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As explained in [1], the di�culties of understanding hyperbolic Kac{Moody algebras on the one hand and

Borcherds algebras (also called generalized Kac{Moody algebras [3]) on the other hand are to some extent

complementary: while a Lorentzian Kac{Moody algebra has a well-understood root system, but the structure

of the algebra and its root spaces (including their dimensions!) is very complicated, Borcherds algebras may

possess a simple realization in terms of physical string states, but usually have a very complicated root system due

to the appearance of imaginary (i.e. non-positive norm) simple roots. The Chevalley generators corresponding

to imaginary simple roots of gII9;1 are needed to complete the subalgebra E10 to the full Lie algebra of physical

states. This can be seen by decomposing the vector space

M := gII9;1 	E10 (2)

into an in�nite direct sum of \missing modules" all of which are highest or lowest weight modules w.r.t. the

subalgebra E10 (see [1, 11]). This implies that all of gII9;1 can be generated from the highest and lowest weight

states by the action of (i.e. multiple commutation with) the E10 raising or lowering operators. However, not all

the lowest weight states inM correspond to imaginary simple roots of gII9;1. This is because the commutation

of two lowest weight states yields another lowest weight state; yet it is only those lowest weight states which

cannot be obtained as multiple commutators of previous states and which must therefore be added \by hand"

that will give rise to new imaginary simple roots. Complete knowledge of the imaginary simple roots of gII9;1 is

thus tantamount to understanding the hyperbolic Kac{Moody algebra E10 (or at least its root multiplicities).

Let us pause for a moment to rephrase these statements in string theory language. As has been shown

in [9], commutation of two physical string states in these completely compacti�ed string models is equivalent

to tree-level scattering. So, starting with a set of ten fundamental tachyons (associated with the real simple

roots), we generate by multiple scattering an in�nite set of physical string states at arbitrary mass level. By

construction, this set is just the hyperbolic algebra E10, and it is easy to see that it contains all tachyonic and

all massless states as these can be produced by elementary scattering processes. By contrast, E10 does not

exhaust the massive states because not all of these can be obtained by scattering E10 states of lower mass.

To be sure, E10 does act via the adjoint action on all physical states, i.e., we can scatter two states only one

of which belongs to E10 to get another state, which is also not in E10. Therefore, the remaining (\missing",

or \decoupled") part of the spectrum can be decomposed into E10 representations. In order to identify the

pertinent highest or lowest weight states, the strategy is to pick suitable missing string states of lowest mass

and add them as extra Lie algebra elements to E10. Since the momenta of these states have negative norm1 this

corresponds to adjoining timelike simple roots to E10. These simple roots generically come with multiplicities

bigger than one because massive string states have additional polarization degrees of freedom, whereas the

tachyons are scalars, and the real simple roots consequently have multiplicity one always. Following [1] we will

designate the simple multiplicity of an imaginary simple root � by �(�); this simple multiplicity �(�) must not

be confused with the multiplicity mult(�) of � as a root of E10 or with the multiplicity dimg
(�)

II9;1
of � as a root

of gII9;1 . Therefore, the Lie algebra of all physical states is no longer a Kac{Moody algebra since the Cartan

matrix may now have negative integers on the diagonal. In general, the above procedure has to be repeated

an in�nite number of times because by scattering the adjoined massive states with E10 states, we still do not

exhaust the whole spectrum.

So far, there are only a few string models for which the root system of the associated Borcherds algebra has

been completely analyzed, and for which a complete set of imaginary simple roots associated with extra string

states, including their multiplicities, has been identi�ed. Celebrated examples are the fake monster [4] and the

monster Lie algebra [5], which are related to a toroidal and an orbifold compacti�cation of the 26-dimensional

bosonic string. In [1], an in�nite set of level-1 imaginary simple roots (with exponentially growing, known

multiplicities) for the Borcherds algebra gII9;1 was found and it was conjectured that this set should exhaust all

of them. The results of this paper disprove the conjecture and show that the structure of the gII9;1 root system is

more involved than originally thought. In establishing these results, we are led to explore the multiplicities and

simple multiplicities of these algebras much further than has been done before. Our calculations of the simple

root multiplicites are based on a new denominator formula which combines the known denominator formulas for

E10 and gII9;1. Although not as e�cient as the Peterson recursion formula (which appears to have no analog for

simple multiplicities), this formula does simplify the computations substantially and allows us to evaluate the

simple multiplicities down to norms �24. Since we have made no attempt to optimize our computer program

1By the \norm" of a root � we mean the (Minkowskian) scalar product �2.
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(using the symbolic algebra system Maple V) with regard to speed, it is quite conceivable that the calculations

can be carried even further. As an important by-product of this investigation we have determined the E10 root

multiplicities up to height 231 including levels up to ` = 6 and norms down to �42, because these numbers

are needed as an input in our modi�ed denominator formula. Since these results may also be of use in other

contexts, we have tabulated them separately in appendix A.

Although the ultimate pattern underlying the multiplicities remains elusive, and despite the failure of our

original conjecture, our results do exhibit some intriguing features. In particular, we would like to draw attention

to the fact that, as far as we have computed them, the simple multiplicities come out to be remarkably small,

both in comparison with the E10 multiplicities and with the number of decoupled states. For instance, at level

` = 4, we �nd

�(�3) = 2;

whereas the E10 multiplicity of �3 is given by

mult(�3) = 1044218;

and the number of associated decoupled states is equal to

�(�3) = 278125:

This behavior is to be contrasted with the gnome Lie algebra gII1;1 for which the simple root multiplicities and

the root space dimensions are of the same order of magnitude [1]. On the other hand, the pattern is clearly

more irregular than that of the fake monster algebra gII25;1 whose simple multiplicities either vanish, or are

uniformly equal to 24. In fact, at this point, we cannot even exclude the possibility of a \chaotic" behavior

at yet larger (negative) norms and higher levels | after all, E10 is de�ned by means of a recursive procedure

just like simple chaotic systems. Being optimistic and barring such pathologies, the supreme challenge is now

to unveil the secret behind the numbers we have found; and, whatever hypothesis is pro�erred to explain E10,

it must be tested against these numbers.

2 A modi�ed denominator formula

We �rst summarize our notations and conventions for E10, mostly following [13] to which we refer the reader

for further details. The real simple roots ri and the fundamental weights �i are labeled in accordance with the

Coxeter{Dynkin diagram:

u u u u u u u u u

u

�1 0 1 2 3 4 5 6 7

8

from which the E10 Cartan matrix Aij can be easily read o�. The root r�1 which extends the a�ne subalgebra

E9 to the full hyperbolic algebra E10 will be referred to as the over-extended root. The level ` of a root r in

the fundamental Weyl chamber is de�ned by

` := �� �r (3)

where � denotes the a�ne null root. The fundamental Weyl chamber C is the positive convex cone in II9;1
generated by the fundamental weights �i = �

P
j(A

�1)ijrj > 0, obeying �i �rj = ��ij (this is the only place

where we deviate from the conventions of [13]). So we have, for instance, ��1 = � and �0 = r�1+2�, etc.; since

�2
�1 = 0 and �2

i < 0 for i � 0, C lies inside the forward lightcone and touches it at one edge. Acting on C with

all elements of the E10 Weyl group and taking the closure of the resulting set, one obtains the so-called Tits

cone which coincides with the full forward light-cone containing all imaginary roots [12]. The Weyl chamber C

contains in particular the imaginary simple roots which must be adjoined to complete E10 to the full algebra

gII9;1 of physical states. For the determination of root multiplicities it is therefore su�cient to restrict attention

to roots in the fundamental Weyl chamber C; for a given root norm the computation can thus be reduced to a

a �nite number of checks.

3



In [1] a complete characterization of all level-1 imaginary simple roots of gII9;1 and their multiplicities was

given: the missing lowest weight states are just the purely longitudinal physical states with momenta r�1+N�

for N � 2. The multiplicities of these simple roots are given by �(r�1 + N�) = �1(N ), where

�d(n) := pd(n) � pd(n� 1) (4)

with

1X
n=0

pd(n)q
n =

Y
n�1

(1� qn)�d: (5)

One would expect the structure to be far more involved at higher levels, but the explicit calculations in [1]

revealed that there were no imaginary simple roots s at level 2 with s2 � �6. This unexpected result prompted

the conjecture that the level-1 roots of gII9;1 are in fact the only imaginary simple roots of gII9;1, or, equivalently,

that the set of missing lowest weight states is the free Lie algebra generated by the purely longitudinal states

at level 1. The evidence presented in [1] was based on computer calculations of commutators of certain level-1

states but this method becomes impractical beyond the examples studied there because of the rapidly increasing

algebraic complexity as the root norms become more negative. We here present an independent test via a

modi�ed denominator formula, enabling us to carry the checks much further, even without use of a computer.

This new formula combines the E10 denominator formula with the one for gII9;1, and is therefore sensitive only

to the \di�erence" of these two algebras.

The denominator formula for E10 reads (see e.g. [12])

Y
r2�+

(1� er)mult(r) =
X
w2W

(�1)wew(�)��; (6)

where �+ are the positive roots of E10 and � is the E10 Weyl vector, i.e., ��ri = �
1
2
r2i for i = �1; 0; 1; : : : ; 8.

The determination of the root multiplicities

mult(r) := dim E
(r)
10 (7)

at arbitrary level ` remains an unsolved problem for E10 (and, more generally, for any hyperbolic Kac{Moody

algebra): closed formulas exist only for levels j`j � 2 [13], and, albeit in implicit form, for ` = �3 [2]. The

denominator formula relates the in�nite product over all positive roots to an in�nite sum over the Weyl group

W � W(E10) generated by the reections w.r.t. the real simple roots. In principle, all root multiplicities can

be determined from it by multiplying out the l.h.s. and comparing the resulting expressions term by term,

but in practice this method reaches its limits rather quickly. However, one can derive from (6) the so-called

Peterson recursion formula (see e.g. [14]), which can be implemented on a computer. Because, to the best of

our knowledge, explicit tables of E10 multiplicities available in the literature stop at j`j = 2 [13] and the actual

numbers are needed in our calculation, we have computed the E10 multiplicities of all roots up to height 231

and levels � 6 by putting the Peterson formula on a computer. Readers may notice that, beyond ` = 2, these

multiplicities are no longer functions of the norm alone, as was still the case for the level 2 roots (so Murphy's

law has struck again).

For the Borcherds algebra gII9;1, the denominator formula must be amended in two ways: �rstly, the E10

multiplicities mult(r) are replaced by the corresponding numbers of physical states

dim g
(r)

II9;1
= �9(1�

1
2
r2) � mult(r); (8)

and secondly, the r.h.s. must be supplemented by extra terms due to the imaginary simple roots. The modi�ed

denominator formula reads [3]

Y
r2�+

(1 � er)�9(1�
1
2
r2) =

X
w2W

(�1)wew(�)��
X
s

�(s)ew(s); (9)

where �(s) is (�1)n if s is a sum of n distinct pairwise orthogonal imaginary simple roots of gII9;1, and zero

otherwise. As already pointed out the candidates for imaginary simple roots are all lattice points in the
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fundamental Weyl chamber C. Because all massless physical string states belong to E10, there are no lightlike

simple roots. Consequently, the imaginary simple roots are all timelike, and we therefore conclude that there

are no pairwise orthogonal imaginary simple roots. Hence

X
s

�(s)ew(s) = 1�
X

�2C\II9;1

�
2��2

�(�)ew(�)

= 1�

1X
N=2

�1(N )ew(r�1+N�) + : : : ; (10)

where, in the second line of this equation, we have made use of our knowledge of the simple roots at level

1 and their multiplicities; the dots stand for possible contributions from higher-level imaginary simple roots.

Unfortunately, there seems to be no analog of the Peterson recursion formula that would allow a (comparatively)

quick determination of the imaginary roots and their simple multiplicities. The proof of this formula crucially

relies upon the existence of a Weyl vector with � � s = �1
2
s2 for all simple roots s: while this requirement is

met by the ten simple roots of E10 it fails already for the level-1 imaginary simple roots s = r�1 +N�, as one

can easily check. Consequently, no Weyl vector exists for gII9;1 and we have to seek another way of simplifying

the denominator formula in order to test our conjecture.

The idea is to modify the formula in such a way that it \measures" only the corrections that arise when

enlarging E10 to the full Lie algebra gII9;1 of physical states. To this aim let us introduce the di�erence between

the gII9;1 and the E10 multiplicities, i.e., the number of decoupled (missing) states associated with the root r,

�(r) := �9(1�
1
2
r2)�mult(r) (� 0): (11)

So, using the known results in for j`j � 2, we have

�(r) =

8><
>:
0 for ` = 0;

�9(1�
1
2
r2)� p8(1�

1
2
r2) for ` = 1;

�9(1�
1
2
r2)� �(3� 1

2
r2) for ` = 2;

(12)

where the function �(n) was de�ned and tabulated in [13] (notice the accidental equality p8(3) = �(5)). The

explicit E10 multiplicities beyond level 2 which we need have been collected in the table of Appendix A, where

we also list the relevant values for �(r).

Inserting the E10 denominator formula into the one for gII9;1 , we obtain the following formula after a little

algebra:

� X
w2W

(�1)wew(�)
�� Y

r2�+

(1� er)�(r) � 1

�
= �

X
w2W

X
�2C\II9;1
�
2��2

(�1)w�(�)ew(�+�)

= �
X
w2W

1X
N=0

(�1)w �1(N + 2)ew(�+�0+N��1) + : : : : (13)

The dots stand for the level ` � 2 contributions which were conjectured to vanish in [1]. We will show explicitly

how the conjecture fails by exhibiting non-zero contributions of this type.

One advantage of this formula is the absence of terms without r�1 on the l.h.s. since for all such roots we

have �(r) = 0; thus, the E9 part of the denominator formula has already been factored out in (13). Given the

E10 root multiplicities it allows us to determine the simple roots together with their simple multiplicities rather

e�ciently, as we will demonstrate in the following section. The analysis of (13) can be considerably simpli�ed

by restricting oneself on the r.h.s. to roots in the fundamental Weyl chamber C. To see this, we note that in

terms of the fundamental weights we have � =
P8

j=�1�j, so that � + � 2 C for all � 2 C, and that for any

w 6= 1 the vector w(� + �) lies outside the fundamental Weyl chamber since no fundamental reection leaves

� invariant. With this observation, the sum over the Weyl group on the r.h.s. can be disregarded.

The general procedure for evaluating the new denominator formula is then as follows. Let us �x a dominant

integral level-` weight � 2 C for which � =
P

mj�j with mj � 0. We wish to determine the coe�cient of e�

5



on the l.h.s. of formula (13). To do so, we must �rst look for all possible decompositions �+� = w(�)+v with

v 2 Q+(E10). The reason why we cannot drop the sum over the Weyl group on the l.h.s., even if we consider

only terms in the fundamental Weyl chamber on the r.h.s., is that in this decomposition neither w(�) nor v will

in general be in the fundamental Weyl chamber even if their sum is. Now, for

w(�) = �+ a

we have a > 0 unless w = 1; this follows from the fact that the Weyl vector is a dominant E10 weight. From

the preservation of the scalar product and basic properties of the Weyl vector we deduce that (for a 6= 0)

a2 = �2��a = 2ht(a) > 0;

where \ht" denotes the height of the root, and

v2 = �2 + 2
�
ht(a)� a��

�
:

Note that for � 2 C we also have a �� � 0 for any positive a. These simple relations severely constrain the

possible a's that must be taken into account: since repeated Weyl reections will increase the height, there are

only �nitely many terms which can contribute for any given �. Having found all possible v = ��a 2 Q+(E10)

that can appear, the next problem will be to calculate the coe�cient of ev arising from the product over the

positive roots. For this we must �nd all decompositions v =
P

j vj with vj 2 �+. Some care must be exercised

with the various minus signs arising from the Weyl reections as well as from the binomial expansions of the

factors in the product over the positive roots. In particular, we have to know all multiplicities of the relevant

positive roots. At higher level, this causes the extra complication of determining in which E10 Weyl orbits these

roots lie. Given any positive root r, this amounts to reecting it by use of the Weyl group into the fundamental

chamber. Although there seem to be no general results available we have found the following method, due to

J. Fuchs [8], to be very e�cient. One starts by rewriting the root in the basis of fundamental weights, i.e.,

r =
P

imi�i for mi 2Z. Since r =2 C by assumption, at least one of the coe�cients mi is negative. Choose a

negative coe�cient with the largest absolute value mk, say, and apply the kth fundamental Weyl reection to

the root. We obtain wk(r) =
P

iwk(mi)�i with wk(mi) := mi � mkAki, so that the coe�cient of �k is now

�mk > 0. The next step is to determine again the most negative coe�cient, to apply the corresponding Weyl

reection and so on. This algorithm always terminates after a �nite number of steps.

3 Sample calculations for �2
� �10

Let us now illustrate how the calculation works in detail for some simple examples for which the new denominator

formula can be evaluated by hand. This is certainly the case for roots � 2 C with �2 � �10, and perhaps

beyond; however, the combinatorial complexities, and thus the possible sources of errors, increase rapidly for

large negative �2, and we have therefore preferred to let the computer do the rest of the calculation, see the

following section.

For the level-1 roots the required computations are quite straightforward, as we need only consider w 2

W(E9) and make use of the fact that the E9 Weyl orbit of r�1+N� consists of all elements r�1+(N+ 1
2
b2)�+b

with b 2 Q(E8). It is then not di�cult to check the validity of (13) for roots � = �0+(N �2)��1 = r�1+N�

to large N . However, since we anyhow know the formula to be correct at level 1, we refrain from giving further

details. As regards the level-2 roots of norm � �6, our calculation will just con�rm the conclusions reached

in [1], whereas for norms �8 and �10 our results are new (and unlikely to be obtainable by the methods of

[1]). We will show that all higher-level terms on the r.h.s. of Eq. (13) down to norm squared �8 are absent, in

agreement with the conjecture of [1]; the relevant roots in C are �7;�1; 2�0 and �7+�, all of level 2. There are

two norm �10 roots in C, namely �1+ �, of level 2, and �8, of level 3 (all other level � 3 roots in C have norm

� �12); for these, we will �nd a non-vanishing result, refuting the conjecture of [1]. Further counterexamples

will be provided in the next section.

In the actual calculations we will need to determine to which Weyl orbit a given root belongs, and whenever

referring to a root lying in a certain Weyl orbit we have checked this by Fuchs' algorithm. For small norms

this is not really necessary, if there is only one Weyl orbit; for instance, there is only one orbit W(�0), for

roots with r2 = �2 which has �(�0) = 1. For roots with r2 = �4 there are two Weyl orbits, W(�0 + �) and
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W(�7), which happen to yield the same numbers �(�0 + �) = �(�7) = 9. In fact, all Weyl orbits of level-2

roots in C with the same norm have the same value for � because the level-2 multiplicities (described by the

function �) depend only on the norm. The combinatorial prefactors below arise from the combinatorics of the

indices i; j; : : : and are most conveniently determined by inspection of the Coxeter{Dynkin diagram. Relations

such as 0 � a2 < ��2 + 2a�� show that we have listed all nonzero contributions to the simple multiplicities of

the roots under consideration. Finally, an important consistency check on the calculation is that the non-zero

coe�cients must come out to be non-positive due to the absence of pairwise orthogonal simple imaginary roots.

This applies in particular to the large (negative) norm roots to be analyzed in the next section, where the �nal

result is obtained as an alternating sum of huge contributions.

1. �2 = �4, i.e. � = �7.

(a) ��a = 0:

i. a = 0 =) ��(�7) = �9;

ii. a2 = 2, i.e. a = ri for i 6= 7 =) 9�(�1)2�(�0) = 9.

In total, this gives �9 + 9 = 0 for the simple multiplicity.

2. �2 = �6, i.e. � = �1.

(a) ��a = 0:

i. a = 0 =) ��(�1) = �53;

ii. a2 = 2, i.e. a = ri for i 6= 1 =) 9�(�1)2�(�7) = 81;

iii. a2 = 4, i.e. a = ri + rj for i; j 6= 1 and ri �rj = 0 =) 29�(�1)3�(�0) = �29;

(b) ��a = �1:

i. a2 = 2, i.e. a = r1 =) (�1)2�(�0) = 1.

In total, this gives �53 + 81� 29 + 1 = 0 for the simple multiplicity.2

3. �2 = �8, i.e. � = 2�0 or � = �7 + �.

Let � = 2�0.

(a) ��a = 0:

i. a = 0 =) ��(2�0) = �246;

ii. a2 = 2, i.e. a = ri for i 6= 0 =) (�1)2[�(�0 + 2�) + 8�(�1)] = 478,

since �� r�1 2W(�0 + 2�) and � � r1; : : : ;�� r8 2W(�1);

iii. a2 = 4, i.e. a = ri + rj for i; j 6= 0 and ri �rj = 0 =) 29�(�1)3�(�7) = �261;

iv. a2 = 6, i.e. a = ri + rj + rk for i; j; k 6= 0 and ri �rj = rj �rk = rk �ri = 0, or a = 2ri + rj for

i; j 6= 0 and ri �rj = �1 =) [42�(�1)4 + 14�(�1)3]�(�0) = 28;

(b) ��a = �2:

i. a2 = 2, i.e. a = r0 =) (�1)2�(�0) = 1.

In total, this gives �246 + 478� 261 + 28+ 1 = 0 for the simple multiplicity.

Let � = �7 + �.

(a) ��a = 0:

i. a = 0 =) ��(�7 + �) = �246;

ii. a2 = 2, i.e. a = ri for i 6= �1; 7 =) 8�(�1)2�(�1) = 424,

since �� a 2W(�1);

iii. a2 = 4, i.e. a = ri + rj for i; j 6= �1; 7 and ri �rj = 0 =) 21�(�1)3�(�7) = �189;

2These two examples amply demonstrate the power of formula (13): the necessary commutator calculations in [1] needed to

reach the same conclusion required two hours of CPU time!
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iv. a2 = 6, i.e. a = ri + rj + rk for i; j; k 6= �1; 7 and ri �rj = rj �rk = rk �ri = 0, or a = 2ri + rj
for i; j 6= �1; 7 and ri �rj = �1 =) [21�(�1)4 + 14�(�1)3]�(�0) = 7;

(b) ��a = �1:

i. a2 = 2, i.e. a = r�1 or a = r7 =) 2�(�1)2�(�7) = 18;

ii. a2 = 4, i.e. a = r�1 + ri for i 6= �1; 0; 7 or a = r7 + rj for j 6= �1; 6; 7

=) 14�(�1)3�(�0) = �14.

In total, this gives �246 + 424� 189 + 7 + 18� 14 = 0 for the simple multiplicity.

4. �2 = �10, i.e. � = �1 + � or � = �8.

Let � = �1 + �.

(a) ��a = 0:

i. a = 0 =) ��(�1 + �) + (�1)2�(�0)�(�0 + r0) = �982,

since � = 2�0 + r0;
3

ii. a2 = 2, i.e. a = ri for i 6= �1; 1 =) 8�(�1)2�(�7 + �) = 1968,

since �� r0 2W(2�0) and �� ri 2W(�7 + �) for i 6= �1; 0; 1;

iii. a2 = 4, i.e. a = ri + rj for i; j 6= �1; 1 and ri �rj = 0 =) 22�(�1)3�(�1) = �1166,

since �� a 2W(�1);

iv. a2 = 6, i.e. a = ri + rj + rk for i; j; k 6= �1; 1 and ri �rj = rj �rk = rk �ri = 0, or a = 2ri + rj
for i; j 6= �1; 1 and ri �rj = �1 =) [26�(�1)4 + 12�(�1)3]�(�7) = 126;

v. a2 = 8, i.e. a = ri+rj+rk+rl for i; j; k; l 6= �1; 1 and ri�rj = : : := rl�ri = 0, or a = 2ri+rj+rk
for i; j; k 6= �1; 1 and ri �rj = �1, ri �rk = rj �rk = 0, or a = 2(ri + rj) for i; j 6= �1; 1 and

ri �rj = �1 =) [13�(�1)5 + 48�(�1)4 + 6�(�1)4]�(�0) = 41;

(b) ��a = �1:

i. a2 = 2, i.e. a = r�1 or a = r1 =) (�1)2[�(�0 + 2�) + �(�1)] = 107,

since �� r�1 2W(�0 + 2�) and � � r1 2W(�1);

ii. a2 = 4, i.e. a = r�1 + ri for i 6= �1; 0; 1, or a = r1 + rj for j 6= �1; 0; 1; 2

=) 13�(�1)3�(�7) = �117;

iii. a2 = 6, i.e. a = r�1 + 2r0, a = r1 + 2r0, a = r1 + 2r2, or a = r�1 + ri + rj for i; j 6= �1; 0; 1

and ri �rj = 0, or a = r1 + ri + rj for i; j 6= �1; 0; 1; 2 and ri �rj = 0

=) [25�(�1)4 + 3�(�1)3]�(�0) = 22;

(c) ��a = �2:

i. a2 = 4, i.e. a = r�1 + r1 =) (�1)3�(�0) = �1.

In total, this gives �982+ 1968� 1166+ 126+ 41+ 107� 117+ 22� 1 = �2 contradicting the conjecture

of [1]! We have to conclude that �1 + � is an imaginary simple root of multiplicity 2.

Let � = �8.

(a) ��a = 0:

i. a = 0 =) ��(�8) = �981;

ii. a2 = 2, i.e. a = ri for i 6= 8 =) 9�(�1)2�(�7 + �) = 2214,

since �� a 2W(�7 + �);

iii. a2 = 4, i.e. a = ri + rj for i; j 6= 8 and ri �rj = 0 =) 28�(�1)3�(�1) = �1484,

since �� a 2W(�1);

iv. a2 = 6, i.e. a = ri + rj + rk for i; j; k 6= 8 and ri �rj = rj �rk = rk �ri = 0, or a = 2ri + rj for

i; j 6= 8 and ri �rj = �1 =) [35�(�1)4 + 16�(�1)3]�(�7) = 171;

3Note that this is the �rst example where we have to take into account the product over the positive roots appearing on the

l.h.s. of (13).
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v. a2 = 8, i.e. a = ri+rj+rk+rl for i; j; k; l 6= 8 and ri�rj = : : : = rl�ri = 0, or a = 2ri+rj+rk
for i; j; k 6= 8 and ri �rj = �1, ri �rk = rj �rk = 0, or a = 2(ri + rj) for i; j 6= 8 and ri �rj = �1

=) [15�(�1)5 + 84�(�1)4 + 8�(�1)4]�(�0) = 77;

(b) ��a = �1:

i. a2 = 2, i.e. a = r8 =) (�1)2�(�1) = 53,

since �� r8 2W(�1);

ii. a2 = 4, i.e. a = r8 + ri for i 6= 5; 8 =) 8�(�1)3�(�7) = �72;

iii. a2 = 6, i.e. a = r8 + 2r5 or a = r8 + ri + rj for i; j 6= 5; 8 and ri �rj = 0

=) [22�(�1)4 + 1�(�1)3]�(�0) = 21.

In total, this gives �981+2214� 1484+ 171+77+53� 72+ 21 = �1 again contradicting the conjecture.

We conclude that �8 is an imaginary simple root of multiplicity 1.

4 Simple Roots and Simple Multiplicities for �2
� �24

The above calculations can now be carried much further with the help of a computer, and in this section we

present the results that we have obtained down to norms �2 = �24. Before giving these results, we would,

however, like to stress once more some of the extra complications that arise as the root norms become more

negative. As is already evident from the example � = �1 + � of the last section, we must now deal with the

product over all positive roots appearing on the l.h.s. of (13). More speci�cally, for a given root � we will have

to take into account all decompositions of v = � � a into sums of positive roots. To �nd them, we make use

of the following strategy. Since only positive roots with nonvanishing � contribute, we can disregard all real

and lightlike imaginary roots. Moreover, without loss of generality we can rotate v into the fundamental Weyl

chamber and look for decompositions v =
P

j vj there; it is important here that the summands vj need not

belong to C separately. Starting from any such decomposition, the action of the little Weyl group W(�) (i.e.,

the stability subgroup leaving � �xed) yields further decompositions. Hence we have to take into account only

those decompositions where at least one of the elements vj is a lowest weight vector of W(�). In the cases we

have investigated we could restrict the search even further because only decompositions into two components

can occur. In general, however, decompositions into an arbitrary number of positive roots will have to be

considered. For roots which are multiples of other roots we also have another contribution, coming from higher

terms in the expansion of (1� ev)�(v).

Since in long computer calculations4 one can never exclude all possible sources of errors, we emphasize once

more that the positivity of the �nal result constitutes an important consistency check, especially with descending

norms as the numbers involved in the sum become very large. Our results are collected in Table 1.

Table 1: Simple multiplicities of imaginary simple roots

with �2 � �2

� `(�) ht(�) �2 dimg
(�)

II9;1
�(�)

�0 1 61 -2 45 1

�7 2 76 -4 201 0

� + �0 1 91 -4 201 1

�1 2 93 -6 780 0

� + �7 2 106 -8 2718 0

�8 3 115 -10 8730 1

2� +�0 1 121 -6 780 2

2�0 2 122 -8 2718 0

� + �1 2 123 -10 8730 2

�2 3 126 -12 26226 0

2� +�7 2 136 -12 26226 1

�0 + �7 3 137 -14 74556 3

� + �8 3 145 -16 202180 3

4For instance, the determination of �(�3) = 2 took four hours of CPU time.
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Table 1: Simple multiplicities of imaginary simple roots

with �2 � �2

� `(�) ht(�) �2 dimg
(�)

II9;1
�(�)

3� +�0 1 151 -8 2718 2

� + 2�0 2 152 -12 26226 2

2�7 4 152 -16 202180 0

2� +�1 2 153 -14 74556 3

�6 4 153 -18 526397 3

�0 + �1 3 154 -16 202180 4

� + �2 3 156 -18 526397 6

�3 4 160 -20 1322343 2

3� +�7 2 166 -16 202180 4

� + �0 + �7 3 167 -20 1322343 14

�1 + �7 4 169 -22 3218091 14

2� +�8 3 175 -22 3218091 14

�0 + �8 4 176 -24 7612014

4� +�0 1 181 -10 8730 4

2� + 2�0 2 182 -16 202180 4

� + 2�7 4 182 -24 7612014

3� +�1 2 183 -18 526397 11

3�0 3 183 -18 526397 7

� + �6 4 183 -26 17548920

4� +�7 2 196 -20 1322343 8

3� + 2�0 2 212 -20 1322343 13

4� +�1 2 213 -22 3218091 25

For the convenience of the reader and to provide a \bird's eye's " view on the results obtained so far, we have

displayed them once more in the table below. This table highlights two facts, namely, (i) that in some cases the

simple multiplicities depend only on the norm of the root in question, and (ii) (somewhat to our surprise) that

the simple multiplicities at level ` = 2 depend also on the \direction" of the root, unlike the corresponding E10

multiplicities!

`
�
�2 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24

1 1 1 2 2 4 4 7 8 12 14 21 24

2 0 0 0� 2 1,2 3 4� 11 8,13 25

3 1 0 3 3,4 6,7 14 14

4 0 3 2 14

Table 2: Simple multiplicities of imaginary simple roots for gII9;1

While no clear pattern is discernible in the simple root multiplicities so far, the smallness of the numbers

obtained is noteworthy. Especially the zeroes in this table (the corresponding roots thus must not be counted

as simple roots) appear to us quite striking in view of the fact that we are unaware of any obvious a priori

reason for their existence. Furthermore, we observe that the simple multiplicities do not depend monotonically

on the norms for levels ` � 2, unlike the level-1 simple multiplicities, and unlike the simple multiplicities of the

gnome Lie algebra. Also, for �xed �2, there is a tendency for the simple multiplicities to decrease as a function

of the level. Of course, these results might just be a coincidence, and the simple multiplicities, although rather

well behaved for low norms and low levels, might explode after a few more steps. On the other hand, the fact

that we stay so close to zero makes us wonder if there is not a hidden structure \just around the corner."

The smallness of the simple root multiplicitiesmeans that that E10 is a rather \big" subalgebra of gII9;1. This

behavior is to be contrasted with that of the gnome Lie algebra gII1;1 , whose maximal Kac Moody subalgebra

�Occurs twice.
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is the �nite algebra sl(2;R). However, readers should keep in mind that (1) admits an in�nite nested sequence

of Borcherds algebras \between" E10 and gII9;1: these are simply obtained obtained by omitting any number of

missing E10 modules from gII9;1 or, equivalently, the corresponding simple roots from the root system of gII9;1 .

Being confronted with the ineluctable conclusion that E10 is much more complicated than either the gnome

or the fake monster, the next question is, how should one proceed from here onwards? Recall that the nice

structure underlying the root system of the fake monster Lie algebra was discovered by methods very similar to

the ones employed here (see remarks in Sect. 5 of [3]). By computing the simple multiplicities of roots down to

norm �6, Borcherds realized that the imaginary simple roots are all proportional to � with uniformmultiplicity

24 (corresponding to the 24 transverse polarizations of a photon in 26 dimensions), where � is the lightlike Weyl

vector of II25;1; and, happily, the pattern thus reveals itself after only very few steps! (Observe that, in fact,

for the fake monster, all entries in Table 2 would vanish because gII25;1 has no simple roots of negative norm.)

For E10, we are evidently not in such a fortuitous situation, and at this point the only feasible way to make

further progress with presently available techniques seems to be to collect even more data about the simple

multiplicities. Fortunately, we have seen that our method can be conveniently implemented on a computer.

Assuming a general pattern for the simple multiplicities we would still face the problem of a rigorous proof.

For the monster, Borcherds was able to prove that the emerging pattern was, in fact, a general property of

the algebra and its root system by establishing a new modular identity. In the case at hand, the question is

therefore whether our new denominator formula (13) admits a modular interpretation, too. This question is

obviously of a more general interest, as similar modi�ed denominator formulas are expected to exist for other

algebras of this type. After a suitable specialization, these formulas would give rise to new modular identities

involving all levels simultaneously. In making these speculations, we are encouraged by the fact that there do

exist examples of automorphic forms which give rise to Borcherds algebras with E10 as maximal Kac{Moody

subalgebra (see Example 1 in Sect. 16 of [6], and [10]).

Acknowledgments: We are indebted to R. Borcherds for sharing with us his (unpublished) expertise on

reection groups and the Peterson formula, and to J. Fuchs for explaining to us his Weyl orbit method. H. N.

would like to thank the Newton Institute in Cambridge, where part of this work was carried out, for hospitality

and support. O. B. is grateful to the Albert-Einstein-Institut for hospitality during a visit there.

A E10 Multiplicities for � 2 C with ht(�) � 231

In this appendix we collect the multiplicities of all roots ofE10 with height� 231. This includes the multiplicities

of all fundamental weights of E10.

The calculation of these multiplicities starts from Peterson's formula, which in principle allows the recursive

computation of the multiplicity of any root. For algebras of high rank such as E10, however, this procedure soon

takes up too much time due to the large number of roots involved. We will use an approach due to Borcherds

[7] to simplify the calculations. The idea is to employ the little Weyl (or stability) group of the root in question

and to group the roots into orbits of this group and then count these orbits rather than the roots themselves.

One has the following identity

(�j�� 2�)c� =
X

�0;�00 2 Q+

� = �0 + �00

(�0j�00)c�0c�00
!
=
X
v2Q+

(vj�� v)cvc��vjW(v)j: (14)

The second sum is over all real roots and all lowest weight vectors v in Q+ with respect to the little Weyl group

W(�) such that � � v is also a positive root. One also has to be careful not to count the same orbit twice.

jW(v)j denotes the size of the orbit of this lowest weight vector under W(�) and we have

c� =
X
k�1

1

k
mult

�
�

k

�
: (15)

To give an example for this procedure we consider the two simplest cases: � = ��1 = � and � = �0.

1. � = � ) (�j�� 2�) = �60
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(a) � = r0 + � ) (�j�� �)c�c��� jW(�)j = �240

Taking an extra factor of 2 due to the symmetry of the sum into account we recover the well-known result

mult(�) = 8.

2. � = �0 ) (�j�� 2�) = �124

(a) �0 = � + (�0 � �)) (�j�� �)c�c��� jW(�)j = �64

(b) �0 = r�1 + (�0 � r�1)) (r�1j�� r�1)cr�1c��r�1 jW(r�1)j = �24

(c) �0 = r0 + (�0 � r0)) (r0j�� r0)cr0c��r0 jW(r0)j = �1920

(d) �0 = r1 + (�0 � r1)) (r1j�� r1)cr1c��r1 jW(r1)j = �720

Taking an extra factor of 2 due to the symmetry of the sum into account we �nd the expected result

mult(�0) = 44.

For a given v the size of the Weyl orbit is easily calculated as follows: For � 6= � the little Weyl group

is a �nite group with known order. We can also assume that v is a lowest weight vector for this group. The

subgroup �xing it is then the Weyl group whose simple roots are those orthogonal to the vector v. The order

of this subgroup is calculated by looking it up, determining the simple factors from the Dynkin diagram. The

size of the orbit is then given as the quotient of these two orders.

The remaining problem is to �nd all lowest weight vectors for W(�) in Q+. These are given by all positive

roots of the form

v =

8X
i=�1

ni�i (16)

where only the coe�cients ni corresponding to simple roots ri orthogonal to � have to be positive. Due to the

symmetry of the sum one can restrict the search to vectors with heights ht(v) � [ht(�)=2].

For roots of low height this formula can be evaluated by hand but this becomes impractical very quickly due

to the large number of orbits. For � = �0+�1+�7 e.g. there are 635 contributing Weyl orbits. Hence most of

the multiplicities were calculated with a computer using the symbolic algebra system Maple V. One consistency

check here is that, despite the occurrence of fractional numbers at intermediate stages of the calculation, the

�nal result must be an integer.

Our results for the E10 multiplicities and the values of � (cf. (11)) are collected in Table 3 below, where

we have labeled the root � =
P8

j=�1 nj�j by the symbol [n�1; n0; n1; : : : ; n8].

Table 3: E10 Root Multiplicities

� � `(�) ht(�) �2 mult(�) �(�)

� [0; 1; 2; 3;4; 5; 6;4;2;3] 0 30 0 8 0

2� [0; 2; 4; 6;8; 10; 12; 8; 4;6] 0 60 0 8 0

�0 [1; 2; 4; 6;8; 10; 12; 8; 4;6] 1 61 -2 44 1

�7 [2; 4; 6; 8;10;12;14;9; 4; 7] 2 76 -4 19 2 9

3� [0; 3; 6; 9;12;15;18;12;6;9] 0 90 0 8 0

� + �0 [1; 3; 6; 9;12;15;18;12;6;9] 1 91 -4 192 9

�1 [2; 4; 6; 9;12;15;18;12;6;9] 2 93 -6 7 27 53

� + �7 [2; 5; 8; 11;14;17;20;13;6;10] 2 106 -8 2472 246

�8 [3; 6; 9; 12;15;18;21;14;7;10] 3 115 -10 7749 981

4� [0; 4; 8; 12;16;20;24;16;8;12] 0 120 0 8 0

2� +�0 [1; 4; 8; 12;16;20;24;16;8;12] 1 121 -6 726 54

2�0 [2; 4; 8; 12;16;20;24;16;8;12] 2 122 -8 2472 246

� + �1 [2; 5; 8; 12;16;20;24;16;8;12] 2 123 -10 7747 983

�2 [3; 6; 9; 12;16;20;24;16;8;12] 3 126 -12 22725 3501

2� +�7 [2; 6; 10; 14; 18; 22; 26; 17; 8;13] 2 136 -12 22712 3514

�0 +�7 [3; 6; 10; 14; 18; 22; 26; 17; 8;13] 3 137 -14 63085 11471
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Table 3: E10 Root Multiplicities

� � `(�) ht(�) �2 mult(�) �(�)

� + �8 [3; 7; 11; 15; 19; 23; 27; 18; 9;13] 3 145 -16 167116 35064

5� [0; 5; 10; 15; 20; 25; 30; 20; 10; 15] 0 150 0 8 0

3� +�0 [1; 5; 10; 15; 20; 25; 30; 20; 10; 15] 1 151 -8 2464 254

� + 2�0 [2; 5; 10; 15; 20; 25; 30; 20; 10; 15] 2 152 -12 22712 3514

2�7 [4; 8; 12; 16; 20; 24; 28; 18; 8;14] 4 152 -16 167133 35047

2� +�1 [2; 6; 10; 15; 20; 25; 30; 20; 10; 15] 2 153 -14 63020 11536

�6 [4; 8; 12; 16; 20; 24; 28; 18; 9;14] 4 153 -1 8 425227 101170

�0 +�1 [3; 6; 10; 15; 20; 25; 30; 20; 10; 15] 3 154 -16 167099 35081

� + �2 [3; 7; 11; 15; 20; 25; 30; 20; 10; 15] 3 156 -18 425156 101241

�3 [4; 8; 12; 16; 20; 25; 30; 20; 10; 15] 4 160 - 20 1044218 278125

3� +�7 [2; 7; 12; 17; 22; 27; 32; 21; 10; 16] 2 166 -16 166840 35340

� + �0 +�7 [3; 7; 12; 17; 22; 27; 32; 21; 10; 16] 3 167 -20 1043926 278417

�1 +�7 [4; 8; 12; 17; 22; 27; 32; 21; 10; 16] 4 169 -22 2485020 733071

2� +�8 [3; 8; 13; 18; 23; 28; 33; 22; 11; 16] 3 175 -22 2483970 734121

�0 +�8 [4; 8; 13; 18; 23; 28; 33; 22; 11; 16] 4 176 -24 5749818 1862196

6� [0; 6; 12; 18; 24; 30; 36; 24; 12; 18] 0 180 0 8 0

4� +�0 [1; 6; 12; 18; 24; 30; 36; 24; 12; 18] 1 181 -10 7704 1026

2� + 2�0 [2; 6; 12; 18; 24; 30; 36; 24; 12; 18] 2 182 -16 166840 35340

� + 2�7 [4; 9; 14; 19; 24; 29; 34; 22; 10; 17] 4 182 -24 5750072 1861942

3� +�1 [2; 7; 12; 18; 24; 30; 36; 24; 12; 18] 2 183 -18 424161 102236

3�0 [3; 6; 12; 18; 24; 30; 36; 24; 12; 18] 3 183 -18 425058 101339

� + �6 [4; 9; 14; 19; 24; 29; 34; 22; 11; 17] 4 183 -26 12971009 4577911

� + �0 +�1 [3; 7; 12; 18; 24; 30; 36; 24; 12; 18] 3 184 -22 2483871 734220

2� +�2 [3; 8; 13; 18; 24; 30; 36; 24; 12; 18] 3 186 -24 5746226 1865788

2�1 [4; 8; 12; 18; 24; 30; 36; 24; 12; 18] 4 186 -24 5749565 1862449

�0 +�2 [4; 8; 13; 18; 24; 30; 36; 24; 12; 18] 4 187 -26 12970045 4578875

� + �3 [4; 9; 14; 19; 24; 30; 36; 24; 12; 18] 4 190 -28 28592513 10931086

�7 +�8 [5; 10; 15; 20; 25; 30; 35; 23; 11;17] 5 191 -28 28595548 10928051

�4 [5; 10; 15; 20; 25; 30; 36; 24; 12;18] 5 195 -30 61721165 25411831

4� +�7 [2; 8; 14; 20; 26; 32; 38; 25; 12; 19] 2 196 -20 1040664 281679

2� +�0 +�7 [3; 8; 14; 20; 26; 32; 38; 25; 12; 19] 3 197 -26 12959290 4589630

2�0 +�7 [4; 8; 14; 20; 26; 32; 38; 25; 12; 19] 4 198 -28 28589025 10934574

� + �1 +�7 [4; 9; 14; 20; 26; 32; 38; 25; 12; 19] 4 199 -30 61711591 25421405

�2 +�7 [5; 10; 15; 20; 26; 32; 38; 25; 12;19] 5 202 -32 130661924 57690454

3� +�8 [3; 9; 15; 21; 27; 33; 39; 26; 13; 19] 3 205 -28 28559052 10964547

� + �0 +�8 [4; 9; 15; 21; 27; 33; 39; 26; 13; 19] 4 206 -32 130632964 57719414

�1 +�8 [5; 10; 15; 21; 27; 33; 39; 26; 13;19] 5 208 -34 271695444 128129588

7� [0; 7; 14; 21; 28; 35; 42; 28; 14; 21] 0 210 0 8 0

5� +�0 [1; 7; 14; 21; 28; 35; 42; 28; 14; 21] 1 211 -12 22528 3698

3� + 2�0 [2; 7; 14; 21; 28; 35; 42; 28; 14; 21] 2 212 -20 1040664 281679

2� + 2�7 [4; 10; 16; 22; 28; 34; 40; 26; 12;20] 4 212 -32 130635596 57716782

4� +�1 [2; 8; 14; 21; 28; 35; 42; 28; 14; 21] 2 213 -22 2474026 744065

� + 3�0 [3; 7; 14; 21; 28; 35; 42; 28; 14; 21] 3 213 -24 5745720 1866294

�0 + 2�7 [5; 10; 16; 22; 28; 34; 40; 26; 12;20] 5 213 -34 271702532 128122500

2� +�6 [4; 10; 16; 22; 28; 34; 40; 26; 13;20] 4 213 -34 271618575 128206457

2� +�0 +�1 [3; 8; 14; 21; 28; 35; 42; 28; 14; 21] 3 214 -28 28558597 10965002

�0 +�6 [5; 10; 16; 22; 28; 34; 40; 26; 13;20] 5 214 -36 555652661 278885204

2�0 +�1 [4; 8; 14; 21; 28; 35; 42; 28; 14; 21] 4 215 -30 61699285 25433711

3� +�2 [3; 9; 15; 21; 28; 35; 42; 28; 14; 21] 3 216 -30 61620301 25512695

� + 2�1 [4; 9; 14; 21; 28; 35; 42; 28; 14; 21] 4 216 -32 130630342 57722036

� + �0 +�2 [4; 9; 15; 21; 28; 35; 42; 28; 14; 21] 4 217 -34 271609694 128215338
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Table 3: E10 Root Multiplicities

� � `(�) ht(�) �2 mult(�) �(�)

�1 +�2 [5; 10; 15; 21; 28; 35; 42; 28; 14;21] 5 219 -36 555631102 278906763

2� +�3 [4; 10; 16; 22; 28; 35; 42; 28; 14;21] 4 220 -36 555434128 279103737

� + �7 +�8 [5; 11; 17; 23; 29; 35; 41; 27; 13;20] 5 221 -38 1118955631 595793867

�0 +�3 [5; 10; 16; 22; 28; 35; 42; 28; 14;21] 5 221 -38 1118894437 595855061

� + �4 [5; 11; 17; 23; 29; 35; 42; 28; 14;21] 5 225 -40 2220872914 1251118823

5� +�7 [2; 9; 16; 23; 30; 37; 44; 29; 14; 22] 2 226 -24 5717880 1894134

3� +�0 +�7 [3; 9; 16; 23; 30; 37; 44; 29; 14; 22] 3 227 -32 130395100 57957278

� + 2�0 +�7 [4; 9; 16; 23; 30; 37; 44; 29; 14; 22] 4 228 -36 555404364 279133501

3�7 [6; 12; 18; 24; 30; 36; 42; 27; 12;21] 6 228 -36 555695680 278842185

2� +�1 +�7 [4; 10; 16; 23; 30; 37; 44; 29; 14;22] 4 229 -38 1118347860 596401638

�6 +�7 [6; 12; 18; 24; 30; 36; 42; 27; 13;21] 6 229 -40 2221039540 1250952197

�0 +�1 +�7 [5; 10; 16; 23; 30; 37; 44; 29; 14;22] 5 230 -40 2220699951 1251291786

2�8 [6; 12; 18; 24; 30; 36; 42; 28; 14;20] 6 230 -40 2221026189 1250965548

�5 [6; 12; 18; 24; 30; 36; 42; 28; 14;21] 6 231 -42 4348985101 2584919075
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