Vertex stabilizers of finite symmetric graphs and a strong version of the Sims conjecture

A. S. $KONDRATIEV^1$ and V. I. Trofimov

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, S. Kovalevskaya St. 16, Ekaterinburg 620219, Russia

Newton Institute Preprint Number: NI 97014

¹Corresponding author: Prof. A. S. Kondratiev, E-mail: kon@top.imm.intec.ru

Abstract

Well known Sims conjecture proved by P. J. Cameron, C. E. Praeger, J. Saxl and G. M. Seitz (1983) can be formulated as follows. Let , be an undirected connected finite graph and G be a subgroup of Aut, acting primitively on the vertex set V(,) of , . For $x \in V(,)$ and positive integer *i*, denote by $G_x^{[i]}$ the point-wise stabilizer in G of the closed ball of the radius *i* with the center x of the graph , . Then there exists a natural number c depending only on the valency of , such that $G_x^{[c]} = 1$. We obtain that $G_x^{[6]} = 1$ for all , and G from the Sims conjecture and, moreover, the constant 6 cannot be decreased. The proof, generalizations and corollaries of this result are discussed.

Sims [20] conjectured that the following is true:

Sims conjecture. There exists a function f such that, whenever G is a primitive permutation group on a finite set Ω , if G_{α} is the stabilizer of a point α in Ω and if d is the length of any G_{α} -orbit in $\Omega \setminus \{\alpha\}$, then $|G_{\alpha}| \leq f(d)$.

Fairly many papers have been concerned with this conjecture: Thompson [25], Wielandt [26], Knapp [14], [15], Fomin [10] etc. But only with help of the classification of finite simple groups, Cameron, Praeger, Saxl and Seitz [6] proved this conjecture.

The Sims conjecture may be formulated in a geometrical language as follows.

For an undirected graph , , denote by V(,) and E(,) the vertex set and the edge set of , , respectively.

For an undirected connected graph , , a subgroup G of Aut , , $x \in V(,)$ and positive integer i, denote by $G_x^{[i]}$ the point-wise stabilizer in G of the closed ball of the radius i with the center x of the graph , (in the natural metric d_{Γ} of ,).

Let G be a primitive permutation group on a finite set $\Omega, \alpha \in \Omega$ and $M_1 = G_{\alpha}$. Fix an element $g \in G$ with $M_1^g \neq M_1$ and set $M_2 = M_1^g$. Consider a graph, with the vertex set $V(,) = \{M_1^x | x \in G\}$ and the edge set E(,) which is defined as follows:

$$\{M_1^x, M_1^y\} \in E(,) \iff \exists z \in G : \{M_1^x, M_1^y\}^z = \{M_1, M_2\}.$$

Then, is an undirected connected finite graph, G is a subgroup of Aut, acting primitively on V(,) and the length d of the M_1 -orbit containing the vertex M_2 is the valency of , .

The Sims conjecture is equivalent to the following theorem.

Theorem 1. There exists a natural valued function c such that if, is a undirected connected finite graph and G is a subgroup of Aut, acting primitively on V(,) then $G_x^{[c(d)]} = 1$ for $x \in V(,)$, where d is the valency of the graph,.

In [16], we announced the following strengthening of Theorem 1.

Theorem 2. There exists a constant C such that, for all pairs (,,G) from Theorem 1, $G_x^{[C]} = 1$.

Next, the following problem naturally arises.

Problem. Determine the minimal value of the constant C from Theorem 2.

Very recently we have solved this problem. We proved the following theorem.

Theorem 3. If , is an undirected connected graph and G is a primitive on V(,) group of its automorphisms then $G_x^{[6]} = 1$.

In other words, automorphisms of such graphs, are determined by their action on a ball of the radius 6.

In fact, we prove (using classification of finite simple groups) a more strong then Theorem 3 result which is formulated in terms of the subgroup structure of finite groups.

For a finite group G and a pair of its subgroups M_1 and M_2 , we define, for each i, the subgroups $M_1^{(i)}$ and $M_2^{(i)}$ as follows. Set

$$M_1^{(1)} = (M_1 \cap M_2)_{M_1}, M_2^{(1)} = (M_1 \cap M_2)_{M_2}$$

and

$$M_1^{(i+1)} = (M_1^{(i)} \cap M_2^{(i)})_{M_1}, M_2^{(i+1)} = (M_1^{(i)} \cap M_2^{(i)})_{M_2}.$$

For a subgroup Y of a group X, we write Y_X for the core of Y in X, that is, the maximal normal in X subgroup of Y.

Taking in Theorem 3 $M_1 = G_x$ and $M_2 = G_y$, where x and y are adjacent vertices of the graph , , we have $G_x^{[i]} \leq M_1^{(i)}$ and $G_y^{[i]} \leq M_2^{(i)}$ for all i. It is easy to see that the series $M_1 \geq G_x^{[1]} \geq G_x^{[2]} \geq \ldots$ consists of normal in M_1 subgroups and $G_x^{[i]} = G_x^{[i+1]}$ implies $G_x^{[i]} = 1$. Now Theorem 3 is obtained as a corollary of the following result.

Theorem 4. Let G be a finite group and M_1 , M_2 two distinct conjugate maximal subgroup in G. Then $M_1^{(6)} = M_2^{(6)}$ is a normal subgroup in G.

The following example shows that the constant 6 in Theorems 3 and 4 cannot be decreased.

Example 1. Let $G = E_8(q)$, $q = p^m$, p prime, and M_1 a maximal parabolic subgroup in G obtained by deleting the root α_4 from the Dynkin diagram of E_8 . Set $Q = O_p(M_1)$, $g = n_{w_4}$ and $M_2 = M_1^g$. Then the series

$$1 = M_1^{(6)} < M_1^{(5)} < M_1^{(4)} < M_1^{(3)} < M_1^{(2)} < O_p(M_1^{(1)}) < Q$$

coincides with the series

$$1 = G_x^{[6]} < G_x^{[5]} < G_x^{[4]} < G_x^{[3]} < G_x^{[2]} < O_p(G_x^{[1]}) < Q$$

and with the upper and lower central series of Q.

As another corollary of Theorem 4 we obtain the following result, which was apparently impossible to deduce from the original version of the Sims conjecture.

Corollary. Let G be a finite group, M_1 a maximal subgroup in G and M_2 a subgroup of G which does not belong to M_1 . Then the subgroup $M_1^{(12)} = M_2^{(12)}$ is normal in G.

Sketch of the proof of Theorem 4.

Let G, M_1 , $M_2 = M_1^g$, $g \in G$ satisfy the condition of Theorem 4. Without loss of generality we assume that $(M_1)_G = (M_2)_G = 1$ and $1 < |M_1^{(2)}| \le |M_2^{(2)}|$. Let τ denote the set of all such triples (G, M_1, M_2) . In particular, for a triple in τ , $G_x^{[2]} \neq 1$.

The group G acts faithfully and primitively on the set $\Omega = M_1^G$.

According to Thompson and Wielandt (see [25], [26]), $M_1^{(2)}M_2^{(2)}$ is a nontrivial p-group for some prime p and

$$F^*(M_i^{(1)}) = O_p(M_i^{(1)}) \le F^*(M_i) = O_p(M_i)$$
 for $i = 1, 2$.

Here $F^*(X)$ is the generalized Fitting subgroup of a group X, that is the subgroup generated by all normal nilpotent and subnormal quasisimple subgroups of X.

Let Soc(X) denote the socle of a group X, that is, the subgroup generated by all minimal normal subgroups of X.

Using the classification of finite simple groups, we decompose the set τ on the following subsets:

 τ_0 is the set of the triples (G, M_1, M_2) from τ with nonsimple Soc(G);

 τ_1 is the set of the triples (G, M_1, M_2) from τ with simple Soc(G) isomorphic to an alternating group;

 τ_2 is the set of the triples (G, M_1, M_2) from $\tau - \tau_1$ with simple Soc(G) isomorphic to a group of Lie type over a field of the characteristic $\neq p$;

 τ_3 is the set of the triples (G, M_1, M_2) from $\tau - (\tau_1 \cup \tau_2)$ with simple Soc(G) isomorphic to a group of Lie type over a field of the characteristic p;

 τ_4 is the set of triples (G, M_1, M_2) from τ with simple Soc(G) isomorphic to one of 26 sporadic groups.

For nonempty subset $\Sigma \subseteq \tau$, we set $c(\Sigma)$ is the maximal integer c such that $M_1^{(c-1)} \neq 1$ or $M_2^{(c-1)} \neq 1$ for some triple $(G, M_1, M_2) \in \Sigma$, or ∞ , if the maximum cannot be reached.

Theorem 4 is equivalent to the equality $c(\tau) = 6$. Let $(G, M_1, M_2) \in \tau_0$. Then

$$Soc(G) = T_1 \times \cdots \times T_m, m > 1,$$

all T_i 's are isomorphic. According to the O'Nan-Scott theorem (see [3]), $\tau_0 = \tau'_0 \cup \tau''_0$, where $(G, M_1, M_2) \in \tau'_0$ means a "diagonal action" for the permutation group G^{Ω} :

$$M_1 \cap Soc(G) = D_1 \times \ldots \times D_l,$$

where m = kl for some integer k and D_i is the diagonal subgroup of the group

$$T_{(i-1)k+1} \times \ldots \times T_{(i-1)k+k}, |\Omega| = |T_1|^{(k-1)l};$$

 $(G, M_1, M_2) \in \tau_0''$ means a "wreath action" for G^{Ω} :

G is isomorphic to a subgroup of the wreath product $H \wr S_m$ with the product action, where $|\Omega| = s^m$, H is a primitive permutation group on a set Δ , $|\Delta| = s$ and Soc(H) is isomorphic to T_1 .

We prove the following result which reduces the problem to the case of groups G with simple socles.

Reduction theorem.

(1) $\tau'_0 = \emptyset;$ (2) If $(G, M_1, M_2) \in \tau''_0$, then

$$(H, H_{\alpha}, H_{\beta}) \in \tau - \tau_0$$

for some $\alpha, \beta \in \Delta$, and

$$c(G, M_1, M_2) \le c(H, H_\alpha, H_\beta).$$

¿From now on we suppose that G has the simple socle S, in particular $S \leq G \leq$ Aut S. Since $F^*(M_1) = O_p(M_1) \neq 1$, M_1 is a p-local maximal subgroup in G. As $(M_1)_G = 1$, so S does not belong to M_1 , hence $G = SM_1$. Set $M_0 = M_1 \cap S$. Then it easy to verify that

$$F^*(M_0) = O_p(M_0) \neq 1.$$

Therefore M_0 is a *p*-local (not necessary maximal) subgroup in S.

Let $(G, M_1, M_2) \in \tau_1$ and $Soc(G) \simeq A_n$, $n \ge 5$. We show that $n \ne 6$ and hence G is isomorphic to A_n or S_n and acts naturally on a set of n points. Using that M_1 is p-local maximal subgroup of G and considering separately cases of intransitive, transitive imprimitive and primitive action of the subgroup M_1 on n points, we prove

Proposition 1. $\tau_1 = \emptyset$ and hence $G_x^{[2]} = 1$ for primitive groups G with the alternating socle.

Let $(G, M_1, M_2) \in \tau_2$, where S = Soc(G) is a group of Lie type over a field of the characteristic $r \neq p$. We show that $c(G, M_1, M_2) \leq 3$.

If S is a classic group, then M_1 belongs to one of the Aschbacher classes and also $M_0 = S \cap M_1$ is a nonparabolic local subgroup of S. We use the desription of maximal in G elements of these classes by Kleidman and Liebeck [13]. Every of the Ascbacher classes is investigated separately.

When S is a exceptional group we apply the classification of local maximal subgroups in G obtained by Cohen, Liebeck, Saxl and Seitz [7].

Example 2. Let $S \simeq L_4(3)$ and G = S < t >, where t is an involution inducing on S a graph automorphism. Then

$$M_1 = C_G(t) = M_0 \times \langle t \rangle$$

is a maximal subgroup in G and

$$M_0 \simeq S_4 \times S_4 \simeq PSO_4^+(3).2,$$

i. e. M_0 belongs to the Aschbacher class C_8 . Let T be a Sylow 2-subgroup of M_1 , R be a Sylow 2-subgroup of G with $t \in T < R$, and $g \in R - T$. Set $M_2 = M_1^g$. Then

$$M_1^{(1)} = O_2(M_1), M_1^{(2)} = \langle t \rangle \neq 1, M_1^{(3)} = 1.$$

Example 3. Let $G = S \simeq E_6^{\epsilon}(r)$, $\epsilon = \pm 1$, $r \ge 5$, $3|r - \epsilon$. There exists in G an "exotic" maximal subgroup

$$M_1 \simeq 3^{3+3}.SL_3(3).$$

Let T be a Sylow 3-subgroup of M_1 , R be a Sylow 3-subgroup of G with T < R, and $g \in N_R(T) - T$. Set $M_2 = M_1^g$ and $Q = O_3(M_1)$. Then Q is a special group of the order 3⁶ with

$$|Z(Q)| = 3^3, \ M_1^{(1)} = Q, \ M_1^{(2)} = Z(Q), \ M_1^{(3)} = 1$$

Example 2 shows that there exists a triple $(G, M_1, M_2) \in \tau_2$ such that S is classical group and $c(G, M_1, M_2) = 3$, but $(S, M_1 \cap S, M_2 \cap S) \notin \tau$. Example 3 gives an infinite series of triples (G, M_1, M_2) with exceptional group S and $c(G, M_1, M_2) = 3$.

Thus, the following holds

Proposition 2. $c(\tau_2) = 3$.

Let $(G, M_1, M_2) \in \tau_3$, where S = Soc(G) is a group of Lie type over the field GF(q) of characteristic p. Then $M_0 = M_1 \cap S$ is a parabolic in S. Set $Q = O_p(M_0)$. It is sufficiently easy to prove that the subgroup Q is weakly closed in M_1 with respect to G, i.e. $O_p(M_1^{(1)}) \cap S < Q$. Using the properties of the group Aut S we show that if $M_1^{(i)} \cap S = 1$ for some $i \geq 2$, then $M_1^{(i)} = 1$. Hence $c(G, M_1, M_2)$ is bounded above by the number $\gamma(M_1)$ of the chief factors of M_1 in Q. It is easy to show that if $G_x^{[i]}/G_x^{[i+1]}$ is isomorphic to GF(q)H-module of the dimension 1 (H is a Cartan subgroup in M_0) then $G_x^{[i+1]} = 1$. In some cases, this fact allows at once to show that

$$c(G, M_1, M_2) < \gamma(M_1).$$

Further we calculate the function $\gamma(M_1)$. If S is not isomorphic to

$$B_n(2^m), F_4(2^m), G_2(2^m), G_2(3^m), {}^2B_2(2^m), {}^2G_2(3^m), {}^2F_4(2^m)',$$

then we find the function $\gamma(M_1)$ from the result by Azad, Barry and Seitz [5].

The remaining cases (where p is a very bad prime) are considered case by case with the help of various known results on parabolic subgroups, for example, results by Suzuki [21], [22], Ree [19], Thomas [23], [24], Guterman [12], Parrot [18], Fong and Seitz [11], Curtis, Kantor and Seitz [9], Aschbacher and Seitz [4] etc. Ultimately we prove that $c(G, M_1, M_2) \leq 6$.

Now Example 1 show that the following holds.

Proposition 3. $c(\tau_3) = 6$.

At last, let $(G, M_1, M_2) \in \tau_4$. Using the known information about local maximal subgroups of sporadic groups (see for instance citeAtlas and the Aschbacher book citeAsch2), we show that $c(G, M_1, M_2) \leq 5$.

Example 4. Let $G \simeq F_2$. There exists in G a maximal subgroup $M_1 \simeq$ $[2^{30}].L_5(2)$. Then there exists an element $g \in G$ such that for $M_2 = M_1^g$ we have

$$O_2(M_1) = M_1^{(1)}, M_1^{(1)}/M_1^{(2)} \simeq M_1^{(2)}/M_1^{(3)} \simeq 2^{10}, M_1^{(3)}/M_1^{(4)} \simeq M_1^{(4)}/M_1^{(5)} \simeq 2^5, M_1^{(5)} = 1.$$

Thus, the following holds.

Proposition 4. $c(\tau_4) = 5$

Theorem 4 is proved. Now, we prove Corollary.

Proof of Corollary. Without loss of generality we assume that $(M_1 \cap M_2)_G = 1$. Let, be the graph with $V(,) = \{gM_1, gM_2 | g \in G\}, E(,) = \{\{gM_1, gM_2\} | g \in G\},\$ and the group G acts on V(,) by left translations. Then, is a connected bipartite graph with the parts

$$V_1 = \{gM_1 | g \in G\}$$
 and $V_2 = \{gM_2 | g \in G\},\$

 $G \leq Aut$, and G acts primitively on V_1 and transitively on V_2 .

Let x and y denote vertices M_1 and M_2 of the graph , , respectively. Then the groups M_1 and M_2 act transitively on the neighborhoods of the vertices x and y, respectively. By induction on the natural parameter i we prove the equalities

$$M_1^{(i)} = G_x^{[i]}$$
 and $M_2^{[i]} = G_y^{[i]}$,

where $M_1^{(i)}$ and $M_2^{(i)}$ are defined by the triple (G, M_1, M_2) as above.

Consider the graph , ' with $V(, ') = V_1$ and

$$E(,') = \{\{u, v\} | u, v \in V_1, d_{\Gamma}(u, v) = 2\}.$$

Then G is a primitive group of the automorphisms of the graph , ' and, by Theorem 4, the point-wise stabilizer in G of the ball of the radius 6 of the graph, ' with the center x is trivial. But this stabilizer includes the point-wise stabilizer in G of the ball of the radius 12 of the graph , with the center x. Corollary is proved.

In connection with the obtained results, the following problems naturally arise.

Problems. 1. Describe all triples (G, M_1, M_2) from Theorem 4 with $c(G, M_1, M_2) > 2$.

2. Find the minimal value of n for which, in the condition of Corollary, the subgroup $M_1^{(n)} = M_2^{(n)}$ is normal in the group G.

3. Improve, using Theorem 4, known estimates for the order of the point stabilizer in a finite primitive permutation group.

Acknowledgements

The results of this note were completed during the participation of the first author in the programme "Representations of Algebraic Groups and Related Finite Groups" at the Isaac Newton Institute for Mathematical Sciences, Cambridge, U.K., in January-February 1997. The authors thank M. Broué, R. W. Carter, and J. Saxl for organizing the programme and the staff of the Institute for their support.

References

- M. Aschbacher, On the maximal subgroups of the finite classical groups, Inv. Math. 76 (1984), 469-514.
- [2] M. Aschbacher, Overgroups of Sylow subgroups of sporadic groups, Mem. Amer. Math. Soc. 342 (1986), 1-235.
- [3] M. Aschbacher and L. L. Scott, Maximal subgroups of finite groups, J. Algebra 92 (1985), 44-80.
- [4] M. Aschbacher and G. M. Seitz, Involutions in Chevalley groups over fields of even order, Nagoya Math. J. 63 (1976), 1-91.
- [5] H. Azad, M. Barry and G. M. Seitz, On the structure of parabolic subgroups, Comm. Algebra 18 (1990), 551-562.
- [6] P. J. Cameron, C. E. Praeger, J. Saxl and G.M. Seitz, On the Sims conjecture and distance transitive graphs, Bull. London Math. Soc. 15 (1983), 499-506.
- [7] A. M. Cohen, M. W. Liebeck, J. Saxl and G. M. Seitz, The local maximal subgroups of exceptional groups of Lie type, finite and algebraic, Proc. London Math. Soc. 64 (1992), 21-48.
- [8] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985.
- [9] C. Curtis, C. Kantor and G. M. Seitz, The two transitive permutation representations of the finite Chevalley groups, Trans. Amer. Math. Soc. 218 (1976), 1-59.

- [10] A. N. Fomin, On a conjecture of Sims, In: Sixth All-Union Symp. on Group Theory, Naukova Dumka, Kiev, 1980, 158-165.
- [11] P. Fong and G. M. Seitz, Groups with (B, N)-pair of rank 2, II, Inv. Math. 24 (1973), 191-239.
- [12] M. M. Guterman, A characterization of the groups $F_4(2^n)$, J. Algebra 20 (1972), 1-23.
- [13] P. B. Kleidman and M. W. Liebeck, The subgroup structure of the finite classical groups, Cambridge University Press, Cambridge, 1990.
- [14] W. Knapp, On the point stabilizer in a primitive permutation group, Math. Z. 133 (1973), 137-168.
- [15] W. Knapp, An order bound for a point stabilizer of a primitive permutation group, Arch. Math. 36 (1981), 481-484.
- [16] A. S. Kondratiev and V. I. Trofimov, The triviality of the stabilizer of the ball of large radius in primitive groups of authomorphisms of finite graphs, In: Third Intern. Conf. on Algebra, Abstracts, Krasnoyarsk, 1993, p. 159.
- [17] M. W. Liebeck, J. Saxl and G. M. Seitz, Subgroups of maximal rank in finite exceptional groups of Lie type, Proc. London Math. Soc. 65 (1992), 297-325.
- [18] D. Parrot, A characterization of the Ree groups ${}^{2}F_{4}(q)$, J. Algebra 27 (1973), 341-357.
- [19] R. Ree, A family of simple groups associated with the simple Lie algebra of Type (F_4) , Amer. J. Math. 83 (1961), 401-420.
- [20] C. C. Sims, Graphs and finite permutation groups, Math. Z. 95 (1967), 76-86.
- [21] M. Suzuki, On a class of doubly transitive groups, Ann. Math. (2) 75 (1962), 105-145.
- [22] M. Suzuki, Characterization of linear groups, Bull. Aner. Math. Soc. 75 (1969), 1043-1091.
- [23] G. Thomas, A characterization of the groups $G_2(2^n)$, J. Algebra 13 (1969), 87-118.
- [24] G. Thomas, A characterization of the Steinberg group $D_4^2(q^3), q = 2^n$, J. Algebra 14 (1970), 373-385.
- [25] J. G. Thompson, Bounds for the orders of maximal subgroups, J. Algebra 14 (1970), 135-138.
- [26] H. Wielandt, Subnormal subgroups and permutation groups, Ohio State Univ. Lecture Notes, 1971.