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Abstract.

Let G be a simple algebraic group de�ned over a �eld k and let

K=k a �eld extension. Further, let C1,...,Cn be non-central conjugacy

classes of G(K). If the transcendence degree tr:degK=k is big enough

we show that almost always (except in the cases described) the elements

g1 2 C1,..., gn 2 Cn in general position generate a subgroup of G(K)

which is isomorphic to the free-product hg1i�hg2i�: : :�hgni (modulo the

centre Z(G(K)). We deduce this result from another which deals with

identities with constants in the group G(K). At the end we discuss the

situation when K = Q is the algebraic closure of the �eld Q of rational

numbers.
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1. Introduction

Let G be a simple algebraic group de�ned over a �eld k. Then G is unirational

over k ([2, 18.2] ). Thus there exists a dominant rational map

' : Am
k �! Gk:(1.1)

The smallest possible m in (1.1) we denote by d(G). Further, let K=k be an extension

of �elds. If tr:degK=k is big enough with respect to n (actually, if tr:degK=k � nd(G))

then according to a theorem of A.Borel, [1], any n elements in \general position"

generate a free subgroup of G(K) (here \general position" means that elements do

not belong to some �xed countable set of proper closed subsets of Gn(K), see [1]).

Here we consider subgroups of G(K) generated by elements from �xed conjugacy

classes in general position. Namely, let C1; : : : ; Cn be non-central conjugacy classes

of G(K) and let g1; : : : ; gn be their elements in \general position". The natural

expectation is that the group generated by these elements is isomorphic to the free

product hg1i� : : :�hgni (modulo the center Z(G(K))). But this is not true in general.

However, if we exclude some special conjugacy classes we obtain "freedom" in general

position.

We need the following

De�nition 1. Let T be a maximal torus of G(K) (here K is the algebraic closure of

K). Further, let s 2 T be a non-central element. We say that the element s is small

if �(s) = 1 for every long root � : T �! K
�
.
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De�nition 2. Let G be a group corresponding to a root system containing roots with

di�erent length.Further, let u 2 G(K) be a nontrivial unipotent element and let Cu

be its conjugacy class. We say that u is a small element if the Zariski closure of its

conjugacy class Cu does not contain both short and long root elements. We say that a

small unipotent element belongs to the �rst class if the Zariski closure of its conjugacy

class contains a long root element. Otherwise we say that such element belongs to the

second class.

De�nition 3. Let g 2 G(K). We say that g is small if g is a small semisimple

element or a small unipotent element in G(K) (here we consider the group G(K) as

a subgroup of G(K)).

Now we formulate the main result of this paper.

Theorem 1. Let G be a group of adjoint type. Further, let C1; : : : ; Cn be nontri-

vial conjugacy classes of G(K) which are also de�ned over the �eld k. Assume that

tr:degK=k � nd(G) and one of the following conditions holds:

1. All roots of the root system corresponding to G have the same length.

2. There cannot be both small semisimple and small unipotent elements among

the powers of elements from the conjugacy classes C1; : : : ; Cn; and chark 6= 2 for the

cases of root systems Bl; Cl; F4 and chark 6= 3 for the case of the root system G2.
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3. There cannot be small unipotent elements of both �rst and second class among

the powers of elements from the conjugacy classes C1; : : : ; Cn; and chark = 2 for the

cases of root systems Bl; Cl; F4 and chark = 3 for the case of the root system G2.

Then there exists a Zariski dense subset M � C1 � : : : � Cn such that for every

sequence (g1; : : : ; gn) 2 M the group � = hg1; : : : ; gni generated by g1; : : : ; gn is iso-

morphic to the free-product hg1i � : : : � hgni.

Remark 1. If G is not a group of adjoint type then we can change in the condi-

tions 2.and 3. small unipotent elements for elements of the form zu where u is a

small unipotent element and z 2 Z(G(K)). We will call such elements small almost

unipotent elements. Theorem 1 gives us an isomorphism � � hg1i � : : : � hgni where

� and g1; : : : ; gn are the images of � and g1; : : : ; gn in the group G(K)=Z(G(K).

Theorem 1 will follow from another which deals with identities with constants in

simple groups.

De�nition 4. Let D � GL(V ) be a linear group and let d0; : : : ; dm be �xed elements

of GL(V ). Further, let x1; : : : ; xn be letters. The expression:

f(x1; : : : ; xn) = d0x
l1
i1
d1 : : : x

lm
im
dm

where li are integers is called a generalized monomial (see, [5], [12]) if the condition

ik = ik+1 and lklk+1 < 0 implies dk =2 CGL(V )(D). We say that we have a generalized
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identity in D if f(g1; : : : ; gn) = 1 for every g1; : : : ; gn 2 D (here 1 is the identity of

GL(V)). If d1; : : : ; dm 2 D we say that the identity with constants d0; : : : ; dm holds in

the group D.

Generalized identities were considered by I.Z.Golubchik and A.V.Mikhalev, [5],

and by G.M.Tomanov, [12]. It was shown in [12] that there are no such identities

if SL(V ) � D. If D � GLm(K) is an algebraic group then there is no generalized

identity only if SLm(K) � D , [12]. In [5], [12] there are examples of generalized

identities for the cases D = SOn(K); Spn(K).

Here we obtain the following result using the approach of G.M.Tomanov ,[12] which

is based on the method of attracting and repulsing points which is due to J.Tits, [11].

Theorem 2. Let f = f(x1; : : : ; xn) be a generalized monomial with coe�cients from

the group G(K). Assume that K is an in�nite �eld and one of the following conditions

holds:

1. All roots of the root system corresponding to G have the same length.

2. There cannot be both small semisimple and small almost unipotent elements

among the coe�cients of f ; and chark 6= 2 for the cases of root systems Bl; Cl; F4

and chark 6= 3 for the case of the root system G2.

3. There cannot be small almost unipotent elements of both �rst and second class

among the coe�cients of f ; and chark = 2 for the cases of root systems Bl; Cl; Fl and

chark = 3 for the case of the root system G2.

Then there is no identity f(x1; : : : ; xn) � 1 in G(K).
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We show here that in all cases of root systems with di�erent length of roots there

exist identities with constants.

Theorem 3. Let G be a group of type Bl; Cl; F4; G2. Let s be a small semisimple

element and u = x�(v); u
0 = x�(v

0) be two long root elements of G(K). Then the

following identities hold in G(K):

a. [ [x1ux
�1

1
; x2sx

�1

2
x1ux

�1

1
x2s

�1x�1
2
]; [x1u

0x�1
1
; x2sx

�1

2
x1u

0x�1
1
x2s

�1x�1
2
] ] � 1 ;

b. [x1ux
�1

1
; x2sx

�1

2
x1ux

�1

1
x2s

�1x�1
2
] � 1 if G is of the type Bl or Cl;

c. [ [x1ux
�1

1
; x2u0x

�1

2
x1ux

�1

1
x2u

�1

0
x�1
2
]; [x1u

0x�1
1
; x2u0x

�1

2
x1u

0x�1
1
x2u

�1

0
x�1
2
] ] � 1 where

u0 is a short root element of G(K) and when G is of the type Bl; Cl; F4 and chark = 2

or G is of the type G2 and chark = 3;

d. [x1ux
�1

1
; x2u0x

�1

2
x1ux

�1

1
x2u

�1

0
x�1
2
] � 1 when G is of the type Bl or Cl and

chark = 2.

Remark 2. The identity a. is the most general here and it holds for all cases

where the corresponding general monomial exists, but in cases of bad characteristic

we cannot �nd small semisimple elements. In such cases we may use c.
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Remark 3. The identities of Theorem 3 show nontrivial relations which take

place in groups generated by elements taken from some special conjugacy classes even

in general position.

Remark 4. In [12] there are example of identities in the group G for the

cases Bl; Cl which can be written in our notations as (?) ([ [u; xsx�1]; [u0; xsx�1] ] � 1.

These identities follow from b. Indeed, put x1 � 1, x2 � x then we obtain from b.

[u; xsx�1uxs�1x�1] � 1 for every long root element u. This implies [X�; sX�s
�1] = 1

for every long root subgroup X� and and every small semisimple element s. Now we

have (?).

The method which we use here to obtain Theorem 1 from Theorem 2 is due to

A.Borel, [1]. It is based on the procedure of removing \the subsets of relations" from

Gn(K). It works only if the transendence degree tr:degK=k is big enough. At the end

of the paper we consider a quite di�erent situation when k = K = Q is the algebraic

closure of the �eld of rational numbers. Presumably, the results here should be the

same as above. Here we present an observation on the group PSL2(Q) which can

show the di�erent level of the complexity of such questions when the transcendence

degree tr:degK=k is small.
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Theorem 4. Let C1; C2 be �xed nontrivial conjugacy classes of elements of �nite

order in PSL2(Q). Then there exists a Zariski dense subset M � C1 � C2 such that

� = hg1; g2i � hg1i � hg2i for every pair (g1; g2) 2M .

Corollary 1. Let G be a semisimple algebraic group of adjoint type de�ned over Q

and let C1; C2 be �xed nontrivial conjugacy classes of elements of primary orders in

G(Q). Then there exists a subset M � C1 � C2 such that � = hg1; g2i � hg1i � hg2i

for every pair (g1; g2) 2M .

Theorem 5. Let C be a �xed nontrivial conjugacy class of elements of �nite order in

PSL2(Q). Then for every natural number n there exists a Zariski dense subset M �

Cn such that � = hg1; : : : ; gni � hg1i � : : : � hgni for every sequence (g1; : : : ; gn) 2M .

Corollary 2. Let G be a semisimple algebraic group of adjoint type de�ned over

Q and let C be a �xed nontrivial conjugacy class of elements of primary orders in

G(Q). Then for every natural number n there exists a subset M � Cn such that

� = hg1; : : : ; gni � hg1i � : : : � hgni for every sequence (g1; : : : ; gn) 2M .

Remark 5. The statement of Corollary 2 also holds if C is not a semisimple

class. Indeed, let g = gsgu be the Jordan decomposition of an element from C. Since

the centralizer CG(gs) is a reductive group (see, [9]) and since gu 2 CG(gs) we may

assume g = gu. According to the Morozov-Jacobson theorem we may consider g as

a unipotent element of SL2(Q) or PSL2(Q). It is a well known fact that there exist

two unipotent elements in SL2(Z) generating the free group of rank two. Since every
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subgroup of a free group is free we can easily construct a free group of any rank

generated by unipotent elements of SL2(Z) or PSL2(Z).

2. Small elements in simple groups

Here we consider small elements in G(K) where K is the algebraic closure of the

�eld K.

We denote by R the root system corresponding to G. If � 2 R then we denote by

X� the corresponding root subgroup of G(K) (i.e. X� = hx�(v) j v 2 Ki ); and by

h�(t) where t 2 K� a corresponding semisimple element of the group hX��i, see [10].

We use the notation of N.Bourbaki [3] for roots. Further, by i and ! we denote the

primitive fourth and third roots of unity.

Let T be a maximal torus of G(K) and let s 2 T be a small semisimple element.

One can easely check (using the tables I - X of [3]):

I. if R = Bl then chark 6= 2 and

s = h�1(�i) : : : h�l(�i);

II. if R = Cl then chark 6= 2 and

s = h2�i(�1) (i = 1; : : : ; l);

III. if R = F4 then chark 6= 2 and

s = h�1(�i)h�2(�i)h�3(�i)h�4(�i);
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IV. if R = G2 then chark 6= 3 and

s = h�(!)h�(!
2),

where �; � are long roots of R such that �+ � 2 R.

Now we consider small unipotent elements in G(K). In cases when the characteris-

tic is not bad we get the possibilities for such elements from the classi�cation of the

unipotent elements in simple algebraic groups ( see, R.W.Carter, [4], N.Spaltenstein,

[8]). Namely, if u is a small unipotent element of G(K) then:

V. if chark 6= 2 and R = Cl; F4 or if chark 6= 3 and R = G2 then u is conjugate to

a long root element;

VI. if chark 6= 2 and R = Bl then in the natural representation of G(K) as the

group SO2l+1(K) the elementary divisors of u are (2,... ,2,1,..., 1).

Thus if chark 6= 2 for cases Bl; Cl; F4 and chark 6= 3 for the case G2 then all small

unipotent elements are in the �rst class. In cases of a bad characteristic there are

small elements in the second class. The Zariski closure of the conjugacy class of a

small unipotent element belonging to the second class contains a short root element.

This fact follows from the classi�cation, [8].
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3. Proof of theorem 2

First of all we formulate Tomanov's criterion, [12], for the coe�cients of generalized

monomials which can give generalized identities.

Let D � GL(V ) be a linear group and let

f = f(x1; : : : ; xn) = d0x
l1
i1
d1 : : : x

lm
im
dm

be a generalized monomial where fdkg are elements of GL(V ). Put

I(f) = fdk j ik = ik+1; lklk+1 < 0g:

Assume that D = G(K) and V is an irreducible G(K)-module. Let e1; : : : ; er be

a basis of V consisting of weight-vectors where e1 is a vector corresponding to the

highest weight and er is a vector corresponding to the lowest weight. Further, let V 0

be the subspace of V generated by vectors e1; : : : ; er�1. De�ne

�(G(K); V ) = fg 2 GL(V ); g =2 Z(GL(V )) j �g��1e1 2 V
0 for every � 2 G(K)g:

It has been proved in [12] :

f � 1 inG(K) =) �(G(K) \ I(f) 6= ;:(3.1)

Now we apply the criterion (3.1) to the coe�cients d0; : : : ; dm of f . Since K is an

in�nite �eld the identity f � 1 holds in G(K) if and only if it holds in G(K) because

G(K) is dense in G, see [2, 18.3]. Thus we may consider our identity in G(K).

Let dk = skuk be the Jordan decomposition of a coe�cient and let Cdk ; Csk ; Cuk be
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conjugacy classes of dk; sk; uk in G(K). If Cdke1 � V 0 then Cdke1 � V 0 ( here V; V 0; e1

are as above; Cdk is the Zariski closure of Cdk). Thus

dk 2 �(G(K); V ) =) Cdk � �(G(K); V )(3.2)

We need the following

Lemma 1. Let V = V (�0) be an irreducible G(K)-module corresponding to the

weight �0 where �0 be the maximal positive root of R. Suppose one of the following

conditions holds:

1). sk =2 Z(G(K)) and sk is a non-central and non-small element;

2). uk 6= 1 and chark 6= 2 if R = Bl; Cl; F4 and chark 6= 3 if R = G2.

Then dk =2 �(G(K); V ).

Proof. Here we have e1 = e�0 ; er = e��0 . Further,

x��0(v)e�0 = e�0 + v2e��0 + : : :

( [10], Lemma 72). Thus

t1x��0(v)t2 =2 �(G(K); V )(3.3)

for every t1; t2 2 T . If t 2 T is not a small element then it is conjugate to an element

t0 2 T such that [x��0(v); t
0] = x��0(v

0) 6= 1. From (3.3) we obtain

x��0(v
0)t0x�1��0(v

0) = x��0t
0 =2 �(G(K); V )
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and therefore

t =2 �(G(K); V ):(3.4)

Consider case 1). Since Csk � Cdk ( [9], II.3.) the implication (3.2) and the

non-inclusion (3.4) implies dk =2 �(G(K); V ).

Consider case 2). Let F = CG(K)
(sk). Then F is a reductive subgroup of G(K)

generated by a maximal torus T , some root subgroups and some elements from the

Weyl group ( [4, Theorem 3.5.3]). Moreover, uk 2 F . Further, we may assume that

uk 2 F 0 where F 0 is the connected component of the group F . (Indeed, we may

consider the situation in the simply connected form of the group G. The centralizers

of semisimple elements are connected in this case, [4, 3.5.6.]. Then we can return to

the adjoint group considering the image of the adjoint representation.) Let Quk
be

the Zariski closure of the conjugacy class of uk in F
0. Then there exists a unipotent

element u0 6= 1 belonging to a simple component F0 of the group F 0 such that

Qu0
� Qu where Qu0

is the Zariski closure of the conjugacy class of the element u0 in

the group F0. In the Zariski closure of any unipotent conjugacy class of a simple group

one can �nd a long root element except cases chark = 2 for root systems Bl; Cl; F4

or chark = 3 for G2. This follows from the classi�cation of unipotent classes in

simple algebraic groups, [8]. Since the connected component F 0 of the group F is

generated by T and some root subgroups of G(K) one can �nd a long root element

x� of the group G(K) contained in Qu0
and therefore in Cuk . Moreover the element
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x� commutes with sk and skx� 2 Cdk . Acting on skx� by an appropriate element of

the Weyl group we obtain tx��0 2 Cdk for some t 2 T and for some long root element

x��0 . Now our assertion follows from (3.2) and (3.4).

Now we return to the proof of the theorem.

Consider case 1. If all roots have the same length there are no small semisimple

elements in G(K). Thus every non-central coe�cient dk of the monomial f has a

non-central and non-small semisimple part sk or non-trivial unipotent part uk. Hence

we obtain from Lemma 1 �((G(K); V ) = ;. Now our statement follows from (3.1).

Consider case 2. Suppose dk is a non-central and non-small element. Then either

sk is a non-central and non-small element or uk 6= 1. Thus one of the conditions of

Lemma 1 holds and therefore dk =2 �(GK); V (�0)). Let dk be a small element. If dk

is almost unipotent then again by Lemma 1 dk =2 �(G(K); V (�0)). Suppose dk is a

small semisimple element. Let V (�) be an irreducible G(K)-module corresponding to

the highest weight � where � is a short root of R (say, � = !1 if R = Bl; Cl, � = !4

if R = F4 and � = !1 if R = G2; see, [3]). There exists an element t 2 T which is

conjugate to dk in G(K) and such that [t; x��] 6= 1. Using the same arguments as in

the proof of Lemma 1 we obtain dk =2 �(G(K); V (�)). If the identity f � 1 holds in

the group G(K) then according to (3.1) �(G(K); V ) 6= ; for every irreducible G(K)-

module. Thus we need to have both small semisimple and small almost unipotent

elements among the coe�cients of f to have the identity f � 1.
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Consider case 3. In this case we have no small semisimple elements (see 2,I-IV).

Further, if u is a small almost unipotent element belonging to the �rst class we have

(as above) u =2 �(G(K); V (�0)). If u is a small unipotent element belonging to

the second class then the Zariski closure of its conjugacy class contains a short root

element, [8], and hence u =2 �(G(K); V (�)). Using the same arguments as above we

conclude that we need to have both sorts of almost unipotent elements among the

coe�cients of f to obtain the identity f � 1 in the group G(K).

4. Identities with small constants. Proof of Theorem 3

Let � be a simple root system for R and �0 � �. Further, let P be the parabolic

subgroup ofG(K) corresponding to the set �0, let L be the semisimple part of the Levi

factor (here L is the semisimple group corresponding to the root system generated by

�0) and let W 0 be the Weyl group of L. If S = fwjg is a set of the representatives of

double cosets W 0wW 0 in W then ( [4],2.8.1)

G(K) =
S

wj2S
P _wjP

where _wj is a preimage of an element wj of the Weyl group W in the group N ( recall

that N is the normalizer of T ). Thus every element � 2 G(K) can be written in the

form

� = 1 _wt2(4.1)



18

for some 1; 2 2 LRu(P ), t 2 T and _w 2 N (here Ru(P ) is the unipotent radical of

P ). Now let � 2 G(K) be an element satisfying the following condition:

LRu(P ) � CG(K)
(�):(4.2)

The inclusion (4.2) implies that the pair (�; ����1) is conjugate to the pair (�; _wt�t�1 _w�1).

Using the trick which is taken from [13] we prove the following

Lemma 2. Let R = Bl; Cl; F4; G2 and let � = x�0(v), v 6= 0, where �0 is the maximal

root with respect to �. Further, let � be a small semisimple element of G(K) if

chark 6= 2 and R = Bl; Cl; F4 or if chark 6= 3 and R = G2, or let � be a short root

element of G(K) in cases when chark = 2 and R = Bl; Cl; F4 or chark = 3 and

R = G2. Then the pair (�; ����1) cannot be conjugate to a pair (x�0(v); x��0(v0)) for

some v0.

Proof. Using the notation of N.Bourbaki, [3], we have �0 = �1 + �2 if R = Bl; F4,

�0 = 2�1 if R = Cl and �0 = 3�1 + 2�2 if R = G2. Put �
0 = � n f�1g if R = Cl; F4

and �0 = � n f�2g if R = Bl; G2. Then the normalizer NG(K)
(X�0) of the root

subgroup X�0 = hx�0(r) j; r 2 Ki contains the parabolic subgroup P . Indeed, in

the cases described the elements of the Levi factor L commute with the elements of

X�0 . Since P is a maximal closed proper subgroup of G(K), then NG(K)
(X�0) = P .

Moreover, (4.2) also holds for �; L and Ru(P ).

Let � be written in the form (4.1). Then the pair (�; ����1) is conjugate to a pair

(x�0(v); x�(v
00)) where � = w(�0), v

00 2 K. If � 6= ��0 then the pair (x�0(v); x�(v
00))
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cannot be conjugate by an element of the group G(K) to a pair (x�0(v); x��0(v
0)).

Indeed, conjugation by an element of the group G(K) of a pair of root elements which

transforms it into another pair of root elements which preserve the con�guration

between roots. Thus the pair (�; ����1) can be conjugate to a pair (x�0(v); x��0(v
0))

if and only if

w(�0) = ��0:(4.3)

The equality (4.3) implies w = w�0w
0 where w�0 is the corresponding reection and

w0 2 W 0. Conjugating � by �1
1

we obtain an element � = _w�0
_w0t for some  2

LRu(P ). We may assume _w0 2 L and rewrite the element � in the form

� = _w�0tlu(4.4)

where l 2 L, u 2 Ru(P ). Since K is an algebraically closed �eld t = t1t2 where

t1 2 hX��0i , t2 2 L. The element _w�0t1 is also a preimage of w�0 in the group N .

Thus we may replace _w�0t1 for _w�0 . Further, we may replace t2l for l and replace

(4.4) for

� = _w�0 lu:(4.5)

Moreover, we may assume

_w�0 l = l _w�0(4.6)
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because the elements of the group hX��0i commute with group L and the element

_w�0 can be chosen from the group hX��0i. Further, if we consider _w�0 as an element

of the group hX��0i � SL2(K) or PSL2(K) we can see

_w2

�0
= h�0(�1)(4.7)

where h�0(�1) is the corresponding semisimple root element (see, [10]). From (4.5),

(4.6), (4.7) we obtain

�2 = _w�0 lu _w�0lu = _w2

�0
_w�1

�0
lu _w�0 lu = h�0(�1)l

2l�1 _w�1

�0
u _w�0lu:(4.8)

Put u1 = l�1 _w�1
�0
u _w�0l. We have

u1 2 R
�

u (P )(4.9)

where R�
u (P ) = _w0Ru(P ) _w

�1

0
. Indeed, if � 2 R+ and the root � does not belong to

the root subsystem generated by �0 then w�0(�) 2 R
� and the root w�0(�) does not

belong the root system generated by �0. This follows from the de�nition of �0 and

�0. Hence _w�1
�0
u _w�0 2 R�

u (P ). Since the group R
�
u (P ) is normalized by elements of

the group L we obtain (4.9).

Further, (4.8) can be written in the form

�2 = h�0(�1)l
2u1u:(4.10)

Assume �2 = z 2 Z(G(K)). Then (4.10) implies

zh�0(�1)l
�2 = u1u:(4.11)
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The right side of (4.11) belongs to the Gauss cell of G(K) because of the choice of

u and (4.9). Hence it can be considered as the Gauss decomposition of the element

zh�0(�1)l
�2. Since u 2 Ru(P ) and u1 2 R�

u (P ) the decomposition (4.11) can take

place if and only if u = u1 = zh�0(�1)l
�2 = 1 (this follows from the uniqueness of

the Gauss decomposition ). Thus if

�2 = z 2 Z(G(K))(4.12)

then

� = _w�0 l:(4.13)

Let R = Bl; Cl; F4. Then a small semisimple element s satis�es the condition

s2 2 Z(G(K)) ( see,2.I-IV). If chark = 2 then the element u0 is an involution. Hence

the condition (4.12) holds for � 2 C� where C� is the conjugacy class of � in G(K).

Let chark 6= 2 and let � = s be a small semisimple element. Then _w�0 is a semisimple

element of G(K). This implies with (4.6) that the element l is also semisimple. Thus

x1 _w�0x
�1

1
= h�0(t) ; x2 lx

�1

2
= h1

for some x1 2 hX��0i; x2 2 L; t 2 K; h1 2 T \ L. Using (4.6) and (4.13) we obtain

�1 = x1x2�x
�1

2
x�1
1

= h�0(t)h1 2 T:

From (4.7) we have t = �i. But �1 = h�0(�i)h1 =2 CG(K)
(X�0). This is a contradiction

with the choice of s. Thus we have proved that if � is a small semisimple element
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then the pair (�; ����1) cannot be conjugate to a pair (x�0(v); x��0(v
0)). Let chark =

2 and let � = u0. Then � is a product of two commuting involutions _w�0 and l

(see (4.6), (4.7)) Since chark = 2 both of these involutions are unipotent. Further,

_w�0 2 hX��0i, l 2 L, and hX��0i, L are commuting subgroups of G(K)). Therefore

_w�0 2 C� = C� where C�; C� are Zariski closure of conjugacy classes in G(K) of �; � .

On the other hand, _w�0 is a long root element here. Thus we have the contradiction

with the choice of � .

Consider the case R = G2. Let chark 6= 3 and let � be a small semisimple element.

The group CG(K)
(�) is generated by T and all long root subgroups of G(K) ( [4,

Theorem 3.5.3]).Hence

dimCG(K)
(�) = dimCG(K)

(�) = 8(4.14)

Since � = x�0(v)

dimCG(K)
(�) = 8(4.15)

( [4],13.1.). From (4.14), (4.15)

dim(CG(K)
(�) \ CG(K)

(�)) � 8 + 8� 14 = 2:(4.16)

Let x 2 CG(K)
(�)\CG(K)

(�). Then the element x commutes with � = x�0(v) and with

����1 = x��0(v
0) (recall that our assumption that the pair (�; ����1) is conjugate to

a pair (x�0(v); x��0(v
0)) implies that the element � is conjugate to an element � of

the form (4.5)). There exists a non-central semisimple element � of the group hX��0i
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which belongs to the subgroup h�; ����1i. Since x 2 CG(K)
(�) then x = �0g where �0

is a semisimple element of the group hX��0i commuting with � and g 2 L = hX��1i

( [4, 3.5.3]). Since x commutes with x�0(v); x��0(v
0) then �0 = h�0(�1). We have

x = h�0(�1)g = �x��1 = _w�0 luxu
�1l�1 _w�1

�0
= _w�0 lx[x

�1; u]l�1 _w�1

�0
:

(4.17)

Put y0 = [x�1; u]. Since x = h�0(�1)g; u 2 Ru(P ) then y0 2 Ru(P ) and therefore

y = ly0l�1 2 Ru(P ). From (4.17)

x = _w�0 lxl
�1y _w�1

�0
= _w�0lh�0(�1)gl

�1y _w�1

�0
= h�0(�1)lgl

�1 _w�0y _w
�1

�0
:

(4.18)

Since y 2 Ru(P ) then _w�0y _w
�1
�0

2 R�
u and therefore (4.18) implies y = 1. Hence

y0 = [x�1; u] = 1. This implies

u 2 X�0(4.19)

if the element g is a non-central semisimple element of L (the existence of x =

h�0(�1)g with such g follows from (4.16)) Further, the equality (4.18) implies

lgl�1 = g:(4.20)

Since every element x 2 CG(K)
(�)\CG(K)

(�) can be written in the form x = h�0(�1)g

where g 2 L then (4.20) implies

dim(CG(K)
(�) \ CG(K)

(�)) � dimCL(l):(4.21)
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If l =2 Z(L) then dimCL(l) = 1 and in this case the inequality (4.21) contradicts

(4.16). Hence

l = h�1(�1):(4.22)

Now using (4.19) and (4.22) we obtain

� = _w�0h�1(�1)u�0

where u�0 2 X�0 . Hence �
2 2 hX��0i. This is in contradiction with the choice of �.

Let R = G2; chark = 3; � = u0. We have dimCG(K)
(u0) = 8 ([8, 10.4,10.15]).

Thus we may use here the same arguments as above to prove that the assumption

of conjugation of pairs (�; ����1) and (x�0(v); x��0(v
0)) leads to the inclusion �2 2

hX��0i which contradicts to the choice of u0 (recall that the element � we take from

the conjugacy class of u0 and the element u0 is a short root element of G(K)).

Now we can prove the existence identities a.b.c.d. of Theorem 3.

According to Lemma 2 we may assume

�X�0�
�1 = X�; � 6= ��0;

where � is a small semisimple element or � = u0. Thus

[x; �x��1] 2 X�0+�
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for every x 2 X�0 ( if �0 + � is not a root we put X�0+� = 1). Since X�0+� is an

abelian group

[ [y1; �y1�
�1] ; [y2; �y2�

�1] ] = 1(4.23)

for every y1; y2 2 X�0 . Now the identities a. and c. follow from (4.23). Indeed, we

can substitute y1 = u; y2 = u0; � = s or u0 and since (4.23) holds for every such u; u
0; s

from given conjugacy classes we obtain a. and c.

Now consider the case R = Cl. Then �0 + � is not a root and hence

[x; �x��1] = 1(4.24)

for every x 2 X�0 . If we substitute x = u; � = s or u0 we obtain b. and d. for the

case R = Cl.

Let R = Bl. If �0 + � is not a root the proof for b. and d. is the same as for the

case Cl. Suppose �0 + � is a root. Let chark 6= 2. We may assume G(K) = SO(V )

where dimV = 2l + 1. If �0 + � is a root then q = u�u��1 is a regular unipotent

element in the group hX��0 ; �X��0�
�1i. This group is isomorphic to SL3(K) and the

codimension of the subspace V q of q-�xed vectors is equal to 4. On the other hand

� is a small semisimple element of order 2 which has eigenvalues :(-1,...,-1, 1). Hence

codimV q = 2. This is a contradiction. If chark = 2 then we can consider the group

G(K) as the group Sp(V ); dimV = 2l. Again if u; �u��1 do not commute then the

element q de�ned above is a regular unipotent element of the group SL3(K) and the

codimension of subspace V q is equal to 4. On the other hand, the codimension of
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subspace V � where � = u0 is equal to 1. Since u0 is an involution the codimension of

V q should be 2. This is a contradiction. Thus we have b. and d. for the case Bl.

Theorem 3 has been proved.

5. Freedom in conjugacy classes. Proof of Theorem 1

Let !(x1; : : : ; xn) be a non-empty reduced word on n letters.One can de�ne a map

f! : Gn �! G(5.1)

de�ned by the formula

f!((g1; : : : ; gn)) = !(g1; : : : ; gn):

This map is a dominant morphism of algebraic varieties, [1]. Thus the preimage

X! = f�1(1) of the identity is a proper closed subset. A.Borel, [1], has shown that

the set

Gn(K) n
[
!2


X!(K)

is dense in G if the transcendence degree tr:degK=k is big enough.

Here we use the same approach to prove Theorem 1. Namely, let c1; : : : ; cn be a

�xed set of representatives of the conjugacy classes C1; : : : ; Cn. For every non empty

reduced word ! on n letters we can de�ne the map

f
e! : Gn �! G(5.2)
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by the formula

f
e!((g1; : : : ; gn)) = !(g1c1g

�1

1
; : : : ; gncng

�1

n ):

Obviously, the map f
e! is a morphism of algebraic varieties which is de�ned over the

�eld K . Note that the set f
e!(G(K)) does not depend of the choice on representatives

c1; : : : ; cn.

Assume that f
e!(G(K)) = 1. This means that the identity f

e! � 1 with constants

holds in the group G(K). The constants here are powers of elements c1; : : : ; cn. We

will say that the word ! is appropriate for given set of conjugacy classes if for every

power of a letter xni which occurs in ! the element cni is not the identity. Now if

we consider the word ! which is appropriate for C1; : : : ; Cn then e!(x1; : : : ; xn) =

!(x1c1x
�1

1
; : : : ; xncnx

�1
n ) is a generalized monomial ( De�nition 4; recall that the

group G is of adjoint type). Further, if we assume that K is an in�nite �eld and one

of the conditions of Theorem 1. holds then coe�cients of the generalized monomial e!

satisfy one of the conditions Theorem 2. (This follows directly from the de�nitions.)

In this case the identity f
e! � 1 cannot hold in the group G(K) and therefore the

preimage X
e!(K) = f�1

e!
(1) is a proper closed subset of Gn(K).

Let 
 be the set of all appropriate non-empty reduced words on n letters. We

consider the set

X(K) = Gn(K) n (
[
!2


X
e!(K)):



28

Since conjugacy classes C1; : : : ; Cn are de�ned over the �eld k we can choose elements

c1; : : : ; cn from the group G(k). Thus we may assume that all maps (5.2) are de�ned

over the �eld k. Hence we may assume that every set X
e! is de�ned over k. Now

we use the fact that the group G is a unirational variety over the �eld k , [2, 18.2].

According to the de�nition of the number d(G) we have the dominant rational map

' : A
d(G)

k �! Gk

de�ned over k where A
d(G)

k is d(G)-dimensional a�ne k-space. Thus we have the

dominant rational map

'n : A
nd(G)

k �! Gn
k

de�ned over k. Since tr:degK=k � nd(G) there exists a Zariski dense subset Y (K) in

A
nd(G)

k (K) such that there are no algebraic relations over k between coordinates of the

elements of Y (K) ( indeed, say, elements of the form (xm1

1
; : : : ; xms

s ), where s = nd(G),

mi are positive integers and x1; : : : ; xs are algebraically independent elements over the

�eld k, are already dense in A
nd(G)

k (K)). Obviously, the image of the set Y (K) with

respect to 'n is in X(K). Thus the set X(K) is dense in Gn. Now let

 : Gn(K) �! C1 � : : :� Cn

be the map given by the formula

 (g1; : : : ; gn) = (g1c1g
�1

1
; : : : ; gncng

�1

n ):
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Put M =  (X(K)). Then the set M is dense in C1� : : :�Cn . Moreover, the de�ni-

tion of the set X(K) implies that there are no non-trivial relations among elements

g0
1
; : : : ; g0n of the group G(K) such that (g0

1
; : : : ; g0n) 2 M (except, of course, those

relations which follow from the relations of the form xm = 1 in cases of elements of

�nite orders). Thus the set M satis�es the conditions of Theorem 1.

Now Theorem 1. has been proved.

6. Freedom over Q. Proof of Theorems 4 and 5.

In the case when the trancendence degree tr:degK=k is small the method used in

the proof of Theorem 1 does not work. Indeed, it may happen that the set

[
!2


X
e!(K)

coincides with Gn(K). As an example we may consider the case K = F p. (In this

case every sequence g1; : : : ; gn 2 G(F p) satis�es a relation.)

We prove here Theorem 4. using a di�erent approach.

Consider the group SL2(Q) and conjugacy classes fC1;fC2 which are preimages of

classes C1; C2. Let g1 = diag(�; ��1); g2 = diag(�; ��1) be diagonal matrices belonging

to classes fC1;fC2 respectively. The eigenvalues �; � here are a m1 and m2-th root of 1

for some m1; m2. Let � be the set of all prime divisors of the �eld Q(�; �). Further,

we de�ne the set

S = fP 2 � j P j(�r � ��r) or P j(�s � ��s) for some 0 < r < m1; 0 < s < m2g

(6.1)



30

(here (�r � ��r), (�s � ��s) are principal divisors).

Let 
 be the set of appropriate words on 2 letters (see de�nition above,in 5) for

conjugacy classes C1; C2 and let !(x1; x2) 2 
. Consider the equation

!(g1; xg2x
�1) = 1(6.2)

where x is a general matrix

0
BB@
t11 t12

t21 t22

1
CCA

from the group GL2(Q). If we conjugate both sides of the equation (6.2) with an

appropriate powers of g1 and xg2x
�1 we obtain

0
BB@
�r1 0

0 ��r1

1
CCA

0
BB@
t11 t12

t21 t22

1
CCA

0
BB@
�s1 0

0 ��s1

1
CCA

0
BB@
t11 t12

t21 t22

1
CCA

�1

: : :(6.3)

: : :

0
BB@
�rn 0

0 ��rn

1
CCA

0
BB@
t11 t12

t21 t22

1
CCA

0
BB@
�sn 0

0 ��sn

1
CCA

0
BB@
t11 t12

t21 t22

1
CCA

�1

=

0
BB@
1 0

0 1

1
CCA :

If we change the matrix x�1 in (6.3) for the matrix

x0 =

0
BB@
t22 �t12

�t21 t11

1
CCA(6.4)
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we obtain the following equation

0
BB@
�r1 0

0 ��r1

1
CCA

0
BB@
t11 t12

t21 t22

1
CCA

0
BB@
�s1 0

0 ��s1

1
CCA

0
BB@
t22 �t12

�t21 t11

1
CCA : : :(6.5)

: : :

0
BB@
�rn 0

0 ��rn

1
CCA

0
BB@
t11 t12

t21 t22

1
CCA

0
BB@
�sn 0

0 ��sn

1
CCA

0
BB@
t22 �t12

�t21 t11

1
CCA =

=

0
BB@
(detx)n 0

0 (detx)n

1
CCA :

On the other hand we can look at the left side of (6.5) as an expression with indeter-

minates tij:

0
BB@
�r1 0

0 ��r1

1
CCA

0
BB@
t11 t12

t21 t22

1
CCA

0
BB@
�s1 0

0 ��s1

1
CCA

0
BB@
t22 �t12

�t21 t11

1
CCA : : :(6.6)

: : :

0
BB@
�rn 0

0 ��rn

1
CCA

0
BB@
t11 t12

t21 t22

1
CCA

0
BB@
�sn 0

0 ��sn

1
CCA

0
BB@
t22 �t12

�t21 t11

1
CCA =

: : : =

0
BB@
�11(t11; t12; t21; t22) �12(t11; t12; t21; t22)

�21(t11; t12; t21; t22) �22(t11; t12; t21; t22)

1
CCA :

where �ij(t11; t12; t21; t22) are polynomials in t11; t12; t21; t22 with coe�cients from the

ring Z[�; �].

Now we need the following
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Lemma 3. �12(1; 1; 1; 1) = ��r1�; �21(1; 1; 1; 1) = ��r1� where

� = (
Qn

i=2(�
ri � ��ri))(

Qn

i=1(�
si � ��si)):

Proof. We can substitute t11 = a11; t12 = a12; t21 = a21; t22 = a22 for every aij belon-

ging to any ring which contains Z[�; �]. Thus we obtain the values of polynomials �ij

at the points tij = aij. In particular, if we substitute t11 = 1; t12 = 1; t21 = 1; t22) = 1

we obtain the values �ij(1; 1; 1; 1).

We have

0
BB@
�ri 0

0 ��ri

1
CCA

0
BB@
1 1

1 1

1
CCA

0
BB@
�si 0

0 �si

1
CCA

0
BB@

1 �1

�1 1

1
CCA =(6.7)

=

0
BB@
�ri(�si � ��si) ��ri(�si � ��si)

��ri(�si � ��si) ���ri(�si � ��si)

1
CCA :

Further,

0
BB@
�ka ��ka

��k ���ka

1
CCA

0
BB@
�lb ��lb

��lb ���lb

1
CCA =

0
BB@
�k(�l � ��l)ab ��k(�l � ��l)ab

��k(�l � ��l)ab ���k(�l � ��l)ab

1
CCA :

(6.8)

Now our assertion obviously follows from (6.7) and (6.8).

Let A be the subset of matricies from GL2(Q) satisfying the following conditions:

1'.if a 2 A then all entries aij of a are algebraic integers;
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2'. there exists a prime divisor pa of the �eld Q[�; �; a11; a12; a21; a22] such that

paj(aij � 1) for every i, j and pa is prime to every divisor P from the set S( (6.1)).

Let a 2 A. Then if we input a in the left side of (6.3) instead of x we obtain the

matrix
0
BB@

�11(a11;a12;a21;a22)

(deta)n
�12(a11;a12;a21;a22)

(deta)n

�21(a11;a12;a21;a22)

(deta)n
�22(a11;a12;a21;a22)

(deta)n

1
CCA(6.9)

If the matrix a satis�es the equation (6.3) then according (6.5) for elements of the

matrix (6.9) we have

�12(a11; a12; a21; a22) = �21(a11; a12; a21; a22) = 0:(6.10)

But (6.10) cannot hold if a 2 A. Indeed, the conditions (6.10) and 2' imply that the

divisor pa divides (�12(1; 1; 1; 1)) and (�21(1; 1; 1; 1)). Lemma 3 ,in its turn, implies

that the prime divisors of the �eld Q[�; �; a11; a12; a21; a22]) dividing (�12(1; 1; 1; 1)),

(�21(1; 1; 1; 1)) are only those which divide divisors from the set S. This contradicts

the conditions of 2' that pa is prime to every P from the set S.

Thus every matrix a 2 A cannot satisfy the equation (6.3), that is , cannot satisfy

the equation (6.2) for every appropriate non-empty reduced word ! on two letters.

This implies that the group � � PSL2(Q) generated by the images g1, ag2a�1 of

elements g1 and ag2a
�1 is isomorphic to the free-product hg1i � hag2a�1i.

It is easy to see that the set A is Zariski dense in GL2(Q). Hence the set of pairs

(�g1�
�1; �ag2a

�1��1) where � 2 GL2(Q) and a 2 A is dense in eC � eC. Therefore,
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the set M of pairs (g0
1
; g0

2
) from C1 � C2 such that the group generated by g0

1
; g0

2
is

isomorphic to the free-product hg0
1
i � hg0

2
i is dense in C1 � C2.

Theorem 4 has been proved.

Now we prove Theorem 5.

First of all we show the existence of such a set M . In the case n = 2 this follows

from Theorem 4 (we can put C1 = C2 = C). If elements of C are not involutions

then for every n > 2 one can �nd in the group � = hg1i � hg2i where g1; g2 2 C the

subgroup

�0 = hg1i � h�1g2�
�1

1
i � : : : � h�n�1g2�

�1

n�1i

where �1; : : : ; �n�1 2 �. This follows from the Kurosch theorem on subgroups of free

products (see ,[7] or [6, 17.2]). Thus we have a non-empty set M containing the

sequence (g1; �1g2�
�1

1
; : : : ; �n�1g2�

�1

n�1). If elements of C are involutions we may take

an element g 2 C \PSL2(Z) and using the isomorphism PSL2(Z) � hgi � h�i where

� 2 PSL2(Z) is an element of the order 3 and again using the Kurosch theorem we

obtain a non-empty set M satisfying the condition of Theorem 5.

Now we prove that the set M � Cn such that

hg1; : : : ; gni � hg1i � : : : � hgni
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for every sequence (g1; : : : ; gn) 2 M is dense in Cn. For n = 2 this follows from

Theorem 4. Thus we may assume n > 2. Let � = hg1; : : : ; gni where (g1; : : : ; gn) 2M .

Then

hw1g1w
�1

1
; : : : ; wngnw

�1

n i � hw1g1w
�1

1
i � : : : � hwngnw

�1

n i

for every w1; : : : ; wn 2 �. This follows from the Kurosch theorem. Hence

(w1g1w
�1

1
; : : : ; wngnw

�1

n ) 2M(6.11)

for every w1; : : : ; wn 2 �. Since n > 2 the group � is dense in PSL2(Q). (This is

also true for n = 2 except in the case when the elements of C are involutions.) This

implies that the set of sequences of the form (6.11) is dense in Cn. Therefore the set

M is also dense in Cn.

Theorem 5 has been proved.

We now prove the corollaries.

Proof. Let T be a maximal torus of the group G and let g 2 C \ T . Let d = pl be

the order of g. Since G is the group of adjoint type and since d is a primary number

one can �nd a root � : T �! Q� such that �(gr) 6= 1 for every 0 < r < d. Let

G� = hX�; X��i where X�; X�� are the corresponding root subgroups of G. Then

the image g of g in the factor group G�T=Z(G�)T � PSL2(Q) has also the order d.

Now we can apply Theorem 4 and 5.
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