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1 Introduction

Recently, we [9] and, independently, Du and Scott [11], defined an analogue of the g—Schur
algebra [6,7] for an Iwahori-Hecke algebra of type B. In this paper we study an analogue
of the g-Schur algebra for an arbitrary Ariki-Koike algebra.

The Ariki—Koike algebra 7 is a cyclotomic algebra of type G(r,1,7n) [2], and it becomes
the Iwahori—Hecke algebra of type A or B when r = 1 or 2 respectively. By working over
a ring R which contains a primitive rth root of unity, and by specializing the parameters
appropriately, the Ariki—Koike algebra turns into the group algebra R(C,1S,,) of the wreath
product of the cyclic group C, of order r with the symmetric group &,, of degree n.

For each multicomposition ) of n, we construct a right ideal M* of # (see Definition 3.8).
The cyclotomic g-Schur algebra is then defined to be . = End» ( &) M?). (Under the
specialization above where ## = R(C,!&,), the module M* becomes a module induced
from a subgroup of the form (C, x - -+ x C;) X 6,.)

A.M.S5. subject classification (1991): 16G99, 20C20, 20G05
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In this paper we construct a cellular basis for the cyclotomic ¢—Schur algebra. As a
consequence we obtain a Weyl module W* for each multipartition A of n. We show that W*
has simple head F* and that the set {F*}, as A ranges over the multipartitions of n, is a
complete set of non-isomorphic irreducible #—modules. Using the cellular structure of .#,
it is now easy to see that the cyclotomic g—Schur algebra is quasi-hereditary.

In order to prove these results about the cyclotomic g—Schur algebra, we need to examine
the ideals M* in some detail. Using the cellular structure of the Ariki-Koike algebra ¢
(cf. [10,13]), we obtain a basis of M* and a special series of submodules of M*, known as
a Specht series. From the Specht series of M* we construct the cellular basis of .%.

2 The Ariki—Koike algebra

Throughout this paper, 7 and n will be fixed positive integers with » > 1 and n > 1.

Let R be a commutative ring with 1 and let q,Q,,...,Q, be elements of R with ¢
invertible. The Ariki-Koike algebra ## is the associative unital R-algebra with generators
Ty, Th, ..., T,—1 subject to the following relations

(To-@Q1) - (To—Qr) = 0
TOT1TOT1 == T1T0T1T0

(G+1)(T;—q) = 0 fort<i<n-—1
TinTTiyw = TTLaT, for1<i<n-2
1, = T;T; for0<i<j—1<n-2.

Suppose that 7 € R is a primitive rth root of 1 and that ¢ = 1 and Q; = =* for
k=1,2,...,r. Then it follows from the definition that # is isomorphic to R(C,1&,,).

Let &, = 6({1,2,...,n}) be the symmetric group on {1,2,...,n} and let s; = (4, + 1)
for 1 <7 < n. Then sy, $9,...,8,_1 are the standard Coxeter generators of &,,. If w € &,
then a word w = s;, ... s;, for w is a reduced expression for w if &£ is minimal; in this case we
say that w has length k and write £(w) = k. Given a reduced expression s;, ...s;, forw € &,
let T, =T;, ... T, ; the relations in S ensure that T, is independent of the choice of reduced
expression. We denote by 5#(S,,) the subalgebra of 5# generated by T1,T5,...,T,_;. Then
J#(6,) has basis {T,,|w € &,}, and it is isomorphic to an Iwahori-Hecke algebra of
type A.

Define elements L, = ¢ ™T,_1... TWToTy ... Tpp—q for m = 1,2,...,n; these are ana-
logues of the g-Murphy operators of the Iwahori-Hecke algebras of type A [5,15]. An easy
calculation using the relations in 5 (cf. [5, (2.1), (2.2)]) shows that we have the following
results.

(2.1) Suppose that 1 <7<n—1and 1 <m <n. Then
(i) L; and L,, commute.
(ii) T; and L,, commute if s # m — 1, m.

(iii) T; commutes with L;L;, and L; + L;,.
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(iv) If a € R and ¢ # m then T; commutes with (L, — a)(Lz — a) ... (Lm — a).

Using the elements T,, and L,, defined above, Ariki and Koike gave a basis for # as
follows.

(2.2) Theorem (Ariki~Koike [1, (3.10)]) The algebra S is a free R-module with basis
{L$LS .. . LT, |lweS, and 0<cp,<r—1 for m=1,2,...,n}.
In particular, 5 is free of rank r™n!

(2.3) Let x be the R-linear antiautomorphism of J# determined by T;* = T; for all ¢ with
0<i<n-—1.Then T} =Ty and L}, =L, forallw e &, and m=1,2,...,n.

We therefore have the following result.

(2.4) {T,L9Le.. . Lr|lweB, and 0L ¢, <r—1 for m=1,2,...,n}is a basis
of 2.

3 A cellular basis of 47

In their paper [12], which introduced the concept of cellular algebras, Graham and Lehrer
gave a cellular basis of 5, using the Kazhdan-Lusztig basis of 5##(S,). We require a
different cellular basis, namely one similar to the basis of 5#(6,,) introduced by Murphy [186].
Although the construction of the cellular basis of J# in this section is similar to that in
[10,13], we are obliged to keep track of new information concerned with the cellular basis
(see Corollary 3.24 below).

Consider the R—submodule of 7 which is spanned by

{L§LE ... L |0<¢;<r—1 for 1<i<n}

When ¢ = 1, this is a subalgebra of 5#°, but one of the main difficulties of working with the
Ariki-Koike algebra is that it is not a subalgebra in general. (To see this, consider L2 when
r = 2.) We shall need certain elements u} of this R-submodule of #, and we introduce
these now.

(3.1) Definition Suppose that a = (a1,...,a,) is an r-tuple of integers a; such that 0 <
a; <n for alli. Let ul = ua1Uaz2. .. Ua, where

(o]

Uap = [[Em— Q) for 1<k<r

m=1
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(3.2) Remarks (i) Suppose that every ay is non—zero. Then (L; — Q) is a factor of each
Uak; S0 ut has a factor

r

I1: -0 = ﬁ(To — Qi) =0.
k=1

k=1

Therefore, u} is zero in this case.

(ii) Rearranging the order of ai,as,...,a, amounts just to reordering the parameters
Q1,Q2,...,Q,. For example, if we define u; = uz;r,ar_h"_,al) then u; is obtained
from u} by replacing Qx by Qr_41 for 1 <k <.

(iii) In practice, we shall use u} only for r—tuples a = (a1, as,...,a,) such that 0 = a; <

as < ... < a, £ n. Our last two remarks show that there is no loss in doing this, and
that we could equally well work with the elements u; defined in Remark (ii).

(3.3) Example Suppose that r =4, n > 5 and a = (0,2,4,5). Then

uf = (L1 —Q2)(L2 — Q)
X (L1 — Q3)(L2 — Q3)(Ls — Q3)(Ls — Q3)
X (L1 — Qa)(L2 — Qa) (L3 — Qa)(Ls — Qa)(Ls — Qu).

Our first lemma relates ] and u; when b is obtained from a by increasing a single part
by one.

(3.4) Lemma Let a = (a1,02,...,a,) and assume that 1 < k < r and a3 +1 < n.
Let b = (a1,...,0k-1,0¢ + 1,0k41,...,0,). Then, for some hy,hy € H#(6,), we have
U:TakTak_]_ . T1T0 = ’U,:hl + 'U;:hg

PROOF: The definition of uf gives uif = ut(Lg,+1 — Qx). Hence,
u:TakTa.k—l e T1TOT1 . Tak_1 ap = qakU:Lak+1 = q“”Qku: + qa’“u:.

The desired result follows by postmultiplying by Ta‘k1 N 0

We next turn our attention to the subalgebra 5#(6,) of . Here we shall need the
notation and combinatorics of multipartitions.

A composition a = (a4, as, . . .) is a finite sequence of non—negative integers; we denote by
|e| the sum of this sequence. A multicomposition of n is an ordered r—tuple A = (AN, ... A()
of compositions A®) such that Y ;_; [\¥)| = n. We call A%) the kth component of A. A par-
tition is a composition whose parts are non—increasing; a multicomposition is a multipartition
if all its components are partitions.

For each composition a = (a1, ag,...) with || = m we have a Young subgroup &, =
Gay X Ggy X -+ - of &y, Similarly, to each multicomposition A = (AD),..., XD} of n we
associate the Young subgroup G, = G, X Gy X -+ X Gy of &,,.

We are now in a position to define certain key elements m, of 5#. The element m,
depends upon the Young subgroup &, and also involves one of the elements u} defined
above.
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(3.5) Definition Suppose that A is a multicomposition of n and define a = (a1, aq, ..., a,)
by ar = Zf;ll XD, Let zy = Y wee, Lw and set my = utzy.

(3.6) Example Suppose that A = ((2,1),(12), (2)). Then &) = 6, x G; X &; x 61 x B,,
a=(0,3,5), and

my = (L1 — @2)(L2 — Q2)(L3 — Q=)
X (L1 — Q3)(L2 — Q3)(Ls — Q3)(Ls — Q3)(Ls — Q3)
x (14 T1)(1 + T).

(3.7) Remark If o = (|]A®|,|A®)],...,|A()]) then all of the elements in J#°(S,) commute
with u} by {2.1)(iv). In particular, my = ufz) = z u}. Hence, m} = m,, where * is the
antiautomorphism of (2.3).

The S#-modules which will be our main concern in this paper are the right ideals gener-
ated by the m,, as ) varies over the multicompositions of n. The cyclotomic g—Schur algebra
will be built from endomorphisms between such right ideals.

(3.8) Definition Suppose that X is a multicomposition of n. Let M* = my#.
We leave the proof of the following remarks to the reader.

(3.9) Remarks (i) If the multicomposition u is obtained from A by reordering the parts
in each component then M* = M*.
(ii) Suppose that ¢ = 1 and that Qx = =¥, for k = 1,2,...,r, where 7 is a primitive rth
root of unity in R. Then 5Z = R(C,16,). Let o = |A®)| for 1 < k < r. Then
M? is induced from a module U for the subgroup (C* x C22 X --- x C%) x G,. The
restriction of U to the subgroup C! x - - - x C¢r has the form UP* ® - - - @ U®* where
Uy has rank k for 1 < k < r. The restriction of U to &, is the trivial module.

We shall construct a basis of M*, and study ##—homomorphisms between the various
modules M. To this end, we introduce A-tableaux.

The diagram of a composition a = (ay,as,...) is {{4,j)|1 < iand 1 < j < ¢; }, which
we regard as an array of nodes, or boxes, in the plane. The diagram of a multicomposition
is the ordered r—tuple of the diagrams of its components.

Let A be a multicomposition of n. A A-tableau t = (t1),..., (")) is obtained from the
diagram of A by replacing each node by one of the integers 1,2,...,n, allowing no repeats.
We call the tableaux t*) the components of t.

(3.10) Definition (i) A A-tableau is row standard if the entries in each row of each com-
ponent increase from left to right.
(ii) A A-tableau t is standard if A is a multipartition of n, t is row standard and the entries
in each column of each component of t increase from top to bottom.
(iii) If A is a multipartition of n, then let Std(A) be the set of standard A-tableaus.
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Note, particularly, that while row standard A-tableaux are defined for all multicomposi-
tions A, there exist standard A-tableaux only if A is a multipartition of n.

We require partial orders on the set of multicompositions and on the set of row standard
tableaux.

If t is a row standard A-tableau and 1 < m < n, then the entries 1,2, ..., m in t occupy
the diagram of a multicomposition; let t | m denote this multicomposition. For example,
t | n = A. We use this notation in our next definition.

(3.11) Definition Suppose that A = (AD,..., A and u = (u®, ..., u")) are multicom-
positions of n.
(i) We say that A dominates y, and write A > p, if

k-1 J k-1 J
RS ELES SIS e
i=1 i=1 i=1 i=1

forallk and j with 1 <k <randj>0. IfA> u and X # p then we write A > pu.

(ii) Suppose that s is a row standard A-tableau and that t is a row standard p—tableau. We
say that s dominates t, and write s> tif s {m >t m for allm with1 <m < n.
Ifs >t and s # t then we write s > t.

For example, if n = r = 2, then the multipartitions of 2 are ordered by ((2), (0)) >
((12),(0)) > ((1), (1)) & ((0), (2)) & ((0), (1))

Note that if s is a row standard A-tableau and t is a row standard p tableau such that
s D> tthen A D p.

Our next definition gives another relation between tableaux.

(3.12) Definition Suppose that s is a tableau and that 1 < j < n. We write comp,(7) = k
if j appears in the kth component s%) of 5.

Suppose that t is another tableau. Then comp, = comp, if comp, (j) = comp,(j) for all
Jj with 1 < j < n. We also write comp, > comp, if comp,(j) > comp(j) for all 1 < j < n;
and comp, > comp, if comp, > comp; and comp, # comp;.

(3.13) Example Let

- (6 BB -G B - - EER

Then s is row standard, and t and u are standard. We have u > s and u > t but 5 and
t are incomparable in the dominance order. Also, comp, > comp,, but there are no other
equations or inequalities between comp,, comp, and comp,,.

Let A be a multicomposition of n. The symmetric group &,, acts from the right on the
set of A-tableaux by permuting the entries in each tableau. Let t* be the A-tableau where
1,2,...,n appear in order along the rows of the first component, and then along the rows
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of the second component, and so on. The row stabilizer of t* is the Young subgroup &, of
S,,. For example, if A = ((3,2), (1%), (3)) then

p=([2 2 3], , [8T9T101).

4

For a row standard A-tableau s, let d(s) be the element of &, such that s = t*d(s).
Then d(s) is a distinguished right coset representative of &, in &, and we obtain, in this
way, a correspondence between the set of row standard A-tableaux and the set of right coset
representatives of G, in G,,.

Recall the antiautomorphism * of J# from (2.3).

(3.14) Definition Suppose that X\ is a multicomposition of n and that s and t are row
standard A—tableauz. Let mg = T;(s)mATd(t).

Note that my = mpp. Also, m}, = my (cf. Remark 3.7).

One of the aims of this section is to show that the elements my, as (s, t) varies over the
ordered pairs of standard tableaux of the same shape, give a cellular basis of ##. We shall
also establish useful properties of the right ideals M?*. Initially, though, we concentrate upon
the two—sided ideal generated by m. '

(3.15) Lemma Suppose that A is a multicomposition of n and that s and t are row standard
A-tableauz. Let h € H#(8,). Then myh is a linear combination of terms of the form myg,
where each v is a row standard A—tableau. '

PROOF: Suppose that w € &,,. Then there exist y € &) and a distinguished right coset
representative d of G, in &, such that w = yd and £(w) = £{y) + ¢(d). Hence, 2,7, =
o\T, Ty = ¢t @z, Ty. If my = ufz, then

mep Ty = Tigui 2aTw = ¢* (y)TI(s)“: 22Ty = ¢ Wmy,
where the tableau v = t*d is row standard.

Now, mgh = mupTygh, and this is a linear combination of terms of the form m T,
with w € &,,. Therefore, the required result follows. 0

In order to apply a result of Murphy in Proposition 3.18 below, we require a combinato-
rial lemma which concerns the dominance order on row standard tableaux. A preliminary
definition sets the scene.

(3.16) Definition We say that a tableau s is of the initial kind (for )) if comp, = compy.

Note that a p—tableau s can be of the initial kind for A even though p # A.
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(3.17) Lemma Suppose that A = (XD, ... X)) is a multicomposition of n, and let a =
(AW}, |AD))). Suppose that w is a distinguished right coset representative of G, in &,
and that s is a row standard A—tableau of the initial kind. Then the following hold.

(i) The tableau sw is row standard.

(i) If s is standard then sw is standard.

(iii) If t is a row standard A-tableau of the initial kind with s > t then sw > tw.

PrOOF: The fact that w is a distinguished right coset representative of G, in &,, implies
that whenever z and y are integers such that z and y are in the same component of s and
z < y, then zw < yw. Hence, (i) and (ii) are true.

Now assume that t is a row standard A—tableau of the initial kind, and that s > t. Then
d(s) > d(t) in the Bruhat—Chevalley order [> on &, by [4, (1.3)]. (Our notation for the order
is such that 1 &> v for all v € &,,.) Since w is a distinguished right coset representative of
S, in &, we also have £(d(t)w) = £(d(t)) + £(w). The well-known “cancellation” property
of the Bruhat—Chevalley order now lets us conclude that d(s)w > d(t)w. But sw and tw are
row standard, so d(s)w = d(sw) and d(t)w = d(tw). By applying [4, (1.3)] again, we deduce
that sw > tw. i

(3.18) Proposition Suppose that X is a multicomposition of n and that s and t are row
standard A—tableaux. Then mg is a linear combination of terms of the form my, where u
and v are standard p—tableauz for some multipartition pu of n, and

(i) u> s and comp, = comp,; and,

(ii) v > t and comp, = comp;.

PrROOF: When r = 1, this is a Theorem of Murphy [16, {4.18}]. We deduce the general
case from this.

Let a = (]AM|,...,|A")|). We may write 5 = s'w; and t = tw, where s’ and ¢ are
row standard A-tableau of the initial kind, and w; and w, are distinguished right coset
representatives for G, in G,,.

Let a = (a4,...,a,) where a5 = Ef;ll |A®)|, as in the definition of my. We have mg =
Ta mev Ty, and mgy = Ty ul 2aTywy = vl Ty 22Ty since d(s') € G,.

We may write T;(s,)x,\Td(t,) as a product of r commuting terms, one for each component
of A; say, T;(s,)x,\Td(t,) = I1Z3...%;, where the kth term z; involves only elements T,, with
w € 6({ar + 1,ar +2...,0541}). For example, 7, = T;(s’l)x)\(l)Td(t’l) where s is the first
component of s’ and ¢ is the first component of t'. By applying Murphy’s result [16, (4.18)] to
the Hecke algebra 5#(S,,) we may write z; as a linear combination of terms T yZum Ty

where 1] and v} are standard uM-tableaux for some partition 4 of a;, and ) > &, and
v} > 4.

We can apply the same technique for the other factors zs,...,z,, to conclude that
Tyey2rTyy is a linear combination of terms of the form Tj,,yz, T, where v’ and v’ are

d
standard u—tableaux for some multipartition 4 of n, and v’ > s’ and v’ > ¢. Also, u’ and v
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are of the initial kind, and |u®| = |A\®)| for 1 < k < r. Therefore, myy is a linear combina-
tion of terms m,y where the sum runs over the same set of pairs (v, v’). Consequently, ms;
is a linear combination of terms Ty myw T, .

Now, Tyw\Tw, = Tawyws = Ta(wrws)s 80 Ty muwT,, = T my, where v = v'w,. By
Lemma 3.17, since v’ is of the initial kind, b = v'w, is standard, and v'ws > t'ws; that is,
v > t. Moreover, comp,,,, = compy,,, since v’ and t' are of the initial kind.

Similar remarks applied to T3 T, ;(u,) now complete the proof of the Proposition. O

(3.19) Corollary Suppose that A is a multicomposition of n and that s and t are row stan-
dard A\—tableauz. If h € 5#(S,) then mgh is a linear combination of terms of the form my,
where u and v are standard p—tableauz for some multipartition 1 of n, and p > A, u> s and
comp, = comp,.

Proor: Combine Lemma 3.15 and Proposition 3.18, and recall that u B> s implies that
u> A |

Corollary 3.19 provides the kind of information we need when we multiply ms by elements
of #(6,). More complicated is our next proposition, which shows what happens when we
multiply mg by Tp. It is vital to the proposition that A is a multipartition, not merely a
multicomposition.

(8.20) Proposition Suppose that A is a multipartition of n, and that s and t are standard
A-tableauz. Then mgly = x1 + x5 where
(i) z1 is a linear combination of terms of the form m,, where u and v are standard A-
 tableauz, with u> s and comp, = comp,, and
(ii) z2 is a linear combination of terms of the form my, where u and v are standard p-
tableauz for some multipartition p of n, with p > A and comp, > comp,,.

PROOF: Let o = (]A®)],...,|A®|) and let a = (a1, as,...,a,) where a; = 351 |\O)| for
1 <k <r. Write d(t) = yc with y € &, and c a distinguished right coset representative for
S, in 6,,. Then the a—tableau t®c is row standard. Assume that 1 is in row & of t®c; thus,
1<k<r.

Now, ¢ = (ag,ax + 1)(ar — 1,ax) ... (1,2)c', where £(c) = ai + €(c’) and ¢ fixes 1. Thus,
T, =To,To,_, ... ThTy and TyTy = ToTy. Let b= (ay,...,a¢+1,...,a,;). Then

’U,:TCTO = u:TakTa .. TITOTc’ = ’U,:hl + ’U,ghg

k—1 "
for some hy,hy € G, by Lemma 3.4. Since y € &, and ty is standard, y fixes a; + 1;
therefore, T}, commutes with u;. Hence, using Remark 3.7, we have

mgly = T;(s)uj:z; ,\Td(t)To = T;(s)xAu;'TchTo =Ty A TyutTe Ty
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The first term, T;(s)a:,\ujTyhl, is a linear combination of terms of the required form by
Corollary 3.19. If kK = 1 then u{ = 0 by Remark 3.2(i), and the proof is complete in this
case. Assume therefore that £ > 2. We turn out attention to the term'T;(s)xAugTyhg. We
now need to digress in order to prove that T;(s)m,\u: Tyhs has the required form.

Define the multicomposition v = (vM,..., ) of n by v = X0 for 5 #£ k — 1,k,
ye=1) = AED AED 1) and o® = (AP — 1A% ). (Thus we reduce the first part
of the kth component of A by 1, and adjoin a new part of size 1 to the end of the (k — 1)th
component of A.) Note that v > A.

Let | = )\gk) be the first part of A(¥). The entries in the first row of the kth component of
t* are then a +1,a; +2,...,a; + . Let G; be the symmetric group on these numbers, and
let G5 be the symmetric group on a; + 2,...,a; + . Let ¢1,¢o,...,¢ be the distinguished
right coset representatives for G5 in Gy, ordered in terms of increasing length. Then the
tableaux t’c; are row standard, and they agree with t except on the last row of the (k—1)th
component and the first row of the kth component. The last row of the (k—1)th component
of t¥¢; contains the single entry ay + i.

We are given that 5 = t*d(s) is a row standard A—tableau. Let u; = t/¢;d(s) for 1 < i < [.
Each u; agrees with s except on the last row of the (k — 1)th component of u; and on the
first row of the kth component of u;. Furthermore, since (a; + 1)d(s) < --- < (ax + 1)d(s),
it follows that each u; is row standard.

We also have comp, (j) = comp,(7) if 7 ¢ {(ax + 1)d(s),...,(ax + )d(s)} and, for
J € {(ax + 1)d(s),...,(ax + 1)d(s)}, we have comp, (j) = k¥ — 1 or k and comp,(j) = k.
Therefore, comp, > comp,,.

Now z, has a factor

> T ZT* > T
weGh weG2

Hence, z), = 21—1 e:Zy. Note that m, = a:,,ub Thus,

Tiworus = Ty ZT T Uy = Z d(s) Tr U = Zmu -

Hence, by Corollary 3.19, T;(ﬁ)x,\uITyhg is a linear combination of the required form.
This completes the proof of the Proposition. ]

(3.21) Definition Suppose that A is a multicomposition of n.
(i) Let N* be the R—module spanned by

{ Mgt

s and t are standard p—-tableauz for some }
multipartition p of n with p > A
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(ii) Let N* be the R—module spanned by

{ Mgt

We now apply Propositions 3.18 and 3.20 to obtain a sequence of useful results.

5 and t are standard p—tableauz for some }
multipartition p of n with p > A

(3.22) Proposition Suppose that ) is a multicomposition of n. Then N* and N> are two-
sided ideals of F#.

ProoF: Corollary 3.19 shows that N* is closed under postmultiplication by 73, T3, . .., Tp—1
and Proposition 3.20 shows that N* is also closed under postmultiplication by Tj. Because
F is generated by Ty, T4, . . ., Tn_1, we deduce that N* is a right ideal of ##. Since m}, = mys,
by applying the antiautomorphism * we see that N 2 is also a left ideal of 7.

Finally, N* is a two sided ideal of 5# since N> = aox VP O

A proof very similar to that of Proposition 3.22 gives our next result.

(3.23) Proposition Suppose that A is a multicomposition of n and that s is a row standard
A—tableau. Let I; be the R—-module spanned by

{ Myo

Then I, is a right ideal of .

u and v are standard p—tableaur for some multipartition }
u of n with 4 > A and comp, > comp,, )

Recall that M*» = my 7.

(3.24) Corollary Suppose that A is a multicomposition of n. Then every element of M A
is a linear combination of terms of the form my, where u and v are standard p—tableauz for
some multipartition u of n with p > A and compy > comp,,.

PROOF: Since my = mpg, Proposition 3.18 shows that m) € I (note that A may not be
a multipartition). Therefore, M* C Ix and the desired result follows by Proposition 3.23.
|

(3.25) Proposition Suppose that A is a multipartition of n and that t is a standard A-
tableau. Let h € 3#. Then for every standard A—tableau v there exists r, € R such that, for
all standard \—tableau 5, we have

msth = Z 'rumsb mOd m.
vEStd(A)
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PRrOOF: Let U be the R-module spanned by {muy |t is a standard A-tableau}. Note
that t* is the unique A-tableau u such that u > t*. Therefore, U + N> is closed under
postmultiplication by 71,73, ..., T,_1 by Proposition 3.18, and it is closed under postmulti-
plication by Ty by Proposition 3.20. Hence U + N* is a right ideal of ##. Thus, for each
v € Std(A) there exists r, € R such that

mph = E ToMp, mod N2
veStd(\)

Multiply this congruence on the left by T;(s), and use the fact that N* is an ideal, to obtain
the congruence of the proposition. m|

(3.26) Theorem ( [13, (1.7)]) The algebra S is a free R—module with basis

s and t are standard A—tableauz for some }
multipartition A of n ’

./ﬂ={m5£

Moreover, # is a cellular basis of F.

PRrOOF: Since my =1 when A = ((0),...,(0), (1")), Proposition 3.25 shows that .# spans
. By Theorem 2.2, 5 is free of rank r™n! Since this is also the cardinality of .#, we
deduce that .# is a basis of 5#. Finally, the properties that .# must satisfy in order to be
a cellular basis of # (as given in [12, (1.1)]), are covered by Proposition 3.25 and the fact
that mg, = ms. 0

(3.27) Definition We call # the standard basis of .

We can now apply Graham and Lehrer’s theory of cellular algebras [12] to describe the
representation theory of 7.

(3.28) Definition Suppose that X is a multipartition of n. Let zy = (N* +my)/N*. The
Specht module S* is the submodule of /N> given by S* = 2, .

As in [12], or directly from Proposition 3.25 and Theorem 3.26, S* is a free R—module
with basis { )Ty | t a standard A-tableau }.
Define a bilinear form ( , ) on the Specht module $* by

Ty Tacymr = (23T u(s), 23Tagy)ma mod N7

By Proposition 3.25 (and the version of Proposition 3.25 obtained by applying the antiau-
tomorphism x), the bilinear form is well defined (cf. [12]). Moreover, the bilinear form is
symmetric and (uh,v) = (u,vh*) for all u,v € S* and all h € S [12, (2.4)]. Consequently,
rad S*, the radical of the bilinear form, is an ##-module.
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(3.29) Definition Suppose that ) is a multipartition of n. Let D> = S*/rad S*.

(3.30) Theorem Suppose that R is a field. Then the non-zero £ modules in
{ D*| )\ a multipartition of n}

form a complete set of non—isomorphic irreducible 7 —modules. Moreover, each irreducible
module D is absolutely irreducible.

Proor: Since .# is a cellular basis of 5# the Theorem follows from the general theory of
cellular algebras [12, (3.4)]. i

The theory in [12] also shows that if D # 0 and D* is a composition factor of S* then
AD .

When 7 = 1 the partitions p for which D* # 0 have been classified in [4]. When r > 1,
if ¢ = 1, or if the parameters Q) are powers of g, the multipartitions x for which D # 0 are
classified by the results of [12,13,14]; in type B, see also [8,10].

4 A Specht series for M*

In the last section, we used various elements m,, of J# to construct a cellular basis of #. We
saw that the right ideal M* generated by m,, is an analogue of an induced module; indeed,
if r =1 and ¢ = 1 then M* is the permutation module of &, on the Young subgroup &,,.
We shall use the right ideals M* of ## to construct the cyclotomic ¢—-Schur algebra, but,
before that, we study the individual modules M* in more detail. In particular, we shall give
a semistandard basis of M* and construct a Specht series for M*.

We are going to define a new kind of A-tableau. This will have entries which are ordered
pairs (4, k) where i is a positive integer and 1 < k¥ < 7. We denote such tableaux by capital
letters.

(4.1) Definition Suppose that A is a multipartition of n and that p is a multicomposition
of n. A A\—tableau S has type p if its entries are ordered pairs (i, k), as above, and for all m

and k the number of times (i,k) is an entry in S is u®,

Next, we introduce a function which converts standard A-tableaux (or, indeed any tableau
whose entries are 1,2,...,n) into a A-tableau of type p.

(4.2) Definition Suppose that A is a multipartition of n and that p is & multicomposition
of n. Let s be a standard A—tableau. Define u(s) to be the A—tableau obtained from s by
replacing each entry m in s by (4, k) if m is in row i of the kth component of t*.

In our examples, we shall always write i, for the ordered pair (i, k).
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(4.3) Example Suppose that u = ((3,1),(2), (2,12)). Then

tnz( 1[213] [5]6], [T 81) and M(tu)=(11 L[], [Tl 13131),
4 9| 2] 23]
10 3]

Suppose that

= (23ls], Lelio), {7i8] - (213161, (Mo, [7]®
51 (_i 3 ) i ): 52 (_4-— y ] i )
e 15[9f, [3]10] ]
— ([1]2T5]9 3[i0] [4]6
S3 (l H ’ i )
Then
u(s)) = p(e2) = ([WLILTL], [MafBal, [Lafla])
21| 23]
and

,L(ga):(ll L[1,[2], [Li3], [2 12|),
13 13

Given two pairs (‘il, kl) and (Z'z, k2), we write (7;1, kl) < (ig, kg) if ki < kz, or kl = ky and
i1 < ig. Note that if 5 is a standard A—tableau, then u(s) is a A-tableau of type u whose
entries are weakly increasing along rows and down columns. We next single out some of

these tableaux u(s).

(4.4) Definition Suppose that X is a multipartition of n and that p is a multicomposition
of n. Let 8= (SW,...,8()) be a A\-tableau of type p. Then S is semistandard if
(i) the entries in each row of each component S*) of S are non—decreasing; and
(ii) the entries in each column of each component S%¥) of S are strictly increasing; and
(iii) for each k with 1 < k <, no entry in S®) has the form (i,1) with I < k.
Let To(A, 1) denote the set of semistandard A—tableauz of type p.

For example, u(s;) in Example 4.3 is semistandard, but u(s3) is not, since the third part
of Definition 4.4 is not satisfied.
The point of the third condition in Definition 4.4 is the following result (cf. Corol-

lary 3.24).

(4.5) Suppose that s is a standard A-tableau. Then u(s) satisfies Definition 4.4(iii) if and
only if comp,. > comp,

If X is a multipartition and S € 75(A, ), then it is clear that there exists a standard
A-tableau s with 8 = pu(s). In order to say more about this, we introduce another definition.
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(4.6) Definition If s is a standard A-tableau and 1 < m < n then let row,(m) = (i, k) if
m belongs to row i of the kth component of s.

The definition of row, allows us to recover s from the function row,

Suppose that S € To(A, i) and let s be a standard A-tableau such that pu(s) = S. If there
exists an integer 7 such that row,(¢) # row,(i+1) and ¢ and i+1 are in the same row of t* then
the tableau s; = 5(3,% + 1) is standard and p(s;) = S. Also, 5 > 5, if rows(é) < rows(i + 1),
and s; > s if row,(¢) > row,( + 1). Hence we have shown the following.

(4.7) Suppose that S € To(A, ). Then there exist standard A—tableaux first(S) and last(S)
such that

(i) wp(first(S)) = p(last(S)) = S; and,

(i) if s is any standard A-tableau such that p(s) =S then first(S) > s &> last(S).

(4.8) Definition Suppose that X is a multipartition of n and that p is a multicomposition
of n. Let 8 € To(\, 1) and t € Std()). Then msg is the element of F given by

Mgt = E Megt.

sESEA(N)
H(s)=8

Note that mg is a sum of standard basis elements mg; where first(S) > s &> last(S).

(4.9) Example Suppose that A = ((4, 3), (2,1),(2,1)), p = ((3%,1), (1%), (2,1?)) and

§ = ( LG, [12]3:], [a 13]),
2:12,[3 2, 2]

Then S € 7To(), 1) and for any t € Std(A\) we have mg; = My, + My, + Mgy Where

slz(égsu 8 [13] 1011|), 52=(1235| 8 [13] 1011|)

717 ] [12] afef7] ° [o] ~ [12]
and
53=( 172]3]6] [8]13] 1011|)_
4[5]7 9] 12]

Here s, = first(S) and s3 = last(S).

(4.10) Lemma Suppose that X is a multipartition of n and that p is a multicomposition
of n. Let S € To(\, ) and t € Std(X). Then mg, € M¥.

PROOF: Let a = (ay,...,a,) where ax = Y o=\ |u®|, and b = (by,...,b,) where b, =
i PO
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Let s; = first(S) and let d = d(s1). Then, as in [4],

Y nTyg= Y, Tu=hTu,

s€Std(M) wEG IS,
#(s)=8
where h = ) T,, the sum running over certain elements v € &,. Since h € H#(5,), we have
h*u = ufh*; so we obtain

Mgy = Z Mgy = Z T;(s)xAug Ty =z, 135 u:h*Td(t)'
2€5td(A\) s€Std(A)
p(s)=s u(s)=s

Therefore, since m,, = z,uf, it is sufficient to prove that Tju € uf .

Assume that 1 < k < r. Recall that s; = first(S), ap = 3o, |¢®| and by = 351 |A0)|
and note that a;y < by since S is semistandard. Define t; to be the standard A\—tableau
such that 1,2,..., a; occupy the same positions in s; and tx; by + 1,...,n occupy the same
positions in t* and t; and that for ax + 1 < i < j < by, we have row, (¢) < rowy, (j) — thus
the numbers ax+1, ..., b; are inserted into ¢ in “row order”. The fact that S is semistandard
ensures that t; is well defined. Note that t; = t* and t, = 5.

Now define wy € &, inductively by requiring that t;, = t*w,ws...wz. Then wy = 1 and
d = wyws...w,; moreover, £(d) = £(w,) + ... + £(w,). By construction, the element w; fixes
each of the numbers 1,2,...,ar_1 and it also fixes each of b + 1,0 + 2,...,n

For1l < k < r, let ua and up j be as defined in Definition 3.1, and let v, = Hm—ak s1(Lm—
Qk). Then Ub,k = Ua,kVk.

Now, T,,, commutes with u,; for I < & (since wy, fixes 1,2,...,ar_1), and T,,, commutes
with up, for I > k (since wy, fixes by + 1,bx +2,...,n); see (2 1)(1v) Therefore,
Tt;‘u{)F = Ty, - T Up1Up2 .. - Up,

=y £ & %

= Twr .. TwZub,lub,2 can ub,rTwl

s * * %

= ’Ua,lTw, . .Twzubg . 'u,b,r'ulTw1

_ * *
= Ua,1Ua2Ty, -+ - Ty Ub3 - - - Up V2 Ty, 11Ty,

_ * * * %
= Uay.. UapUrly v 1Ty ... 015 01Ty .

Thus, Tju € uf H#, as required. m

Having shown that mg; € M*, our next aim is to prove that the set of elements of the
form msg; give a basis of M*.

Let a = (a,...,0,) where g = Zi.:ll |u®| as in the previous proof; then m, = u}z,.
Since v} and z, commute, we have M* = m,5# C uf s Nz,5#. We shall show that we
have equality here.

We have seen that 5 has a standard basis which consists of elements m, with s and
t standard A-tableaux for some multipartition A of n. Suppose that h € # and let h =
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Zs,t TetMet, With 74 € R, be the unique expression for 4 in terms of the standard basis. We
say that myg, is involved in A if 74 # 0.

(4.11) Lemma Suppose that p is a multipartition of n and that m, = ufz,. Let h €
z,H Nut A and suppose that (s,t) is a pair of standard tableauz of the same shape such
that
(1) mg is involved in h; and,
(i) 4f (u,v) is a pair of standard tableauz of the same shape such that s > u, t > v and
(s5,t) # (u,0) then my, is not involved in h.
Let S = u(s). Then S is semistandard and s = last(8).

ProOOF: Since s is standard, the entries in S are non—decreasing down rows and columns.

Suppose that ¢ and ¢ + 1 belong to the same row of t*. Then Tiz, = qz,, so T;h = qh.
Therefore, by [16, (4.19)], ¢ and ¢ + 1 do not belong to the same column of 5. Hence the
entries in S are strictly increasing down columns.

Since h € u} ¥ we have compy > comp, by Corollary 3.24 (applied to the multi-
composition ((121), (122),...,(1%")), where a = (Ju®M},...,|u™]|)). Hence, by (4.5), S is
semistandard.

Finally, suppose that s # last(S). Then there exist integers ¢ and ¢ 4+ 1 in the same row
of t* such that the tableau s’ = §(4,% + 1) is standard and s > §'. As in [16, (4.19)], mg is
involved in T;h = gh, contradicting part (ii) of our hypothesis. Therefore, s = last(S). O

(4.12) Corollary Suppose that p is @ multicomposition of n and m, = ufz,. Then ulH#N
zu A is spanned by

{ Mgt

ProOOF: Note that mg € M* by Lemma 4.10.
For each multipartition A of n let

Ti(\, 1) = {5 € Std()) | u(s) = last(S) for some S € To(A, p) }.

By Lemma 4.11 every non-zero element of uf ¢ N z,5# involves a standard basis element
mg where 5 € Ti(\, 1) and t € Std(A) for some multipartition A.

Now suppose that h € v} # Nz, and write h in terms of the standard basis; say,
h =Y ruwmye with ry € R. Let

h,’ =h— Z Z Z rsim,‘(s)t.

X sE€TI(Au) teStd(A)

S € To(A, 1) and t € Std(X) for some }
multipartition X of n '

Then b’ € uf H# Nz, I, but b’ does not involve any term my for any s € T;(A, ). Therefore,
K = 0, and we have obtained an expression for i as a linear combination of the required
form. ]
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(4.13) Corollary Suppose that p is a multicomposition of n and m, = ufx,. Then M* =
ut Nz,

PROOF: We have that M* C uls# Nz,5. The inclusion ul s Nz, C M* follows
from Corollary 4.12 and Lemma 4.10 O

The next theorem for Iwahori-Hecke algebras of type A (that is, the case r = 1), is due
to Murphy [16]; for Iwahori-Hecke algebras of type B (that is, the case r = 2), the result is
due to Du and Scott [11]

(4.14) Theorem Suppose that u is a multicomposition of n. Then M* is free as an R-
module with basis

{ Mgy ‘ S € To(A, ) and t € Std()\) for }

some multipartition A of n

PrROOF: By Lemma 4.10 each element mg belongs to M¥. Since distinct elements mg
involve distinct standard basis elements msg, the elements mg; are linearly independent.
Finally, Corollaries 4.12 and 4.13 show that the elements mg; span M*. O

(4.15) Corollary Suppose that p is a multicomposition of n. Then there ezists a filtration
of M*,
My =M >My>--+> Mg =0

such that for each i with 1 < i < k there exists a multipartition )\; of n with M;/M;,, = 8.
Moreover, if \ is a multipartition of n, then the number of factors S™ isomorphic to S* is
equal to the number of semistandard A—tableauz of type .

PrROOF: Choose an ordering S; > S; > --- > S; on the set of semistandard tableaux of
type p such that j > 4 if A; > A; where S; € To(A;, ) and S; € To(Aj, #). Let M; be the
R-submodule of M* with basis { ms;|j > i and t € Std(};) }. Then

M#=M1>M2>"‘>Mk+1=0,

and, by Proposition 3.25 and Theorem 4.14, each M; is a right ideal of 7.

Suppose that 1 < 7 < k. Then M; N NX C M;,,. Hence, there is a well defined 77—
homomorphism 6 from S* onto M;/M; . such that 6(z,) = mg,a + Miy1. Since both S*
and M;/M;., have rank equal to the number of standard \;—tableaux, # is an isomorphism.
The Corollary now follows. O
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5 The double annihilator of m,

The purpose of this section is to compute the double annihilator of the element m,, of 52 for
any multicomposition u of n. This will enable us to calculate a basis for Hom s (MY, M*) in
the next section.

(5.1) Definition Suppose S is a subset of S and define r(S) = {h € H#|Sh =0} and
1(S) = {h € £ |hS =0}. The double annihilator of S is Ir(S) = 1(x(S)).

It is elementary that Ir(S) contains the left ideal of ##° generated by S. If J# is a quasi-
Frobenius algebra, then Ir(S) is equal to the left ideal of 5 generated by S [3, (61.2)].
Although ## is quasi—Frobenius for r < 2 (see, for example, [4, section 2]), we do not know
whether it is quasi-Frobenius for r > 2. If 5 is quasi-Frobenius for all r, then the main
result of this section, namely Theorem 5.16, is immediate.

A connection between double annihilators and homomorphisms is provided by the fol-

lowing easy lemma.

(5.2) Lemma Suppose that m € S and that Ir(m) = H#m. Let I be a right ideal of 3.
(i) For all ¢ € Homy(mo#,I) there exists h, € F such that ¢(m) = h,m.
(i) Homye(ms?,I) =2 s#mNnI.

ProOF: For all z € r(m) we have p(m)z = p(mz) = 0. Therefore, p(m) € Ir(m) = F#m,;
so p(m) = h,m for some h, € . The proof of part (ii) is now straightforward. O

The main result of this section is that lr(m,) = 5#m,. Because the Iwahori-Hecke
algebra J#(6,,) is quasi—Frobenius, our first step is easy.

(5.3) Lemma Suppose that p is a multicomposition of n. Then Ir(z,) = #z,.

PRrOOF: Since #(6,) is a quasi-Frobenius algebra, we have Ir(z,) N (6,) = H#(S,)z,.
Now suppose that z € Ir(z,). By Theorem 2.2, we may write

2= L9,...Lihe
ce?

where € = {c = (c1,...,6-)|0< ¢ <rforl < j<n}and he € H#(S,). Then, for all
y € r(z,) N H(S,), we have

O—zy—ZL . Lirhey.

ce?
Therefore, by Theorem 2.2, we have hcy = 0 for all ¢ € €. Thus, h. € Ir(z,) N F(S,) =
H(S,)z,, and so z € Hx,. O
For the remainder of this section we fix a multicomposition x and define a = (ay,...,a,)

by ax = Zfz_ll |£®]; 500 =a; < ap <... < a, <n. Our main task in this section is to prove
that Ir(u}) = S#u}. To achieve this goal, we use the next result.
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(5.4) Lemma Assume that I is a left ideal of S# and suppose that S is a subset of r(I)
such that 1(S) CI. Thenlr(I)=1.

PRrROOF: By assumption S C r(I) and 1(S) C I. Also, I C Ir(I). Therefore, Ir(I) C 1(S) C
I CIr(I); so Ir(I) = I as required. o

Our definition of u} expresses u} as a double product
T (259
uf = [T ] (Zm —@w).

We now introduce notation which allows us to reverse the order of the multiplication here.

(5.5) Definition Suppose that 1 <1i < n.
(i) Let v; =k if k is mazimal such that ar < 1. Let v = (V1,%2, -+ »Vn)-
r

(11) Let v; = H (Lz - Qk)

k=v;+1
Then ul = v1vs...v, and all of these factors commute.
Vi
(5.6) Definition Suppose that 1 <i<n. Lety; =T;_1...ToTy H(L1 — Q).
k=1
(5.7) Example Suppose that r =4, n =5 and a = (0,2,4,5). Then
uf = (L1 —Q2)(L2— Q2)
X (L1 — Q3)(L2 — Q3)(Ls — Q3)(Ls — Q3)
X (L1 — Q4)(L2 — Q4)(Ls — Qa)(La — Qu)(Ls — Qu).

Alsov=(1,1,2,2,3) and, for 1 < i < n, the product of the factors in the ith column of the
above array is v;. We have

Y= (L1 — @)
Yo = Ti(Ly — Q1)
ys = LN(Ly — Q1)L — Q2)
Ya = L12Th (Ll - Ql)(L1 - Qz)

Ys = T4T3T2T1(L1 - Ql)(Ll - Q2)(L1 - Qs)-

(5.8) Lemma Suppose that 1 < i < n. Then vive... vy = 0.
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PROOF: Assume that k satisfies v; +1 < k < r. Then v1v;...v; has a factor (L; —
Qe)(La — Qx) ... (Li — Q). By (2.1)(iv), this factor commutes with T;_,...T37;. Hence,
vy ...%T1i_1 ... ToTy has a right factor H,Tc:,ﬁ 41(L1 — Qr). However,

fI(Ll —Qk) = ﬁ(To - Q) =0;
k=1

k=1

so it follows that vyv, ... v;y; = 0 as claimed. o
Since u} = v1v5 .. .v, we have the following Corollary.

(5.9) Corollary Suppose that 1 <i <n. Then uly; =0.

It turns out that yy, ys, . . ., ¥ generate r(ut). More importantly, together with Lemma 5.4
the elements y; will allow us to prove that Ir(u}) = S#u}. For our proof, we require the
technical Lemma 5.13 below; for this result we need some preparation.

(5.10) Lemma Suppose that 1 < i < n and that a,b € {0,1,...,7 — 1}.

b—a
(i) Ifa <bthen L¢L, T = TLLALY, + (g — 1) ) LI°LE.
c=1a—b—1
(i) Ifa > b then L¢LY, \T; = T, LLE,, — (¢ —1) Y LILET.
c=1

PROOF: (i) Assume that @ < b. If b = a then T; commutes with L¢L¢ ; by (2.1)(iii), so
the result is correct in this case. Now suppose that b > a. Since L; 1 T; = T;L; + (g — 1) L; 1
we have

L2 Ti = LELY (L + (¢ — 1) Liw),

which gives the required result by induction on b — a.
(ii) Either argue similarly, or apply the antiautomorphism * to the result of part (i) and
rearrange, interchanging a and b. O

We next generalize Lemma 5.10 as follows.

(5.11) Lemma Suppose that 1 <i<n and b; € {0,1,...,r—1} forj=1,2,...,n. Then
there exists an integer b and €1, ...,¢;_1 € {1} such that

oLl LET, ;.. . ToTy = 2, + o,

where £, = @*TP .. TRTALY LY LY ... L?H and z2 s a linear combination of terms of
the form T,,L3*L3? ... L where
(i) we G,; and
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(i) ¢,...,€40,1,...,r—=1} withe; +co+---+¢;=by + b+ -+ b; and

(2 2
(iii) esther H(Cj +1) < H(bj + 1), or ¢1,¢s,-..,¢; is a permutation of by, by, ..., b and
a <b;.

PROOF: The result is true when i = 1. (In this case, z; = L% and z, = 0.) Assume,
inductively, that ¢ < n and that the result as stated is true. By Lemma 5.10, there exists
b € {0,1} and ¢; = %1 such that

LT = TEL LYy £ (- 1) ) LELEY

where d;,d;1; € {0, 1,...,7— 1} and d; + d;+; = b; + biy1 and either (di + 1)(d,;+1 + 1) <
(b; + 1)(biz1 + 1) or d; = b; < biy1. Using this result, and (2.1)(ii), we obtain

Lhrl  IET . T = QTSN . LY LENT .. TN LY,
£(g-1)) L% L?'_‘fo‘I}_‘ LT LI,

where ¥/, d; and d;, are as above. The result now follows from our inductive hypothesis.

For the statement and proof of our next Lemma, we need some more notation.

(5.12) Notation Suppose that 0 <7 < n. Let V; be the R—-module with basis

wEGn,OSbj<’)’j,f01‘].SjSi,}

b1 rba bn .
{TleLz...anlvz...v, and 0 < b;<r,fori+1<j<n

Result (2.4) shows the elements in these sets are indeed linearly independent. Note also
that Vo = 4 and V,, = 5#u}.
We shall use (2.4) extensively in the proof of Lemma 5.13.

(5.13) Lemma Suppose that 1 <i < n and that z € V;_1 and zy; =0. Then z € V.

PROOF: Since z € V;_; we may write z as a linear combination of linearly independent

terms
b b b bn
TwLly .- - 1f(L )L,fl1 N D VYN VTR

where w € G, and 0 < b; <y for1<j<i—land0<b;<rfori+1<j<n, and f(X)
is a polynomial in R[X] of degree less than r. Write

F(X) = g(X) H (X — Q) + h(X),

k=v+1
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where g(X) and h(X) are polynomials in R[X] such that degg(X) < ; and degh(X) <
r — ;. We may apply the “Euclidean algorithm” in this way, even though R[X] need not be
a Euclidean domain, because the divisor is a monic polynomial.

Note that H:::,ﬁ 41 (L; — Qk) = vi. As a consequence, we have written z as 2, + z; where
21 € V; and 2z is a linear combination of terms

T,Lb .. LPh(L)LE .. Loy . vy

We shall prove that z, = 0.

Note that z;3; = 0, by Lemma 5.8, since z; € V;. Therefore, because zy; = 0 by
assumption, it follows that zoy; = 0.

For each n—tuple ¢ = (c1,...,¢,) With 0 < ¢; < r, forall i with 1 < ¢ < n, let U, =
H(6,)L3, ... L. Then we may write

2y = ch where 2z, € U,
cE?

and € ={c=(c1,...,cn)|0<¢cj<rforl1<j<nandg<r—vy}
Assume that z; # 0. Among the ¢ such that z. # 0 choose d = (d, .. .,d,) such that

(6.14) (i) dy +d2 + - - - + dy is maximal; and,
(i) (di +1)(d2+1)...(dn + 1) is maximal subject to (i); and,
(iii) d; is maximal subject to (i) and (ii).

Then zq = haL%,... L& for some non—zero element hq of H#(S,).

Now, T;_, ...ToTy commutes with each of the elements L;,,, L;y9,. .., L,. Therefore, by
Lemma 5.11 there exists an invertible element h € #(G,,) (namely, h = ¢T; 1" ... T5*T})
such that

2Ti1 ... TyTy = hahLELALE . LF* LI L3 4+ terms in the sets U,

where e = (e1,...,€,) and e; + -+ e, < dy + - -- 4+ dp, and either
(i) e1+- - +eq <dy+---+dy (by Lemma 5.11(ii) and (5.14)(i)); or,
(i) (eg+1)...(ea+1) < (dy+1)...(dn + 1) (using Lemma 5.11(iii) and (5.14)(ii)); or,
(iii) ei,...,en is a permutation of di,...,d, and e; < d; (using Lemma 5.11(iii) and
(5.14)(iii)); or,
(iv) e1,...,€y, is a permutation of dy,...,d, but e # (d;,d1,ds, ..., d;i—1,dita, . . ., dn) (con-
sider the term z; in Lemma 5.11).
In particular, no e on the right hand side is equal to (d;,dy,ds, . .., di—1,diy1, - - -, dn).

Next we postmultiply our expression for zoT;_;...T2T1 by [[%_,(L1 — @m) to obtain
2y;. Note that if v, € U, and k is any positive integer then veL’f is a linear combination of
terms ve € Us where f = (f1,e2,...,e,) and fy <r. Thus, ife;+-+-+e, < dy+---+d, and
e1+k > r then v, L¥ is a linear combination of terms ve with fi+e;+- - -+e, < di+- - -+dp+k.
Therefore,

2oy; = hahLFT "L LS .Lf"‘lij:‘f ... L% 4 terms in the sets Us
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where f # (d; + v, d1,da, - . ., di—1,diy1, - . ., dn).

Note that d; + v; < r since d € €. Therefore, since hq # 0 and & is invertible, zoy; # 0
giving a contradiction. Hence, our assumption that 2z, 7# 0 is false. Thus, z = 2, € V; as
required. O

(5.15) Corollary We have Ir(u]) = s#u}t.

ProoF: Let I = ##uf and S = {y1,%1,.-.,Yn}- Then Corollary 5.9 shows that S C r(I).

Suppose that z € S and zy; = 0 for all 2 with 1 < 2 < n. Since Vj; = 5 and
Vo = ##ut = I, it follows from Lemma 5.13 that z € I. Thus, 1(S) C I. Lemma 5.4 now
implies that Ir(I) = I; that is, lr(ul) = u?. i

Finally, we can prove the main result of this section.
(5.16) Theorem Suppose that p is a multicomposition of n. Then lr(m,) = H#'m,,.

Proor: Write m, = ufz, as in Definition 3.5. By applying the definitions, Corollary 5.15
and Lemma 5.3, we obtain

Hmy, Clr(m,) Clr(ul) Nir(z,) = H#ut N Hoz,.

However, (vl Nz, )* = (m,5)* by Corollary 4.13. Hence, we have equality throughout
and Ir(m,) = ##m,, as claimed. O

(5.17) Corollary Suppose that u and v are multicompositions of n. Then
(i) For every element ¢ in Hom (MY, M¥) there exists h, € S such that p(m,) = h,m,;
in particular, p(m,) € MV* N M*.
(ii) Homg (MY, M*) = MY N M¥.

Proor: By Theorem 5.16 we may apply Lemma 5.2(i) with m = m, to obtain that
o(my,) = hym, for some h, € S#. Thus, p(m,) € M**. It is clear that ¢(m,) € M*.
Part (ii) follows from Lemma 5.2(ii), where an explicit isomorphism is given by o+ @(m,).

O

6 The cyclotomic ¢—Schur algebra

In order to make our results as general as possible, let A, be a poset ideal in the set of all
multicompositions of n. Thus, if 4 € A, and v > p then v € A,. We also let A be the set
of multipartitions in A,.
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(6.1) Definition The cyclotomic g-Schur algebra is the endomorphism algebra

y:End#(EBM#).

BEAr

Thus, & = D, ,ca, Homse(M”, M*).

Suppose that ¢ € Homy (MY, M*). Then @(m,h) = ¢(m,)h for all h € 5#; thus @ is
completely determined by ¢(m,). Moreover, ¢(m,) € M** N M* by Corollary 5.17. These
remarks motivate us to construct a basis of M** N M~

(6.2) Definition Suppose that p and v are multicompositions of n and that A is a multi-
partition of n. Assume that S € To(A, p) and that T € To(A,v). Let

Mgt = E Mgt
5.t

where the sum is over all 5,t € Std()) with p(s) =S and v(t) =T.
Note that mg; = mqs.

(6.3) Proposition Suppose that p and v are multicompositions of n. Then

{ m ‘ S € To(A, ) and T € To(A,v) for some}
St maultipartition X of n

is a basis of M¥* N M*.

Proor: Since

Mgy = Z (mrs)* = Z Mg,

sEStd(A) tEStd(A)
p(s)=s v(t)=T

Lemma 4.10 shows that mgr € M¥* N M#. Moreover, the elements msr are linearly indepen-
dent since they involve distinct elements my of the standard basis of 7.
Now suppose that h € MY* N M*. Since h € 5, we may express h in terms of the
standard basis .#; say
h = Z TstMgt

mstEM

where ry € R. Since h € M*, we have ry = 1y if p(s) = p(s’), by Theorem 4.14. Similarly,
since h € M**, we have ry = rop if v(t) = v(t'). Thus, if u(s) = p(s’) and v(t) = v(t') then
Ts = Tyy = Tery. Furthermore, 75 = 0 unless both p(s) and »(t) are semistandard. Therefore,
h is a linear combination of elements mgr. This completes the proof of the Proposition. O

Proposition 6.3 shows that, in our next Definition, @gr is a well defined ##°—homomorphism
from MY into M*.
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(6.4) Definition Suppose that p,v € A, and A € Af. Assume that S € To(\, 1) and
T € To(A, v). Define psr € Hom s (M”, M*) by

<PST(muh) = mgrh

for all h € 2. Extend @sr to an element of the cyclotomic q—Schur algebra & by defining
wsr to be zero on M" when v # k € A,.

(6.5) Definition Suppose that A € A}. Let A be the R—submodule of % spanned by

{ ‘ U € Tola, 1), V € Tola, v) for some }
Yo p,v € Ay and o € A with o> A '

This brings us to one of the main results of our paper. The work in Sections 4 and 5 was
aimed at proving part (i) of the Theorem.

(6.6) Theorem (The Semistandard Basis Theorem)
(i) The cyclotomic g-Schur algebra & is free as an R—module with basis

{ | S € To(A, 1), T € To(A,v) for some }
¥ar v EAN and X € Af '

(ii) Suppose that p,v € A, and A € A} and let o € #. Then, for every & € A, and every
T' € To(A, k) there ezists rv € R such that for all S € To(A, 1), we have

Ps1P = Z Z T Pg1 mod ?:\

KEA; T E€To(AK)

ProoOF: (i) By Corollary 5.17(ii), Hom (MY, M*) = M”* N M*, where an isomorphism is
given by ¢+ ¢(m,). Hence, by Proposition 6.3 and Definition 6.4, the set {psr} is a basis
of &.

(ii) It is sufficient to consider the case where ¢ € Hom(M*, M*) for some s € A,.
Suppose that ¢(m,) = m,h where h € ##. Then, for all S € To(\, 1) and T € Ty, v), we
have

wsrip(my) = mgrh € M™ N M*.

By Proposition 6.3, msrh = ), ryymyy, where ryy € R and the sum is over U € Tp(e, ) and
V € To(o, k) for some a € A}. By applying Proposition 3.25 we deduce that

mgrh = E TpMsy + z Ty My
T eTo(A,5) ULy

where Ty, 7y € R and the second sum is over U € Tp(a, 1) and V' € Ty, v) for some
a € A} with a > A. Therefore,

PsTpP = Z rp sy mod ?i\.
T'€To() %)

This completes the proof. O
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(6.7) Definition We call the basis {¢gr} the semistandard basis of .%.

(6.8) Remark If d > n then A} consists of all multipartitions of n. It is straightforward
to prove that if d > n, then the algebra % is Morita equivalent to the algebra we obtain by
taking d = n.

In order to show that the semistandard basis of . is a cellular basis we need an appro-
priate antiautomorphism * for .#.

(6.9) Proposition Let x: ¥ — % be the unique R-linear map such that 5, = @5 for all
elements @gr in the semistandard basis. Then * is an antiautomorphism of 7.

PROOF: Assume that S € Tg(), p) and that T € To(A, v) for some p,v € A, and A € A}
Then
pst(my) = mgr = (mas)” = (prs(my))".

The proposition now follows from the next general lemma.

(6.10) Lemma Suppose that S is an algebra with an antiautomorphism *. Let {m, |p €
A} be a set of elements of S such that mj, =m,, for all p € A and let

S = End 4 (@mw}f’).

HEA

Assume that, for all p,v € A, every S#-homomorphism from m,# to m,3¥ is given by
left multiplication by an element of 7#. Then the following hold.
(i) For each ¢ € Homy(m, %, m,F€) there is a unique p* € Homy(m,5#, m, ) such
that ¢*(my) = (p(m.))".
(ii) The map * is an antiautomorphism of % .

PROOF: (i) Suppose that ¢ € Homye(m, 5, m,5¢). Then p(m,) = zym, = m,y for some
z1,y € . Define p* € Homyp(m,5, m, ) by ¢*(muh) = y*m,h for all h € 2#. Then
©* is a well-defined #—~homomorphism; also, it maps into m, %, since y*m, = m,z]. Since
©*(m,) = (¢(m,))", the proof of (i) is complete.

- (ii) Suppose that 1) € Hom s (m 5, m\F¢) for some A € A. Then ¥(m,) = zom, for
some zs € . We have,

(W) (ma) = (Yp(m,))" = (z221my)* = myzizs
= p*(mu)z; =" (mua;) = ™Y (ma).

Therefore, (1p)* = ¢*y*, and it follows that * is an antiautomorphism of .#. |

(6.11) Corollary The R-module #, is a two-sided ideal of .



28 RicHARD DIPPER, GORDON JAMES AND ANDREW MATHAS

PrROOF: Theorem 6.6(ii) shows that .%, is a right ideal. By applying the antiautomor-
phism *, we deduce that it is also a left ideal. o

(6.12) Theorem The semistandard basis of & is a cellular basis.

ProOF: This follows at once from Theorem 6.6, Corollary 6.11 and Proposition 6.9. - 0O

We now apply the theory of cellular algebras to the representation theory of .#, just as
we treated J# in Section 3.

Suppose that A is a multipartition of n. Let T* = A(#*) (see Definition 4.2). Then T* is
the unique semistandard A-tableau of type A (cf. Example 4.3). Define ¢ = @raqa; then ¢y
is the identity map on M?*.

(6.13) Definition Suppose that A € A}, The Weyl module W? is the submodule of /%
given by W* = Z(pr + A).

If S is a semistandard A-tableau let ps = @spr(pa + ) = psp + F4. Then, from
Theorem 6.12, we obtain the following result.

6.14) Corollary The Weyl module W* is a free R—module with basis
(6.14)

{ps| 8 € To(A p) for some p € A, }.
Define a bilinear form ( , ) on W* by requiring that

PrasPrm = {Ps, @)@ mod Z

for all semistandard A-tableaux S and T. This bilinear form is well-defined and symmetric,
and also satisfies (su,v) = (u, s*v) for all u,v € W? and all s € .% [12, (2.4)]. Consequently,
rad W* = {u € W*| (u,v) = 0 for all v € W?} is a submodule of W?.

(6.15) Definition Suppose that A € A}. Let F* = W*/rad W2.

(6.16) Theorem Suppose that R is a field. Then
{F*|xeAf}

is a complete set of non—isomorphic irreducible # —modules. Moreover, each F* is absolutely
irreducible.
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PROOF: Let A € Af. From the definition of the bilinear form on W*, we have

PopPpp = (O, o )ps mod F.

However, @mp @ = @ is the identity on M?; so (pm, ) = 1. Consequently, F? is
non—zero. The Theorem now follows from [12, (3.4)]. o

If \,p € A, let dy, denote the composition multiplicity of F* as a composition factor
of W*. Then

(dé\u),\,peA:f

is the decomposition matrix of .. The theory of cellular algebras [12, (3.6)] yields the
following.

(6.17) Corollary The decomposition matriz of % is unitriangular. That is, for A, p € A},
we have dy, =1 and dy, # 0 only if A D> p.

Finally, Theorem 6.16 combined with {12, (3.10)], gives us our last result.

(6.18) Corollary The cyclotomic q—Schur algebra is quasi-hereditary.
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