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Generalized membrane solutions of D=11 supergravity, for which the transversespace is a toric hyper-K ahler manifold, are shown to have IIB duals representingthe intersection of parallel 3-branes with 5-branes whose orientations are deter-mined by their Sl(2;Z) charge vectors. These IIB solutions, which genericallypreserve 3/16 of the supersymmetry, can be further mapped to solutions of D=11supergravity representing the intersection of parallel membranes with any numberof �vebranes at arbitrary angles. Alternatively, a subclass (corresponding to non-singular D=11 solutions) can be mapped to solutions representing the intersectionon a string of any number of D-5-branes at arbitrary angles, again preserving 3/16supersymmetry, as we verify in a special case by a quaternionic extension of theanalysis of Berkooz, Douglas and Leigh. We also use similar methods to �nd new1/8 supersymmetric solutions of orthogonally intersecting branes.
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1. IntroductionA number of recent developments have underscored the importance of super-symmetric intersecting p-brane con�gurations of M-theory and superstring theo-ries for a variety of phenomena of physical interest. Much of the work on thissubject has been concerned with the realization of intersecting p-brane con�gura-tions as solutions of the relevant e�ective supergravity theory. The solutions sofar considered have been restricted to those representing orthogonal intersections.Furthermore, most are `delocalized' in some directions, with the consequence thattheir interpretation as intersecting branes is not completely straightforward. Inthis paper we report on some progress towards lifting these restrictions. A noveltyof many of the new solutions we �nd is that they preserve 3/16 supersymmetry,a fraction not obtainable from orthogonal intersections. Our method derives fromconsidering certain solutions of D=11 supergravity so it has the additional advan-tage that an M-theory setting is automatically provided. Moreover, many of theseD=11 supergravity solutions are non-singular, thereby providing examples of howthe singularities of at least some intersecting brane solutions of type II superstringtheory are resolved in M-theory.Using M-theory and superstring dualities, any intersecting brane solution canbe obtained from some solution of D=11 supergravity, although it does not followfrom this fact that the D=11 solution will also have an intersecting brane interpre-tation. Conversely, solutions of D=11 supergravity with some other interpretation,or with no obvious interpretation at all, may be interpretable as intersecting branesolutions after reduction to D=10 and possible dualization. If one regards a singlebrane as a degenerate case of an intersecting brane con�guration then a case inpoint is the solution of D=11 supergravity for which the 11-dimensional metric isthe product of 7-dimensional Minkowski space with the (hyper-K ahler) EuclideanTaub-Nut metric. Since the latter metric admits a U(1) isometry and is asymptot-ically at, this solution can be reduced to D=10 where it becomes the D-6-branesolution of IIA supergravity [1]. Similarly, the analogous Euclidean Taub-Nut so-3



lution of D=10 IIA(B) supergravity is T-dual to an NS-5-brane solution of IIB(A)supergravity [2].This raises an obvious question: does the product of two Euclidean Taub-Nutspaces, which is an 8-dimensional asymptotically at hyper-K ahler manifold withholonomy Sp(1)�Sp(1), have an analogous interpretation when used as a solutionof D=11 supergravity? The same question can also be asked of any 8-dimensionalasymptotically at hyper-K ahler manifold, for which the holonomy is genericallySp(2). One purpose of this paper is to provide an answer to this question forasymptotically at 8-dimensional `toric' hyper-K ahler manifolds, i.e. those ad-mitting a triholomorphic T 2 isometry, by showing that the associated solutions ofD=11 supergravity are mapped to intersecting 5-brane solutions of IIB supergrav-ity. The generic IIB solution found this way preserves 3/16 of the supersymmetryof the IIB vacuum solution and is naturally interpreted as an arbitrary number of5-branes with pairwise intersections at angles determined by their Sl(2;Z) charges.The fact that these solutions generically preserve 3/16 supersymmetry derivesin the �rst instance from the fact that hyper-K ahler 8-manifolds generically haveholonomy Sp(2), because this implies the preservation of 3/16 supersymmetry bythe D=11 supergravity solution; the triholomorphicity of the T 2 isometry thenensures that this feature is maintained under dimensional reduction to D=10 andsubsequent T-duality. In the special case in which the 8-metric is the metric prod-uct of two 4-metrics the holonomy is reduced to Sp(1)�Sp(1) and the correspond-ing solutions of D=11 supergravity, which preserve 1/4 of the supersymmetry, aremapped under duality to solutions representing any number of parallel D-5-branesorthogonally intersecting, or overlapping, any number of parallel NS-5-branes on a2-brane.These IIB solutions can now be mapped back to D=11 to give new intersect-ing M-5-brane solutions in which an arbitrary number of M-5-branes intersect atarbitrary angles while still preserving 3/16 supersymmetry. Alternatively, a seriesof duality transformations leads to a class of solutions of IIB supergravity repre-4



senting the intersection on a string of an arbitrary number of D-5-branes, againat arbitrary angles and preserving 3/16 of the supersymmetry. A potentially use-ful feature of these solutions is that, since they involve only D-branes, it shouldbe possible to further analyse them using string perturbation theory. A specialcase represents just two D-5-branes intersecting on a string with one rotated byan arbitrary angle relative to the other. When the D-5-branes are orthogonal theypreserve 1/4 of the supersymmetry, as expected, so we learn from the more generalsolution that a rotation away from orthogonality may be such as to preserve 3/4of the original supersymmetry. One might have expected that any deviation fromorthogonality would break all supersymmetries, but it has been shown previouslyby other methods that this is not necessarily the case [3,4]. We adapt these meth-ods to our case to verify that the fraction of supersymmetry preserved, relative tothe vacuum, is 3/16.The starting point for all the above results are non-singular solutions of D=11supergravity for which the D=11 4-form �eld strength is zero and the 11-metrictakes the form ds2 = ds2(E 2;1) + ds28 (1:1)where E 2;1 is D=3 Minkowski space and ds28 is a complete toric hyper-K ahler 8-metric. This solution is actually a special case of a `generalized membrane' solutionfor which ds2 = H� 23ds2(E 2;1) +H 13ds28F = �!3 ^ dH�1 (1:2)where !3 is the volume form on E 2;1 and H is a T 2-invariant? harmonic functionon the hyper-K ahler 8-manifold. Provided the sign of the expression for the 4-form F in (1.2) is chosen appropriately, the solution with F 6= 0 breaks no moresupersymmetries than the solution (1.1) with F = 0.? This condition on H is needed for our applications; it is not needed to solve the D=11supergravity equations. Solutions of the form of (1.2) have been found previously in thecontext of KK theory (see [5] for an M-theory update). Generalized membrane solutions ofa rather di�erent type, but preserving 3/16 supersymmetry, have also been found [6].5



Since the `generalized membrane' solution (1.2) of D=11 supergravity admitsthe action of a torus we can convert it to a solution of IIB D=10 supergravity, asin the pure hyper-K ahler case. The resulting IIB solution generalizes the previousone in that the 2-brane overlap of the 5-branes now has the interpretation as theintersection (or, possibly, the boundary) of a D-3-brane with the 5-branes. In thecase of orthogonal intersections these are just the con�gurations used by Hananyand Witten (HW) in their study of D=3 supersymmetric gauge theories [7]. Actu-ally, our supergravity solutions do not quite correspond to the HW con�gurationsbecause they are translationally invariant along the direction in the 3-brane con-necting the 5-branes. In another respect, however, our solutions are more generalbecause they include con�gurations of non-orthogonal 5-branes preserving 3/16supersymmetry, leading to N=3, rather than N=4, supersymmetry on the D=3 in-tersection. These con�gurations are therefore of possible relevance to the dynamicsof D=3 gauge theories with N=3 supersymmetry [8].Given a solution representing a 3-brane intersecting IIB 5-branes, we can T-dualize along a direction in the 2-brane intersection to arrive at a new IIA con�g-uration which can then be lifted back to D=11. The resulting solution of D=11supergravity, which generically preserves 3/16 supersymmetry, can be interpretedas an M-theory membrane intersecting, on a string, any number of M-5-branes atarbitrary angles. The special case in which just two M-5-branes intersect orthogo-nally is itself a new solutiony, preserving 1/4 of the vacuum supersymmetry, thatgeneralizes the `two M-5-branes overlapping on a string' solution of [10].As a further example of how hyper-K ahler manifolds lead via duality to newintersecting branes we consider a `generalized overlapping �vebrane' solution ofD=11 supergravity of the formds211 = (H1H2) 23 �(H1H2)�1ds2(E 1;1) +H�11 ds24(M2) +H�12 ds24(M1) + dz2�F = � �1 dH1 + �2dH2� ^ dz (1:3)y This solution has been found independently by Tseytlin [9].6



where H1 and H2 are harmonic functions on the respective asymptotically-athyper-K ahler 4-manifolds M1 and M2, each with U(1) isometry, and �i indicatesthe Hodge dual on Mi. The `two M-5-branes overlapping on a string' solution isnow recovered as the special case for which M1 and M2 are both chosen to beE 4. If one or both M1 and M2 are taken to be Euclidean Taub-Nut (for exam-ple) then 1/8 of the supersymmetry is preserved for appropriate relative signs ofthe 5-brane charges. Since this `generalized overlapping �vebrane' solution stillhas a triholomorphic T 2 isometry it can be mapped to a solution of IIB super-gravity preserving the same fraction of supersymmetry. We show that it maps toa con�guration of orthogonally intersecting D-5-branes and NS-5-branes. It canthen be mapped back to D=11 to yield a newz 1/8 supersymmetric solution ofD=11 supergravity representing (in the simplest case) four orthogonally intersect-ing M-5-branes. Remarkably, this can be further generalized to include a pair ofintersecting membranes, still preserving 1/8 supersymmetry.We have been using the terms `intersecting' and `overlapping' interchangeablyin the above discussion, but there is of course a distinction between them. Thepossibility of an `overlapping' brane interpretation arises whenever the branes arepotentially separable in one or more directions. If two branes intersect one expectsthe intersection to appear as a physical intersection in the worldvolume �eld theoryof each brane; this leads, for instance, to the `(p� 2)-brane intersection' rule [12].The solutions considered here are typically translationally invariant in the onedirection that potentially separates di�erent branes, so the issue of whether thebranes are actually intersecting or merely overlapping is left unresolved. However,the fact that the `overlapping'M-theory 5-brane solution of [10] has a generalizationin which the common 1-brane is naturally interpreted as the intersection of each 5-brane with a membranemakes it also natural to suppose that one is left with a mereoverlap when the membrane is removed. In any case, we shall �nd it convenient toadopt this point of view here in order to avoid confusion between di�erent types ofz For example, it is not included in a recent classi�cation of orthogonally intersecting branesolutions [11]. 7



solution. For example, we shall refer to HW-type con�gurations of IIB D-5-branesand NS-5-branes without 3-branes as `overlapping' branes whereas we shall referto the more general con�guration with 3-branes as `intersecting' branes.2. Toric Hyper-K ahler manifoldsWe are principally interested here in 8-dimensional hyper-K ahler manifoldswith a tri-holomorphic T 2 isometry, but we shall consider these as special cases of4n-dimensional hyper-K ahler manifoldsMn with a tri-holomorphic T n isometry.We shall refer to them as toric hyper-K ahler manifolds [13]. LetX i = @@'i (i = 1; : : : ; n) (2:1)be the n commuting Killing vector �elds. They are tri-holomorphic if the tripletof K ahler 2-forms 

 is 'i-independent, i.e. ifLi

 = 0 ; (2:2)where Li is the Lie derivative with respect to X i. The general toric hyper-K ahler4n-metric has the local formds2 = Uij dxi � dxj + U ij(d'i +Ai)(d'j +Aj) (2:3)where Uij are the entries of a positive de�nite symmetric n� n matrix function Uof the n sets of coordinates xi = fxir ; r = 1; 2; 3g on each of n copies of E 3, andU ij are the entries of U�1. The n 1-forms Ai have the formAi = dxj � !!ji (2:4)where !! is a triplet of n�n matrix functions? of the n sets of E 3 coordinates. The? Of no particular symmetry; it was incorrectly stated in [14] that these matrix functions aresymmetric. 8



three K ahler 2-forms are [14]

 = (d'i +Ai)dxi � 12Uij dxi � dxj (2:5)where � denotes the standard vector product in E 3, the exterior product of formsbeing understood (e.g. the 3-component of dxi � dxj is 2dxi1 ^ dxj2).For some purposes it is convenient to introduce a (non-coordinate) frame inwhich the components of both the metric and 

, and hence the complex structures,are constant. To do so we write U asU = KTK (2:6)for some non-singular matrix K (which is not unique because it may be multipliedon the left by an arbitrary SO(n) matrix). We then de�ne 3n legs of a 4n-bein byEi = Kijdxj (2:7)and the remaining n legs by Ei = (d�j +Aj)Kji (2:8)where K ij is the inverse of Kij. This 4n-bein de�nes a new frame in which themetric is ds2 = �ij EiEj + 12�ij Ei �Ej (2:9)and the triplet of K ahler 2-forms is

 = 2EiEi �Ei �Ej : (2:10)In this frame the triplet of complex structures J are simply a set of three constant4n � 4n matrices 9



The conditions on Uij and Ai required for the metric to be hyper-K ahler, andfor the closure of 

, are most simply expresed as the constraint [15]F rsjk i = "rst@tjUki (2:11)on the 2-form `�eld strengths' Fi = dAi, for which the components areF rsjk i = @rj!ski � @sk!rji ; (2:12)where we have introduced the notation@@xir = @ri : (2:13)The constraint (2.11) implies that @t[jUk]i = 0 ; (2:14)while the `Bianchi' identity dFi � 0 implies that the matrix U satis�es [16]@i � @j U = 0 (i; j = 1; : : : ; n) : (2:15)Given a solution of these equations, the 1-forms Ai are determined up to a gaugetransformation of the form Ai ! Ai + d�i(x), which can be compensated by achange of 'i coordinates. Thus, the determination of hyper-K ahler metrics of theassumed type reduces to �nding solutions of (2.14) and (2.15). We shall refer tothese equations as the `hyper-K ahler conditions'.Note that (2.15) implies thatU ij @i � @j U = 0 ; (2:16)which is equivalent to the statement that each entry of U is a harmonic functionon Mn. To see that this is so, we observe that the Laplacian, when restricted to10



acting on T n-invariant functions, isr2 = (detU)�1@i � (detUU ij@j)= U ij @i � @j ; (2:17)where the second line follows from (2.14). Since U is T n-invariant, it follows that(2.16) is equivalent to r2U = 0. Of course, this is far from being a completecharacterization of U .One obvious solution of the hyper-K ahler conditions, which may be consideredto represent the `vacuum', is constant U . We shall denote this constant `vacuummatrix' by U (1) (we shall see in due course that this terminology is appropriatefor the applications we have in mind). The corresponding `vacuum metric' isds2 = U (1)ij dxi � dxj + U ij(1)d'id'j : (2:18)For our applications we shall insist that 'i be periodically identi�ed with thestandard identi�cation 'i � 'i + 2� (i = 1; : : : ; n) : (2:19)Thus, the `vacuum manifold' is E 3n � T n. We shall wish to consider only thosehyper-K ahler manifolds that are asymptotic to E 3n � T n, with the above metricand identi�cations, as jxij ! 1 for all i. Thus, the moduli space of `vacua' maybe identi�ed with the set of at metrics on T n. This in turn may be identi�ed withthe double coset space Sl(n;Z)nGl(n;R)=SO(n) : (2:20)Non-vacuum hyper-K ahler metrics in this class can be found by superpos-ing the constant solution U (1) of the hyper-K ahler conditions with some linear11



combination of solutions of the formUij[fpg;a] = pipj2jPk pkxk � aj (2:21)where fpi; i = 1; : : : ; ng is a set of n real numbers and a is an arbitrary 3-vector.Any solution of this form may be associated with a 3(n�1)-plane in E 3n, speci�edby the 3-vector equation nXk=1 pkxk = a : (2:22)The associated hyper-K ahler 4n-metric is non-singular provided that the param-eters fpg are coprime integers. We shall henceforth assume that fpg denotes anordered set of coprime integers and we shall refer to this set as a `p-vector'. Thegeneral non-singular metric may now be found by linear superposition. For a givenp-vector we may superpose any �nite number N(fpg) of solutions with variousdistinct 3-vectors fam(fpg); m = 1; : : : ; Ng. We may then superpose any �nitenumber of such solutions. This construction yields a solution of the hyper-K ahlerconditions of the formUij = U (1)ij +Xfpg N(fpg)Xm=1 Uij[fpg;am(fpg)] : (2:23)Since each term in the sum is associated to a 3(n � 1)-plane in E 3n, any givensolution is speci�ed by the angles and distances between some �nite number ofmutually intersecting 3(n � 1)-planes [17]. It can be shown that the resultinghyper-K ahler 4n-metric is complete provided that no two intersection points, andno two planes, coincide. We demonstrate this in an appendix by means of thehyper-K ahler quotient construction [16].A feature of this class of hyper-K ahler 4n-metrics is that it is Sl(n;Z) invariant,in the sense that, given S 2 Sl(n;Z), the Sl(n;Z) transformation U ! STUS takesany solution of the hyper-K ahler conditions of the form (2.23) into another one12



of this form. This would be true for S 2 Sl(n;R) if the allowed p-vectors werearbitrary, but the restrictions imposed on them by completeness of the metricrestricts S to lie in the discrete Sl(n;Z) subgroup. To see this we note that a3(n � 1)-plane de�ned by the p-vector fpg is transformed into one de�ned bythe new p-vector Sfpg whose components are again coprime integers only if S 2Sl(n;Z).It will prove convenient to have some simple examples of complete toric hyper-K ahler 4n-metrics. The simplest examples are found by supposing �U � U�U (1)to be diagonal. For example,Uij = U (1)ij + �ij 12jxij : (2:24)Hyper-K ahler metrics with U of this form were found previously on the modulispace of n distinct fundamental BPS monopoles in maximally-broken rank (n+1)gauge theories [18] (see also [19]). For this reason we shall refer to them as `LWYmetrics'. For the special case in which not only �U but also U (1) is diagonal thenU is diagonal and the LWY metrics reduce to the metric product of n EuclideanTaub-Nut metrics. There is also a straightforward `multi-centre' generalization ofthe LWY metrics which reduces when U (1) is diagonal to the metric product of ncyclic ALF spaces (see e.g. [20]). Whenever �U is diagonal we may choose !! of(2.4) such that Ai is a 1-form on the ith Euclidean 3-space satisfyingFi = ?dUii (i = 1; : : : ; n) (2:25)where ? is the Hodge dual on E 3.For our applications we shall also need to know something about covariantlyconstant spinors on hyper-K ahler manifolds. We �rst note that if the holonomyof a 4n-dimensional hyper-K ahler manifold is strictly Sp(n) (rather than a propersubgroup of it) then there there exist precisely (n+1) covariantly constant SO(4n)spinors [21]. As we shall explain in more detail in the following section for n = 2,13



these spinors arise as singlets in the decomposition of the spinor representationof SO(4n) into representations of Sp(n). It will be important in our applicationsfor these covariantly constant spinors to be independent of the T n coordinates.Fortunately this is a consequence of the triholomorphicity of the T n Killing vector�elds. This can be seen as follows. Because X is Killing, its covariant derivativerX is an antisymmetric 4n � 4n matrix, i.e. it takes values in the Lie algebraso(4n). Let 	 be a �eld transforming according to a representation R of SO(4n)and let R(rX) be the representative of rX in the corresponding representationof so(4n). The Lie derivative of 	 along X is thenLX	 = iXr	+R(rX)	 : (2:26)For a covariantly constant spinor � we therefore have thatLX� = 14�ab(rX)ab � : (2:27)The condition that X be triholomorphic, when combined with the covariant con-stancy of the complex structures J, implies that[rX;J] = 0 (2:28)This implies that rX actually takes values in the sp(n) subalgebra of so(4n), butcovariantly constant spinors are Sp(n) singlets, so the right hand side of (2.27)vanishes and we deduce that LX� = 0, as claimed.Only the n = 2 cases of the above class of hyper-K ahler manifolds will beneeded in our applications. Moreover, for these applications we may restrict U (1)to be such that detU (1) = 1 ; (2:29)so that the moduli space of `vacua' isSl(2;Z)nSl(2;R)=SO(2) : (2:30)Let us �rst consider the case in which the metric is determined by just two inter-14



secting 3-planes with p-vectors fpg and fp0g. We can choose the intersection pointto be at the origin of E 6, so U is given by U = U (1) +�U , where2�Uij = pipjjp1x1 + p2x2j + p0ip0jjp01x1 + p02x2j : (2:31)The orientation of two 3-planes in E 6 is speci�ed by the 3� 3 matrixMrs = (U (1))ij n(r)i �m(s)j ; (2:32)where fn(r)i ; r = 1; 2; 3g are three linearly independent unit normals to one 3-planeand fm(s)i ; s = 1; 2; 3g are three linearly independent unit normals to the otherone. The choice of each set of three unit normals is irrelevant, so we are free tochoose them in such a way that M is diagonal. Thus, the relative con�guration ofthe two 3-planes is speci�ed, in principle, by three angles. In our case, however,M is SO(3) invariant as a consequence of the SO(3) invariance of the conditionsspecifying each 3-plane, so Mrs = (cos �)�rs (2:33)where cos � = p � p0pp2p02 ; (2:34)with inner product p � q = (U (1))ijpiqj : (2:35)When p = (1; 0) and q = (0; 1), as is the case for the LWY metrics, (2.34) reducesto cos � = � U (1)12qU (1)11 U (1)22 : (2:36)Observe that the formula (2.34) for the angle between two 3-planes is Sl(2;R)-invariant, so given any particular two-plane solution we could always choose to15



evaluate the angle between them by making an Sl(2;R) transformation of coor-dinates to bring U1 to the identity matrix. In such coordinates U is diagonal,and the metric is therefore the direct product of two 4-metrics, whenever the two3-planes are orthogonal. Thus, orthogonality of the two 3-planes implies a re-duction of the holonomy from Sp(2) to Sp(1) � Sp(1). Non-orthogonality of thetwo 3-planes does not so obviously imply that the holonomy is Sp(2) but we haveveri�ed, by computation of the curvature tensor, that the holonomy of the LWYmetrics is not contained in Sp(1)� Sp(1), and so must be Sp(2), whenever U1 isnon-diagonal. This is su�cient to show that a metric corresponding to two non-orthogonal 3-planes has Sp(2) holonomy. Since the holonomy cannot be reduced bythe inclusion of additional 3-planes, a solution of the hyper-K ahler conditions thatincludes any two non-orthogonal 3-planes yields a metric which also has holonomySp(2). Thus, the only toric hyper-K ahler 8-metrics for which the holonomy is aproper subgroup of Sp(2) are those corresponding to the orthogonal intersectionof two 3-planes, or two sets of parallel 3-planes, in which case the metric is theproduct of two hyper-K ahler 4-metrics.Finally, we note that for n = 2 the three K ahler 2-forms can be expressedsimply in terms of the three covariantly constant real chiral SO(8) spinors �r.This is most straightforward in the frame in which these spinors are constant. Ifwe normalize the spinors such that(�r)T �r = 1 (r = 1; 2; 3) ; (2:37)then 
rab = 12"rst(�s)T ab�t (2:38)where ab is the antisymmetrized product of pairs of SO(8) Dirac matrices. Forn > 2 the relation between the covariantly constant spinors and the triplet of Kahler 2-forms is more involved. We refer the reader to [21] for details.16



3. Overlapping branes from hyper-K ahler manifoldsWe shall consider �rst the solution of D=11 supergravity for which the 4-form�eld strength vanishes and the 11-metric isds211 = ds2(E 2;1) + Uijdxi � dxj + U ij(d'i +Ai)(d'j +Aj) (3:1)where Uij is a 2 � 2 symmetric matrix of the form (2.23) characterizing an 8-dimensional toric hyper-K ahler manifold M. Our �rst task is to determine thenumber of supersymmetries preserved by this solution. This is essentially an ap-plication of the methods used previously in the context of KK compacti�cationsof D=11 supergravity (see, for example, [26]).A 32-component real spinor of the D=11 Lorentz group has the following de-composition into representations of Sl(2;R)� SO(8):32! (2;8s)� (2;8c) : (3:2)The two di�erent 8-component spinors of SO(8) correspond to the two possibleSO(8) chiralities. The unbroken supersymmetries correspond to singlets in thedecomposition of the above SO(8) representations with respect to the holonomygroup H of M. For example, the D=11 vacuum corresponds to the choice U =U (1) for which H is trivial; in this case both 8-dimensional spinor representationsdecompose into 8 singlets, so that all supersymmetries are preserved. The genericholonomy group is Sp(2), for which we have the following decomposition of theSO(8) spinor representations: 8s ! 5� 1� 1� 18c ! 4� 4 : (3:3)There are now a total of 6 singlets (three Sl(2;R) doublets) instead of 32, so thatthe D=11 supergravity solution preserves 3/16 of the supersymmetry, unless the17



holonomy happens to be a proper subgroup of Sp(2) in which case the above repre-sentations must be further decomposed. For example, the 5 and 4 representationsof Sp(2) have the decomposition5! (2;2)� (1;1)4! (2;1)� (1;2) (3:4)into representations of Sp(1)� Sp(1). We see in this case that there are two moresinglets (one Sl(2;R) doublet), from which it follows that the solution preserves1/4 of the supersymmetry whenever the holonomy is Sp(1)� Sp(1).The solution (3.1) of D=11 supergravity has no obvious interpretation as itstands, but we shall see how it acquires two distinct interpretations as overlappingor intersecting 5-branes in the context of D=10 IIB supergravity. One such solutioninvolves only D-5-branes and will be discussed in the following section. Here wepresent a IIB solution involving both Dirichlet (R
R) and Solitonic (NS
NS) 5-brane charges. Given that the D=11 �elds are invariant under the transformationsgenerated by a U(1) Killing vector �eld @=@y, the D=11 supergravity action canbe reduced to the D=10 IIA supergravity action. The KK ansatz for the bosonic�elds leading to the string-frame 10-metric isds2(11) = e� 23�(x)dx�dx�g��(x) + e 43�(x)�dy + dx�C�(x)�2A(11) = A(x) +B(x) ^ dy ; (3:5)where A(11) is the D=11 3-form potential and x� are the D=10 spacetime coor-dinates. We read o� from the right hand side the bosonic �elds of D=10 IIAsupergravity; these are the NS 
 NS �elds (�; g�� ; B��) and the R 
 R �elds(C�; A���). In our case we may choose y = '2 to arrive at the IIA supergravity18



solution for which the non-vanishing �elds areds210 = � U11detU� 12 �ds2(E 2;1) + Uijdxi � dxj�+� 1U11 detU� 12 (dz +A1)2� = 34 logU11 � 34 log detUC = A2 ��U12U11��A1 + dz� ; (3:6)where we have set '1 = z. Because of the triholomorphicity of @=@y the Killingspinors are all y-independent and therefore survive as Killing spinors of the reducedtheory?.Since � is z-independent and C satis�es LkC = 0, where k = @=@z, which isa U(1) Killing vector �eld, we may use the T-duality rules of [28] to map (3.6)to a IIB supergravity solution. Again, the triholomorphicity of k ensures that allKilling spinors survive. Let the D=10 spacetime coordinates bex� = (xm; z) (m = 0; 1; : : : ; 8) (3:7)where xm are D=9 spacetime coordinates and z is the `duality direction' coordinate.The T-duality rules for the NS
NS �elds, mapping string-frame metric to string-frame metric, ared~s2 = �gmn � g�1zz (gmzgnz �BmzBnz)�dxmdxn + 2g�1zz Bzmdzdxm + g�1zz dz2~B = 12dxm ^ dxn�Bmn + 2g�1zz (gmzBnz)�+ g�1zz gzmdz ^ dxm~� = �� 12 log gzz (3:8)where we indicate the transformed �elds by a tilde. These rules may be read as amap either from IIA to IIB or vice-versa. The only T-duality rules for the R 
R? A case in which supersymmetry is broken by dimensional reduction because this conditionis not satis�ed can be found in [27]. 19



�elds that we shall need for most of this paper are those that map from IIA to IIB,with the IIA �elds restricted byB = 0 ikA = 0 ; (3:9)where ik indicates contraction with the Killing vector �eld k = @=@z. Given thisrestriction, the T-dual IIB R 
R �elds arey` = CzB 0 = �Cm � (gzz)�1Czgzm�dxm ^ dzikD = A (3:10)where ` is the IIB pseudoscalar, B 0 the R
R two-form potential and D is the IIB4-form potential. Because of the self-duality of its �eld strength we need specifyonly the components ikD of D.The non-vanishing IIB �elds resulting from the application of these T-dualityrules to the IIA solution (3.6) areds2E = (detU) 34 �(detU)�1ds2(E 2;1) + (detU)�1Uijdxi � dxj + dz2�B(i) = Ai ^ dz� = �U12U11 + ipdetUU11 (3:11)where � � `+ ie��B B(1) � B B(2) � B 0 (3:12)and ds2E is the Einstein-frame metric, related to the IIB string metric byds2E = e� 12�Bds2B : (3:13)The complex scalar �eld � takes values in the upper half complex plane, ony Our choice of �eld de�nitions di�ers slightly from that of [28].20



which the group Sl(2;R) acts naturally by fractional linear transformations of � :� ! a� + bc� + d ;  a bc d! � S 2 Sl(2;R) : (3:14)The � �eld equations are invariant under this action, and the invariance extendsto the full IIB supergravity �eld equations with B(i) transforming as an Sl(2;R)doublet while the Einstein-frame metric is Sl(2;R) invariant; the fermion transfor-mation properties will not be needed here so we omit them. This invariance allowsus to �nd new solutions as Sl(2;R) transforms of any given solution. To exploitthis observation we note thatUpdetU = 1Im�  1 �Re ��Re � j� j2 ! (3:15)which shows that an Sl(2;R) transformation of � induces the linear Sl(2;R) trans-formation U ! (S�1)TUS�1. Thus, given a solution in which U is of the form(2.23) we may �nd another solution of the IIB �eld equations for which U ! STUSwhere S 2 Sl(2;R). However, not all of these solutions will correspond to non-singular solutions of D=11 supergravity. In fact, as we saw earlier in the contextof 4n-dimensional hyper-K ahler manifolds, the Sl(2;R) transform of a completetoric hyper-K ahler 8-metric is not itself complete unless S 2 Sl(2;Z). Hence, onlyan Sl(2;Z) subgroup of the Sl(2;R) symmetry group of the IIB �eld equations isavailable for generating new solutions if we require non-singularity in D=11, andthe solutions then generated are just particular cases of those we have alreadyconsidered.It is known that, unlike IIB supergravity, IIB superstring theory is not Sl(2;R)invariant, but it is believed that an Sl(2;Z) subgroup survives as a symmetry ofthe full non-perturbative theory, which can be viewed as a limit of a T 2 compact-i�cation of M-theory (see [22] for a recent review). We might therefore have madethe restriction to Sl(2;Z) ab initio on the grounds that this is in any case required21



by M-theory. It is notable, however, that this restriction arises independently fromthe requirement that our singular IIB intersecting brane solutions be derivable fromnon-singular solutions of D=11 supergravity. This point has been noted previously[24,25,1] for the `basic' p-brane solutions in D=10; the principle clearly has somevalidity but it is not entirely clear why because D=11 supergravity is itself as muchan e�ective �eld theory as are the D=10 supergravity theories. It seems that D=11supergravity incorporates some of those features of M-theory that are responsiblefor the resolution of singularities.We now have a class of solutions of IIB supergravity speci�ed by a set ofintersecting 3-planes. As we shall now explain these solutions can be interpretedas overlapping 5-branes. We shall start by considering the case in which U isdiagonal. In the simplest of these cases the 8-metric is the metric product of twoEuclidean Taub-Nut metrics, each of which is determined by a harmonic functionwith a single pointlike singularity. Let Hi = [1 + (2jxij)�1] be the two harmonicfunctions; then U =  H1(x1) 00 H2(x2)! (3:16)and the corresponding IIB Einstein metric isds2E = (H1H2) 34 �(H1H2)�1ds2(E 2;1) +H�12 dx1 � dx1+H�11 dx2 � dx2 + dz2� : (3:17)This is of the form generated by the `harmonic function rule' [29,10] for the orthog-onal intersection of two 5-branes on a 2-brane. Speci�cally, the singularity of H1 isthe position of an NS-5-brane, delocalized along the z-direction, while the singu-larity of H2 is the position of a D-5-brane, again delocalized along the z direction.The two 5-branes overlap on a 2-brane but are otherwise orthogonal.To see why the singularities of H1 are the positions of NS-branes and thoseof H2 the positions of D-branes we may begin by examining the behaviour of the22



complex scalar � as we approach each brane while going far away from from theothers. For example, near x2 = 0 but for jx1j ! 1 we haveU �  1 00 (2jx2j)�1! (3:18)which shows that the IIB string coupling constant gs = e�B goes to zero as jx2j ! 0.This shows that the 5-brane at x2 = 0must be one that is visible in weakly coupledstring theory, and this is true only of the D-5-brane. In support of this conclusionwe observe that U is well-approximated, in the limit just considered, by the solutionof the hyper-K ahler conditions associated with a single 3-plane with p-vector (0; 1).The corresponding solution of IIB supergravity has the feature that only the R
R2-form potential B(2) is non-zero. In contrast, near x1 = 0, but for jx2j ! 1, wehave U �  (2jx1j)�1 00 1! (3:19)which shows that gs ! 1 as jx1j ! 0, so the 5-brane at x1 = 0 cannot be aD-5-brane. In fact, it must be a NS-5-brane because the solution of the hyper-Kahler conditions associated with a single 3-plane with p-vector (1; 0) has the featurethat only the NS 
NS 2-form potential B(1) is non-zero.We are now in a position to interpret the general solution with U (1) = 1. A`single 3-plane solution' of the hyper-K ahler conditions with p-vector (p1; p2) isassociated with a IIB superstring 5-brane with 5-brane charge vector (p1; p2). Thisfollows simply from the observation that the Sl(2;Z) transformation that takes a D-5-brane into a 5-brane with charge vector (p1; p2) also takes the D-5-brane solutioninto the solution with p-vector (p1; p2). Only p-vectors with coprime p1 and p2 canbe found this way, but this is precisely the restriction required by non-singularity ofthe hyper-K ahler 8-metric. Thus, there is a direct correlation between the angleat which any given 5-brane is rotated, relative to a D-5-brane, and its 5-brane23



charge?. An instructive case to consider is the three 5-brane solution involving aD-5-brane and an NS-5-brane, having orthogonal overlap, and one other 5-brane.As the orientation of the third 5-brane is changed from parallel to the D-5-braneto parallel to the NS-5-brane it changes, chameleon-like, from a D-brane to anNS-brane.The interpretation of the general solution with non-diagonal U (1) is less clear.It might seem that the correlation between the 5-brane charges and their ori-entations is altered when we allow solutions for which U (1) is not the identitymatrix since the inner product determining the angle between 3-planes, and hence5-branes, is altered, whereas the the 2-form potentials B(i) that determine the 5-brane charges are unchanged. However, it is likely that the 5-brane charges dependon the expectation value of the complex scalar � in such a way that the correlationis maintained. For example, the fundamental string charge on a D-string must beproportional to h`i. This can be seen by considering a D-string stretched betweentwo parallel 3-branes; since h`i is the vacuum angle in the 3-brane's worldvolume,the stretched D-string must appear as a dyon with electric charge proportional toh`i, by the Witten e�ect. It follows that the D-string must carry the same fractionof fundamental string charge, and Dirac quantization between strings and 5-branesthen implies that the NS-5-brane must carry the same fraction of D-5-brane charge.If we start from U (1) = 1 and then vary U (1) at �xed string coupling constantsuch that ` goes through one period then the D-5-brane charge on a NS-5-branemust change by one unit. If we now make use of the invariance under shifts of ` byintegral numbers of its periods to return to h`i = 0 then we also change the NS-5-brane p-vector from (1; 0) to (1; 1). Since U (1) is again the identity matrix theinterpretation of the con�guration is as given previously; that is, the angle betweenthe branes is given by the charge vectors. For the above process this is equally trueat all intermediate values of U (1). This encourages us to believe that the correla-tion between angles and 5-brane charge is maintained for all U (1). Given this, the? Evidently, this is a consequence of the requirement that the con�guration preserve at least3/16 of the supersymmetry. 24



interpretation of the IIB solution (3.11) in the general case should now be clear.We have an arbitrary number of 5-branes each speci�ed by a 3-vector giving itsdistance from the origin and a p-vector which, together with U (1), speci�es bothits orientation and 5-brane charges. More generally, each 5-brane can be replacedby a set of parallel 5-branes of the same 5-brane charge. All of these solutions ofIIB supergravity preserve 3/16 supersymmetry.We conclude this section by mapping the IIB solution (3.11) back to D=11by a di�erent route. When this solution is T-dualized along one of the spacedirections of E 2;1 we obtain a solution of IIA supergravity which can be liftedback to D=11. A di�erent, but equivalent, route to the same D=11 solution isto dimensionally reduce (3.1) along one of the space directions of E 2;1 to get theD=10 IIA supergravity solution with constant dilaton, and metricds2 = ds2(E 1;1) + Uijdxi � dxj + U ij(d'i +Ai)(d'j +Aj) ; (3:20)all other �elds vanishing. We may now T-dualize in both of the 'i directions toobtain a new IIA solution. Let 'i be the coordinates of the torus dual to theone with coordinates 'i. Since all �elds are of NS 
 NS type we need only theT-duality rules of (3.8), which yieldds2 = ds2(E 1;1) + Uij dX i � dXjB = Ai ^ d'i� = 12 log detU (3:21)where X i = fxi; 'ig (i = 1; 2) : (3:22)and dX � dX is the at metric on E 4 (but note that U is still T 2 invariant sothere is no dependence on the 'i coordinates). This solution represents an ar-bitrary number of IIA NS-5-branes intersecting on a string, generalizing previous25



orthogonal intersection solutions of this type [23]. We say `intersecting' here ratherthan `overlapping' because in D=10 there is no separation between the branes (al-though there is in D=11). We should emphasize that there is no actual string onthis `intersection'.This IIA solution can be lifted to the following solution of D=11 supergravity:ds211 = (detU) 23 �(detU)�1ds2(E 1;1) + (detU)�1Uij dX i � dXj + dy2�F = Fi ^ d'i ^ dy : (3:23)When U is diagonal this reduces tods211 = (H1H2) 23 �(H1H2)�1ds2(E 1;1) +H�11 dX(2) � dX(2)+H�12 dX(1) � dX(1) + dy2�F = Fi ^ d'i ^ dy : (3:24)This is the special case of the 1/4 supersymmetric `orthogonal M-5-branes overlap-ping on a string' solution of [10] for which the harmonic functions Hi are harmonicon the ith copy of E 3, rather than on the ith copy of E 4. When only �U isdiagonal, i.e. when U (1) is not, the two �vebranes are rotated away from orthogo-nality and an additional 1/16 of the supersymmetry is broken. In the more generalcase in which �U is non-diagonal the solution can be interpreted as an arbitrarynumber of 5-branes intersecting at angles determined by the associated p-vectors;these angles are restricted only by the condition that the pairs of integers pi becoprime. An interesting question, which we do not address here is whether these3/16 supersymmetric solutions can be generalized to allow U to depend on all eightcoordinates fX(i); i = 1; 2g.
26



4. Non-orthogonal D-branesReturning to the IIA solution (3.21), we T-dualize in the common string di-rection to �nd an identical solution of IIB supergravity which, consequently, stillpreserves 3/16 supersymmetry. This IIB solution again represents the overlap ona string of NS
NS 5-branes but it may be mapped to a similar con�guration in-volving only D-5-branes by the weak-strong string coupling Z2 � Sl(2;Z) duality.In this way we deduce thatds2E = (detU) 14 �ds2(E 1;1) + Uij dX i � dXj�B0 = Ai ^ d'i� = ipdetU ; (4:1)is also solution of IIB supergravity preserving 3/16 supersymmetry. In the simplestcase, in which U is of LWY type, this solution represents the intersection on a stringof two D-5-branes, with one rotated relative to the other by an angle �, given by(2.36). Again, we emphasize that by `string' we mean here only to indicate thedimensionality of the intersection. Since the D-5-branes have this string direction incommon, the con�guration is determined by the relative orientation of two 4-planesin the 8-dimensional space spanned by both?. Each 4-plane can be considered as aquaternionic line in the quaternionic plane. A quaternionic line through the originis speci�ed by a 2-vector with components (q1; q2), whereq1 = x2 + Ix3 + Jx4 +Kx5 q2 = x6 + Ix7 + Jx8 +Kx9 (4:2)and I; J;K are the quaternionic imaginary units. The orientation of this line isspeci�ed by a unit quaternionic 2-vector. The relative orientation of a secondquaternionic line through the origin is speci�ed by an element A of U(2;H ) �=? Actually two 3-planes in the supergravity solution but this is due to the partial delocalizationof the two 5-branes. 27



Sp(2). The corrresponding Lie algebra is spanned by 2�2 quaternionic antihermi-tian matrices. The diagonal antihermitian matrices generate the Sp(1) �= SU(2)rotations about the origin within a given 4-plane. The o�-diagonal quaternioncontains the four angles specifying the rotation of one 4-plane relative to anotherin E 8. The group element A will commute with quaternionic conjugation only ifit is generated by an element of the Lie algebra with real o�-diagonal element. Inthis case A =  cos � sin �� sin � cos �! ; (4:3)which represents a rotation by an angle � of the (2345) 4-plane towards the (6789)4-plane. The SO(1; 9) spinor representation of this particular SO(8) rotation isR(�) = exp�� 12�(�26 + �37 + �48 + �59)	 : (4:4)We are now in a position to make contact with the work of Berkooz, Douglasand Leigh [3]. They considered two intersecting Dirichlet (p+q)-branes with acommon q-brane overlap. According to their analysis, each con�guration of thistype is associated with an element of SO(2p) describing the rotation of one (p+q)-brane relative to the other in the 2p-dimensional `relative transverse' space (inthe terminology of [12]). The identity element of SO(2p) corresponds to parallelbranes, which preserve 1/2 the supersymmetry. Other elements correspond torotated branes. The only case considered explicitly in [3] was an SU(p) rotation,but it was noted that the condition for unbroken supersymmetries was analogousto the reduced holonomy condition arising in KK compacti�cations. Our casecorresponds to an Sp(2) rotation in SO(8), We shall now verify that this leads tothe preservation of 3/16 supersymmetry.We recall that the covariantly constant IIB chiral spinors �A (A = 1; 2) in thebackground spacetime of a D-5-brane in the (12345) 5-plane, must satisfy�012345�1 = �2 : (4:5)If the spacetime includes an additional D-5-brane that is rotated into the (16789)28



5-plane by an angle �, then �A must also satisfyR�1�012345R�1 = �2 (4:6)where R is the matrix in (4.4). From the particular form of this matrix we deducethat (4.6) is equivalent to R(�2�)�012345 �1 = �2 (4:7)which, given (4.5) and (4.4), is equivalent toexp��(�26 + �37 + �48 + �59)	 �A = �A (A = 1; 2) : (4:8)Thus, we have to determine the number of simultaneous solutions for two chiralspinors �A of (4.5) and (4.8).To proceed, we choose the following representation of the SO(1; 9) Dirac ma-trices: �0 = 5 
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 1 (4:9)where 1; : : : ; 4 are the 4� 4 SO(4) Dirac matrices and 5 is their product. Thisrepresentation is not real but we may choose each i to be either real or imaginary,with 5 real. The condition (4.5) now reads[5 
 1
 �3]�1 = �2 (4:10)while the chirality condition is[5 
 5 
 �3]�A = �A (A = 1; 2) : (4:11)29



Let �A� be the eigenspinors of �3. Then�A+ =  �A+0 ! �A� =  0�A�! : (4:12)As a consequence of (4.10) and (4.11), the 16-component spinors �A� satisfy[1
 5]�1� = �2�[5 
 1]�1� = ��2� ; (4:13)while (4.8) is now� 4Yi=1 expf�i5 
 ig� �A� = �A� (A = 1; 2) : (4:14)This is equivalent, given (4.13), tosin 2� (1 + L) �A+ = 0 sin � �A� = 0 (4:15)where L � (12 
 12 + 13 
 13 + 14 
 14) : (4:16)In arriving at this result we have used the fact that(L2 � 2L� 3) �A� = 0 ; (4:17)which follows from (4.13).The conditions (4.15) are trivially satis�ed when � = 0; �, as expected, andyield only �A� = 0 when � = ��=2, implying that the second D-5-brane reduces thesupersymmetry by a factor of 1/2. This is again as expected because the second30



D-5-brane is orthogonal to the �rst one when � = ��=2, and the constraint (4.6)is equivalent to �016789�1 = �2 (4:18)as expected of a Killing spinor in the background spacetime of a D-5-brane in the(16789) 5-plane. For all other values of � we deduce not only that �A� = 0 but alsothat (1 + L)�A+ = 0 (A = 1; 2) : (4:19)Each of the spinors �1+ and �2+ is nominally 16 component but the conditions (4.13)imply that each has only four independent components. Now, we see from (4.17)that L has eigenvalues �1; 3 when acting on spinors �+. Since L also has vanishingtrace it can be brought to the formL = diag(�1;�1;�1; 3) (4:20)when acting on the 4-dimensional vector space spanned by the four independentsolutions of the conditions (4.13) for either �1+ or �2+. Thus, (4.19) projects out theeigenvector of L with eigenvalue 3, leaving only 3 of the 4 independent componentsof �1+ or �2+. We thus have a total of 6 Killing spinors, which should be comparedto the 32 Killing spinors of the vacuum, i.e. the intersecting D-brane con�gurationpreserves 3/16 supersymmetry when sin 2� 6= 0.
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5. Intersecting branes from hyper-K ahler manifoldsWe now return to the D=11 solution (3.1), and generalize it to include amembrane, i.e. we now take as our starting point the D=11 supergravity solutionds2 = H� 23ds2(E 2;1) +H 13 �Uijdxi � dxj + U ij(d'i +Ai)(d'j +Aj)�F = �!(E 2;1) ^ dH�1 (5:1)where !(E 2;1) is the volume form on E 2;1. This is still a solution of D=11 supergrav-ity provided that H is a harmonic function on the hyper-K ahler 8-manifold. Pointsingularites of H are naturally interpreted as the positions of parallel membranes.For our purposes we require H to be independent of the two ' coordinates, sosingularities of H will correspond to membranes delocalized on T 2. Such functionssatisfy U ij@i � @jH = 0 : (5:2)Functions of the form H = H1(x1) +H2(x2) (5:3)solve this equation if the Hi are harmonic on E 3, but point singularities of H1 orH2 would represent membranes that are delocalized in three more directions. Weexpect that there exist solutions of (5.2) representing localized membranes (apartfrom the delocalization on T 2), although explicit solutions may be di�cult to �nd.We would not expect the corresponding `generalized' membrane solutions (5.1) tobe non-singular because this is already not the case for the standard membranesolution (corresponding to U = 1) but it seems likely (by comparison with theU = 1 case) that the point singularities of H will be horizons that are, if not non-singular, only mildly singular. In any case, we shall investigate the dual versionsof the generalized membrane solutions, as done in the previous section for H = 1.32



Our �rst task is again to determine the number of unbroken supersymmetrieswhen H 6= 1. One �nds that the SO(1; 10) Killing spinors � have the form� = H� 16  �1�2! (5:4)where �1 and �2 are two 16-component covariantly constant SO(8) spinors on thehyper-K ahler 8-manifold. In addition, � satis�es�012 � = �� (5:5)where the sign on the right hand side is the sign of F in (5.1), i.e. the sign of themembrane charge. Since the product of all eleven Dirac matrices is the identitymatrix, this constraint implies that �1 and �2 have a de�nite SO(8) chirality (thesame for both), depending on the sign of the membrane charge. We can now seefrom (3.3) that all supersymmetries will be broken if the SO(8) chirality projectionis onto the 8c representation whereas the fraction of unbroken supersymmetryis unchanged by the inclusion of the membrane if the projection is onto the 8srepresentation. Hence, for an appropriate choice of sign of the membrane chargethe �eld con�guration (5.1) is again a solution of D=11 supergravity with 3/16supersymmetry.Proceeding as before we can now convert this D=11 con�guration into a solu-tion of IIB supergravity preserving the same fraction of supersymmetry. The resultisds2E = (detU) 34H 12 �H�1(detU)�1ds2(E 2;1) + (detU)�1Uijdxi � dxj +H�1dz2�B(i) = Ai ^ dy� = �U12U11 + ipdetUU11ikD = !(E 2;1) ^ dH�1 (5:6)The singularities of H are now to be interpreted as the locations of parallel D-3-branes, in agreement with the `harmonic function rule'. Otherwise, the solution33



has the same interpretation as before except that it is now natural to interpret the2-brane overlap of the 5-branes as the intersection with the 3-branes, which aretherefore `stretched' between the 5-branes (i.e. along the z direction), as in thecon�gurations considered in [7].To obtain the corresponding generalization of (3.21) we �rst dimensionallyreduce (5.1) to obtain the following `generalized string' solution of IIA supergravity:ds2 = H�1ds2(E 1;1) + Uijdxi � dxj + U ij(d'i +Ai)(d'j +Aj)B = !(E 1;1)H�1� = �12 logH : (5:7)A double dualization then yields the new IIA solutionds2 = H�1ds2(E 1;1) + UijdX i � dXjB = Ai ^ d'i + !(E 1;1)H�1� = 12 log detU � 12 logH ; (5:8)where 'i are the coordinates of the dual torus. As before, this represents theintersection of NS-5-branes on a string but the string is now an actual IIA string,represented by the harmonic function H.This IIA solution can be lifted to D=11 to give the following generalization of(3.20): ds211 = H 13 (detU) 23 �H�1(detU)�1ds2(E 1;1)+ (detU)�1Uij dX i � dXj +H�1dy2�F = �Fi ^ d'i + !(E 1;1) ^ dH�1� ^ dy : (5:9)When U is of LWY type this solution represents a set of parallel M-2-branes, locatedat the singularities of H, intersecting two (generically non-orthogonal) M-5-braneson a string. More generally, the M-2-branes intersect any number of M-5-branes,at the singularities of U , oriented at essentially arbitrary angles. All of these D=11supergravity solutions preserve, generically, 3/16 of the supersymmetry.34



Returning to (5.8) we may dualize along the string direction to obtain a IIBsolution that also represents the intersection of NS-5-branes, but for which thefundamental string is replaced by a pp wave. A Z2 strong/weak coupling dualitythen yields the IIB solutionds2 = (detU) 14 �dtd� +Hd�2 + UijdX i � dXj�B 0 = Ai ^ d'i� = ipdetU ; (5:10)which generalizes (4.1), and also preserves 3/16 of the supersymmetry. It representsthe intersection on a string of an arbitrary number of D-5-branes. There is no actualstring in the intersection but there is now a pp wave in this direction.The inclusion of a membrane is natural in the context of D=11 backgroundsinvolving hyper-K ahler 8-metrics because the transverse space to the membrane is8-dimensional. In contrast, there is no similarly natural way to include a D=11 M-5-brane because its transverse space is 5-dimensional. However, there is a naturalway to incorporate M-5-branes in the special case for which the hyper-K ahler8-metric is the product of two hyper-K ahler 4-metrics. In fact, in this case wemay naturally incorporate two M-5-branes. Since U is now assumed diagonal, letU11 = U1(x1) and U22 = U2(x2), and let H1(x1) and H2(x2) be two harmonicfunctions associated with the two M-5-branes. It will be convenient to introducetwo gauge potential one-forms ~Ai with �eld strength two-forms ~Fi, having thesame relation to the harmonic functions Hi as Fi does to the harmonic functionsUi. That is dUi = ?FidHi = ? ~Fi (5:11)35



where ? is the Hodge dual on E 3. Thends211 = (H1H2) 23�(H1H2)�1ds2(E 1;1) +H�11 �U2 dx2 � dx2 + U�12 (d'2 +A2)2�+H�12 �U1 dx1 � dx1 + U�11 (d'1 +A1)2�+ dz2�F = � ~F1 ^ (d'1 +A1) + ~F2 ^ (d'2 +A2)� ^ dz (5:12)solves the D=11 �eld equations. Note that the Bianchi identity for F is satis�edsince dF =Xi � ~Fi ^ Fi] ^ dz � 0 ; (5:13)as a four-form on E 3 vanishes identically. When both U1 and U2 are constant(5.12) reduces to the orthogonal overlap of two M-5-branes on a string, but withthe harmonic functions Hi restricted to be independent of the angular coordinates'i. In the general case, in which all four harmonic functions Ui and Hi are nonconstant, this solution preserves 1/8 supersymmetry provided the relative sign ofthe 5-brane charges is chosen appropriately. We shall verify this after mapping thesolution into a con�guration of intersecting branes.We �rst map (5.12) to a IIB solution. Since the restrictions (3.9) no longerapply we should use the full T-duality rules [28], but since all intersections areorthogonal the T-dualized solution can also be deduced from the harmonic functionrule. The non-zero �elds of the resulting IIB con�guration areds2E = (H1H2U1U2) 34 �(U1U2H1H2)�1ds2(E 1;1) + (U2H2)�1dx1 � dx1+ (U1H1)�1dx2 � dx2 + (H1H2)�1dz2 + (U1U2)�1dy2�B = A1 ^ dz + ~A2 ^ dyB 0 = A2 ^ dz + ~A1 ^ dy� = irH1U2H2U1 : (5:14)This represents two NS-5-branes and two D-5-branes intersecting orthogonally ac-36



cording to the following patternNS : 1 2 3 4 5NS : 1 6 7 8 9D : 1 5 6 7 8D : 1 2 3 4 9 (5:15)If this IIB solution is now T-dualized along the 1-direction then the resultingIIA con�guration can be lifted to D=11 to give a new solution of D=11 supergravityrepresenting the orthogonal intersection of 4 M-5-branes according to the patternM : 1 2 3 4 5M : 1 6 7 8 9M : 5 6 7 8 10M : 2 3 4 9 10 (5:16)Since the intersections are all orthogonal the explicit form of the solution is deter-mined by the `harmonic function rule' together with the information about whichcoordinates each harmonic function depends on. To fully specify the solution weneed therefore give only the latter information. This follows directly from the ex-plicit form of the IIB solution (5.14): the harmonic function associated with a givenM-5-brane depends on the coordinates that parameterize the 3-brane intersectionof the other M-5-branes. For example, the M-5-brane in the (12345) 5-plane isassociated to a harmonic function on the (678) 3-plane. The number of supersym-metries preserved may now be determined as follows. The four M-5-branes lead tothe following four conditions on Killing spinors �:�012345 � = � �016789 � = ��05678 10 � = � �02349 10 � = � (5:17)Any three of these conditions imply the fourth, so the solution preserves 1/8 su-persymmetry. Given any three M-5-branes the signs of the 5-brane charges are37



irrelevant, but the sign of the charge of the fourth M-5-brane is then determinedby the requirement that no further supersymmetries be broken; if the other signis chosen all supersymmetries are broken. When translated back to the originalD=11 solution (5.12) this requirement restricts the connection of one of the hyper-K ahler 4-metrics to be either self-dual or anti-self dual according to the choicemade for the other one and the choice of signs of the 5-brane charges.When combined with the fact that the product of all 11 Dirac matrices is theidentity matrix, the conditions imply�059� = �� �01 10� = � (5:18)so it is possible to further include a pair of membranes, still preserving 1/8 super-symmetry, according to the patternM : 1 2 3 4 5M : 1 6 7 8 9M : 5 6 7 8 10M : 2 3 4 9 10M : 1 10M : 5 9 (5:19)What remains to be determined is on which coordinates the harmonic functionsassociated to the membranes can depend. We shall not pursue this here. At thesame level of analysis we note that if we compactify in the 10-direction then wemay also include a IIA D-6-brane in the (234678) 6-plane since it also follows from(5.17) that �0234678 � = �� (5:20)A subsequent T-dualization in the 1-direction then yields the a con�guration of38



IIB branes intersecting according to the patternNS : 1 2 3 4 5NS : 1 6 7 8 9D : 1 5 6 7 8D : 1 2 3 4 9W : 1D : 1 5 9D : 1 2 3 4 6 7 8 (5:21)where W indicates a pp wave. Remarkably, this con�guration preserves 1/8 of thesupersymmetry. 6. CommentsIn this paper we have constructed several new classes of overlapping and in-tersecting brane solutions of D=10 and D=11 supergravity theories. We haveshown that there is a remarkable latitude allowed by supersymmetry in choosingthe relative orientations in multiple brane con�gurations. In the IIB case, for ex-ample, the orthogonal overlap on a 2-brane of a set of parallel D-5-branes witha set of parallel NS-5-branes preserves 1/4 of the supersymmetry. This multiplebrane con�guration can be deformed to one in which each of an arbitrary numberof branes of mixed 5-brane charges overlap at essentially arbitrary angles, whilepreserving 3/16 supersymmetry. We have found similar con�gurations involvingonly D-5-branes, but intersecting on a string, and other con�gurations of multipleintersecting D=11 �vebranes, all with 3/16 supersymmetry. In all such cases the3/16 supersymmetry derives from the Sp(2) holonomy of hyper-K ahler 8-metrics.In the case of the IIB D-5-branes we have veri�ed by a quaternionic extensionof the analysis of [3] that a pair of intersecting D-5-branes preserves 3/16 super-symmetry if their orientations are related by a rotation in an Sp(2) subgroup ofSO(8) commuting with multiplication by a quaternion. It was remarked in [3]39



that the determination of the fraction of supersymmetry preserved is analogousto the standard holonomy argument in Kaluza-Klein (KK) compacti�cations. Wecan now see that, at least in the Sp(2) case, that this analogy is exact becausethe D-brane con�guration corresponds to a IIB supergravity solution that is dualto a non-singular D=11 spacetime of Sp(2) holonomy. In view of this it wouldbe of interest to consider other subgroups of SO(8). As pointed out in [3], theholonomy analogy would lead one to expect the existence of intersecting D-branecon�gurations in which one D-brane is rotated relative to another by an SU(4), G2or Spin(7) rotation matrix. If so, there presumably exist corresponding solutionsof IIB supergravity preserving 1/8, 1/8 and 1/16 of the supersymmetry, respec-tively. These IIB solutions would presumably have M-theory duals, in which caseone is led to wonder whether they could be non-singular (and non-compact) D=11spacetimes of holonomy SU(4), G2 or Spin(7).In the case in which a 3-brane intersects overlapping IIB 5-branes, the fact thatthe solution preserves 3/16 of the supersymmetry implies an N=3 supersymmetryof the �eld theory on the 2-brane intersection. A massless D=3 �eld theory withN=3 supersymmetry is automatically N=4 supersymmetric, however, so we con-clude that the 2-brane intersection cannot have massless �elds, i.e. it is not free tomove in any direction. This conclusion is consistent with the conclusion reached in[7] that 3-branes stretched between a D-5-brane and an NS-5-brane have no mod-uli. It would nevertheless be of interest to learn more about these massive D=3�eld theories on the 2-brane intersections. It seems that the breaking of N=4 toN=3 supersymmetry is associated with gauge �eld Chern-Simons terms [8]. Such�eld theories typically have solitons with interesting properties that may have a`brane within brane' interpretation which it would be instructive to elucidate.One other notable feature of some of our new solutions is that the intersectionis localized within each brane. For example, in the solution of D=11 supergrav-ity representing the intersection of a membrane with overlapping �vebranes themembrane may be localized in all directions other than the one separating the�vebranes. Clearly, there is scope for more semi-localized solutions of this form,40



either by further duality transformations of those constructed here or new solu-tions constructed by similar methods. Consider, for example, a special case of the`generalized' membrane solution of (5.1) in which the 8-metric ds28 is the productof E 4 with a Euclidean Taub-Nut metric. Reduction on the S1 isometry of thelatter yields a solution of IIA supergravity in which a membrane is localized insidea 6-brane.Additional possibilities arise when one considers holomorphic cycles. Con-sider the case of two parallel IIA 6-branes. When one includes the 11th dimen-sion, the transverse space is a 4-dimensional toric hyper-K ahler manifold withan S1-invariant holomorphic minimal 2-sphere connecting the two 6-branes. AnM-5-brane wrapped around this two-cycle would appear in D=10 as the 3-braneboundary of a IIA 4-brane stretched between two 6-branes. After T-duality thisbecomes a 2-brane boundary of a 3-brane stretched between two D-5-branes. Thus,holomorphic cycles provide opportunities to generalize the HW-type IIB solutionsgiven here to include additional 3-branes.A construction was given in [31] of S1-invariant two real dimensional holomor-phic minimal submanifolds in general 4-dimensional toric hyper-K ahler metrics.The construction may be generalized to T 2-invariant holomorphic 4-dimensionalsubmanifolds in toric hyper-K ahler 8-manifolds as follows. We start from E 6 =E 3 � E 3 with coordinates (x1;x2). A given complex structureIn = n1I + n2J + n3K (6:1)picks out a common direction in both E 3 factors. This de�nes a 2-plane in E 6.Acting with the torus T 2 gives a 4 real dimensional submanifold of the hyper-K ahler 8-manifold. Using the explicit form for the complex structures given insection 2 one readily sees that In rotates the tangent vectors to the sub-manifoldinto themselves, which implies that it is holomorphic with respect to that complexstructure. It then follows from Wirtinger's theorem that it is minimal.41



One may ask whether these 4 real dimensional submanifolds continue to beholomorphic and minimal in the context of our `generalized membrane' solutionsof D=11 supergravity. The case of most interest is that in which an M-5-branewraps a 4-cycle that is not the product of two 2-cycles. Assuming that the e�ectiveM-5-brane Lagrangian is the 6-volume of the worldvolume in the induced metric,and that  is this induced metric when H = 1, we deduce from the 11-metric of(5.1) that its Dirac-Nambu-Goto (DNG) Lagrangian isLDNG = (H� 23 )(H 13 )2p�det  =p�det  : (6:2)Remarkably, the factors of H cancel so the 4-dimensional submanifold will continueto be minimal. We therefore expect additional possibilities for intersecting branesolutions to arise in this way. Whether they will continue to preserve the 3/16supersymmetric can likely be deduced by the `static probe method' of [32].Finally, given that there exist so many new intersecting brane solutions of su-pergravity theories it will be of great interest to see what further insights can beobtained from M-theory or superstring theory. For example, string theory meth-ods could be applied to the con�gurations of non-orthogonal D-5-branes preserving3/16 supersymmetry to determine the spectrum of BPS states on the string inter-section. One might also investigate in string theory the nature of the singularityassociated with the coincidence of intersection points of multiple brane con�gura-tions.Appendix: Completeness via the hyper-K ahler quotient constructionIn this appendix we shall sketch the hyper-K ahler quotient construction of thetoric hyper-K ahler 4n-metrics and use it to demonstrate their completeness. Thediscussion follows the lines of [30] and some details have been clari�ed in discussionswith R. Goto as part of a longer project on toric hyper-K ahler manifolds to bepublished in the future. The connection between toric hyper-K ahler metrics andarrangements of hyperplanes was pointed out in [17].42



Suppose we are given a 4N -dimensional toric hyper-K ahler manifold MNwith metric ds2 = dy�dy�g�� and a triholomorphic TN isometry. To obtain a new4n-dimensional hyper-K ahler metricMn (n < N)) by the hyper-K ahler quotientconstruction we �rst choose a Tm subgroup H of the triholomorphic TN group. Toeach generator of Tm we may associate a triplet of moment maps �r; (r = 1; 2; 3)such that the in�nitesimal action of this generator on any of the 4N coordinatesy� is �y� = t
��r @�r@y� (r = 1; 2; 3) (A:1)where 
��r are the entries of the inverse of the rth Kahler 2-form 
r, and t isan in�nitesimal parameter. To obtain the metric on Mn we simply impose theconstraints ��(�) = �a(�) (� = 1; : : : ;m) ; (A:2)for m triplets of constants a(�), and project orthogonally to the orbits of Tm. The4n+m dimensional submanifold consisting of the solutions of the constraints (A.2)is called the intersection of the level sets of the moment maps. The quotient man-ifold Mn will be complete if the torus group Tm acts smoothly and without �xedpoints on this intersection. Moreover, it will be invariant under the triholomorphicaction of the quotient group T n = TN=Tm.To illustrate the method we start with the following at toric hyper-K ahlermetric on H (n+m):ds2 =U (1)ij dxi � dxj + (U (1))ijd'id'j+ mX�=1 �dr(�) � dr(�)2jr(�)j + 2jr(�)j(d�(�) +A(�))2� : (A:3)This metric admits the triholomorphic T (m+n) action (� = 1; : : : ;m i = 1; : : : ; n)�(�) ! �(�) + t(�)'i ! 'i + ti � p(�)i t(�) : (A:4)We choose the Tm subgroup corresponding to ti = 0. The momentmaps associated43



to this subgroup are r(�) � nXi=1 p(�)i xi : (A:5)We therefore impose the constraintsr(�) � nXi=1 p(�)i xi + a(�) = 0: (A:6)for some constants a(�), which specify the level sets of the moment maps. Wemust now check that Tm acts smoothly and freely on the intersection of these levelsets. It is clear that the quantities p(�)i must be rational because otherwise theTm action would be ergodic. If they have common divisor then one may �nd anelement of Tm which does not act freely on the intersection of level sets. Finally iftwo planes coincide, or if more than two planes intersect at a point, then the groupTm will have �xed points on the intersection of the level sets and the quotient willagain be singular. For a more detailed mathematical discussion of completeness(albeit in a slightly di�erent setting) the reader is referred to [17].If (A.6) is now used in (A.3) to eliminate the r(�) in favour of the xi then weget a new toric hyper-K ahler 4n-metric with U of the form (2.23). The quotientspace continues to admit a triholomorphic T n action, given by 'i ! 'i + ti.Acknowledgements: We thank E. Bergshoe�, R. Goto and A. Tseytlin forinformative discussions. G.P. was supported by a Royal Society University Re-search Fellowship.
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