under
the bijection (4.1)(a). Then the class C associated with (s, F) as above has
the following properties:

x ifAe€ és’}' and A|{g} # 0 for some g € Gy then g lies in C or in a
class of strictly smaller dimension than C;
%y there exists some A € G; r such that A|c # 0.

This is proved in [17, Theorem 10.7] under the assumption that p is large.
Note that the conditions *; and 9 are slightly different from those in Lusz-
tig’s paper in that they only take into account the restriction of character
sheaves to Gyp;; see also [16, (4.6)] and the remarks in [6, (5.5)] for a short
discussion of this point. This discussion also shows that the assumption that
p is large is only needed in reference to properties of generalized Gelfand-
Graev characters which in turn are established as formal consequences of
those described in (2.4).

(4.4) We define a function d: Irr(W) — Ny as follows. Let E € Irr(W). By
the Springer correspondence, E corresponds to a pair ig = (Cg,¥Eg) € Ng;
we then let d(F) := dim B,, where u € Cg.

Now consider an element s € T* and a family F C Irr(W,). Let Eg be
the unique special character in F and Ej € Irr(W) as in (4.3); we have
d(E}) = b(Ep). We say that (s, F) is good if the following two conditions
are satisfied:

(a) We have G = A(u) (u € C) where C is the unipotent class attached

to the pair (s, F) as in (4.3).

(b) We have Ind}} (Eo) = Ej+ sum of characters E' with d(E') > b(Ey).
An example illustrating these conditions is given in (6.4) below. It is likely
that (a) implies (b). In type A, this is clear since d(E) = b(E) for all
E € Irr(W). If G is of exceptional type, this can be checked explicitly using
induce/restrict matrices for the characters of W (computed, for example,
with the CHEVIE system [8]) and the tables in [4, (13.3)] giving the Springer
correspondence for exceptional types. For type B,, an even more general
statement is given in [15, (4.10)]. To settle the question for types C, and
D, it seems to be necessary to use an explicit combinatorial description of
the induction of characters of the corresponding Weyl groups. This will be
discussed elsewhere.

With this notation we can now state:

Theorem 4.5 (Cf. [15], (1.6)). Let s € T* and F be a family in Irr(W).
Let C be the unipotent class attached to (s,F) as in (4.3). Assume that
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(s, F) satisfies the conditions (a) and (b) in (4.4). Then, for every A € G, 7,
the set
{iENG | C;,=C andmA,iaéO}

1s either empty or contains precisely one element, in which case the corres-
ponding coefficient m 4 ; equals 1. Conversely, for each i € Ng with C; = C

there ezists a unique A € C;‘s,]: such that ma; # 0.

Note that (4.3) shows that if A € G5+ and C’ is any unipotent class in
G such that A|cr # 0 then dimC’ < dim C, with equality only for C' = C.
The above theorem states that the map A — A|¢ defines a bijection between
the set of character sheaves in G s,F7 With non-zero restriction to C and the
set of i € Ng with C; = C.

Example 4.6 (Cf. [16], (4.7)(a)). Let G be of type Es, s = 1 and F C
Irr(W) be the unique family with Gr = &5. Let C be the corresponding
unipotent class as in (4.3). Then the hypotheses of Theorem 4.5 are sa-
tisfied. Let A € G, correspond to the pair (z,0) € M(Gx) under the
bijection (4.1)(a). Then A|¢c = 0if z # 1. On the other hand, if z = 1, then
Alc is up to shift the local system on C corresponding to the character o of

In order to prove Theorem 4.5 we will choose a suitable F;-rational struc-
ture on G, and then use results about character values and extremality
conditions of a somehow similar kind as in Section 3. Note that we are
interested in the coefficients m 4 ; defined by the decomposition in (4.2)(a),
and these are independent of any IF,-rational structure. Such a kind of ar-
gument is inspired from the proof of [17, Theorem 10.7]. In this section we
start to set up the necessary general machinary. In Section 5 we will prove
a relation which, for given 4, bounds the number of possible A such that
ma,i # 0, see (5.7). A kind of complementary relation will be established in
Section 6, but on the level on ordinary characters of G, see (6.5). The link
between these two relations is given by Shoji [21], and this will be used in
Section 7 to complete the proof of Theorem 4.5, see (7.3).

(4.7) Let g be any power of p. Then we can choose an F,-rational structure
on G with Frobenius map F: G — G. The dual group G* inherites an F,-
rational structure whose Frobenius map we also denote by F. We choose
F in such a way that the tori 7' C G and T* C G* are F-stable and split
over Iy, and that we have an F-stable Borel subgroup B C G containing T'.
For brevity we shall say that a closed subgroup L C G is a Levi subgroup
in @ if there is a parabolic subgroup P C G containing B such that L is the
unique Levi complement in P which contains T'.

Now fix an element s € T™. We can and will choose ¢ so that the following
conditions are satisfied:

(a) We have F(s) = s. Note that, since G is of split type, this also implies
that F' acts trivially on Wj.
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(b) We have ¢ = 1 mod 4 if G is of type Cy, and ¢ = 1 mod 3 if G is of
type G2 or Es.

(c) If L is an F-stable Levi subgroup in G then all character sheaves in Ls
are F-stable.

Indeed, start with any ¢ such that F(s) = s. Then, replacing ¢q by ¢° if
necessary, we can certainly make sure that (b) holds. Finally, if L is as
in (c), F induces a permutation on the finite set of character sheaves in L;.
Hence, replacing g by a suitable power if necesarry we can also make sure
that all these character sheaves are F-stable. Since there is only a finite
number of possibilities of L, we can find a common g so that (c) holds.

Since G is of split type, each unipotent class C of G is F-stable (see,
for example, [9, 4C]). Since ¢ = 1 mod 3 if G is of type Fg, we can always
find a split representative u € CF, unique up to G¥-conjugacy, see [19] and
[3]. This implies, in particular, that F' acts trivially on A(u). We denote
by 4 = uy,...,uq representatives of the GF-classes contained in CF, as
in (2.3). Then we have a canonical normalization of the functions Y; with
C; = C by the condition:

(d) Yi(u) = 9;(1) for all i € Ng with C; = C,

where u € CF is the chosen split element. Thus, the matrix of values
(Yi(up))ir (for i € Ng with C; = C, and 1 < r < d) is just the character
table of the finite group A(u).

The other congruence conditions in (b) make sure that the 4-th roots of
unity ¢! are always equal to 1, see (3.3)—(3.8).

(4.8) If A is any F-stable character sheaf on (G, we can choose an isomor-
phism ¢: F*A — A and obtain a corresponding characteristic function x4,
which is in fact a class function on GF (see [14, (8.4)]). We always choose
such an isomorphism as in [14, (25.1)]; such a choice is unique up to sca-
lar multiples of absolute value 1. The corresponding characteristic function
XA,p then has norm 1.

Our first task is to specify a definite choice for an isomorphism ¢: F*A —
A in the case where A has non-zero restriction to Gyp;.

(4.9) Let A be any character sheaf on G with non-zero restriction to Gyp;.
Then A is a component of an induced complex ind§ (4y) where L is a Levi
subgroup in G (cf. the convention in (4.7)) and Ap is a cuspidal character
sheaf on L (in the sense of [14, Def. 3.10]); moreover, the restriction of 4y to
Lyni is non-zero, see [15, (2.9)]. Note that L is like G, i.e., Z(L) is connected
and L/Z(L) is simple. This will allow us to argue by induction on dim & in
several proofs below.

Now assume that Ay is a cuspidal character sheafon G. By {14, Prop. 3.12]
we then have

(a) Ag = IC(C_'()Z(G), &o E)[dlm Co + dim Z(G)]
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where ip := (Cp, &) € Ng is a cuspidal pair and £ is an irreducible Q-local
local system on Z(G). Thus, we have:

(b) Magio =1 and ma,; =0 forip #i € Ng.

Note that, moreover, Ay is clean (see [14, (23.1)]). So the restriction of Ay
to Guyni i8 zero on Gyp; \ Cp and just & on Cp (up to shift). Conversely, we
also have

(c) mai, =0 for all non-cuspidal A € G.

This follows from the fact that if A is a component of a complex induced
from a Levi subgroup L as above, then m4; = 0 unless ¢ lies in a block of
Ng with associated Levi subgroup conjugate to L, see [15, (2.6)] and [13,

(6.5)].

Proposition 4.10. With the assumptions of (4.7), let F C Irr(W) be a
family and C the unipotent class attached to (s,F) as in (4.3). Then, for
any A € Gy r, there ezists an isomorphism @: F*A — A as in (4.8) such
that

Xap(ur) = (=1)™% €Y ¢maYi(u,)  for1<r <d,
i

where the sum is over all i € Ng with C = C;.

Proof. The proof of this is contained in [15, Sections 2 and 3]. We briefly
recall the main ingredients. We may assume that the restriction of A to
Guni is non-zero. Then A is a component of an induced complex ind (4o)
where L and Ag are as in (4.9). Since A is F-stable, we can assume that L
and Ay are also F-stable, see [15, (3.2)]. By {14, Prop. 4.8(b)] we can also
assume that Ag € L;. Now the conditions in (4.7) are all valid for L as well.

There is a canonical choice for an ismorphism ¢': F*A4y — Ap. Indeed,
as in (4.9)(b), there is a unique cuspidal pair ' = (C",€') € L such that
Mma,w 7 0. Then ¢’ is determined by the condition that the restriction of
XAo' to LL . is given by q(l/z)(dimL/Z(L)_dimCI)Yif (see [15, (3.2)]). Note
that this also implies that x4, has norm 1.

For i € Ng with ma; # 0 let A; be as in (4.2)(a). The choice of '
uniquely determines isomorphisms ¢: F*A — A and ¢;: F*A; — A;. The
corresponding characteristic functions all have norm 1. By [15, (3.2)(a)],
they are also compatible with the decomposition (4.2)(a), and so we have

— . F
XA,(p - Z mAﬁXANPi on Guni'
i€ENg

Finally, the isomorphisms ¢; have the property that
XAipi(ur) = (—1)2 CghiYi(u,) for1<r <d,

see [15, (3.4)(a)]. Putting things together, the proof is complete. O
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Corollary 4.11. For any A € és,f and any i € Ng with C; = C we have

1
- -1 rank G DT o).
mA,‘l, |A(u)| ( ) (XA,(P7 G( 7:)) (u € )
Proof. By (2.4)(c) and (4.3)(*1), it suffices to know the restriction of x4, to
CF in order to evaluate the scalar product on the right hand side. It remains
to combine Proposition 4.10 and the orthogonality relations in (2.4)(a). Note
that ¢/ = 1 by the choice of ¢ in (4.7). O

The above result shows that the unknown coefficients m4; can be ex-
pressed in terms of scalar products of characteristic functions of character
sheaves in G s,7 with the generalized Gelfand-Graev characters associated
with C. In the next section, these characteristic functions will be linked
with certain irreducible characters of GF'.

5. PRINCIPAL SERIES CHARACTERS

We keep the notation and basic assumptions of the previous section. Let
us also fix an element s € T* and a corresponding F,-rational structure
on G with Frobenius map F as in (4.7). Recall that each character sheaf
A € G, is F-stable. For any such A, we assume chosen an isomorphism
@: F*A — A asin (4.8).

The following result gives a link between these characteristic functions
and certain principal series characters of GF. At the end of this section,
we will use this link to obtain a non-trivial property of the coefficients m4;
that we are trying to compute.

(5.1) By duality, the element s € T* corresponds to a character 8, € Irr(TF).
We can lift this character to BY using the natural map BF — T¥, and
induce the resulting character to G¥. The irreducible constituents of this
induced character are then parametrized by the irreducible characters of W;
let pr be the component corresponding to E € Irr(W;). We then have the
following formula (see [14, (14.4)] and [15, (3.6)]):

(a) pr = (-1)""F Y £a(A: Ro(E))XAp:
A€G,
where £, is an algebraic number of absolute value 1.
Let F € Irr(W;) be a family and C be the unipotent class attached
to (s,F) as in (4.3). Then we have:

(b) if E € F, the class C is the unipotent support of pg.

Indeed, (4.3) and the formula (a) show that the unipotent support of pg is
either C or a class of strictly smaller dimension than C. Assume, if possible,
that it has smaller dimension. Then the p-part in the degree of p would be
strictly bigger than ¢@™5 (u € C), see the equation defining n, in (2.8).
On the other hand, [12, (4.26.3)] shows that the p-part of pg is also given by
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¢%(Eo) which, by (4.3)(a), equals ¢9™58«_ Hence the assumption was wrong,
and C is the unipotent support of pg.

Our main tool to obtain information about the coefficients m4; is the
following formula:

Proposition 5.2. Let F C Irr(W;) be a family and C the unipotent class
attached to (s,F) as in (4.3). Assume that |Gx| = |A(u)| (u € C). Then
there ezists some ug € CT such that A(ug)¥ = A(u) and

Yi(ug) = Z [GF : Cor(za)loa(l)eama; for alli € Ng with C; = C,
Aeéa,}'
where (z4,04) € M(Gx) corresponds to A under the bijection (4.1)(a).
Proof. Let Ey € F be the unique special character. By [12, (4.14.2)], the

generic denominator of pg, is given by |G|, see also the defining relation
in (12, (4.26.3)]. Hence our assumption implies that n,; = |A(u)|. By

Proposition 3.1, there exists some ug € CF such that A(ug)¥ = A(u) and
(De(pE,), i) = Yi(up) for all i € N§ with C; = C.

(Note that Dg(pg) € Irr(GF) for all E € Irr(W;) since these are principal
series characters.)

By [12, (4.14.2)], Ey corresponds to the pair (1,1) € M(G#) under the
embedding (4.1)(a). The definition of the pairing {, } therefore shows that

1 1
= [Coptmay A D1er (@4) = 15y oall)-

Putting things together, we compute that
Y;Z(U‘To) = (DG(PEO),Fi) = <pE01DG(F'£))
= (—1)3mCEY " £4(A: Ry(Fo))(xap Da(Ty)) by (5.1)(a)
A

(A : Rs(Eyp))

= (—1)UmGHrnkG N "¢ (A : Ry(Ey))|A(u)lmas by Cor. 4.11
A

Inserting the above expression for (A : Rs;(Ep)), the proof is complete. [

In order to make an efficient use of this formula we need to know the coeffi-
cients &4 for those A which have non-zero restriction to Gyui- These results
were known before, see Remark 5.6 below. We shall use a similar inductive
argument as in the proof of Theorem 3.8 to determine these coefficients. For
this purpose, we first need the following preliminary result.

Proposition 5.3. Let F C Irr(W;) be a family and assume that G‘s,}-
contains a cuspidal character sheaf A. Let C be the unipotent class atta-
ched to (s,F) as in (4.3).

(a) We have Gr = A(u) (u € C).

(b) If the restriction of A to Gyp; is non-zero then Al¢ # 0.
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Proof. First note that the above statements do not refer to any F,;-rational
structure on G. Thus, we can and will replace the chosen ¢ by a suitable
power below so that the conditions in (4.7) hold for any given semisimple
element in 7% that we encounter in the course of our argument.

Considering the adjoint quotient G — G,q and the reduction arguments
in [14, (17.9), (17.10)] we see that we may assume, without loss of generality,
that Z(G) = {1}.

In order to prove (a) we have to get an overview of the possible pairs
(s, F) so that @s,}- contains a cuspidal character sheaf. By [14, (17.12)], the
element s must be isolated, i.e., W, has the same rank as W. Moreover, by
[14, (17.13)], the family F must be a cuspidal family (which is then unique)
in the sense of [12, (8.1)]. This already reduces drastically the possibilities.

If G is of type A, then G does not have any cuspidal character sheaves
at all unless n = 0 in which case there is nothing to prove.

Assume now that G is of exceptional type. By checking the possibilities
for the existence of a cuspidal family in W, we see that W, = W and F
must be the unique cuspidal family, see [14, Sections 20, 21]. Using the
description of the groups Gr in [12, Chap. 4], the definition of C in (4.3)
and the tables for the Springer correspondence in [4, (13.3)] we can check
by inspection that (a) holds.

Now let G be of classical type By, Cp or Dy, for some n > 2. From [14,
Section 23] (see also [12, (9.9.1)]) we see that the set Gs 7 contains a cuspidal
character sheaf if and only if W, has the same rank as W, each factor of
W, has even rank, and F is a cuspidal family (which is unique). Using the
description of cuspidal families in [12, (8.1)] and that of the corresponding
groups Gr in [12, Chap. 4], we find the following possibilities:

Type W ' |g-7: |
Bn  Crra1) X Cyy) 27T
Cn  Dyz X By g2r-+t-0(r)
D, Dyp2 X Dy 92r+2t—1—4(rt)

where, in each case, the rank of W; equals the rank of W; moreover, for any
integer m, we write 6(m) =1 if m # 0 and d(m) =0 if m = 0.

The map (s, F) — C can be explicitly computed using combinatorial des-
criptions for the Springer correspondence (see [4, (13.3)]) and the induction
of characters. The results are given in [18, (1.10)—(1.12)]:

In type B, the class C corresponding to a pair (s, F) as in the above table
has Jordan blocks of type (J1 + J3+ ...+ Joy—1) +(J1 + J3 + ... + Joy_1)
where u =r+t+1 and v = |r — t|. (Here, J; denotes a Jordan block of
size 1.)

In type Cy, the class C has Jordan blocks of type (Jo + Jy +... + Joy) +
(Jo+Js+...+Joy) whereu = 2r+tand v =2r—t—1if2r > torv =t—2r
if 2r <t¢.

In type D, the class C has Jordan blocks of type (J1+J3+...+Jay—1)+
(J1 +J5 + ...+ Joy—1) where u = 2r + 2¢ and v = |2r — 2¢|.
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Using the description of the groups A(u) in [4, p.399] we can check that,
in each case, |A(u)| is given by the number in the right most column of the
above table. Thus, (a) is proved.

Now consider (b). Let A € G5 5 be a cuspidal character sheaf with non-
zero restriction to Gyni. Then mya 4, # 0 where iy = (Cy, &) € Ng is the
unique cuspidal pair, see (4.9)(b). The problem is to show that C = Cj.

If G is of type A, there is nothing to prove.

As far as exceptional groups are concerned, we only need to consider G
of type G2, Fy or Eg (cf. (3.5)}. We have already seen in (a) that Wy, =W
and F must be the unique cuspidal family. Using the definition of C in (4.3)
we see that C is the unique class such that A(u) (u € C) has size 6,24,120,
respectively. Comparing with the list in (3.5), we can conclude that C;, = C,
and hence the proof is complete in this case.

It remains to consider groups of classical type B,, C, or D,, for some
n > 2. The possibilities for the cuspidal pair i € Ng are listed in (3.8).
Comparing with the lists in (a) above we see that there exists some pair
(80, Fo) such that Cp is the class attached to (sg, Fp) as in (4.3) and such
that G’so,;,:o contains a cuspidal character sheaf. By (a) the assumptions of
Proposition 5.2 are satisfied. So we conclude that

0 # Y, (uo) = ZSA'mA’,io (sum over all A’ € éso,g:o).
AI

(We may have to replace ¢ by some suitable power so that the conditions
in (4.7) hold for sy as well.) Hence there exists some Ag € Gy, 7, such that
MAy i 7 0. By (4.9), Ap must be cuspidal and ma, 4, # 0.

Thus, we have two cuspidal character sheaves, A and Ap, which have
non-zero restriction to Cp. By [14, (23.2)], there exists at most one cuspidal
character sheaf with non-zero restriction to Guni. So we conclude that A =
Ap and hence that C = Cy. This completes the proof. O

Remark 5.4. From the above proof we can also find the type of W, so that
G, 7 (where F C Irr(W;) is the unique cuspidal family) contains a cuspidal
character sheaf with non-zero restriction to Guypni; for classical groups we

obtain:

Type of G condition on n type of Wy
By, n=2tt+1)  Ciz1) X Cyet)
Cn n= 2t(4t + 1) -D4t2 X B4t2:i:2t
Dn n= 8t2 D4t2 X D4t2

where ¢ > 1 in each case. This coincides with the remarks in [15, (7.11)].
The assignment (s, F) — C, for all pairs (s, F) such that és,}' contains a
cuspidal character sheaf, is determined in [18], using a refinement of pro-
perty (x1) in (4.3), see [17, Theorem 10.7]. Since we are only interested
in character sheaves with non-zero restriction to Gyn; we could avoid using
that refinement in the above proof.
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Proposition 5.5. Let A € G, such that the restriction of A to Guni 45
non-zero. Then &4 = 1, where &4 is the algebraic number appearing in the
formula (5.1)(a) and where the isomorphism @: F*A — A is chosen as in
Proposition 4.10.

Proof. We proceed by induction on rank G/Z(G). If this is zero then G is
a torus and there is nothing to prove. Now let rank G/Z(G) > 0.

As in the proof of Proposition 4.10, A is a component of an induced
complex indg(Ao) where Ay € L, is cuspidal and the restriction of Ag to
Lyni is non-zero. The conditions in (4.7) hold in L as well. In particular, {4,
is defined. By [15, (3.5)(a)], we have {4 = £4,. So we are done by induction
if L # G. Hence we can assume that L = G and A = A.

Let F C Irr(W;) be the family such that Ay € és,}-, and let C be the
unipotent class attached to (s, F) as in (4.3). Let iy € Ng be the cuspidal
pair as in (4.9)(b). By Proposition 5.3, we have C;, = C and |Gr| = |A(u)].

We can apply the formula in Corollary 5.2. The classification of cuspidal
character sheaves in [14, Sections 20,21,23] shows that all character sheaves
in G, not equal to Ag are non-cuspidal. Hence, by induction, we have £4 = 1
for all A € G, A # Ap. So the formula in (5.2) now reads:

Yi(u0) = £aol07 : Car (@ ao)loas(Dmagsi + O (67 : Cor(za)loa(l)mas,
A

for all i € Ng with C; = C.

Take any i € Ng with C; = C and ¢ # 4p. Then my4,; = 0 (see (4.9)(b))
and hence the above formula shows that Y;(up) > 0. If A(u) is abelian
then the matrix of all values Y;(u,) is the character table of A(u). Since
|A(w)| > 2 (see the list of possibilities in (3.7)) the condition that Y;(up) > 0
for all 4 # ig can only be satisfied if uy corresponds to the trivial element in
A(u), i.e., if up is split. If the group A(u) is non-abelian, it is isomorphic to
G3, 64 or S5 and the condition that A(ug)f = A(u) forces that uy is split.

Now we can take 2 = {g in the above formula. We have just seen that up is
a split elements. So the left hand side of that formula gives Y;, (uo) = i, (1).
If A(u) is abelian then this must be 1; if A(u) is not abelian, we are in type
G, Fy ot Eg and the remarks in (3.5) show that, again, 1;,(1) = 1. On the
other hand, by (4.9)(c), we have m4;, = 0 for all non-cuspidal character
sheaves A € 5. So the summation on the righ hand side contains only one
non-zero term, namely that corresponding to Ay. Hence we deduce that
1 =i (1) = £a,[GF : Cg, (on)]UAo(l)on,io- This forces {4, = 1, and also
oa(1) =1 O

Remark 5.6. A slightly different proof for type B, was first given by Lusz-
tig in [15, Prop. 5.3(c)]. See the remarks in [15, (7.11)] for the other classical
types, and [15, (8.9)] for type Eg. Note, however, that we have to assume
that p is large enough while in [15], only congruence conditions like those in
(4.7) are needed.
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(5.7) Recall that we are given an element s € T*, a family F C Irr(Wy),
and the corresponding unipotent class C as in (4.3). Assume now that

97| = |A(w)]  (ue ).

We have chosen an [F,-rational structure on G with Frobenius map F as
in (4.7). In the proof of Proposition 5.5 we used the formula in Corollary 5.2
to conclude that £4 = 1. Now we can return to that formula and try to
obtain information about m ;. Indeed, we now have

Yi(ug) = Z[g}- : Cg}.(mA)]O'A(l)mA,i, for all i € Ng with C; = C,
A

where the sum is over all A € és,}'. The fact that the right hand side is
always positive forces that g is a split element. Hence the left hand side is
always equal to 1;(1), where 1; € Irr(A(u)). Thus, we conclude that

(a) $i(1) = [GF : Cgr(za)loa(l)mas,
A

for all i € Ng with C; = C. Singe the left hand side is non-zero, we see that
there exists at least some A € G5 xr with m4; # 0, and the number of such
A is bounded above by ;(1).

6. MULTIPLICITIES OF IRREDUCIBLE CHARACTERS

The basic assumptions of Section 4 remain in force. We have fixed an ele-
ment s € T* and chosen a suitable [F;-rational structure with corresponding
Frobenius map F as in (4.7). We will now go one step further and not only
consider principal series characters but all irreducible characters of GF.

(6.1) Let F C Irr(W,) be a family. Then the pair (s, F) also defines a subset
Es 7 C Irr(GF), see [12, (8.4.4) and (6.17)]. Moreover, since F' acts trivially
on Wy, [12, Main Theorem 4.23] shows that we have again a bijection

(a) Esx +— M(GF), po 7,

such that the following holds. For each E € Irr(W;) let R,(F) be the
corresponding almost character, defined in [12, (3.7)] as a certain rational
linear combination of Deligne-Lusztig generalized characters of GF. (Note
that it only depends on E and not on a certain extension of E since F acts
trivially on W;.) Then the multiplicity of p € &  in R,(E) is given by

(b) (P,RS(E))={ Al#)Ews) 1B o o5 € M(05)

where zg € M(GF) corresponds to E under the embedding in (4.1)(a), and
A: M(Gr) — {£1} is as defined in [12, (4.14)]. Note that A is identically 1
except if W, has a component of type E7 or Eg and the family contains a
character of degree 512 or 4096 in type E7 or Ejg, respectively. We can now
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also give the formal definition of the generic denominator of p which already
appeared in (2.8); we have, cf. [12, (4.26.3)]:

-1 _ g o(1) e =
c n,  ={Z,, (1,1)} = ———— ifz,={(z,0) € M(GF).
( ) p { p ( )} |Cg_.,_.($)| P ( ) ( )
We will also need to know, for each p € & 7, the sign so that £Dg(p) €
Irr(GF). By [12, (6.8) and (6.20)] we have

(d) A(%,)Dg(p) € br(GF) for p€ &, 5.

(6.2) Let F C Irr(W;) be a family and Ey € F the unique special character.
We wish to determine the restriction of Rs(Ep) to CF, where C is as in (4.3).

Recall that R;(Ep) is defined as a certain linear combination of Deligne-
Lusztig generalized characters. The restriction of such a Deligne-Lusztig
generalized character to Gyy; is given in terms of the corresponding Green
function. For w € W let T,, C G denote an F-stable maximal torus obtained
by twisting the given split torus T with w, and let Qr: G’fni — Z the
corresponding Green function. For E € Irr(W) let

1
Qe = — Z Trace(w, E)Qr, -
IWI wew
Then, using the exact definition of almost characters in [12, (3.7)] we obtain
the following relation:

Ry(Bo)lgr,. = Y. c(Bo,B)Qz, c(Bo,E):= (Ind}y, (Eo), B).
Eelrr(W)

Via the Springer correspondence, each irreducible character of W corres-
ponds to a pair in Ng; we denote this correspondence by E — ip =
(Cg,vE). Let E € Irr(W) such that ¢(Eg, E) # 0. Then [17, Cor. 10.9]
shows that d(E) > b(Ep) with equality only for Cg = C; recall the defini-
tion of d(E) in (4.4). Since we have chosen g so that split elements always
exist, we have by [20]:

(a) Qg = ¢¥eY;, + combination of ¥; with dim C; < dim Cg.
Putting things together we see that
(b) Ry(Eo)lor = g"™5 )~ c(Eo, E)Yig

E

where the sum is over all F € Irr(W) with d(E) = b(Ep).

Proposition 6.8. Assume that (s,F) is good, cf. (4.4). Recall that Ey is
the unique special character in the family F C Irr(W,) and that C is the
unipotent class associated with (s, F) as in (4.8). Then we have

Ry(Eo)|cr = q*™PY(c ).

Proof. Combine (6.2)(b) and condition (b) in (4.4). Note that the character
E}, corresponds to the pair (C,1) € Ng, as already remarked in (4.3). O
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The following example shows the necessity of the assumption that A(u) =

gr.

Example 6.4. Let G be of type C3 and s € T* such that Cg-(s) is of
type A; X Ds. Then every irreducible character of W, is special and each
family consists of just one element. Let F = {sign ® id}. The unipotent
class C attached to (s,F) is uniquely determined by the requirement that
dim B, = 1. We compute that

Ind}y, (sign ® id) = @21y + b(~21) + D(—.3)-

(Recall that the irreducible characters of W are parametrized by double
partitions of 3.) Using the algorithms in [4, §13.3] we can explicitly compute
the Springer correspondence for type C3. This shows that ¢(3,) and ¢_ 3)
correspond to pairs i € Ng with C; = C. Thus, Proposition 6.3 does not
hold.

(6.5) We keep the assumptions of Proposition 6.3. Let uj,... ,uq be re-
presentatives of the GF-classes contained in CF, where u = u; is a split

element as in (4.7). Let us fix an index r € {1,... ,d} and consider the
corresponding generalized Gelfand-Graev character I',,.. Then we have:
(a) {(Dc(Bs(E0)); Tu,) = (Rs(Ep), Dg(Ty,)) = 1.

Indeed, using (2.3)(c), this is equivalent to showing that, for any i € Ng
with C; = C, we have

S e St

In order to prove this, first note that R;(Ej) satisfies condition (*) in
Lemma 2.5. Hence we just need to consider the restriction of R (FEp) to
CF in order to evaluate the above scalar product. By Proposition 6.3 this
restriction is just a multiple of Y{¢ 1). It remains to use the orthogonality
relations in (2.3) and the fact that b 1) = dim By. Thus, (a) is proved.

On the other hand, we can write the left hand side of (a) as a linear combi-
nation of irreducible characters of G, using (6.1). The special character F
corresponds to the pair (1,1) € M(Gr). The property (4.1)(a) of the pairing
{, } shows that {(y,7), (1,1)} = 7(1)/|Cgx (y)| for any (y,7) € M(GF). So
(6.1)(b) yields that

(b) Rallo) =2 Cou] ly)pnA Zo)p:

where p runs over the characters in &  and (y,,0,) € M(Gr) corresponds
to p under the bijection (6.1)(a). The inverse of the coefficient of p in the
above formula in fact equals the generic denominator n, of p, see (6.1)(c).
For each p € &, 7 let p' := A(Z,)Da(p) € Irr(GF), see (6.1)(d). Putting
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things together we conclude that

1
(C) Z H_(pfirur) = 13
o
where, as before, p runs over the characters in &; r.

Proposition 6.6. Assume that the hypotheses of Theorem 4.5 are satisfied
and that A(u) is abelian, of order d say. Write A(u) = {us |1 <t < d} and
Esx = {prr | 1 £ 1,v" < d}. Then this labelling can be chosen in such o
way that

ifr=1t

+1
<Prr’aDG(F"t)) - { 0 otherwise

where 1 < r,r',t < d.
Note that since A(u) is abelian of order d we have |, x| = d2.

Proof. Since A(u) is abelian we have n, = |Gr| = d for all p € &; 7. This
follows from the definition of n, in (6.1)(c) and the property (4.1)(a) of the
pairing {, }. For p € & 5 let p' = A(Z,)Dg{p) € Irr(GF) as in (6.1)(d).
We can apply Proposition 3.1 and conclude that
(a) for each p € &, r there exists precisely one ¢ such that (p/,T',) # 0,
and this non-zero multiplicity equals 1.
Now fix t € {1,...,d}. Since n, = d for all p € &, 7, equation (6.5)(c)
simplifies to: - ,(0’,T'v,) = d. By (a), all non-zero terms in this sum are
equal to 1. So we conclude that
(b) for each ¢ there exist precisely d characters p € &  such that p’ occurs
with non-zero multiplicity in I'y,.
Combining (a) and (b) yields the desired result. O

Proposition 6.7. Assume that the hypotheses of Theorem 4.5 are satisfied
and that A(u) = &3. Then we have the following matriz of multiplicities
between the irreducible characters in £ r and the duals of the generalized
Gelfand-Graev characters associated with C (where . stands for 0):

Np 6 6 3 3 3 3 2 2
Dg(Ty,) 1 1 2 .. ;
Dg(Ty,) . . . 1. 1 1 . .
Dgly,) . . . . . . 11

Note that since A(u) = &g, there are 3 representatives uj,ug,u3. We
arrange notation so that a; = 6, a3 = 3 and a3 = 2, where a, = |A(u,)F| as
in (2.3).

Proof. The formula (6.1)(c) shows that n, only depends on G and the
pair Z, € M(Gr). Thus, we see that £, r always contains 2 characters
with n, = 6, 4 characters with n, = 3 and 2 characters with n, = 2.
Furthermore, we have A(z,) = 1 for all p € & #, and so Dg(p) € Irr(GF).
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Now let p € & r and consider equation (2.8)(b). Having fixed the above
notation, this equation yields that

(a) (De(0), T} + 2D (0), Tug) + 3(Dc(p), Tug) = —-.

Ny
We first apply this to the 2 characters with n, = 6. Then we are just in
the situation of Proposition 3.1 and we conclude that the duals of these two
characters must occur with multiplicity 1 in I',,, and they do not occur in
Tuss Tus-

Let m > 0 be the sum of the multiplicities of characters Dg(p) with
n, = 3 in I'y,, and n > 0 the corresponding number for characters with
n, = 2. Then equation (6.5)(c) (with r = 1) yields that

1 1 m n 1

676 3t 3"
This forces that n = 0 and m = 2. In particular, the dual of a character
with n, = 2 cannot occur in I'y,. Let p be such a character. We have just
seen that its dual only occurs in I'y, and I'y,. Hence equation (a) yields

that
6

2(DG(p))Fu2) =t 3<DG(p):Fu3) = 'é' =3.

This forces that Dg(p) occurs with multiplicity 1 in I';, and does not occur
in I'y,. Now equation (6.5)(c) (with r = 3) shows that I'y; contains no other
characters than the two Dg(p)’s with n, = 2.

It remains to consider the characters with n, = 3. We have just seen that
they cannot occur in I',,. Equation (a) yields that

6

(DG(p)aFm) +2(DG(P),Pu2) = 5 =2.

This shows that if Dg(p) with n, = 3 occurs in I'y, then it occurs with
multiplicity 1 and does not occur in Iy, . Conversely, if it occurs in I',,; then
it occurs with multiplicity 2 and does not occur in I'y,. Equation (6.5)(c)
(with r = 2) then shows that 3 such characters must occur in I'y, and 1 such
character in I'y,. This completes the proof. O

(6.8) Assume that the hypotheses of Theorem 4.5 are satisfied and that
A(u) 2 G4 or A(u) = Gs. Then G must have type Fy or Eg, respecti-
vely, and in either case, s € T must be central. So we can in fact assume
that s = 1. All pairs in Ng except one are uniform, and the exceptional
pair is cuspidal (cf. (3.5)); it corresponds to the sign character of A(u). The
decomposition of Y;, into irreducible characters in this case was found by
Kawanaka in [10, Theorem 4.2.2]; see also [15, (8.6), (8.12)]. The decompo-
sition of ¥; for a non-uniform pair i is given by first writing it as a linear
combination of Green functions (by the algorithm in [20]) and then using the
multiplicity formula in [12, (4.23)]. Combining this with the knowledge of
the generalized Gelfand-Graev characters from Section 3 it is thus possible
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to compute explicitly the matrix of scalar products {p, Dg(I'y)), for p € &,
and u € CF. We omit the details since we will not need this here.

7. PROOF OF THEOREM 4.4

The aim of this final section is to complete the proof of Theorem 4.5.
Recall that we are given a semisimple element s € T* and a family F C
Irr(W;). Let C be the unipotent class attached to (s, F) as in (4.3). We
choose an Fy-rational structure with corresponding Frobenius map F: G —
G as in (4.7). Recall also the notation u,,... ,u4 for representatives of the
GF-classes contained in CF, where u = u; is a split element.

In order to apply the results from Section 6 to our problem of determining
the coefficients m 4 ¢, we need a link between the ordinary characters of cE
and the characteristic functions of character sheaves. This link is provided
by Shoji [21] who proved Lusztig’s conjecture about the relation between
almost characters of GF and characteristic functions of F-stable character
sheaves. We do not need this result in its full strength; for example, we
consider only series of characters and character sheaves which correspond to
an element s € T* which is F-fixed. In fact we shall only need the following
weak form of Shoji’s results:

Theorem 7.1 (Shoji [21]). In the setup of (4.7), let us choose for any A €
G, an isomorphism @: F*A — A as in (4.8). Then every character in &
can be written as a linear combination of characteristic functions xa,,, for
various A € @s,}-. Conversely, every such xa,, 5 a linear combination of
the characters in &, r.

Lemma 7.2. Assume that the hypotheses of Theorem 4.5 are satisfied. Con-
sider the matriz of all coefficients ma; where A € G5 r and i € Ng with
C; = C. Then this matriz has full rank.

Proof. Assume first that A(u) is abelian or isomorphic to &3. Then, by
Prop. 6.6 and Prop. 6.7, the matrix of all scalar products {p, Dg(I'y,)),
where p € £; 7 and 1 < 7 < d, has full rank.

Now consider the matrix of all values p(u,) where p € £, rand 1 < r < d.
Using Theorem 7.1 and (4.3) we see that the condition (*) in Lemma 2.5
is satisfied. Using the relations in Corollary 2.6 and (2.3) we can therefore
express the matrix ({p, Dg(I's,))) as a product where one factor is the matrix
(p(uy)). It follows that the latter also has full rank.

Next we consider the matrix of all values x4 ,(u,) where A € ég’f and
1 < r < d. Using Theorem 7.1 we deduce that also this matrix has full rank.

Finally, consider for each A € és, ~ the equation in Proposition 4.10 ex-
pressing the values of x4, on u1, ... , 4y in terms of our unknown coefficients
ma,. Since the matrix of values Yj(u,) (where 1 < r < d and i € Ng with
C; = C) is invertible, we finally conclude that the matrix that we are inter-
ested in, namely that of all coefficients m 4 ; where A € és,}' and i € Ng
with C; = C, has full rank, and we are done.
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It remains to consider the case where A(u) = G4 or A(u) = &5. Then G
is of type Fy or Eg, respectively, and s must be central. Take any F € F.
Then, by definition (note that s is central), the restriction of R;(E) to GE,
equals Qg, with Qg as in (6.2). Hence we have

RS(E)ICF = QEICF = qdimBuYiEIC’Fa

where E — ig denotes the Springer correspondence, see (6.2)(a). From
the tables in [4, p.428-433] we see that all pairs 1 € Ng with C; = C
except one arise in this way. The exceptional pair is just the cuspidal pair
ig € Ng, see (3.5). Let Ag € és,]: be the cuspidal character sheaf such
that mag 5, # 0, which exists by [14, (21.1)(a) and (21.3)(a)]. We can now
conclude that the matrix of values of the functions {x g4, Rs(E), E € F}
on uj,...,uq is invertible. Each of these functions can be written as a
linear combination of characters in & 7, by (6.1) and Theorem 7.1. Hence
the matrix of values p(u,), where p € & 7 and 1 < r < d, has full rank. We
can then proceed as before to complete the proof. O

(7.3) Assume that the hypotheses of Theorem 4.5 are satisfied. Consider
the matrix of all coefficients m 4; where A € G s,7 and i € Ng with C; = C.
We want to show that each row and each column of this matrix contains
exactly one non-zero entry, and this non-zero entry should be 1. Our main
tool to do this is the formula in (5.7)(a).

We write Irr(A(u)) = {3 | r = 1,2,... ,d} and choose the labelling
so that (1) < 92(1) < ... < 94(1). For each pair (z,0) € M(GF) let
e(z,0) = [Gr : Cg(z)]o(1l). We then write M(Gr) = {(zt,0¢) | t =
1,2,...} so that e(z1,01) < e(z2,02) <.... The main (and maybe strange)
observation is now that the first d numbers in this list are exactly the same

as ¥1(1),¢2(1),... ,v%q(1), i.e., we have
(2) ¥1(1) = e(z1,01), ... ,¥a(l) = e(za, 04)-

(Note that M(Gr) contains at least d elements.) Indeed, if A(u) is abelian
this is trivial. The only remaining cases are when A(u) is isomorphic to
G3, 64 or Gs. In each of these cases, the observation is easily checked by
inspection.

Ifi = (C,4,) and if A € G, 7 corresponds to (z;,01) € M(G#) under
the bijection (4.1)(a), we simply write m;, instead of m4;. The formula
in (5.7)(a) now reads:

(b) ¥r(1) = e(x1,01)m1,r + e(zg,ag)mz,r e
In particular, this implies that
(c) ¥r(1) > e(x¢, 00)me, for all &

With this notation, Theorem 4.5 is equivalent to the statement that the
above ordering of M(Gx) can be chosen so that

_ |1 ifr=t,
Mr =10 ifr#t
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To prove this statement we proceed by induction on r. We certainly have
#1(1) = 1, by the above ordering of Irr(A(u)). So the left hand side in (b)
is just 1. Hence there is precisely one #; such that my;, , # 0, and we
have in fact m:, , = 1. We are certainly allowed to reorder the elements in
M(GF) so that t; = 1. Hence the case r = 1 is all right. Now let r > 1
and assume that we have reordered the set M(Gx) so that the first r — 1
columns have non-zero entries only in the first » — 1 rows. Since our matrix
has full rank, there must exist some ¢ > r with m;, # 0. Since t > r
we have e(z;,01) > e(zy,0r) = 1r(1), where the equality comes from (a).
Since mq, # 0, the inequality (c) forces that e(zy,o,) = e(z:,01). Hence we
may interchange the r-th and ¢-th row, so that now m,, # 0. Having done
this reordering, it remains to look once more at equation (b); combining it
with (a) it now implies ¥, (1) > e(z, 07)mry = 9 (1)m,,. Hence we must
have equality which means that m,, = 1 and m;, = 0 for all ¢ # r. This
completes the proof of Theorem 4.5.
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