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The nonlinear interaction of two disturbances excited successively in a two-dimensional
Couette flow is shown to lead to a transient energy growth. This phenomenon, which is
called echo effect and exists in several other physical systems, is interesting because the
energy growth appears long after the energy associated with the original disturbances has
decayed. Here, the echo effect is studied analytically and numerically in a situation where
the nonlinear response has the same order of magnitude as the two excitations. A system
of amplitude equations describing the nonlinear interactions between three sheared modes
is derived and employed to examine the physical mechanism of the echo. The qualitative
validity of this system is confirmed by numerical simulations. The influence of viscous

dissipation on the echo effect is also considered.
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1 Introduction

It is now widely recognized that the kinetic energy of an infinitesimal disturbance in a shear flow can be
significantly amplified even if the flow is spectrally stable. Such an amplification, which is then followed
by a decay in the long-time limit and is generally referred to as transient growth, was originally identified
by Orr [14] in a two-dimensional Couette flow. In recent years, it has been studied in connection with
various problems in hydrodynamics stability (e.g. [6, 4, 15, 18, 2]) and in meteorology (see the review
7).

The physical mechanism behind transient growth is particularly transparent for two-dimensional in-
compressibie flows, which are governed by a vorticity equation. In such flows, the disturbance vorticity
is advected and sheared by the basic-flow velocity, and the disturbance energy crucially depends on the
phase mixing that appears when the streamfunction is derived from the vorticity. In the long-time limit,
the scale of the vorticity field systematically decreases with time, leading to an erhanced phase mixing
and thus to a decrease of the disturbance streamfunction and energy [3] — this decrease is sometimes
referred to as Landau damping, by analogy with the similar phenomenon of decrease of electrostatic
energy in plasmas [12]. However, if the initial disturbance is dominated by vorticity lines tilted against
the shear, the phase mixing does not evolve monotonically: it temporarily cancels when, after some time,
the vorticity lines are perpendicular to the shear, leading to a peak in the disturbance streamfunction and
the disturbance erergy (the analogue of the plasma electrostatic energy), which is the mark of transient
growth.

A crucial feature of (linear) transient growth is the fact that it requires very specific initial conditions:
the initial disturbances must be coherent, have a very small scale and a specific orientation for the
amplification to be significant [16]. In this paper, we discuss a different mechanism that also leads to a
transient amplification of the disturbance, but does not require such a small-scale excitation of the flow.
This mechanism, called the echo effect, is essentially nonlinear; it is characterized by a transient growth
of the disturbance energy following two successive excitations, as illustrated schematically in figure 1.
The two successive (spatially-periodic, impulsive) excitations, denoted by a and &, are applied at times
t =€ !7, <0 and t = 0, respectively. Through nonlinear interaction, they produce a delayed response,
denoted by ¢, the echo. The energy peak associated with the echo is isolated, because it appears when
the direct responses to the excitations a and b have already decayed away through Landau damping.

The echo effect is in fact common to a variety of physical systems [9, 1]; in particular, as noted
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Figure 1: Schematic representation of the echo effect showing the time evolution of the disturbance
energy. At t = e¢~'7, and t = 0, the shear flow is disturbed by spatialy-periodic excitations. The energy
of the response to those excitations decays through Landau damping, but because of nonlinear effects, a

third peak — the echo — appears in the energy after a time ¢t = ¢~ 17.

above, it has been studied in plasmas modelled by the Vlasov—Poisson equations (8, 13]. In view of
the analogy between these equations and the equations describing the evolution of disturbances in two-
dimensional shear flows, the existence of an echo effect in shear flows is not entirely surprising. It has
in fact been previously studied by Lifschitz [11] who considered a two-dimensional Couette flow in a
channel. Following the plasma derivation, he assumed weak amplitudes for the two excitations and used
a regular perturbation expansion to calculate the nonlinear response leading to the echo. When this
treatment is valid, the amplitude of the energy peak corresponding to the echo is much smaller than the
maximum amplitude of the forced responses a and b (although when the echo appears the amplitude of
these responses may have decayed sufficiently and be negligible).

In this paper, we shall be concerned with a somewhat different — and more spectacular — phe-
nomenon, which we refer to as the strong echo and which arises when the three energy peaks in the
energy have comparable amplitudes. This is possible provided that the amplitude of the two excitations
be O(e), with € <« 1, while the time-lag between them is O(e™!) (7, and 7. introduced in figure 1 are
then O(1) quantities). However, in that case, the perturbative treatment of Ref. [11] is not strictly valid;
we therefore employ numerical simulations to demonstrate the existence of a strong echo. We also con-
siderably simplify the problem by dealing with a Couette flow in an unbounded domain as opposed to a
channel. We note, however, that the physical mechanism at work is one of generality. With the simplified
Couette geometry, the disturbance vorticity and streamfunction can be expanded in terms of sheared
modes (the exact solutions originally discovered by Kelvin [17]), whose form is very simple; the echo
effect may then be interpreted as the nonlinear interaction between three sheared modes. Exploiting this,

we derive a system of three amplitude equations (analogous to the three-wave equations for wave triads)



which capture the essence of the echo effect. Although these amplitude equations cannot be obtained
completely rigorously, they provide results which compare fairly well with numerical simulations. As will
be seen, the echo effect involves disturbances with small spatial scales, and hence may be expected to be
significantly affected by viscous dissipation. We investigate this influence by deriving an estimate for the

viscous damping of the echo and confirm our findings numerically.

2 Sheared modes in Couette flow

The nonlinear evolution of disturbances in a two-dimensional Couette flow U = Ay is governed by the
vorticity equation

a —_ a(¢; )_ 2 . 2/__
(8t+'j8 )w+ \zy)—qu, with Vi =w, (1)

where 9 is the streamfunction and p the inverse of a Reynolds number. This equation has been rendered
dimensiorless using A™! as a timescale and a reference length L as a lengthscale. The dimensional
viscosity v is thus related to x through = v/(AL?). A standard procedure to study Couette flows is to

introduce the convected coordinates (the importance of which was noted by e.g. [5] in this problem)
Xi=z—yt, V:i=y, T:=t,

which transform (1) into
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and give the form
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for the Laplacian. Considering a periodic domain in X and Y, we can expand the vorticity and the
streamfunction in Fourier series according to
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where the subscript a of A, designates the pair (k,,l,) and A_, = (4,)*. Here, we have introduced a
formal parameter e < 1 as we are concerned with weak amplitude disturbances. Note that the extension

of (3) to an unbounded domain is immediately obtained by replacing the summations by integrals.



Introducing (3) into (2) leads to the amplitude equations
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where ¢ is defined by the interaction conditions
ko +ky+k.=0, lo+10,+1.=0. (5)

(We consider sum interactions only, allowing for both positive and negative values of the wavenumbers.)
We now concentrate on a strictly inviscid fluid with g4 = 0. As is well-known, a single mode with
constant amplitude 4,(T") = A4(0) is then an exact solution of (4). In the original variables (z,y, ), this

solution consists of a sheared mode whose vorticity
w = €A (0) exp {ifkaz + (o — kat)y]} (6)

behaves like a passive tracer: it is constant along straight lines that are simply tilted by the shear —
the slope of these lines evolves as 1/(t — l,/k.). The time evolution of the disturbance kinetic energy
5 JJ IV¥|2dzdy of a sheared mode is given by
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E,(0).

Although in the long-time limit this energy decays like t=2, it can be temporarily amplified if k, /I, > 0,
ie. if the vorticity lines are initially tilted against the shear. It is this transient growth, identified

originally by Orr [14], that has motivated much of the literature on sheared modes [6, 4, 15, 18, 2].

3 Echo effect

A superposition of sheared modes is generally not an exact solution of the nonlinear equation (1). An-
alyzing spectral equations analogous to (4), Tung [19] nevertheless concluded that it represents an O(e)
approximation to an exact solution and is uniformly valid in time, because of the explicit decrease of the
nonlinear terms. However, as pointed out by Haynes [10] in his study of the stability of sheared modes,
this conclusion assumes that all the wavenumbers I, are O(1). If at least one wavenumber [, is O(¢™!),
i.e. if initially the disturbance partly consists of strongly tilted vorticity lines, the nonlinearity can have
non-trivial consequences at leading order that cannot be captured by a regular perturbation expansion.

The echo effect which we now describe relies on this fact and requires the simultaneous presence of two



modes: a mode a with [, = O(e™!) and a mode b with /, = O(1). A natural way to achieve this config-
uration is to force the two modes at two successive instants separated by a time of O(e™!). Successive
excitations have been traditionally considered to study other echo effects both theoretically and experi-
mentally [9, 1, 8, 13, 11]; however, in these studies, the time lag is assumed to be much smaller than €™,
leading to an echo amplitude much smaller than the maximum amplitudes of the forced responses.
Consider mode a forced at t = e7'r, < 0, 7, = O(1), with vorticity lines perpendicular to the shear.

The subsequent evolution of the vorticity is given by (6), with
lo =€ tkora, Ag(0) = Ag(e™7,), )

while the energy decays according to

E|Aa(et)> 1 -1
Ea(t) = R2l+ (t—e170)2] 14+ (t—e17,)2 Ea(e™"ma).

At t = 0, when mode a has vorticity lines strongly tilted in the direction of the shear (their slope-is

—er;1 > 0) and a very small energy (E,(0) ~ €2E,(e717,)), we excite the second mode b, with kj # ke
and I = 0. The linear evolution of this mode is again a simple tilt of the vorticity lines, with a decay of
the energy. However, the nonlinear interaction of a and b generate a third mode ¢, whose wavenumbers

satisfy (5). Defining,
-1 lc -1 kaTa
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where 7, is O(1), it can be seen that the vorticity of ¢ takes the form

we = eAc(t) exp {i[kez + (Ic — ket)y]} = eAc(t) exp {ike[z + (e 7' — t)y]},

where the amplitude A.(t) is determined by the nonlinear interactions. Correspondingly, the energy of ¢

is given by
2 2
By = o ClAOF
B2 1+ (t —e17.)?]
If 7. > 0, which is achieved if
Ko o0 ie if koky <0 and [ka] < [ks, (9)
ka + kb

one can expect the appearance of a peak in E, for t ~ e '7.. At that time, both E, and E, have

decreased to O(e?) while E, is O(e?) since, as shown below, A.(e"!r,) = O(1). The peak in E, can thus
be viewed as the echo of two modes which have already damped away (see figure 1). Note that, because
sheared modes are exact nonlinear solutions of (1) (with x = 0), we can treat the generation of the echo

as an initial-value problem, assuming that both disturbances a and b are initialized at ¢ = 0 with [, given

by (7) and I, = 0.



Figure 2: Time evolution of the amplitudes of the three modes a, b and ¢ as predicted by the truncated

system (10).
4 Truncated model

To investigate the echo effect in more detail, we first consider the truncation of (4) to the triad of modes

a,b, c. Neglecting O(e) terms and using (7) and (8), the evolution equations for A,, A5, A, can be written
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where J := kyk.7. = O(1). Clearly, the initial forcing of A, is O(1) and, in general, one can expect the
mode ¢ to quickly reach an O(1) amplitude. This can be confirmed by direct numerical solution of (10).

As an example, we consider the modes with
ko =-2,1,=10, ky =3, [, =0, k., =-1, I, = -10,

which satisfy (5) and (9), such that e~!'7, = —5 and e~!7, = 10. We take ¢ = 0.1 and choose the
initial amplitudes A, = 2 and A = 2i. Figure 2 displays the time evolution of the three amplitudes.
As expected, mode ¢ attains an amplitude comparable to that of @ and b due to their nonlinear forcing.
For t = O(e™!), A, is approximately constant (because of the explicit time decrease of the nonlinear

interaction term), but A, and A, are strongly modulated for ¢ ~ e~*r, = 10. The echo effect appears in



the cumulative energy, given by
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whose evolution is shown in figure 3 (dashed curve). Initially, the energy is dominated by the contribution
of mode b and decays as predicted by the linear theory (dotted curve). For longer time, however, the
contribution of mode ¢ is dominant and the energy exhibits a clear peak for ¢ ~ e~17, corresponding to
the echo. (The energy had also peaked after the excitation of mode a, at t = 17, < 0.)

It is possible to derive an approximate analytical solution of (10) and thus to obtain an estimate for
the echo amplitude by noting that with e « 1 the nonlinear terms are significant only for ¢ = O(1) and
t—e ', = O(1). For t = O(1), A, is almost constant and simply plays a catalytic role in the interaction
between modes a and c. Simila_rly, for t — e7'7. = O(1), A, is almost constant; the evolution of 4, and
Ay, during this second time period is irrelevant for the echo effect. Focusing on ¢t = O(1), we approximate

(10) by the linear system

dA -J

a = A* *
dt ~ k(1+1¢2) bAe
dA. J A A2

At R+
where A, = A;(0) is kept constant. The solution corresponding to the initial conditions 4, = A,(0) and

A.=0is

_ 4:(0)45(0)

Aq(t) = A (0) cos(a arctant), A(t) = 4,00)] sin(a arctant),
b

where a := |A|J/k}. Since A, does not change significantly for ¢ 3> 1, we obtain the following estimates

for the echo amplitude:

€*[4a(0)[?
k2

c

|Ac(e 7)) ~ | A (0) sin(am/2)] — Eocho & sin®(ar/2). (11)

In the above example, & = 2/3, so that the estimates are {A.((e"'7;)| = V3 = 1.73 and Eeocho = 0.03.
Both values compare well with what has been found by solving (10) numerically, as seen from figures 2
and 3, although ¢ is only marginally small.

A few remarks can be made about the approximate result (11). First, it indicates that the echo
amplitude depends on the initial amplitudes of modes a and b in two distinct manners: the echo amplitude
is directly proportional to A,(0), whereas A;(0) merely determines a time scale for the evolution of c.
Note also the particular dependence of |A.| on @, i.e. on |A4p| for fixed wavenumbers (and thus fixed J);

the echo is maximized for & = (2n + 1), where 7 is an integer, and it disappears for & = 2n. Finally, we
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Figure 3: Time evolution of the total disturbance energy in the system governed by the complete equations

(4), in the truncated system (10) and according to the linear theory.

mention that standard results about (weak) echo, which neglect the feedback of ¢ on a and b, correspond

to the limit & « 1 in (11). This leads to the estimates

TkeTe| A0 (0)As(0)]
2k

e’m73| Aa(0)45(0) |
4k

|Ac(e_17’c)| = =209 - Eg o~ E(e ') = =0.044,

which provide the correct order of magnitude, although they significantly overestimate as one might

expect.

5 Numerical results

The system (10), which has been derived as an ad hoc truncation of (4), misses important parts of the
dynamics of (4), in particular the generation of a mode d, with k4 = k; —k, and lg = ly—1,, corresponding
to the interaction of a with —b. This and other neglected interactions are likely to weaken the echo. It is
therefore important to study the echo effect directly with the complete system (4), or in pratical terms,
with a truncation of (4) keeping many modes. It turns out that convergent results are obtained with a
limited number of modes; those presented below have been obtained for the same parameters as before,
with a 25 x 25 truncation, and reflect the behavior of the complete system (the disturbance energy is
particularly stable when resolution is varied.) The evolution of the energy so obtained is displayed in

figure 3 (solid curve). As anticipated, the truncated model overestimates the energy peak at t = e 7.



Figure 4: Disturbance streamfunction for ¢ = 1.5,4.5, 7.5 and 10.5. Note the change in the contour levels.

Nevertheless, these results confirm the qualitative validity of the truncated model and the existence of
the strong echo effect. Note that figure 3 also shows the energy evolution predicted by the linear theory;
this theory only captures the Landau damping of mode b and thus completely misses the appearance of
the echo.

It is interesting to examine the evolution of the structure of the streamfunction and vorticity during the
simulation. Figure 4 shows the streamfunction at ¢ = 1.5,4.5,7.5 and 10.5. At ¢ = 1.5, the streamfuction
is dominated by mode b, since Landau damping has already acted strongly on mode a, while mode ¢
only begins to emerge. At t = 4.5, the streamfunction amplitudes of modes b and ¢ are similar, but
weak because both have relatively small spatial scales. At ¢ = 7.5 and t = 10.5, little remains of mode
b in terms of the streamfunction which is dominated by mode ¢. The amplitude of the streamfunction
increases as the spatial scale of this mode increases; it reaches its maximum for ¢ = 10 before decreasing.

Note the factor of 20 between the amplitude of the streamfunction for ¢ = 1.5 and for ¢ = 10.5, which

10



Figure 5: Vorticity field with wavenumber k%, for ¢t = 7.5 and 12.

indicates the importance of the echo effect.

It is difficult to plot the evolution of the vorticity field in a similar manner, since it contains very small
scales associated with mode a, and, after some time, those associated with mode b. Figure 5, which shows
the vorticity field with z-wavenumber &, only, focuses on mode c. The two panels correspond to t = 7.5
(before the echo) and ¢ = 12.5 (after the echo). Although a dominant orientation of the vorticity lines
can be distinguished and corresponds to the behavior expected from mode c, this figure emphasizes that
several sheared modes, with wavenumber k = k. but different wavenumbers /, are in fact superposed.

As figures 4 and 5 clearly illustrate, the echo effect relies on the presence in the flow of disturbances
with very small scales. Since such disturbances are strongly affected by dissipation, it is important to
consider the echo effect with a non-zero viscosity. A rough estimate of the influence of viscosity can be
derived from {4) by noting that, in the linear approximation, any mode amplitude is damped by a factor
exp[—p(kZ + 12 — kalqt + k2t2/3)t]. The modes a and ¢ involved in the echo have wavenumbers I, and
lc which are O(e™!), and mode ¢ must remain excited until ¢ ~ e~!7,. Therefore, at the moment of the
echo, dissipation is responsible for an overall damping factor of exp(—ue~3). A condition for the echo
to occur in a viscous fluid is thus pe™3 < 1. The validity of this estimate can be confirmed by direct
numerical solution of (4) (again with a 25 x 25 truncation) for different values of the viscosity parameter
#. The corresponding evolution of the total energy is shown in figure 6. With the non-zero values chosen
for ¢, which are O(e®), the energy peak significantly decreases, although it remains well defined. It is
clear that for p « €* = 0.001, the echo would be virtually unaffected by dissipation, whereas for u >> €3

it would entirely disappear.
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Figure 6: Time evolution in the system governed by the complete system (4) for different values of the

viscosity parameter p.

6 Conclusion

In this paper, we have studied the echo effect in a two-dimensional Couette flow both analytically and nu-
merically. This phenomenon can be regarded as a nonlinear mechanism of transient growth: a disturbance
strongly tilted against the shear, and thus susceptible to experience a significant energy amplification, is
generated by the nonlinear interaction of two other disturbances which are excited successively. The time
lag between these two excitations, when large as is assumed here, provides a natural way of introducing
in the system disturbances with very different scales. This leads to a significant nonlinear effect although
the initial excitation amplitude is weak. The echo effect, as the instability of sheared modes [10], thus
illustrates the difficulties that may arise when linearizing evolution equations for disturbances in stable
shear flows: stability guarantees that some norm of the disturbance — the enstrophy for Couette flows
— is bounded, but this does not preclude tke nonlinear terms to be large since they involve vorticity
gradients which increase with time.

Our investigation of the echo effect is particularly simple, mainly thanks to the very simple form
taken by sheared modes in two-dimensional Couette flows when the domain is unbounded. The physical
mechanisms involved, however, are generic to all monotonic shear flows, so that echoes can be expected
to occur in a variety of situations. Geophysical flows seem especially interesting in this respect, since they

are only slightly affected by dissipation; this motivates the extension of our work to include the effects of

12



rotation, curvature (f-effect) and stratification. Spatial echoes [13] also deserves investigation, notably
because this phenomenon would be well suited for an experimental demonstration of the echo effect in

shear flows.
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