Unitary Kloosterman Sums and Gelfand-Graev
Representation of G L,

Charles W. Curtis and Ken-ichi Shinoda!

Introduction

In this note, we obtain relations between two types of Kloosterman sums and corres-
ponding ones for finite field extensions, using L-series and Euler product expansions.
The methods used were first applied by A. Weil in his proof of the Davenport-Hasse
relation for Gauss sums ([8], Chapter 11), and for other exponential sums in ([13],
Appendix V). Generalized Kloosterman sums have also been considered in the context
of l-adic sheaves over certain algebraic varieties by Deligne [6].

The relations proved in §1,2 are closely connected with the representation theory
over the complex field C of the connected reductive algebraic group G = GL, defined
over a finite field F = F,;, with Frobenius map o, so that G” = GLs(F). In [5], a norm
map A was defined, as a homomorphism of algebras from the Hecke algebra H,, of a
Gelfand-Graev representation of G to a corresponding Hecke algebra 7 of G°. The
norm map A is characterized by intertwining relations involving the two classes of o-
stable maximal tori in G. The identities for Kloosterman sums give these intertwining
relations, and an explicit formula for the norm map A, for certain basis elements of
Hum.

The relations for Kloosterman sums can also be used to calculate Gauss sums for
certain irreducible representations of classical groups defined over finite fields, exten-
ding formulas obtained for representations of GL, by Kondo [9] and Macdonald [11],
based on the Davenport-Hasse relations for Gauss sums.

Notation F = F; = F, denotes a finite field with ¢ elements, and F,, = Fym the
extension field of degree m of F, contained in a fixed algebraic closure F of F. For a
field K, we denote by K* the multiplicative group K — {0} of K. If m divides n,

the norm map Ny, : Fp, — Fy, is defined by Ny pu(a) = a5 and the trace map
Tom : Fn = Fp is defined by T, (@) = 300 ™ where d = %. Let Cpy C F3, be the
kernel of the norm map Napm, S0 that Cp, = {& € Fap : @ ™1 = 1}. In particular,
C = C, is the subgroup of F5 consisting of elements of norm 1.

We fix a nontrivial additive character x of F throughout this paper, and let x,, =
X © Trpm1 be the canonical lift of x to F,. Similarly, for a multiplicative character
7 (resp. ) of FX(resp. C), My = 7o Np1 (resp. @m = @ © Nop o) denotes the
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1997. We thank the Institute for its hospitality.



canonical lift of 7 (resp. @) to F (resp. Cp). We shall also use the convention that
7(0) = (0) = 0.

1. Generalized Kloosterman Sums and Finite Field Extensions

Let 7 be a multiplicative character of F*. A generalized Kloosterman sum is defined
as the complex valued function on F* given by

a— K(x,m,a)= Zx(s-l—t)w(s), a € F*

st=a

where s,t € F*. The corresponding generalized Kloosterman sum for F,, is the function
on F* defined by '

a = K(Xm, Tm,a) = Z Xm (0 + B)Tm(c), a € F*

af=a

where «, 8 € FX. If a = 1, we shall simply write K (x,7) and K (Xm,7m) to denote
K(x,m,1) and K(Xm,Tm, 1) respectively.
We shall obtain a relation between K (X, 7m, a) and K (x, 7, a), by a method similar
to the proof of the Davenport-Hasse relation for Gauss sums ([8], Chapter 11, §4).
Let @ be the set of monic polynomials in F{z] with nonzero constant term and let
®,, be the set of polynomials in ¢ of degree n. We begin by defining the complex valued
function £(f) for
flx)=2"—ciz" '+ + (=D, € O,
by the formula
1 ifn=0,
€)= { x(e1 + acp_1c;)w(c,) ifn>0.

It is easily verified that the function £(f) has the following properties:

£E(fg) = &(f)E(g) for all f,g € @,
S E(f) = K(x,m,a), and

fed:

Z g(f) = G(Xa W)G(X, 7_r)7r(a) = qﬂ'(_a‘)

fed2

where G(x, ) = 3, x(t)7(t) is a Gauss sum, 7 is nontrivial, and 7(t) = 7(t"). It
is easily shown that if 7 is trivial, one has > fedy & (f) = q. Finally, if d > 2

> &f) =o.
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Following the proof of the Davenport-Hasse relation, one has

K (Xm, Tm,a) = Y _ deg f £(f) 47,
f

where the sum is taken over all irreducible polynomials in ® whose degree divide m.
Continuing as in ([8], p. 165), one obtains

uz +2v2? = rrdegf
m—gi(;degfﬂf“ ’

where the sum is taken over irreducible polynomials in ® and
u=K(x,ma), v=gn(—a)

for all multiplicative characters 7. It follows that K (X, 7m, a) is the coefficient of 2™
on the left hand side. Therefore we have the following theorem.

Theorem 1. Let w be an arbitrary character of F*and let w, and we be the complex
numbers defined by the equation

(1 —w12)(1 —we2) =1+ K(x, 7,a)z + gr(—a)2>.

Then for all positive integers m, we have

Remark. This result, in case 7 is trivial, is due to Carlitz [1].

2. Unitary Kloosterman Sums and Finite Field Extensions

2.1. Let ¢ be a character of C. The sum

J06 o) =D x(a+a)p(a)

acC

is called a unitary Kloosterman sum. More generally, this definition can be extended
to give a complex valued function on F* defined by

a— J(x,¢',a) = Z x2(0)¢' (),

a€F3,N3 1(a)=a

for a multiplicative character ¢’ of FX, where xo = x © Tre1. Then J(x,¢',1) =
J(x, ¢ |c). The sum J(x,¢',a) appears in the calculation of cuspidal characters of
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GL,(F) ([12}, [2]).

2.2. Before establishing a relation between a unitary Kloosterman sum and the
corresponding sum for a finite field extension, we consider the unitary Kloosterman
sum J(x, ¢) with ¢* = 1.

Firstly, letting 1px and 1¢ denote the trivial characters of F* and C, respectively,
one has

J(Xa 1C'a a’) = _K(Xa 1|:x ) a’)a

for a € F*, by Chang’s lemma ({3], Lemma 1.2).

Now assume that ¢ is odd and let 7 be the quadratic character of F*. For s € F,
let x* be the additive character of F defined by x°(a) = x(sa),a € F. Then one also
has

K(x*, mo) = mo(s)G(x, m0) (x(2s) + x(—2))

and in particular
K (x,m) = G(x, m0)(x(2) + x(—2))

by a theorem of Evans [7] (cf. also [10], Exercise 5.85).
A similar result holds for a unitary Kloosterman sum. Let o be the quadratic
character of C.

Proposition. For all s € F, we have
J(X*, o) = mo(5)G(x; o) (x(—2s) — x(29)),

and in particular
J(x, o) = G(x, M) (x(—2) — x(2))-
Proof. Let t = 23, then as in ([7], Theorem 2.6) it suffices to show that for alla € F

a1 I(x?, po)x(—at)
= ¢7'm0(2)G(x, o) D_ mo(t) (x(¢(—1 — @) — x(t(1 — a)).

The calculation in [loc.cit.] also holds in this case, and the left hand side of the above
equation becomes 0, pg(a) or 2¢p(a + va? — 1) according as me(a® — 1) = 1,0 or —1,
respectively, and the right hand side is my(2a + 2) — mo(2a — 2). Therefore the proof is
reduced to showing that if my(a? — 1) = —1, then

mo(2a + 2) = poa + Va2 — 1).

Now take the (¢ — 1)/2-th power of the following equation:

@1\ a+1
at+vat—-1={1+ .
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Then the conclusion follows, since @o(a + Va2 — 1) = (a + Va2 — 1){t1/2

1, (-
mo(2a +2) = (%)(q D2 and

(a4+Va2—1)"1= (1+ “2‘1)H=a—\/m.

a+1

Remark. The sums K(x®,7) and J(x?, ) have also appeared in ([4], Theorem 5.2),
in connection with the representation theory of SL,.

2.3. Now we shall obtain a relation between a unitary Kloosterman sum and a
corresponding one for a finite field extension.
For a polynomial

f@) =2"— g™+ + (=1)"cn € Fla],
with ¢, # 0, define B
@) = ()" fa™a"e
where € = ¢? is the algebraic conjugate of the element ¢ € Fo by the nontrivial element
of the Galois group ¢ — €, and f(z) is the polynomial } 7  (—1)"~*C,_iz*. It is easily
verified that
f(z) = f(=),
(f(2)9(z))" = f*(z)g" (),
and that
f(z) = f(=)
if and only if
C = En—ia_la 0 S 1 S [:;—l]’
and
cn, € C.

Let ¥ be the set of monic polynomials f(z) € Fs|z] with nonzero constant term,
satisfying f*(x) = f(z), and let ¥, be the set of polynomials in ¥ of degree n. Introduce
the complex valued function 7(f), for f € ¥, by setting

(f)={1’ if n =deg f =0,
g x(e1 + a1 V) p(cn), ifn=degf >0,

noting that ¢; + ¢,_1¢;* € F if f € U. Thus as in §1, it follows that
n(fg) = n(f)nlg), for f,g € L.

The L-function associated with the set of polynomials ¥ is the series

Li(z) =Y (Z n(f))

n>0 \fe¥,

5



The multiplicative property of 7 implies that Ly(z) has the Euler product expansion
(2.3.1) Lg(z) = H(l _ degf -1 H 77(99 2degg)—1
f {9.9*}

where {f} and {g} are irreducible polynomials in F;[z] such that f = f* and g # ¢*,
respectively.
We now proceed to calculate the coefficients of Ly (2). We have immediately

donlf) = Je),

fev,

Z 77(f) — { G(X2,(Pl)7 lf(P 75 1C;
fel, q, if Y= 1c
d_n(f) =0 ifn>2,

fev,

where x2 = x © T'ro;1 as before and ¢'(a) = ¢p(a'™?) for @ € FS. By Stickelberger’s
Theorem ([10], Theorem 5.16) we have G(x2, ¢') = qp(—1) in case ¢ is nontrivial. If
¢ = 1¢, the formula follows from the definition of (f). At this point we have

Ly(2) =14 J(x, )z + p(-1)g7*
Define the complex numbers w; and wy by
L\F(Z) = (1 - (,U]_Z)(]. - (.L)gZ).

Now let d
z—log Ly (z Z L,2™.

d m>1

By the preceding discussion it follows that L,, is the coefficient of z™

uz + 2022
1+ uz+vz2’

where u = J(x, @), v = ¢(—1)g, and can also be expressed in the form
(2.3.2) Ly = —wi* —wy

The desired relation will follow from

2.4.Lemma. Form > 1,

I — { > erx X(Trm1 (v + 7 ) @(Nm2(v79)), if m is even,
" > ey X(Trama(y + v ) (Nom2(7)),  if m is odd.

Proof. Before starting a proof of this lemma, we prove the following result, which
plays a key role in the proof.



(2.4.1) Let f(z) € Fy[z] be irreducible and f* (a;) = f(z). Then d = deg f is an
odd integer. Moreover if v is a root of f, then 9 =1,

To prove this assertion, let v be a root of f (z). Then the condition f*(z) = f(z)
implies that f(7™7) = 0 so that v = (y~9)7" for some 4, 0 < i < d = deg f, since
f is irreducible. Thus 7 is contained in Fy2;41) and hence Fog C Fy(9;41), because v
generates the field Fo4. Therefore d divides 2¢+1 which is possible only when d = 2i+1.

Now by the Euler product expansion (2.3.1) and the definition of L,,, we have

(2.4.2) Z deg fn(f)®s7 + D 2deggn(gg”)Tees.
{g’g }
degflm 2degg|m

Assume that m is even. If f € F;[z] is an irreducible polynomial satisfying f = f* and
dim, where d = deg f, then 2d divides m, since d is odd by (2.4. 1) So if v is a root of
fz) = Ez—o( 1)%tcy_;z*, then v € Fy, and ¢; = Trog2(7), ci-16;" = Traga(y~!) and
¢qg = Nag2(7v) € C. Therefore we have

(N = X(GTrasaly+77))e(Maas(r?)
= X(Trama(y+77")e(Nam2(7)
= X(Ttma (v +7)P(Nma(r" ™),

where to get the third equation we have used the fact that v € F,,, and -y is conjugate
to v7¢ over F,.

Similarly if g € Fo{z] is an irreducible polynomial satisfying g # ¢* and 2 deg glm,
and if vy is a root of g or g*, we have

1(99") 785 = X(TTm1(7 +771))@(Nm2(7""9)-

Since such f and g have distinct roots, we have by (2.4.2)

Lm = Y, > X(Trma(y +7)e(Nma(v'™9)

f=f* 7€Fm
deg flm f(v)=0

+ ) Z X(Trm1 (Y +771))0(Nim2(7179))
2§egg gl}m g(“/)g ('7)—0

D X@Trma(y + 7)) 0(Nma (1179))-

v€Fm

When m is odd, the second sum in the right hand side of (2.4. 2) vanishes. Moreover
if f € W, is irreducible with d|m and if 7 is a root of f, then ¢ 1 =1 by (2.4.1) and
hence v € C,, since both m and d are odd and d|m. The rest of the proof for this case

7



holds as in the case when m is even.

2.5. When m is even, define the multiplicative character ¢,, of F by

om(7) = (N2 (Y9 = (7T,

and Xm = x ©Trm1. Then, as introduced in §1, the generalized Kloosterman sum
associated with Y., and ¢, is

K(xm om) = D_ Xm(y+7 ) em(¥),

veFm

and is equal to L,, by the proof of Lemma 2.4. When m is odd, define the character
©m of Cp, by ©m(7) = ©(Nom2(7)), noting that Nopo(7) € C if v € Cpy, because m is

1t+g™

odd, v = 471, and Nopma(7y) = 711+4 . We also have, for v € Cp, Troma(y+771) =
Trm1(y+~71). In this case, Ly, is equal to the unitary Kloosterman sum

I @m) = 3 Xm(¥ + 77 ) om (7).
Y€Cr

Combining these remarks with (2.3.2) and (2.4), we have:

Theorem 2. Let w; and wo be the complex numbers determined by
(1 —wi2)(1 = wez) = 1+ J(x, )2 + p(—1)g2*

Then for every positive integer m, we have

M K(Xma(pm)7 me 18 even,
vrTe e J(Xm, Ym), if m i3 odd.

2.6. Let ¢’ be a multiplicative character of F; and a be a fixed element in F*. We
shall extend the results obtained in (2.5) to the unitary Kloosterman sum introduced
in (2.1).

We start by defining an involutive mapping *a on the set of monic polynomials over

F, with nonzero constant term. For f(z) = Y i (—1)""ca_iz’ € Fyz] with ¢ = 1
and ¢, # 0, define the polynomial f*¢ by
a

fro(z) = f(0)" (-1

x

Then it can be easily checked that (f**)** = f and that f*¢ = f if and only if

G = En—ia_lai: 0<2< [% ’
Ng,l(cn) =a".



Let U = {f(z) € Fz[z] : f(z) is monic, f(0) #0 and f** = f} and ¥ be the subset
of U* consisting of polynomials of degree n. Defining a complex valued function 7,(f)
on ¥ for

f@)=2"—cz" '+ + (1), € ¥

by the formula

1, ifn=degf =0,
x(c1 + aca_16,7)¢'(ca), if n=degf >0,

na(f) = {

we can proceed with the same manner as in (2.3) and (2.4) and, omitting the details,
we can prove the following theorem.

Theorem 3. Let ¢' be a character of FS and w; (i = 1,2) be the complex numbers
determined by

(1 —wi2)(1 —wz) = 1+ J(x, ¢, a)z + ¢/ (—a)gz”.
Then for every positive integer m, we have

L ¢'(a%)K (Xm, winl_q, a), if m is even,
' ? J(Xm,go’zm’a)’ me 18 Odd,

where Xm =X © TTm,1, Yoy = ¢’ © Noma and ¢, = ¢' o Ny 2.

Remark. A proof of the Davenport-Hasse relation based on étale cohomology has
been given by Deligne ([6], p. 177). The same approach can be applied to the relations
considered in Theorem 1-3. For example, Theorem 3, in case ¢ is trivial, will follow
from ([6], Exemple 3.7, p. 193) by taking the Frobenius map defined on the projective
line P! by [z : y] — [y?: az?], for a € F*.

3. Connections with the Gelfand-Graev representation of G L,

The fact that the formula for K(xm, ™) in terms of K(x, ), and for J(Xm, ¥m)
or K(xm,mm) in terms of J(x, ), are both obtained as the coefficient of z™ in the
expansion of the rational function

uz + 2v2°
1+uz+v2?

is explained by the norm map A from the Hecke algebra H, of a Gelfand-Graev
representation of GLs(F,,) to the Hecke algebra #H of a Gelfand-Graev representation
of GLa(F) ([5])-

To make this connection, let G be the connected reductive group GL,, with its
usual BN-pair, F-structure, and Frobenius map o, so that G° = GL,(F) and G°" =
GLy(F,,), for a fixed m > 1. The definition of A involves representatives of the two
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(G?-classes of o-stable maximal tori in GG, and their norm maps. The classes of tori
are parametrized by the elements {1,w} of the Weyl group of G. The split torus T}
consists of the diagonal matrices in G, with the norm map Ny = Ngom 70 from T to
17, given by

Ni=14+0+---F+0™L

For the other class of tori, we have

TJ%T“‘“’%’{(g O?q):aeF;},

with W = _01 é , and ad(t) = w1, for ¢ € T;. The norm map N,, from T2"

to T, after these identifications, is given by
Ny =1+ cadw + - - - + (cadw)™ .

Let x be a nontrivial additive character of F, and I' = indggqp the Gelfand-Graev
character defined by the linear charcter ¢ of U, with

¢((1] ‘f):x(a),aeF.

Let H be the Hecke algebra associated with I, as in ([4], §5). For fixed m > 1,
Xm = X © I'rp,1 is a nontrivial additive character of F,,, and defines a Gelfand-Graev
character I, of G°", whose Hecke algebra is denoted by H,,.

For an o-stable maximal torus T of G, let fr : H — CT?, and r}"") : " — CT™
be the homomorphisms defined in ([4], Theorem 4.2). By Theorem 1 and Theorem 2
of [5], there exists a surjective homomorphism of algebras

A Hnp—H,
which is characterized as the unique linear map such that
N o_fcgn) =fr oA

and 3
Nyo fio) = fr, o A,

with NV; : CT°" — CT” the extension of Ny : T°" — T°, etc. We shall prove that
these two intertwining formulas correspond exactly to the identities for K (xym, ) in
terms of K (x,7) and J(xm, ©m) or K (Xm,Pm) in terms of J(x, ¢), in the calculation
of A at the standard basis element of H,, corresponding to 1 € G .

3.1. Lemma. Let ¢, be the standard basis element of H indezed by w (as in [{],
85, for the case of SLy). Then fr,(cy) € CIY, and can be identified with the element
in the group algebra of F* whose coefficient at a € F* is x(a+a™1). The image fr, (cy)
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of ¢y in CT%Y can be identified with the element of the group algebra of C whose co-
efficient at a € C is —x(a + a™).

The proof of the Lemma is straightforward, using the formula

fries)(®) =
< Q%,T>md|Ug| M Ce®)” | S v T (quirg™)um),

9€G7 uely
(quig—)asa=t

for ¢t € T, as in the proof of Theorem 5.2 of [4].

By the Lemma, the image of the standard basis element ¢y 5, of H, corresponding to
w, under the homomorphism fr}T) : Hm — CT?™, is the element of the group algebra of
FX whose coefficient at o € FX is X (e +0~1). Noting that To™ o T{9)™ o Tomadi
if m is odd, and TS~ = T¢™ if m is even, the image of ¢y, by the homomorphism
fr, can be identified with the element of the group algebra of C,,;, whose coefficient at
a € Cp, is —xm(a+ a™?) for @ € Cy, if m is odd, and with the element of the group
algebra of FX whose coefficient at o € FX is xm(a + a™!), if m is even.

The irreducible representations of the group algebra of F* are the extensions 7 of
multiplicative characters m of F*. For each such representation, we have

o fr(ew) =Y ma)x(a+a™)=K(x,7)

a€FX

and, as is easily verified,
7o Ny o £ (Cim) = K (Xm: Tm),

where N; denotes the extension of the norm map N; : T°" — T to a homomorphism

of group algebras.
Similarly, the irreducible representations of the group algebra of C are the exten-
sions ¢ of characters ¢ of C, and one has

7o fr.fcam) = = Y vl@x(a+a™) = =J(x,¢).
acC
Using the twisted norm map N,, = 1+cadu+- - - + (oadw)™ ! from T7*4)™ 4o Toadd,
one has
po jvw © 52?)(Cmgn) = _“](Xﬁnaq%n)
if m is odd, and when m is even,

4BC)]V;)O é;?)(cwﬂn) = K(Xm, m),

where J(Xm, ¥m) and K (Xm, ¥m) are defined as in §2.5.
Let P,(u,v) be the coefficient of 2™ in the expansion of the rational function

uz + 2v2?
14+ uz+4+v2?’
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with u,v viewed as indeterminates over C(z). The formulas for K(xm,7n) in terms
of K(x,n), and for J(xm,®m) or K(Xm,pm) in terms of J(x,¢) are both given in
terms of the polynomial P, (u,v), by Theorems 1 and 2. It is shown here that the
value of the norm map A : H,, — H at the standard basis element ¢, is also given
by the polynomial Pp,(u,v). Other values of A can be obtained from the result (see
the remarks following the Proposition). The polynomial (—1)™~1P,,(u,v), called the
Dickson polynomial in [10], is given by

(7]

Palit) = 3PS (™
j=0

(10] p. 228 and p. 355).

Let Pp(cy,gc—1) be the element of H obtained by substituting for v and v the
standard basis elements c; and c_;, where I is the identity matrix in G. It is easily
verified that 7 o fr,(c.;) = m(—1), for each multiplicative character = of F*, and
@ o fr,(c_1) = ¢(—1) for an arbitrary character ¢ of C.

We now have

Proposition. The element Py(cy,gc_1) € H satisfies the intertwining relations

Ny o £ (com) = fr(Pr(Cay g6-1))
and .
Ny o ffl(“r) (cwm) = fr, (Prm(ca, gc_1)).

It follows that
A(c'l.z'J,m) = Pm(c‘u')’ qC—I)'

Proof. By Theorem 1, it follows that, for each character 7 of F*,
K(Xma 7rm) = Pm(K(Xa 7T)7 qﬂ-(_l))‘
By the remarks preceding the statement of the proposition, this formula implies that

FolN;o 7(1:") (com) = Pu(fo fr(cs), ¢ o fry(c_1))

= 7(Pn(fr,(cw), ¢fr(c1))
= 7o fr,(Pulcs,qc-1))

using the facts that 7 and fy, are homomorphisms of algebras. As the maps {7} are a
complete set of irreducible representations of the group algebra of F*, it follows that

NI ° fq(’T)(ctiJ,m) = le (Pm(c'u'n qc—I)):

proving the first relation.
Now let ¢ be a character of C, and let m be odd. Then, by Theorem 2,

—J (Xm» ¥m) = Prn(=J (% ¥), ap(—1)).
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This implies
</~7 © Nw © f(::")(c'tb,m) = Pm((»5 o fTw (Cu')): Q¢ © fTw (C—I))
and the relation ~
Ny o £ (cwm) = fr,(Pm(cs, ge-1))

follows as in the first case.
If m is even, Theorem 2 implies that

K (Xm, ¢m) = Pu(=J (X, ), g0(~1)),

and hence ~
poNyo f(':u")(c.,,-,,m) = Pn(Po fr,(cw), qp o fr,(c-1)).

The relation 5
Ny o £ (cim) = Fr (Pm(cus ac—1))

follows as before.
The fact that A(cym) = Pm(cw, gc—r) now follows from Theorem 1 of [5].

The preceding result also gives the value of A at standard basis elements cuym,

with ¢ in the center of GLy(Fy). If ¢ = ( 6\ ?\ ),A € F%, then 5™ (caim) can be

identified with the element of the group algebra of F}, whose coeflicient at o € F} is
Xm(@A™! + a~1X). For a character 7 of F*, one has

7#oNjo f,}’l")(ctd,,m) = Z ( Z Xm (@A™t + oz_lz\)) 7(a) = K (Xm Tm)Tm(A).

a€FX “oeFx
Na=a

A similar result holds for the torus Ty, using the formula for f}:u") (ctw,m) from ([2], §2).
By the Proposition above, and the facts that fr, (¢c;) and fr, (cs) can both be identified
with the element s in the group algebra of the torus for a central element s € GLy(F),
it follows that

A(cppm) = eny @ A(cwm) = ey ) Pm(cw, gc-1)-
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