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QMW-97-2NI97005hep-th/9702067February, 1997Actions For (2; 1) Sigma-Models and StringsC.M. HullPhysics Department, Queen Mary and West�eld College,Mile End Road, London E1 4NS, U.K.andIsaac Newton Institute, 20 Clarkson Road,Cambridge CB3 0EH, U.K.ABSTRACTE�ective actions are derived for (2,0) and (2,1) superstrings by studying thecorresponding sigma-models. The geometry is a generalisation of Kahler geometryinvolving torsion and the �eld equations imply that the curvature with torsionis self-dual in four dimensions, or has SU(n;m) holonomy in other dimensions.The Yang-Mills �elds are self-dual in four dimensions and satisfy a form of theUhlenbeck-Yau equation in higher dimensions. In four dimensions with Euclideansignature, there is a hyperkahler structure and the sigma-model has (4,1) super-symmetry, while for signature (2,2) there is a hypersymplectic structure consistingof a complex structure squaring to � and two `real structures' squaring to  . Thetheory is invariant under a twisted form of the (4,1) superconformal algebra whichincludes an SL(2;R) Kac-Moody algebra instead of an SU(2) Kac-Moody algebra.Kahler and related geometries are generalised to ones involving real structures.



1. IntroductionMartinec and Kutasov [1-3] have argued that di�erent vacua of the super-string with (2,1) world-sheet supersymmetry correspond to the 11-dimensionalmembrane, the type IIB string, the heterotic and the type I strings. This sug-gests that the (2,1) string could be useful in the search for the degrees of freedomappropriate for the description of the fundamental theory underpinning M-theoryand superstring theory. (Another proposal is given by the matrix model [5].) Itwas shown in [6] that the usual string with (2,2) supersymmetry is a theory of self-dual gravity in a four-dimensional space-time with signature (2,2) governed by thePlebanski action, while in [7] it was argued that the (2,2) supersymmetric stringbased on twisted chiral multiplets is a theory of self-dual gravity with torsion, whichturns out to be a free theory. The (2,1) and (2,0) strings [8] are again formulatedin a four-dimensional space-time with signature (2,2), but now a null reductionmust be imposed to obtain a space with signature (2,1) (which corresponds to amembrane world-volume [1]) or a space with signature (1,1) (which correspondsto a string world-sheet [1]). The (2,2)-dimensional theory before null-reduction isa theory of gravity with torsion coupled to Yang-Mills gauge �elds. The purposeof this paper is to investigate further the target space geometry of (2,0) and (2,1)strings and sigma-models.We give an e�ective action for the gravitational and anti-symmetric tensor de-grees of freedom of the (2,1) string which was obtained independently by Martinecand Kutasov [3], who also proposed a generalisation to include the Yang-Mills �eldsand checked that this agrees with the S-matrix of (2,1) strings to quartic order inthe �elds. A sigma-model derivation of this action is given and generalised togive an e�ective action whose variation gives the conditions found in [10-13] forconformal invariance of general (2,0) and (2,1) sigma-models. The geometry is ageneralisation of Kahler geometry with torsion [9] and the �eld equations implythat the curvature with torsion is self-dual in four dimensions, or has SU(n;m)holonomy in other dimensions. In four dimensions with Euclidean signature, there1



is a hyperkahler structure and the sigma-model has (4,1) supersymmetry, whilefor signature (2,2) there is a hypersymplectic structure [14,15] { instead of threecomplex structures squaring to � , there is a complex structure and two `realstructures' or `locally product structures' squaring to + { and the model is in-variant under a twisted form of the (4,1) superconformal algebra which includesan SL(2;R) Kac-Moody algebra instead of an SU(2) Kac-Moody algebra. Kahlerand related geometries are generalised to ones involving real structures. The Yang-Mills �elds are self-dual in four dimensions and satisfy the Uhlenbeck-Yau equationg���F��� = 0 in higher dimensions, but where the metric g��� involves correctionsdependent on the gauge-�elds. The action is related to that of [16], and involvesthe Bott-Chern form [17,18].The results regarding the amount of supersymmetry can be summarised interms of the holonomy of a certain connection, which will have torsion in general.For Euclidean signature, the holonomy of a general D-dimensional manifold M isO(D), and a (1,1) supersymmetric sigma-model can be de�ned on M . If D = 2nand the holonomy H is in U(n), there is a covariantly constant complex structureJ , J2 = � , and the (1,1) model in fact has (2,1) supersymmetry. If H is inSU(n), then there is a covariantly constant spinor and so such a space preservessome space-time supersymmetry, and the space is a solution of string theory (orrelated to one by a certain deformation). In the case of compact M with vanishingtorsion, these are the Calabi-Yau spaces. If n = 2m and H � USp(m), (whereUSp(m) is compact, with the convention that USp(1) = SU(2)) then there is acovariantly constant hyperkahler structure consisting of three complex structuresI; J;K satisfying the quaternion algebraI2 = J2 = K2 = � ;IJ = �JI = K;JK = �KJ = I;KI = �IK = J (1:1)and the (1,1) model has (4,1) supersymmetry.These results [13] for Euclidean signatures are well-known, but they can begeneralised to other signatures. For signature (2n1; 2n2), if H is in U(n1; n2) then2



there is again a complex structure and (2,1) supersymmetry, and the generalisedCalabi-Yau condition is H � SU(n1; n2). Consider now the case of signature(d; d), for which the name Kleinian geometry was suggested in [14]; the case d = 2is relevant for (2; p) strings. In general the holonomy is in O(d; d), but if d = 2nand H � U(n; n) there is a complex structure J leading to (2,1) supersymmetryand the Calabi-Yau-type condition is H � SU(n; n). If on the other hand H �GL(n;R), then there is a real structure S satisfying S2 =  and there is an extrasupersymmetry, but the right-handed superalgebra is of the formfQA; QBg = �ABP (1:2)where A = 1; 2 and �AB = diag(1;�1) and P is the right-moving momentum. Ifthere is no torsion, then the metric is given in terms of a scalar potential analogousto the Kahler potential, while if there is torsion, both the metric and torsion aregiven in terms of a vector potential, analogous to the one in [9]. The conditionH � SL(n;R) is the analogue of the Calabi-Yau condition; it implies Ricci-
atnessif there is no torsion, or the generalisation of this that corresponds to the string�eld equations if there is torsion. Finally, if n = 2m and H � Sp(m;R) (whereSp(m;R) is non-compact, with Sp(1) = SL(2;R)), then there are three covariantlyconstant tensors J; S; T satisfying the pseudoquaternion algebra [14,15]J2 = � ; S2 = T 2 =  ST = �TS = �J; TJ = �JT = S; JS = �SJ = T (1:3)J is a complex structure and S; T are real structures and the sigma-model againhas a twisted (4; 1) superconformal symmetry. The right-handed superalgebra isagain of the form (1.2), where now A = 1; 2; 3; 4 and �AB = diag(1; 1;�1;�1).As Sp(m;R) is a subgroup of both SU(m;m) and SL(2m;R), such spaces givestring solutions. For m = 1, SU(1; 1) = SL(2;R) = Sp(1;R) and spaces with thisholonomy have self-dual curvature (with torsion).3



2. The (2,1) Supersymmetric Sigma-ModelThe (1,1) supersymmetric sigma-model with metric gij and anti-symmetrictensor bij has the (1,1) superspace action [19]S = Z d2xd2� [gij + bij]D+�iD��j (2:1)It will be conformally invariant at one-loop if there is a function � such thatR(+)ij � 2r(irj)�� 2Hijkrk� = 0 (2:2)where R(+)ij is the Ricci tensor for a connection with torsion. We de�ne the con-nections with torsion �(�)ijk = � ijk� �H ijk (2:3)where n ijko is the Christo�el connection and the torsion tensor isHijk = 32@[ibjk] (2:4)The curvature and Ricci tensors with torsion areR(�)klij = @i�(�)kjl � @j�(�)kil + �(�)kim �(�)mjl � �(�)kjm �(�)mil ; R(�)ij = R(�)kikj(2:5)The equation (2.2) can be obtained from varying the actionS = Z dDx e�2�pjgj�R � 13H2 + 4(r�)2� (2:6)The target space coordinates xi are the lowest components of the super�elds �i(i = 1; :::;D). 4



The sigma model is invariant under (2,1) supersymmetry [9-13] if the targetspace is even dimensional (D = 2n) with a complex structure J ij which is covari-antly constant r(+)k J ij = 0 (2:7)with respect to the connection �(+) de�ned in (2.3), and with respect to which themetric is hermitian, so that Jij � gikJkj is antisymmetric.It is useful to introduce complex coordinates z�; �z �� in which the line elementis ds2 = 2g���dz�d�z �� and consider the Dolbeault cohomology. An N -form is de-composed into a set of (p; q) forms with p factors of dz and q factors of d�z withp + q = N . The exterior derivative decomposes as d = @ + �@ and it is useful tode�ne d̂ = i(@� �@) and � = i@ �@ = 12 d̂d. As �2 = 0, � de�nes its own cohomology.Useful lemmas are (i) if @U = 0 and �@U = 0 for some (p; q) form U , then locallythere is a (p � 1; q � 1) form W such that U = �W (ii) if �U = 0 for some forsome (p; q) form U , then locally there is a (p� 1; q) form W and a (p; q � 1) formX such that U = �@X + @W .The conditions for (2,1) supersymmetry imply that the (0,3) and (3,0) partsof the 3-form H vanish, and H is given in terms of the fundamental 2-formJ = 12Jijd�i�d�j = ig���dz��d�z �� (2:8)by H = i(@ � �@)J (2:9)Then the condition dH = 0 implies i@ �@J = 0 (2:10)so that locally there is a (1,0) form k = k�dz� such thatJ = i(@�k + �@k) (2:11)5



The metric and torsion potential are then given, in a suitable gauge, byg��� = @��k�� + �@��k�b��� = @��k�� � �@��k� (2:12)If k� = @�K for some K, then the torsion vanishes and the manifold is Kahlerwith Kahler potential K, but if dk 6= 0 then the space is a hermitian manifold ofthe type introduced in [9]. The metric and torsion are invariant under [25]�k� = i@��+ �� (2:13)where � is real and �� is holomorphic, @���� = 0. It will be useful to de�ne thevector vi = HjklJ ijJkl (2:14)together with the U(1) part of the curvatureC(+)ij = J lkR(+)klij (2:15)and the U(1) part of the connection (2.3)�(+)i = Jkj�(+)jik = i(�(+)�i� � �+��i�� ) (2:16)In a complex coordinate system, (2.15) can be written as C(+)ij = @i�(+)j � @j�(+)i .If the metric is Riemanian, then the holonomy of any metric connection (in-cluding �(�)) is contained in O(2n), while if it has signature (2n1; 2n2) wheren1 + n2 = n, it will be in O(2n1; 2n2). The holonomy H(�(+)) of the connection�(+) is contained in U(n1; n2). It will be contained in SU(n1; n2) if in additionC(+)ij = 0 (2:17)where the U(1) part of the curvature is given by (2.15). As Cij is a representativeof the �rst Chern class, a necessary condition for this is the vanishing of the �rstChern class. 6



It was shown in [10] that geometries for which�(+)i = 0 (2:18)in some suitable choice of coordinate system will satisfy the one-loop conditions(2.2), provided the dilaton is chosen as� = � log jdetg���j (2:19)which implies @i� = 12vi (2:20)Moreover, the one-loop dilaton �eld equation is also satis�ed for compact manifolds,or for non-compact ones in which r� falls o� su�ciently fast [11-13]. This impliesthat H(�(+)) � SU(n1; n2) and these geometries generalise the Kahler Ricci-
ator Calabi-Yau geometries, and reduce to these in the special case in which H = 0.These are not the most general solutions of (2.2). In the special case in whichH = 0 and the geometry is Kahler, the condition (2.2) becomesRij = 2rirj� (2:21)which implies that either � is constant and the geometry is Kahler-Ricci-
at, orthat J ijrj� is a Killing vector, and the geometry is a generalised `linear dilaton'vacuum of a type that has been analysed in [22]. If H 6= 0, then this generalisesand the solutions are either of the type described above, or are ones in which (2.19)isn't satis�ed and which have a Killing vector; this latter case will be discussed in[23] and here we will restrict ourselves to the case of SU(n1; n2) holonomy with(2.18),(2.19) holding. 7



The equation (2.18) can be viewed as a �eld equation for the potential k�. Itcan be obtained by varying the actionS = Z dDxqjdetg���j (2:22)where g��� is given in terms of k� by (2.12). This action was obtained independentlyby Martinec and Kutasov [3,4]. It can be rewritten asS = Z dDxjdetgijj1=4 (2:23)which is non-covariant, as the �eld equation (2.18) was obtained in a particularcoordinate system. However, it is invariant under volume-preserving di�eomor-phisms. 3. (4,1) Supersymmetry, Real Structures,Hypersymplectic Structures, and Kleinian GeometryIt was argued in [21] that (4,1) sigma-models are �nite to all orders in pertur-bation theory. For Euclidean signature, the model (2.1) will have (4,1) supersym-metry if the complex dimension is even, n = 2m, and H(�(+)) � USp(m) (withUSp(1) = SU(2)). This implies that there are three complex structures I; J;Ksatisfying the quaternion algebra (1.1) and each satisfying (2.7):r(+)k I ij = r(+)k J ij = r(+)k K ij = 0 (3:1)The algebra (1.1) can be written asJaJ b = ��ab + �abcJc (3:2)where a = 1; 2; 3 and Ja = fI; J;Kg. 8



In particular, as USp(1) = SU(2), it follows that in four dimensions, D =2n = 4, a geometry satisfying (2.18) will be �nite to all orders and so there areno corrections to the action (2.22) of higher order in the sigma-model couplingconstant �0. The curvature is anti-self-dual, satisfyingR(+)ijkl = �12�ijmnR(+)mnkl (3:3)Consider now the case of non-Euclidean signature. For 4 dimensions with theKleinian signature (2,2), the vanishing of the U(1) part of the curvature implies thatthe curvature is again anti-self-dual, (3.3), and that the holonomy is SU(1; 1) =SL(2;R) = Sp(1;R). There are no longer three complex structures but there arethree covariantly constant tensors J; S; T satisfying the pseudoquaternion algebra[14,15] (1.3) or, equivalently, SaSb = ��ab + fabcSc (3:4)where a = 1; 2; 3, S1 = J; S2 = S; S3 = T , �ab = diag(+1;�1;�1) is the SL(2;R)Killing metric and fabc are the SL(2;R) structure constants. Each of the Sa iscovariantly constant with respect to the connection �(+)r(+)k J ij = r(+)k Sij = r(+)k T ij = 0 (3:5)and each satis�es Saij = �Saji (3:6)The complex structure is J = S1 which squares to ��ij while S2; S3 each square to+�ij. Each of the Sa is requireds to be integrable, so that the Nijenhuis-type tensorvanishes and there is a coordinate system in which the real or complex structure isconstant.? However they are not simultaneously integrable in general i.e. for eachSa there is a coordinate system in which (Sa)ij is constant, but there may not beone in which all three are simultaneously constant.? The case of almost complex structures or almost real structures which are not integrablewill not be considered here, although they do lead to more general models.9



The S; T are each real structures [14,15], sometimes called locally productstructures [19,24]. If the Saij (a = 2; 3) had been symmetric, the metric would havebeen a locally product metric and the space would have been a locally product spaceof the type discussed in [19]. The fact that they are anti-symmetric gives a di�erentstructure, however. Choosing adapted real coordinates u�; v ~� (� = 1; 2; ~� = 1; 2)in which S, say, takes the formSij =  ��� 00 �� ~� ~� ! (3:7)the condition (3.6) implies that the line element takes the formds2 = 2g�~�(u; v)du�dv ~� (3:8)so that @=@u� and @=@v ~� are null vectors. In general, this coordinate system willbe incompatible with the complex structure J .Spaces of SL(2;R) holonomy have two spinors that are covariantly constantwith respect to �(+), "A (A = 1; 2) and these can be used to construct threecovariantly constant 2-forms S(AB) = �"A
ij"B, which can be identi�ed with theSa; this gives the simplest way of obtaining the above results. The sigma-modelswith these target spaces do not have the usual (4,1) supersymmetry. They havethree currents ja = 12Saij i j (3:9)generating an SL(2;R) Kac-Moody algebra and four supercurrentsG0 = gij@X i j; Ga = Saij@X i j (3:10)The currents T;G0; G1; j1 generate an N = 2 superconformal algebra (whereT is the energy-momentum tensor). The full set of right-handed currents10



fT;G0; Ga; jag generate a non-compact twisted form of the (small) N = 4 su-perconformal algebra. The global limit is a (4,1) superalgebra in which the fourright-handed supercharges QA = fQ0; Qag (with A = 0; 1; 2; 3) satisfyfQAQBg = �ABP (3:11)where �AB = diag(1; 1;�1;�1) is the O(2; 2) Killing metric and P is the right-moving momentum.A similar structure obtains for spaces of signature (2n; 2n) with holonomySp(n;R) { the subgroup of U(n; n) preserving an anti-symmetric matrix, or equiv-alently the subgroup of O(2n; 2n) preserving three matrices S; T; J satisfying (1.3).Sigma-models with such target spaces will have twisted (4; 1) supersymmetry.Spaces with one covariantly constant real structure S satisfying the conditionsdiscussed above will have twisted (2,1) supersymmetry, with global limit given by(3.11) with A = 1; 2 and �AB = diag(1;�1). If the metric is to be invertible(detg 6= 0), this requires the metric to have signature (m;m) and the holonomy isthen H(�(+)) � GL(m;R).Consider �rst the case in which there is no torsion, H = 0. Then the antisym-metric tensors Jaij or Saij are closed, as a result of (3.1) or (3.5), and so each closed2-form de�nes a symplectic structure. For Euclidean signature, the metric is Kahlerwith respect to each of the complex structures I; J;K and the space is hyperkahler.The fI; J;Kg constitute a hyperkahler structure. In complex coordinates adaptedto any one of the complex structures, the metric isds2 = 2g���dz�d�z ��; g��� = @2@z�@�z ��K (3:12)for some locally de�ned Kahler potential K.For signature (2n; 2n), the fJ; S; Tg constitute a hypersymplectic structure[15]. The metric is Kahler with respect to the complex structure J , while in11



coordinates adapted to either of the real structures, S say, the metric takes theform ds2 = 2g�~�(u; v)du�dv ~�; g�~� = @2@u�@�v ~�K (3:13)for some locally de�ned potential K. In these coordinates, the symplectic structureis S = gamduâ dvm.If H 6= 0, then the 2-forms Ja or Sa are not closed, but I; J;K are �-closed. Inthe Euclidean case, one can choose complex coordinates adapted to any one of thethree complex structures, and the formulae (2.8)-(2.12) then hold for each choiceof complex structure. For the Kleinian signature (2n; 2n), the complex structure Jagain leads to conditions (2.8)-(2.12). For the real structure S (or T ) it is useful tointroduce the adapted coordinates u�; v ~�, and consider the analogue of Dolbeaultcohomology. An N -form is decomposed into a set of (p; q) forms with p factorsof du and q factors of dv with p + q = N . The exterior derivative decomposes asd = @u + @v where @u : H(p;q) ! H(p+1;q) and @v : H(p;q) ! H(p;q+1). It is usefulto de�ne d̂ = (@u � @v) and � = @u@v = 12 d̂d. Again �2 = 0, so that � de�nes itsown cohomology. Then H is given in terms of the fundamental 2-formS = 12Sijd�i�d�j = g�~�du��dv ~� (3:14)by H = (@u � @v)S (3:15)The condition dH = 0 then implies @u@vS = 0 (3:16)so that locally there is a (1,0) form k = k�du� and a (0,1) form ~k = ~k~�dv ~� such12



that S = @u~k + @vk (3:17)The metric and torsion potential are then given, in a suitable gauge, byg�~� = @�~k~� + @~�k�b�~� = @�~k~� � @~�k� (3:18)so that H = @u@v(k + ~k) (3:19)If k� = @�� and ~k~� = @~�~� for some locally de�ned potentials �; ~�, then the torsionvanishes and S = @u@v(~�� �) (3:20)so that (3.13) is satis�ed with potential K = ~�� �.The power-counting arguments of Howe and Papadopoulos [21] can be gen-eralised to apply to models with this twisted (4; 1) supersymmetry, so that suchmodels should again be �nite. This is supported by the results of Martinec andKutasov [3], who showed that the action (2.22) generates the correct S-matrix forpart of the (2,1) string, con�rming that this action receives no corrections in D = 4.For target spaces of signature (m;m) with holonomy GL(m;R) with one co-variantly constant integrable real structure S satisfying (3.5),(3.6), the geometryis given in terms of a scalar potential by (3.13) if H = 0 or by a vector potential(3.18) if H 6= 0. The metric and torsion are preserved by the gauge transformations�k� = @��+ ��; �~k~� = �@~��+ ~�~� (3:21)where @~��� = @�~�~� = 0. In analogy with (2.14),(2.15),(2.16), it will be useful to13



de�ne the vector ~vi = HijkSjk (3:22)together with the GL(1;R) part of the curvature~C(+)ij = SlkR(+)klij (3:23)and the GL(1) part of the connection (2.3)~�(+)i = Skj�(+)jik = (�(+)�i� � �+~�i~� ) (3:24)If H = 0, then the curvature 2-form is a (1,1) form and the only non-vanishingcomponents of the curvature are R�~�
~�. It follows that the Ricci tensor R�~� isproportional to is proportional to ~C�~� and is given byR�~� = @�@~� log jdetg
~�j (3:25)with R�� = 0. Thus the Einstein equation Rij = 0 is equivalent to demandingSL(m;R) holonomy and gives, with a suitable choice of coordinates,jdetg
~�j = 1 (3:26)which gives a Monge-Ampere equation for K on using (3.13).If H 6= 0, the condition (2.18) of the complex case is replaced by~�(+)i = 0 (3:27)and this again implies that the one-loop �eld equation (2.2) is satis�ed, provided thedilaton is chosen as (2.19). Furthermore, the condition (3.27) implies ~C(+)ij = 0 andso the holonomy is in SL(m;R). The �eld equation (3.27) can again be obtainedfrom the action (2.23), but where now the metric is given by (3.18) in terms of thepotentials k; ~k corresponding to the real structure S, and it is these that are variedto give the �eld equation (3.27). 14



It is remarkable how much of the geometry based on a complex structure Jcarries over to the case of a real structure S. Instead of using complex numbers,it is sometimes useful to use double numbers in this context, which are based onintroducing a number e satisfying e2 = 1 instead of the usual imaginary unit isatisfying i2 = �1 [14].4. The (2,0)-SupersymmetricSigma-Model and the Bott-Chern FormConsider now the (1,0) sigma-model. It consists of (1,0) scalar super�elds �itaking values in the target space M and coupling to gij and bij, plus fermionic�elds  M which are sections of S+ � V where S+ is the world-sheet chiral spinorbundle and V is a vector bundle over M with structure group G; they couple tothe connection Ai on V [9]. The (1,0) superspace action is [9]S = Z d2xd� (gij + bij) @��iD�j +  M (D M +AMi ND� N ) (4:1)where D is the superspace supercovariant derivative The conditions for conformalinvariance are derived from the actionS = Z dDxe�2�pjgj�R� 13H2 + 4(r�)2��02 [tr(FijF ij)�R(�)abijR(�)baij ] +O(�02)� (4:2)where H is now given by H = 12db + �0[
(A)� 
(!�)] (4:3)and 
 is the Chern-Simons 3-formtr(F 2) = d
(A); 
(A) = tr(AdA+ 23A3) (4:4)The curvatures R(�) and connections �(�) are given by (2.3),(2.5) with the torsion(4.3). A vielbein eai has been introduced, with the corresponding spin connections15



!(�)abi , curvatures R(�)abij and curvature 2-formsR(�)ab. The gravitational Chern-Simons term is given bytr(R(�)2) = R(�)abR(�)ba = d
(!(�)); 
(!(�)) = tr(!(�)d!(�) + 23!(�)3)(4:5)The new torsion satis�es dH = �0[tr(F 2)� tr(R(�)2)] (4:6)and the condition Z� tr(F 2) = Z� tr(R(�)2) (4:7)is required over any 4-cycle � for H to be well-de�ned. A key identity isR(+)ijkl �R(�)klij = �2H[ijk;l] (4:8)which can be rewritten using (4.6). As H appears in the gravitational Chern-Simons term on the right hand side of (4.3), the equations (4.3),(4.5) only implicitlyde�ne H, but H can be constructed perturbatively in �0.The model has (2,0) supersymmetry classically if (i) (M;gij ; bij) is a (2,1) ge-ometry, i.e. a hermitian space with torsion whose complex structure is covariantlyconstant (2.7) with respect to the connection �(+) de�ned by (2.3),(4.3), and (ii)V is a holomorphic vector bundle, i.e. the �eld strength F = dA + A2 is a (1,1)form [9]. This implies that the (1,0) part of the connection A = A�dz� satis�esA = V �1@V (4:9)for some complex G-valued function V , i.e. V takes values in the complexi�cationof G. (A group element in a neighbourhood of the identity is of the form g =exp�mtm where �m are real coordinates and tm are elements of the Lie algebra16



g. The prepotential is of the form V = exp vmtm where vm are complex, and�V = exp �vmtm.) Under a gauge transformation with parameter g(x) 2 GA! g�1dg + g�1Ag (4:10)As A = A +A�, the connection will be pure gauge if V is real. The prepotentialV transforms as V ! ��V g (4:11)under a gauge transformation and under a pre-gauge transformation with holo-morphic G-valued parameter �(z) 2 G; the pre-gauge transformations leave Ainvariant. It is also useful to de�neU = V �V �1 (4:12)which is invariant under the gauge transformations since g is real, but transformsunder the pre-gauge transformations asU ! ��U��1 (4:13)The gauge transformations (4.10),(4.11) have parameter g taking values in G.Consider the (1,0) form a = U�1@U (4:14)which can be rewritten as a = �V A�V �1 + �V d�V �1 (4:15)Thus a is related to A by a complex gauge transformation (4.10),(4.11) with pa-rameter g = �V �1 taking values in the complexi�cation of G. Thus the complexi�ed17



vector bundle Vc is a holomorphic bundle with holomorphic connection a (see e.g.[26]). Similarly, the complex gauge transformationA! �a � V AV �1 + V dV �1 = U �@U�1 (4:16)de�nes an anti-holomorphic connection �a which is a (0,1) form. Under the pre-gauge transformations (4.13), a! ��1a�+ ��1@� (4:17)and the �eld strength is f = da� a2 = �@a (4:18)since the (0,1) part of a vanishes. This is related to F byF = �V f �V �1 = V �fV �1 (4:19)so that tr(F n) = tr(fn) = tr( �fn) (4:20)As the (2,2) form tr(F 2) satis�es @tr(F 2) = �@tr(F 2) = 0, then by lemma (i)there is a (1,1) form �(V; �V ) such thattr(F 2) = i@ �@� (4:21)�(V; �V ) is the Bott-Chern 2-form [17], constructed in [18,16,26]. The Chern-Simonsform 
(A) given by (4.4) then satis�es
(A) = d̂� + d� (4:22)for some 2-form �(V; �V ). Note that the Bott-Chern form can be written entirelyin terms of U , �(V; �V ) = �(U) but � cannot.18



An instructive example is that in which G is abelian. Then Fm = dAm andthere are real scalars �m; �m (m = 1; : : : ; rank(G)) such thatAm = Am + �Am = d�m + d̂�m; Am = @(�m + i�m);am = 2i@�m �am = �2i�@�m (4:23)and V = exp(� + i�); U = exp(2i�) (4:24)Then Fm = dAm = @a = �@�a = �2i@ �@�m (4:25)and tr(F 2) = �4@ �@�m@ �@�mand the Bott-Chern form can be chosen to be� = �4i@�m�@�mThe Chern-Simons form AdA then satis�es (4.22) with� = �2i�mFm (4:26)Under a gauge transformation (4.10),(4.11) with g = e� and � = e2l (with �@lm = 0)�Ami = @i�m; ��m = i(lm � �lm); ��m = �m + (lm + �lm) (4:27)In the non-abelian case, introducing coordinates �m on the group manifold M ,one has � = (Gmn +Bmn)@�m �@�n (4:28)de�ning a metric Gmn(�) and anti-symmetric tensor Bmn(�). This can be con-structed explicitly as follows [16]. Let A(t; x�) be a 1-parameter family of con-nections labelled by 0 � t � 1, constructed from pre-potentials V (t; x�) with19



corresponding t-dependent U; a; f; F de�ned as above. Then@@tf = �@ _a = �@@a(U�1 _U) (4:29)where @a(U�1 _U) � @(U�1 _U ) + [a; U�1 _U ] (4:30)so that @@ttrF n = @@ttrfn = n tr ��@a(U�1 _U)fn�1�= n�@@atr�(U�1 _U)fn�1�= n�@@tr�(U�1 _U )fn�1� (4:31)Thus if F (1; x�) = F (x�) and F (0; x�) = F̂ (x�),tr(F n) = tr(F̂ n) + i�@@�n (4:32)where�n = �i1n Z dt tr(U�1 _Ufn�1) = �i1n Z dt tr(U�1 _U [ �@(U�1@U)]n�1) (4:33)The case n = 2 de�nes the form needed here, �(U) = �2, which will exist locally.Note that it is only de�ned by (4.21) up to the addition of a �-closed term,� ! � + @X + �@Y .In four dimensions, the Donaldson actionZ J^� (4:34)gives an action on any hermitian space with complex structure 2-form J whosevariation with respect to U or � implies that F is self-dual. In 2n+ 2 dimensions,20



the action Z Jn^� (4:35)implies that the (2,0) part of F vanishes, and F satis�es the Uhlenbeck-Yau equa-tion J ijFij = 0 (4:36)The two-dimensional case S = R � gives a Wess-Zumino-Witten model for thecomplexi�cation of G.For geometries in which dH = 0 (e.g. for the (2,1) sigma-model or for the (2,0)model in the classical limit �0 ! 0), the fact that !(+) has U(n1; n2) holonomytogether with (4.8) implies that R(�) is a (1,1) form, so that the tangent bundleT (M) with connection !(�) is holomorphic. Then there are complex U(n1; n2)-valued scalars W such that!(�) = W�1@W + (W�1@W )�and there is a Bott-Chern form �(Y ) and a 2-form �(W; �W ) such that
(!(�)) = d̂� + d� (4:37)where Y = W �W�1 (4:38)In the quantum case, the Chern-Simons corrections to H and hence to !(�) give�0 corrections to these equations, but again there are forms �(Y ) and �(W; �W)satisfying (4.37) which can be constructed order by order in �0.There will be (2,0) supersymmetry in the quantum theory if the complex struc-ture is covariantly constant with respect to the connection given by (2.3),(4.3),whose torsion now includes the Chern-Simons terms (4.3) [9]; thus this connection21



has U(n1; n2) holonomy. This again implies that H is given by (2.9), but now (4.6)implies [11,12] i@ �@J = �0[tr(F 2)� tr(R(�)2)] (4:39)This implies the local existence of a (1,0) form k such thatJ = �0�̂ + i(@�k + �@k) (4:40)where �̂ = �(U) ��(Y ) (4:41)which will be well-de�ned if (4.7) holds. Then the metric is given byg��� = @��k�� + �@��k� + i�0�̂��� (4:42)while the torsion potential can be chosen to beb��� = @��k�� � �@��k� + �0�̂��� (4:43)where �̂��� = ����(V; �V )� ����(W; �W ) (4:44)This is in agreement with the results of Howe and Papadopoulos [26], in which itwas shown that all anomalies in the (2,0) sigma-model can be cancelled by adding�nite local counterterms to the gij; bij, so thatgij ! gij + �0�̂ij; bij ! bij + �0�̂ij (4:45)together with attributing to bij the standard anomalous transformations�bij = �0tr(Ad� � !(�)d�) (4:46)under Lorentz and gauge symmetries with parameters �; � respectively [9,26]. Notethat whereas shifting gij by a counterterm proportional to trAiAj, which was used22



in the arguments of [3], is su�cient to remove the sigma-model anomalies in the(1,0) model, this is not consistent with (2,0) supersymmetry and it is necessary touse the counterterms (4.45), as shown in [26].The Yang-Mills �eld equation is, to lowest order in �0,D(+)iFij � 2ri�Fij = 0 (4:47)where D(+) is the gauge and gravitational covariant derivative involving the con-nections �(+) and A. This can be integrated to give the Uhlenbeck-Yau equation(4.36), which can be rewritten as g���F��� = 0 (4:48)Indeed, di�erentiating (4.36) and using (2.7),(2.14),(2.20) gives (4.47). TheUhlenbeck-Yau equation (4.36) will receive higher order corrections in �0 in gen-eral. Note that the complex structure J ij in (4.36) is the modi�ed one containingthe Bott-Chern form �̂.The conditions given above are su�cient for the sigma-model to be conformallyinvariant to lowest order in �0. These are not the most general solutions, but theyare precisely the ones that will admit Killing spinors and so be invariant underspacetime supersymmetries when considered as superstring backgrounds [11,12].The more general backgrounds, which necessarily have an isometry, will be dis-cussed in [23]. These �eld equations are obtained by varying the action (2.23) withrespect to k� and V , where g��� is given by (4.42). Then (2.23) is the e�ectiveaction generating the conformal invariance conditions for (2,0) sigma models tolowest order in �0, and so is the leading part of the e�ective action for (2,0) strings.Consider now the conditions for the (1,0) action (4.1) to have a twisted (2,0)supersymmetry. As in the last section, this requires the existence of a real struc-ture S on M satisfying (3.5),(3.6). Invariance of the terms in (4.1) involving the23



fermionic super�elds  requires that the Yang-Mills �eld strength satis�esS[ikFj]k = 0 (4:49)so that the �eld strength F is a (1,1) form (F�� = 0, F~�~� = 0) and this impliesthat A = A+ ~A (4:50)where A = V �1@uV; ~A = ~V �1@v ~V (4:51)for two independent real potentials V; ~V , each taking values in G (not its com-plexi�cation). The potential A will be pure gauge if V = ~V . The Uhlenbeck-Yauequation is replaced by SijFij = 0 (4:52)which is equivalent to g�~�F�~� = 0 (4:53)The results described above for the usual (2,0) model generalise straightforwardlyto this twisted case. In particular, there is a Bott-Chern-type form ~� and a form~� such that tr(F 2) = �0@u@v ~� (4:54)and the Chern-Simons form 
(A) (4.3) is given by
(A) = (@u � @v) ~�(U) + d~�(V; ~V ) (4:55)where U = V ~V �1. Similarly, the spin-connection has prepotentials W; ~W and thegravitational Chern-Simons term gives a form ~�(Y ) with Y = W ~W�1. and the24



quantum metric is g�~� = �0�̂�~� + @�~k~� + ~@~�k� (4:56)where �̂ = ~�(U) � ~�(Y ) (4:57)The �eld equations are again obtained by varying (2.23), where the metric is givenby (4.56). 5. The (2,1) StringFor the (2,0) sigma-model to have (2,1) supersymmetry, it is necessary thatthe fermions  M split into a set  i = eia a which can combine with the (2,0)super�elds �i to form (2,1) supermultiplets, and a set  M 0 on which the extrasupersymmetry is non-linearly realised. Thus the vector bundle V should be ofthe form TM � V 0 where TM is the tangent bundle and V' is some other bundlewith structure group G0 [1]. The structure group G of V is then in G0 � O(n).The fermions  M then split into ( a;  M 0), with M 0 = 1; : : : dim(V 0). The  a aresections of TM �S+ and are the superpartners of the (2,0) scalar multiplets. Thesupercurrent generating the extra supersymmetry on the fermions  m0 is of theform G = 16fM 0N 0P 0 M 0 N 0 P 0 (5:1)where fM 0N 0P 0 are the structure constants of some Lie group, so that this super-symmetry is realised non-linearly on the fermions.The connection A decomposes into a connection on TM and a connection A0on V 0. The connection on TM given by restricting the V connection A to TMmust be gauge-equivalent to !(�) [10-13], so that in a suitable gauge A = A0+!(�)and there is a prepotential V 0 for A0. Substituting this in the conditions obtained25



above for (2,0) supersymmetry, we obtainH = 12db+ �0
(A0) (5:2)As there are no gravitational Chern-Simons terms, H does not appear on the righthand side, so that (5.2) gives H explicitly. The global condition (4.7) now becomesR� tr(F 0F 0) = 0 for all 4-cycles �. Theni@ �@J = �0tr(F 0)2 (5:3)and there is (1,0) form k such thatJ = �0�(U 0) + i(@�k + �@k) (5:4)and the metric and torsion potential are given byg��� = i�0����(U 0) + @��k�� + �@��k�b��� = i�0����(V 0; �V 0) + @��k�� � �@��k� (5:5)The Yang-Mills equation becomes J ijF 0ij = 0 (5:6)These equations can be obtained by varying the action (2.23).It will be useful to write the metric in terms of a �xed background metric ĝ���(e.g. a 
at metric) which is given in terms of a potential k̂ by ĝ��� = @�k̂�� + @�� k̂�,and a 
uctuation given in terms of a vector �eld Bi de�ned byB� = �i(k� � k̂�); B�� = i(�k�� � k̂���) (5:7)with �eld strength F = dB. Theng��� = ĝ��� + iF��� + �0���� (5:8)The gauge symmetry (2.13) has become the usual gauge transformation of an26



abelian gauge �eld �Bi = @i� (5:9)and the action (2.22) becomesS = Z dDxqjdet(ĝ��� + iF��� + �0����)j (5:10)which is similar to a Born-Infeld action. Note that the (2,0) part of F is non-zero.Note that �detg��� / J^J = J 0̂J0 + 2�0J^� + (�0)2�^� (5:11)where J0 = J � �0� = @�k + �@k is the classical complex structure, so that theexpansion of the action (2.22) includes a Donaldson term (4.34), plus other termssuch as �2. These are needed to ensure that the connection is holomorphic andsatis�es the Uhlenbeck-Yau equation with respect to the quantum complex struc-ture J which has gauge-�eld dependence, instead of with respect to the classicalcomplex structure J0.Instead of the usual (2,1) string or sigma-model, one can construct a string orsigma-model based on the twisted form of the (2,1) algebra. Much of the analysisis similar to that for the usual (2,1) string, but di�erent factors of i and �1. Thereis a real structure S and the classical metric is (4.43) and the gauge potential A0is given by (4.50),(4.51) in terms of pre-potentials V 0; ~V 0 for A0. In the quantumcase, the 2-form S is S = �0 ~�(V 0; ~V 0) + @u~k + @vk (5:12)and the metric and torsion potential are given byg�~� = �0 ~��~�(V 0; ~V 0) + @�~k~� + ~@~�k�b�~� = �0��~�(V 0; ~V 0) + @�~k~� � ~@~�k� (5:13)27



The Yang-Mills equation becomes J ijF 0ij = 0 (5:14)and these equations can also be obtained by varying the action (2.23).For target spaces of signature (2,2) with SL(2;R) = SU(1; 1) holomnomy, thesigma-model has twisted (4,1) supersymmetry which contains both the usual (2,1)algebra and the twisted one, and both approaches give the same result, but in termsof di�erent variables. The action in either approach is (2.23), but can be viewed asdepending on the variables k�; k��; U 0 through (5.5) or on k�; k~�; ~U 0 through (5.13).For the action based on the twisted (2,1) formalism, it is useful to de�ne Bnow by B� = (k� � k̂�); B~� = �(~k~� � k̂~�) (5:15)in terms of the potential k; ~k of the twisted (2,1) sigma-model. The gauge symmetryis again (5.9) and the metric is now given byg��� = ĝ��� �F��� + �0���� (5:16)This formalism based on the real structure may be better suited to performinga null reduction with respect to a a null Killing vector, as coordinates could bechosen so that the Killing vector represents translation in one of the null coordinatedirections e.g. @=@u1.
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6. The Schild ActionThe action (2.23) is of the formSNG = Z dDx g� (6:1)where g = jdet gijj and � = 1=4, whereas the covariant Nambu-Goto action is givenby (6.1) with � = 1=2. Instead of introducing an intrinsic metric on the world-volume to obtain a Polyakov-type action, one can introduce a scalar world-volumegauge �eld V to obtain a Schild-type actionSS = 12� Z dDx V 1�2�g� � (1� 2�)�V (6:2)where �; � are constants. This action is invariant under world-sheet di�eomor-phisms: �� = �a@a�; �V = @a(V �a) (6:3)so that V is a scalar density.The V �eld equation is V = � 12�pg (6:4)Substituting for V in the Schild action gives the Nambu-Goto actionSS ! � 2��12� Z dDx pg (6:5)so that these two models are classically equivalent.The di�eomorphism symmetry (6.3) can be partially �xed by imposing thegauge condition V = a to the Schild action, where a is some constant. The gauge-29



�xed lagrangian is the Eguchi-type LagrangianLE = g� + C (6:6)where C is a constant. The �eld equation@LE=@� = 0 ) g = const (6:7)The Eguchi action is invariant under the volume preserving di�eomorphisms��� = �a@a��; @a�a = 0 (6:8)Thus the action (2.23) can be obtained from gauge-�xing the Schild action(6.1) with � = 1=4. Note that the condition detg��� = e�� from (2.19) togetherwith the �eld equation V = pg implies that V can be identi�ed with e��, at leastin a special coordinate system.AcknowledgementsI would like to thank M. Abou Zeid, D. Kutasov, E. Martinec and G. Pa-padopoulos for useful discussions and G. Gibbons for drawing my attention to thereferences [14,15].
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