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Abstract

Well known Sims conjecture proved by P. J. Cameron, C. E. Praeger, J. Saxl and
G. M. Seitz (1983) can be formulated as follows. Let , be an undirected connected
finite graph and G be a subgroup of Aut , acting primitively on the vertex set V(, )
of ,. For x € V(, ) and positive integer i, denote by Gl the point-wise stabilizer
in G of the closed ball of the radius ¢ with the center x of the graph , . Then there
exists a natural number ¢ depending only on the valency of , such that Gl = 1.
We obtain that Gl = 1 for all , and G from the Sims conjecture and, moreover,
the constant 6 cannot be decreased. The proof, generalizations and corollaries of
this result are discussed.



Sims [20] conjectured that the following is true:

Sims conjecture. There exists a function f such that, whenever G is a primitive
permutation group on a finite set €2, if G, is the stabilizer of a point « in €2 and if
d is the length of any G,-orbit in Q \ {a}, then |G,| < f(d).

Fairly many papers have been concerned with this conjecture: Thompson [25],
Wielandt [26], Knapp [14], [15], Fomin [10] etc. But only with help of the classi-
fication of finite simple groups, Cameron, Praeger, Saxl and Seitz [6] proved this
conjecture.

The Sims conjecture may be formulated in a geometrical language as follows.

For an undirected graph , , denote by V(, ) and E(, ) the vertex set and the edge
set of , | respectively.

For an undirected connected graph , , a subgroup G of Aut ,, z € V(, ) and
positive integer i, denote by Gl the point-wise stabilizer in G of the closed ball of
the radius ¢ with the center x of the graph , (in the natural metric dr of , ).

Let G be a primitive permutation group on a finite set 0, a € 2 and M; = G,,.
Fix an element ¢ € G with M{ # M, and set My, = M{. Consider a graph ,
with the vertex set V(, ) = {M7|z € G} and the edge set F(, ) which is defined as
follows:

(MEMVY € B(,) < Tz € G {M*, M}}* = {M,, My}

Then , is an undirected connected finite graph, G is a subgroup of Aut , acting
primitively on V(, ) and the length d of the M;-orbit containing the vertex M, is
the valency of , .

The Sims conjecture is equivalent to the following theorem.

Theorem 1. There exists a natural valued function ¢ such that if , is a undi-
rected connected finite graph and G is a subgroup of Aut , acting primitively on
V(, ) then GI“@] = 1 for x € V(, ), where d is the valency of the graph , .

In [16], we announced the following strengthening of Theorem 1.

Theorem 2. There exists a constant C' such that, for all pairs (, ,G) from
Theorem 1, GI¢l = 1.

Next, the following problem naturally arises.
Problem. Determine the minimal value of the constant C' from Theorem 2.
Very recently we have solved this problem. We proved the following theorem.

Theorem 3. If , is an undirected connected graph and G is a primitive on
V(, ) group of its automorphisms then G = 1.



In other words, automorphisms of such graphs , are determined by their action
on a ball of the radius 6.

In fact, we prove (using classification of finite simple groups) a more strong then
Theorem 3 result which is formulated in terms of the subgroup structure of finite
groups.

For a finite grouP G and a;)air of its subgroups M; and M, , we define, for each
i, the subgroups M\" and M{" as follows. Set

MY = (My 0 My) gy, MY = (My 0 My) g,

and
M1(1+1) _ (Ml(z) A MQ(Z))MU M2(z+1) = (MI(Z) N Méz))MQ.

For a subgroup Y of a group X, we write Yy for the core of Y in X, that is, the
maximal normal in X subgroup of Y.

Taking in Theorem 3 M, = G, and M, = G, where x and y are adjacent vertices
of the graph , , we have Gl < Ml(i) and Ggﬂ < Méi) for all 7. It is easy to see that the
series M; > Gl > GI2 > || consists of normal in M, subgroups and G} = Gli+1]
implies Gl = 1. Now Theorem 3 is obtained as a corollary of the following result.

Theorem 4. Let GG be a finite group and M;, M, two distinct conjugate maximal
subgroup in GG. Then Ml(ﬁ) = MQ(G) is a normal subgroup in G.

The following example shows that the constant 6 in Theorems 3 and 4 cannot
be decreased.

Example 1. Let G = Eg(q), ¢ = p™, p prime, and M; a maximal parabolic
subgroup in G obtained by deleting the root ay from the Dynkin diagram of Eg. Set
Q = O,(M,), g = ny, and My = M{. Then the series

1=M9 < MP < M < MP® < M® <0,M") < Q

coincides with the series

1=GI <GPl <G <GB <GP <0,(G) <Q

and with the upper and lower central series of ().
As another corollary of Theorem 4 we obtain the following result, which was
apparently impossible to deduce from the original version of the Sims conjecture.

Corollary. Let G be a finite group, M; a maximal subgroup in G and M5 a
subgroup of G which does not belong to M;. Then the subgroup M1(12) = 2(12) is

normal in G.



Sketch of the proof of Theorem 4.

Let G, My, My = M7, g € G satisfy the condition of Theorem 4. Without loss
of generality we assume that (M) = (Ma)g = 1 and 1 < |M1(2)| < |M2(2)|. Let
7 denote the set of all such triples (G, My, Ms). In particular, for a triple in 7,
G2l £ 1.

The group G acts faithfully and primitively on the set Q = M.

According to Thompson and Wielandt (see [25], [26]), @M is a nontrivial
p—group for some prime p and

F* (M"Y = 0,(MM) < F*(M;) = O,(M;) for i =1,2.
Here F*(X) is the generalized Fitting subgroup of a group X, that is the subgroup
generated by all normal nilpotent and subnormal quasisimple subgroups of X.

Let Soc(X) denote the socle of a group X, that is, the subgroup generated by
all minimal normal subgroups of X.

Using the classification of finite simple groups, we decompose the set 7 on the
following subsets:

7o is the set of the triples (G, My, M) from 7 with nonsimple Soc(G);

71 is the set of the triples (G, My, Ms) from 7 with simple Soc(G) isomorphic to
an alternating group;

Ty is the set of the triples (G, My, My) from 7 — 7 with simple Soc(G) isomorphic
to a group of Lie type over a field of the characteristic # p;

73 is the set of the triples (G, My, M) from 7 — (71 U 75) with simple Soc(G)
isomorphic to a group of Lie type over a field of the characteristic p;

74 is the set of triples (G, My, M) from 7 with simple Soc(G) isomorphic to one
of 26 sporadic groups .

For nonempty subset ¥ C 7, we set ¢(X) is the maximal integer ¢ such that
MY £ 1 or MY £ 1 for some triple (G, My, My) € ¥, or oo, if the maximum
cannot, be reached.

Theorem 4 is equivalent to the equality ¢(7) = 6.

Let (G, My, M,) € 75. Then

Soc(G) =Ty X -+ x Ty, m > 1,

all T;’s are isomorphic. According to the O’Nan-Scott theorem (see [3]), 7o = T{UT{,
where (G, My, M,) € 75 means a “diagonal action” for the permutation group G*:

MlﬂSOC(G):Dl X ... XDl,
where m = kl for some integer k£ and D; is the diagonal subgroup of the group
(k—1)1,

Tictykr X - oo X Tl ypsn, |9 = |11 ;

(G, M, My) € 7/ means a ”wreath action” for G



(G is isomorphic to a subgroup of the wreath product H ! S,, with the product
action, where || = s, H is a primitive permutation group on a set A |, |A| = s
and Soc(H) is isomorphic to T7.

We prove the following result which reduces the problem to the case of groups
G with simple socles.

Reduction theorem.
(1) 7 =0
(2) If (G, My, M) € 1§, then

(H Hy,Hg) €T — 19
for some a, 8 € A, and
C(G, MI,MQ) S C(H, Ha,H/g).

.From now on we suppose that G has the simple socle S, in particular S < G <
Aut S. Since F*(M,) = O,(M,) # 1, M, is a p-local maximal subgroup in G. As
(M) =1, so S does not belong to M, hence G = SM;. Set My = M; N S. Then
it easy to verify that

F*(Mo) = Op(My) # 1.

Therefore My is a p-local (not necessary maximal) subgroup in S.

Let (G, My, M) € 7 and Soc(G) ~ A, n > 5. We show that n # 6 and hence
G is isomorphic to A, or S,, and acts naturally on a set of n points. Using that M,
is p-local maximal subgroup of G' and considering separately cases of intransitive,
transitive imprimitive and primitive action of the subgroup M; on n points, we prove

Proposition 1. 7, = () and hence G2 = 1 for primitive groups G' with the
alternating socle.

Let (G, My, M) € 15, where S = Soc(G) is a group of Lie type over a field of
the characteristic r # p. We show that ¢(G, My, My) < 3.

If S is a classic group, then M; belongs to one of the Aschbacher classes and
also My = S N M is a nonparabolic local subgroup of S. We use the desription of
maximal in G elements of these classes by Kleidman and Liebeck [13]. Every of the
Ascbacher classes is investigated separately.

When S is a exceptional group we apply the classification of local maximal
subgroups in G obtained by Cohen, Liebeck, Saxl and Seitz [7].

Example 2. Let S ~ L,(3) and G = S < t >, where ¢ is an involution inducing
on S a graph automorphism. Then

Mlzcg(t):M()X <t>



is a maximal subgroup in G and
My ~ S, x Sy ~ PSO{(3).2,

i. e. My belongs to the Aschbacher class Cg. Let T" be a Sylow 2-subgroup of My, R
be a Sylow 2-subgroup of G witht € T < R, and g € R — T. Set My = M{. Then

MY = 0o(My), M{P) =<t >#£1, M =1.

Example 3. Let G = S ~ E§(r), e = +1, r > 5, 3|r — €. There exists in G an
”exotic” maximal subgroup
M1 >~ 33+3.5L3(3).

Let T' be a Sylow 3-subgroup of M;, R be a Sylow 3-subgroup of G with T" < R,
and g € Ng(T) —T. Set My = M} and @ = O3(M;). Then @ is a special group of
the order 3% with

12(Q)| = 3%, MY =@, M® = 2(Q), MP =1.

Example 2 shows that there exists a triple (G, M, Ms) € 75 such that S is classical
group and ¢(G, My, My) = 3, but (S, M1NS, MyNS) ¢ 7. Example 3 gives an infinite
series of triples (G, My, Ms) with exceptional group S and ¢(G, My, M) = 3.

Thus, the following holds

Proposition 2. ¢(mp) = 3.

Let (G, My, M) € 13, where S = Soc(G) is a group of Lie type over the field
GF(q) of characteristic p. Then My = M; NS is a parabolic in S. Set Q = O,(Mj).
It is sufficiently easy to prove that the subgroup () is weakly closed in M; with
respect to G, i.e. Op(]\/[l(l)) NS < Q. Using the properties of the group Aut S we
show that if Ml(i) NS =1 for some i > 2, then Ml(i) = 1. Hence ¢(G, My, M,) is
bounded above by the number ~(Mj) of the chief factors of M; in Q. Tt is easy to
show that if GI/GIH1 is isomorphic to GF(q) H-module of the dimension 1 (H is
a Cartan subgroup in M) then GI+!l = 1. In some cases, this fact allows at once
to show that

C(G, Ml, MQ) < ’)/(Ml)

Further we calculate the function ().
If S is not isomorphic to

B,(2™), Fy(2™), Go(2™), Go(3™), 2Ba(2™), 2G»(3™), 2F, (2™,

then we find the function v(M;) from the result by Azad, Barry and Seitz [5].
The remaining cases (where p is a very bad prime) are considered case by case

with the help of various known results on parabolic subgroups, for example, results
by Suzuki [21], [22], Ree [19], Thomas [23], [24], Guterman [12], Parrot [18], Fong
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and Seitz [11], Curtis, Kantor and Seitz [9], Aschbacher and Seitz [4] etc. Ultimately
we prove that ¢(G, My, Ms) < 6.
Now Example 1 show that the following holds.

Proposition 3. ¢(73) = 6.

At last, let (G, My, Ms) € 74. Using the known information about local maximal
subgroups of sporadic groups (see for instance citeAtlas and the Aschbacher book
citeAsch2), we show that ¢(G, My, M,) < 5.

Example 4. Let G ~ F,. There exists in G a maximal subgroup M; =~
[239].L5(2). Then there exists an element g € G such that for My = M{ we have

Oy (My) = MV, MM /MDD ~ MP MP ~ 20 M /M) ~ M )M ~ 25 M) = 1.
Thus, the following holds.
Proposition 4. ¢(ry) =5

Theorem 4 is proved.
Now, we prove Corollary.

Proof of Corollary. Without loss of generality we assume that (M;NMs)q = 1.
Let , be the graph with V(, ) = {gM;,gM,lg € G}, E(, ) = {{gMy, gM>}|g € G},
and the group G acts on V(, ) by left translations. Then , is a connected bipartite
graph with the parts

Vi ={gMi|g € G} and V5 = {gM>|g € G},

G < Aut , and G acts primitively on Vi and transitively on V5.

Let x and y denote vertices M; and M, of the graph , , respectively. Then the
groups M; and M, act transitively on the neighborhoods of the vertices z and v,
respectively. By induction on the natural parameter ¢ we prove the equalities

M =G and My = G,
where Ml(i) and Méi) are defined by the triple (G, My, M;) as above.

Consider the graph , ' with V(,’) = 17 and

E(,") = {{u,v}u,v € Vi,dr(u,v) = 2}.

Then G is a primitive group of the automorphisms of the graph , " and, by Theorem 4,
the point-wise stabilizer in G of the ball of the radius 6 of the graph ,’ with the
center x is trivial. But this stabilizer includes the point-wise stabilizer in G of the
ball of the radius 12 of the graph , with the center x. Corollary is proved.

In connection with the obtained results, the following problems naturally arise.
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Problems. 1. Describe all triples (G, My, M3) from Theorem 4 with
C(G, My, Mg) > 2.

2. Find the minimal value of n for which, in the condition of Corollary, the
subgroup M™ = M{™ is normal in the group G.

3. Improve, using Theorem 4, known estimates for the order of the point stabi-
lizer in a finite primitive permutation group.
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